小功率调幅发射机设计

合集下载

小功率调频发射机(工程)

小功率调频发射机(工程)

高频课程设计一、题目小功率调频发射机的设计与制作二、主要技术指标1.中心频率f=12MHzf >10kHz2.最大频偏mP≥30mW3.输出功率o4.电源电压 Vcc=9V三、设计和制作任务1.确定电路形式,选择各级电路的静态工作点。

画出电路图。

2.计算各级电路元件参数并选取元件。

3.画出电路装配图。

4.组装焊接电路。

5.调试并测量电路性能。

6.写出课程设计报告书,内容包括:●任务及性能指标要求●电路和方案选择的依据,元件的理论计算和选择●调试方法和步骤,调试中问题的分析及解决●测试仪器,实验结果及分析●改进设想,实验心得四、设计提示通常小功率发射机采用直接调频方式,它的组成框图如图1所示。

其中调频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供未级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免未级功放的工作状态变化而直接影响振荡级的频率稳定度;功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

图1调频发射机组成上述框所示小功率发射机设计的主要任务是选择各级电路形式和各级元器件参数的计算。

1.调频振荡级由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。

2.缓冲级由于对该级有一定增益要求,考虑到中心频率固定,因此可采用以LC并联回路作负载的小信号谐振放大器电路。

对该级管子的要求是f T≥(3-5)foV(BR)CEO≥2Vcc至于谐振回路的计算,一般先根据fo计算出LC的乘积值。

然后选择合适的C再求出LC。

根据本课题的频率可取100pF-200pF 。

3.功放输出级为了获得较大的功率增益和较高的集电极效率,该级可采用共发射极电路,且工作在丙类状态。

输出回路用来实现阻抗匹配并进行滤波,从结构简单、调节方便起见,本课题可采用π型网络,计算元件参数时通常取Qe1在10以内,计算公式请参阅教材。

小功率调频发射机的设计

小功率调频发射机的设计

小功率调频发射机的设计一、设计原理1.调频器:负责将音频信号转换成频率调制信号。

在调频器中,我们可以使用电容或电感进行频率调制。

2.放大器:负责将调频器输出的调制信号放大到适合无线传输的功率水平。

放大器主要使用晶体管、场效应管或管子放大器等器件。

3.混频器:负责将振荡器产生的射频信号与调制信号进行混频,形成调频发射信号。

4.振荡器:用于产生稳定的射频信号,其频率由调频电路控制。

5.滤波器:用于滤除混频后产生的杂散分量,只保留感兴趣的射频信号。

6.功率放大器:负责将滤波器输出的射频信号放大到更高的功率水平,使其能够被天线辐射出去。

二、设计步骤1.确定应用场景和需求:首先需要确定该小功率调频发射机的应用场景和需求,包括工作频率范围、传输距离、功率要求等。

2.确定天线类型和参数:根据应用场景的不同,选择适合的天线类型和参数,如定向天线、全向天线、增益、方向性等。

3.确定调制方式:根据应用需求,选择合适的调制方式,如频率调制、相位调制、脉冲调制等。

4.按照电路图设计电路:根据设计需求,绘制出整个调频发射机的电路图。

根据电路图,选择合适的器件和数值进行电路设计。

5.PCB设计和制作:将电路图转化为PCB图,设计并制作出电路板。

在设计电路板时,需要注意布局合理性和信号线的走向,以避免干扰和噪声。

6.组件的选择和安装:根据设计需求,选择合适的器件和元件,并进行焊接和安装。

7.调试和测试:将制作完成的发射机进行调试和测试,确保其可以正常工作并满足设计需求。

8.优化和改进:根据测试结果,对发射机进行优化和改进,提高其性能和稳定性。

小功率调频发射机的设计需要一定的电子技术和通信原理的基础,对器件的选择和电路设计也需要一定的经验和专业知识。

在设计过程中,需要考虑信号传输的稳定性、抗干扰性和功率效率等因素,以保证发射机的性能和可靠性。

总结:小功率调频发射机的设计是一个综合性较强的工程项目,它需要掌握多种电子技术和通信原理知识,并进行电路设计、PCB制作和调试等工作。

小功率调幅发射机

小功率调幅发射机

课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:小功率调幅发射机设计初始条件:(1)可选元件:MC1496、 A741、3.597MHz晶振、3DG130、NXO-10磁环(2)可用仪器:万用表,毫伏表(3)仿真软件:Protuse要求完成的主要任务:(1)设计小功率调幅发射机的各单元电路(2)使用EDA仿真软件对电路原理图经行仿真(3)根据所设计的电路原理图做出实物时间安排:1、理论讲解,老师布置课程设计题目,学生根据选题开始查找资料;2、课程设计时间为1周。

(1)确定技术方案、电路,并进行分析计算,时间1天;(2)选择元器件、安装与调试,或仿真设计与分析,时间2天;(3)总结结果,写出课程设计报告,时间2天。

指导教师签名: 2009年 12 月 30 日系主任(或责任教师)签名: 2009年 12月 30 日目录中文摘要 (I)Abstract (II)1 对调幅发射机的认识和了解 (2)1.1 总体认识 (2)1.2 电路型式选择 (2)1.2.1 主振器 (2)1.2.2 高频电压放大器 (3)1.2.3 振幅调制器 (3)1.2.4 高频功率放大器 (4)2 调幅发射机的设计选择、及其原理框图 (5)2.1方案的选择 (5)2.1.1设计选择的原因 (5)2.1.2 功率分配及电源电压的确定 (5)2.1.3 各级晶体管的选择 (6)2.1.4 放大级管子的选择: (6)2.2 调幅发射机方框图 (6)2.3 调幅发射机的电路形式及工作原理 (7)2.3.1 高频振荡器电路 (7)2.3.2 隔离放大电路 (8)2.3.3 受调放大级电路 (9)2.3.4 话筒和音频放大电路 (9)2.3.5 传输线与天线 (10)3 调幅发射机各级电路的计算及调试 (11)3.1 各级电路的计算 (11)3.1.1 被调级参数的计算 (11)3.1.2 放大级的计算 (11)3.1.3 振荡级的计算 (11)3.2 电路的调试 (12)3.2.1 本振级调试 (12)3.2.2 放大级调整 (12)3.2.3 末级调试 (12)3.2.4 统调 (13)4 总结 (14)参考文献 (15)附录1:发射机电路原理图 (16)附录2:元件清单 (17)中文摘要高频电子线路课程设计是继《通信电子线路》理论学习和实验教学之后又一重要的实践性教学环节。

电子线路课程设计-AM调幅发射机设计报告

电子线路课程设计-AM调幅发射机设计报告

.电子线路课程设计总结报告学生姓名:学号:专业:电子信息工程班级:电子131报告成绩:评阅时间:教师签字:2016年3月小功率调幅AM发射机设计内容摘要:调幅发射机应用于无线电广播系统中,本设计以电子线路课程设计实践教学为应用背景,通过查阅专业书籍及论文,并结合专业课程学习要求,根据设计指标、要求和可行性,选择适合设计方案,并对设计方案进行必要的论证。

本课题以小功率调幅发射机为设计对象,并对其主振级、低频电压放大级、调制级、高频功率放大级进行了详细的设计、论证、调试及仿真,并进行了整机的调试与仿真。

设计具体包括以下几个步骤:一般性理论设计、具体电路的选择、根据指标选定合适器件并计算详细的器件参数、用multisim 进行设计的仿真、根据仿真结果检验设计指标并进行调整。

最后对整个设计出现的问题,和心得体会进行总结。

关键词 调幅发射机;振荡器;multisim 仿真设计一、设计内容及要求(一)设计内容:小功率调幅AM 发射机设计1.确定小功率调幅发射机的设计方案,根据设计指标对既定方案进行理论设计分析,并给出各单元电路的理论设计方法和实用电路设计细节,其中包括元器件的具体选择、参数调整。

2.利用multisim 仿真软件,对设计电路进行仿真和分析,依据设计指标对电路参数进行调整直至满足设计要求。

(二) 技术指标: 载波频率Z MH 10=c f ,频率稳定度不低于10-3输出功率 mW mW 2005000≥≥P 负载电阻 Ω=50A R输出信号带宽 Z kH 9=BW (双边带) 残波辐射 dB 40≤ 单音调幅系数8.0=a m ;平均调幅系数≥m 0.3发射效率 %50≥η二.方案选择及系统框图(一) 总体方案及系统框图根据设计要求,要求工作频率为10MHz ,输出功率为1W ,单音调幅系数8.0=a m 。

由于载波频率为10Mhz ,大多数振荡器皆可满足,提供了较多的选择且不需要倍频。

由于输出功率小,因此总体电路具有结构简单,体积较小的特点。

小功率调幅发射机设计

小功率调幅发射机设计

一、设计题目小功率调幅发射机二、设计目的、内容及要求2.1 设计目的(1)加深对高频电子线路理论知识的掌握,使所学的知识系统、深入地贯穿到实践中。

(2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。

2.2 设计原理小功率调幅发射机的设计(1)掌握小功率调幅发射机原理;(2)设计出实现调幅功能的电路图;(3)应用multisim软件对所设计电路进行仿真验证。

=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制技术指标:载波频率f系数=50Ω。

Ma=50%±5%;负载电阻RA2.3 设计要求根据原理,要求设计一个小功率调幅发射机,(1)主要参数:已知+Vcc=+10V、-VEE=-10V;话音放大级输出电压为5mV;负载电阻R=50AΩ(2)主要元器件:主要元件有MC1496、3DG100、3DG130、4MHz晶振、NXO-10磁环;=8MHz;低频调制信号1KHz正弦信号;调制系数 (3)技术指标:载波频率fMa=50%;发射功率P0=300mW三、调幅发射机的原理与分析3.1调幅发射机的原理框图所谓调幅,就是按照调制信号的变化规律去改变载波的幅度,使输出信号的频谱搬移到高频波段,而输出信号的振幅携带调制信号的相关信息。

调幅发射机的主要任务是完成有用的低频信号对高频载波的幅度调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。

通常,调幅发射机包括三个部分:高频部分,低频部分,和调制部分。

高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。

主振器的作用是产生频率稳定的载波。

为了提高频率稳定性,主振级往往采用石英晶体振荡器或LC振荡电路,并在它后面加上缓冲级,以削弱后级对主振器的影响。

低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。

低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。

小功率调幅发射机课程设计

小功率调幅发射机课程设计

小功率调幅发射机课程设计
今天,我们将谈论一个课程题目:小功率调幅发射机课程的设计。

门课程的目的是帮助学生们更加深入地理解小功率调幅发射机,以及调幅调制的原理和技术。

小功率调幅发射机是一种用于发射信号的设备,可以用于无线电广播、移动通信、无线控制系统,以及电力系统中的通信和遥测信号传输。

功率调幅发射机由一系列组成,包括发射机模块、调制机模块、收发机模块、功率放大器模块、电缆等。

课程的设计应包括以下方面的内容:首先,要讲授小功率调幅发射机的原理和结构,深入讲解小功率调幅发射机的各个模块的功能和原理;其次,介绍调幅调制的技术,以及用于调制的信号的特点和分类;第三,探讨常用的小功率调幅发射机的设计方法;第四,介绍小功率调幅发射机的试验和调试方法;最后,安排课程实验,以帮助学生更加深入理解小功率调幅发射机的设计、测试和调试技术。

同时,课程的设计还应考虑到学生的体会和思维的培养。

例如,可以安排学生分组研讨小功率调幅发射机的设计问题,引导学生分析问题,分析技术难点,给出解决方案;可以安排学生设计实验,试验不同参数调整,观察信号调制后的不同变化;也可以安排学生完成调制信号传输模拟实验,数字信号调制和传输及其在通信系统中的应用。

上述就是小功率调幅发射机课程的设计方案,最后要说的是,尽管这是一门理论性的课程,但是课程的设计应该结合当今实际的技术发展,为学生提供有用的知识和技能,为他们今后的发展做好准备。

小功率调幅发射机的设计-(理工大)

小功率调幅发射机的设计-(理工大)

小功率调幅发射机的设计姓名:学号:班级:07电信2班级指导教师:目录摘要 (2)一、调幅发射机的主要性能指标 (2)二、调幅发射机的工作原理 (3)三、小功率调幅发射机的设计 (4)3.1、拟定调幅发射机的工作原理框图 (4)3.2、各组成部分的的作用如下: (4)3.3、主要参数: (5)3.4、增益分配 (6)四、设计电路图 (6)4.1、本机振荡电路和话音放大电路 (6)4.2、调制电路 (7)4.3、功率放大级电路 (10)4.4、整体电路设计 (11)五、调试与仿真 (12)5.1、晶体振荡器的调试 (12)5.2、调制器的测试 (13)六、整机联调及其常见故障分析 (14)七、心得与体会 (15)八、参考文献 (16)小功率调幅发射机的设计摘要:由于调幅发射机实现调制简便,调治所占的频带窄,并且与之对应的调幅接受设备简单,所以小功率调幅发射机常用于通信系统和其它无线电系统中,特别是在中短波广播通信的领域里更是得到了广泛应用。

一、调幅发射机的主要性能指标调幅制一般使用于中短波广播通信,其工作频率范围为300KHZ~30MHZ。

发射功率:发射功率一般是指发射机输送到天线上的功率。

只有当天线的长度与发射机高频振荡的波长λ相比拟时,天线才能有效地把载波发射出去。

波长与频率的关系为:λ= c/f。

式中,c为电磁波传播速度,c=3×108m/s。

调幅系数:调幅系数ma是调制信号控制载波电压振幅变化的系数,ma的取值范围为0~1,通常以百分数的形式表示,即0%~100%。

非线形失真:调制器的调制特性不能跟随调制电压线形变化而引起已调波的包括失真为调幅发射机的非线形时针,一般要求小于10%。

线形失真:保持调制电压振幅不变,改变调制频率引起的调幅度特性变化称为线形失真。

噪声电平:噪声电平是指没有调制信号时,由噪声产生的调制度与信号最大时间的调幅度比,广播发射机的噪声电平要求小于0.1%,一般通信机的噪声电平要求小于1%。

小功率调幅AM发射机课程设计报告综述

小功率调幅AM发射机课程设计报告综述

高频电子线路课程设计内容摘要:小功率调幅发射机常用于通信系统和其它无线电系统中,特别是在中短波广播通信的领域里更是得到了广泛应用,原因是小功率调幅发射机具有实现调幅简便,调制所占的频带窄,并且与之对应的调幅接收设备简单的优点。

小功率调幅发射机这一课题的设计,旨在进行对所学电子线路知识的综合性训练,以及对理论紧密联系实际的训练。

采用PROTEl99SE 软件对小功率条幅发射机电路进行设计与绘制,从理论上对电路进行分析,选择适合的元器件,设计出满足技术指标的小功率调幅发射机。

一、设计内容及要求㈠设计题目:小功率调幅AM 发射机设计 ㈡技术指标:载波频率 Z MH 10=c f 输出功率 mW 2000≥P 负载电阻 Ω=50A R输出信号带宽 Z kH 9=BW (双边带) 残波辐射 dB 40≤ 单音调幅系数8.0=a m ;平均调幅系数≥m 0.3发射效率 %50≥η二、 方案选择及系统框图㈠电路形式选择 1主振器主振器就是高频振荡器,根据载波频率的高低、频率稳定度来确定电路型式。

电容三点式振荡器的输出波形比电感三点式振荡器的输出波形好。

另外,电容三点式振荡器最高工作频率一般比电感三点式振荡器的高。

因此振荡器的电路型式一般采用电容三点式。

在频率稳定度要求不高的情况下,可以采用普通三点式电路、克拉泼电路、西勒电路。

频率稳定度要求高的情况下,可以采用晶体振荡器,也可以采用单片集成振荡电路。

频率稳定度是振荡器的一项十分重要的技术指标,表示一定时间范围内或一定的温度、湿度、电源电压等变化范围内振荡频率的相对变化程度,振荡频率的相对变化量越小,则表明振荡频率稳定度越高。

式中f0为标称频率, f1为实际工作频率。

LC 振荡器的频率稳定度只能达到(5-3-10~10)数量级,如果要求频率稳定度超过5-10数量级,就必须采用晶体振荡器。

010f f f f f-=∆为了能有更高的频率稳定度,所以本次设计中选择了晶体振荡器作为主振器,产生载波信号。

小功率调幅发射机课程设计

小功率调幅发射机课程设计

电子线路课程设计总结报告学生姓名:学号:专业:班级:报告成绩:评阅时间:教师签字:目录理论部分 (3)一.设计内容及要求 (3)二.比较和选择系统方案,画出系统框图 (3)三.单元电路设计、参数计算和器件选择 (4)主振器 (4)音频放大级 (6)振幅调制部分和末级功放部分 (7)四.完整的电路图 (8)五.系统需要的元器件清单 (8)六.参考文献 (9)实验部分 (11)一.实验目的 (11)二.实验主要仪器与仪表 (11)三.实验原理 (11)四.实验内容与步骤 (11)五.实验结果与分析 (12)主振器 (12)音频放大级 (13)振幅调制级 (14)附录 (15)小功率调幅发射机理论部分内容摘要调幅发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。

通常,发射机包括三个部分:高频部分,低频部分和电源部分。

高频部分一般包括主振荡器、倍频器、缓冲隔离级、高频电压放大级、高频频功率放大级。

主振荡器的作用是产生频率稳定的载波。

缓冲级主要是削弱后级对主振器的影响。

低频部分包括话筒、低频电压放大级、低频功率放大级。

调制是将要传送的信息装载到某一高频振荡信号上去的过程。

一.设计内容及要求小功率调幅发射机技术指标:%503.08.0409502001000≥≥=≤=Ω=≥=η发射效率平均调幅系数;单音调幅系数残波辐射输出信号带宽负载阻抗输出功率载波频率a a Z A Z m m dB KH WB R mW P MH f二.比较和选择系统方案,画出系统框图调幅发射机由主振器,缓冲级,高频电压放大器,振幅调制器,高频功率放大器等电路组成。

主振器就是高频振荡器,根据载波频率的高低、频率稳定度来确定电路型式。

高频电子线路所讨论的工作频率是几百千赫到几百兆赫,而课程设计所设计的最高频率受到实验条件的限制,一般选在30兆赫以下。

电容三点式振荡器的输出波形比电感三点式振荡器的输出波形好。

小功率调幅发射机的设计、安装和调测

小功率调幅发射机的设计、安装和调测

小功率调幅发射机的设计、安装和调测一.设计目的训练学生对高频电子元器件及电路的应用能力、高频电路的设计与调测能力,高频电子小系统的设计与调测能力,提高综合应用高频知识的能力、分析解决问题的能力。

二.设计任务设计一个小功率调幅发射机,指标为:中心频率6MHz;频率稳定度≤10-4;输出AM波峰包功率≥200mW;调制系数ma≥50%;包络基本不失真,用短波调幅收音机收听到的声音清晰且不失真。

限定条件:天线阻抗50Ω,话筒为驻极体话筒XD-18。

三.方案的确定与电路图(—)系统方案的确定根据设计任务要求,可选用图k1.1所示的典型小功率调幅发射机的方案。

图中,晶体振荡器的作用是产生频率稳定度≤10-5的基本不失真的6MHz的正弦波。

由于晶体振荡器频率稳定度通常可达10-6以上,因此一般满足频率稳定度≤10-5的要求。

缓冲放大器用于减小高电平调幅电路对振荡器工作的影响,并对振荡器输出信号进行放大,其增益应该合适而且可调,以便满足高电平调幅电路,不难达到发射机的功率和失真要求。

调制系数可以通过u B(t)和uΩ(t)的大小来满足,u B(t)的大小通过缓冲放大器的增益来调节,uΩ(t)的大小通过音频放大器的增益来调节。

音频放大器的作用是不失真地放大音频信号,其增益应该合适而且可调。

综上可见,高电平调幅电路是满足系统要求的关键,应首先设计该电路,然后根据该电路对信号u B(t)和uΩ(t)的要求确定其它电路。

图 k1.1 小功率调幅发射机系统框图(二)单元电路的设计1.高电平调幅电路的设计(1)电路及工作状态的选择。

高电平调幅电路主要有基极调幅、集电极调幅和集电极-基极双重调幅电路。

由于输出功率较小,故可选用效率虽较低但调制线性好、电路较简单的基极调幅电路。

导通角通常选择70o左右,采用自给偏置,电路如图k1.2所示。

为了提高调制线性度,应使电路工作在欠压区。

u BU(2)基本原件的选择。

图中,C B1、C B2、C C为隔直耦合电容,C1、C2为高频滤波电容。

小功率调幅发射机

小功率调幅发射机

目录摘要 (1)1、引言 (2)2、设计原理及方案论证 (3)2.1设计要求分析 (3)2.2 电路设计原理 (3)3、单元电路设计 (4)3.1语音处理级 (4)3.2缓冲级 (5)3.3 调制电路 (6)3.4主振级 (8)3.5功放末级 (9)4、调试与仿真 (10)4.1晶体振荡器的调试 (10)4.2调制器的测试 (11)5、总电路设计 (12)总结 (13)参考文献: (14)元件清单: (15)摘要小功率调幅发射机常用于通信系统和其它无线电系统中,特别是在中短波广播通信的领域里更是得到了广泛应用。

原因是调幅发射机实现调幅简便,调制所占的频带窄,并且与之对应的调幅接收设备简单,所以调幅发射机广泛地应用于广播发射。

本课设结合Multisim软件来对小功率调幅发射机电路的设计与调试方法进行研究。

Multisim软件能实现从电学概念设计到输出物理生产数据,以及这之间的所有分析、验证、和设计数据管理。

今天的Multisim软件已不是单纯的设计工具,而是一个系统,它覆盖了以仿真为核心的全部物理设计。

使用Multisim、等计算机软件对产品进行辅助设计在很早以前就已经成为了一种趋势,这类软件的问世也极大地提高了设计人员在机械、电子等行业的产品设计质量与效率。

本课题的设计目的是要求掌握最基本的小功率调幅发射系统的设计对各级电路进行详细地探讨,并利用Multisim软件仿真设计了一个小功率调幅发射机。

关键词调幅发射机Multisim1、引言人类工业的发展已经从工业化社会进步到信息化社会,各种类型的信息必须转化成电子信息才便于处理和传递。

高频电子技术是电子信息发送,处理和传递理论基础,而调幅发射机的设计也是电子行业的重要技术,起着重要的作用。

21世纪人类早已进入信息社会,人们用各种方式方便快捷地传递与接受信息。

人类社会的信息主要以声音、图像、文字、符号等形式存在,各种类型的信息对人类社会产生了极大的影响。

小功率调幅发射实验

小功率调幅发射实验

电子技术发展迅速,接收机也从手动机械调谐
图2.调幅接收机组成框图如下:
实施方法及各部分电路要求说明
发射机部分
实施方法
在完成整个发射机组成时其中部分电路必须自己
设计计算,有的电路可利用现成的实验装置只需
调试达到技术指标即可,各部分电路级联后级间
匹配、耦合方式要注意考虑,通过单元电路调试,
整机联调最后按指标要求进行测试,在性能指标
实验仪器
实验任务与要求
1.实验前,应先对各级电路进行计算机仿真分析。 2.基本命题(实验电路参见前几节内容) 本次实验主要技术指标: 发射机指标: 发射机工作频率 f0=10000kHz 发射功率 P0≥100mW 发射效率 η ≥50% 调幅度 m≥30% 谐波发射 r≤40dB 接收机指标:
பைடு நூலகம்
性能达到要求的情况下进行发射、接收,验收发
射效果。
a.具体电路要求及完成形式:
主振级
该级电路要求学生自己设计计算组装调试,全部指标达到要求。电路设计方法见实验二介绍。 电路组装调试合格后,将输出信号由发射极经耦合电容送到推动级去将信号加以放大。 推动级 该级电路用已装好的电路实验板。这是一个小 信号谐振放大器的实验电路,连接本电路时一 定先调整好该级正常工作,该级应谐振在信号 频率上。输出电压在100Ω负载上必须达到0.7 伏以上,以保证推动功放级工作。输出不够 0.7伏时,应从以下几个方面考虑: a.谐振回路中可调元件不合适要重新调整; b.输出匹配不好。耦合线圈匝数比不合适,为
波形失真、输入电路匹配不佳,没有完全调谐
变压器把音频调制信号加到集电极回路中去,用音频信号控制集电极电源大小完成调幅功能,改变音频信号大小得到尽可能大的调幅度m,并测出实际的调幅度大小。待调幅度达到指标要求后,进行整机发射工作。 整机发射与接收 在前面联调的基础上,首先测量发射机工作频 率,输出功率,在满足要求的情况下,进行实 际的发射实验与接收,同时测试效果。方法是: 用一根2米左右的多股长导线作为发射天线代 替发射机假天线(负载电阻)。改变调制信号 的频率即音频调制频率用接收机接收发射信号。 观察收听效果。改变音频信号频率值使之从低 到高变化时,接收到的信号声音应从 粗向尖
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林建筑大学电气与计算机学院高频电子线路课程设计报告设计题目:小功率调幅发射机的设计专业班级:电子信息工程121班学生姓名:学号:指导教师:设计时间:2015.12.14-2015.12.25本文以一个小功率调幅发射机为设计对象,并对其主振级、缓冲级、高频电压放大级、低频电压放大级、调制级、高频功率放大级进行了详细的设计、论证、调试及仿真,并进行了整机的调试与仿真。

早期的VHF频段的移动通信电台大都采用调幅方式,由于信道快衰落会使模拟调幅产生附加调幅而造成失真,目前已很少采用。

调频制在抗干扰和抗衰落性能方面优于调幅制,对移动信道有较好的适应性,现在世界上几乎所有模拟蜂窝系统都使用频率调制。

由于高频信号的幅度很容易被周围环境所影响。

所以调幅信号的传输并不十分可靠。

在传输的过程中也很容易被窃听,不安全。

所以现在这种技术已经比较很少被采用,但在简单设备的通信中还有采用。

振幅调制根据频谱结构的不同可分为普通调幅(AM)波,抑制载波的双边带调幅(DSB-SC AM)波和抑制载波的单边带调幅(SSB-SC AM)波。

本设计的调幅发射机指的是AM调幅。

关键词:电容三点式;调幅发射机;Altium Designer;Multisim一、设计题目小功率调幅发射机的设计二、设计目的、内容及要求本次课程设计的目的是:1、加深对高频电子线路理论知识的掌握,使所学的知识系统、深入地贯穿到实践中。

2、提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。

设计内容:小功率调幅发射机的设计(1)掌握小功率调幅发射机原理;(2)设计出实现调幅功能的电路图;(3)应用Multisim软件对所设计电路进行仿真验证。

技术指标:载波频率f0=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制系数Ma=50%±5%;负载电阻R A=50Ω。

三、工作原理用调制信号去控制载波的某个参数的过程,叫调制。

用调制信号去控制高频振荡器的幅度,使其幅度的变化量随调制信号成正比的变化,这一过程叫做振幅调制。

经过幅度调制后的高频振荡称为幅度调制波(简称调幅波)。

小功率调幅发射机的工作原理是:由振荡产生一个固定频率的载波信号,载波信号经缓冲级送至振幅调制电路,缓冲级将振荡级与调制级隔离,减小调制级对晶体振荡级的影响,放大级将低频信号放大至足够的电压后送到振幅调制电路,振幅调制电路的输出信号经高频功率放大器,高放级将载频信号的功率放大到所需的发射功率。

调幅发射机常用于通信系统与其他无线电系统中,在中短波领域应用极为广泛,由于调幅简便,占用频带窄,设备简单等优点,因此在发射机系统中应用非常广泛。

在实际的广播发射系统中,中波调幅的频率范围为535 ~ 1605KHz ,音频信号中的高音频率应该被限制在 4.5 KHz以下,发射功率需要达到300W以上才能使空间覆盖面达到比较好的状态,此次设计需要在实验室环境中研究发射机的工作原理与原件选择,因此,根据实验室条件适当降低技术指标,载波频率采用实验室较为常用的6MHz,单音频调制信号选择1KHz,发射机功率初步定为1W。

四、总体方案发射设备是无线电通信系统的重要组成部分,它是将电信号变换为适应与空间传播特性的信号的一种传输装置。

它首先要产生频率较高的并且具有一定功率的振荡。

因为只有频率较高的振荡才能被天线有效的辐射,还需要有一定的功率才可能在空间建立一定强度的电磁场,并传播到较远的地方。

高频功率的产生通常是利用电子管或晶体管,把直流能量转化为高频能量,这是由高频振荡器和高频功率放大器完成的。

由于在无线通信系统中,只有馈送到天线上的信号波长与天线的尺寸相比拟时,天线才能有效的辐射和接受电磁波因此需要对信号进行调制,使其以高频的信号辐射出去。

发射机的主要任务是是有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。

高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。

主振器的作用是产生频率稳定的载波。

低频部分包括音频收集、低频电压放大级、低频功率放大级与末级低频功率放大级。

低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。

因此,末级低频功率放大级也叫调制器。

调幅发射机主要包括三个组成部分:高频部分、音频部分和电源部分。

在此此可以省去省电源这一部分。

调幅发射机通常由主振级、缓冲级、倍频级、中间放大级、振幅调制、音频放大和输出网络组成。

根据设计要求,载波频率f=10MHz ,主振级采用克拉泼振荡电路,输出的载波的频率可以直接满足要求,不需要倍频器。

系统原理图如图所示:图4.1总体方案框图其工作原理:本机振荡产生一个固定频率的载波信号,载波信号经缓冲倍频送至振幅调制电路;话音放大电路将低频信号(例如语音信号)放大至足够的电压送到振幅调制电路;振幅调制电路的输出信号经高频功率放大器,高放级将载频信号的功率放大到所需的发射功率,然后经天线输出。

五、单元电路设计5.1 主振荡器模块调频振荡器的电路形式主要有晶体振荡器直接调频,电抗管调频和变容二极管调频。

晶体振荡器直接调频电路的优点是提高了振荡器中心频率的稳定性,但是价格比较的昂贵;电抗管调频电路与变容二极管调频电路相比,要复杂一些。

考虑到本设计任务要求中心频率的稳定性不高,所以我选择了电抗管调频电路,所谓电抗管,就是由一只晶体管或场效应管加上由电抗和电阻元件构成的移相网络组成。

它与普通的电抗元件不同,其参量可以随调制信号而变化。

电抗管的放大器件可以是电子管、晶体管或场效应晶体管移相电路也有多种型式(如RC或RL移相网络),其作用是使放大管Q4的输出阻抗具有一个电抗分量Xe,当Xe随输入信号变化时,即可获得调频信号。

电抗管调频器的缺点是振荡频率稳定度不高;频移也不能太大,阻抗 Ze通常还具有电阻分量,这个分量也随输入信号而变化,使振荡器产生寄生调幅。

常见的电抗管调频电路主要有电容三点式振荡器和电感三点式振荡器。

振荡器电路图如图5.1所示:图5.1 振荡器电路原理图振荡器电路仿真图形如图5.2所示:图5.2主振器仿真波形图5.2缓冲器模块缓冲隔离级将振荡级与功放级隔离,以减小功放级对振荡级的影响,因为功放级输出信号较大,工作状态的变化会影响振荡器的频率稳定度或波形失真或输出电压减小。

为减小级间相互影响,通常在中间插入缓冲隔离级。

缓冲隔离级经常采用射极跟随器电路,缓冲放大器需将振荡器输出电压,以提高电平调幅电路所需的载波输入信号,所以要有合适且可调的增益。

如图5.3所示:图5.3缓冲器电路图缓冲器仿真电路图如图5.4所示:图5.4缓冲器电路仿真图仿真图中R1、R2、R3、R4为偏置电阻,通过调节R6可以连续改变输出正弦波的幅值的大小。

输入为图5.5所示时图5.5函数发生器参数图R6接入50%时的仿真图形为图5.6所示:图5.6缓冲器输出波形图所以,可以看出调节R6可以得到所需幅值的正弦波。

5.3高频放大器模块高频电压放大器的任务是将振荡电压放大以后送到振幅调制器,可以选用高频调谐放大器。

采用集电极调幅电路,就要使用一级高频电压放大器,以满足集电极调幅的大信号输入。

高频放大器仿真电路图如图5.7所示:图5.7高频放大器仿真电路图高频放大器输出波形如图5.8所示:图5.8高频放大器输出波形图5.4音频放大模块音频放大器仿真电路图如图5.9所示:图5.9音频放大器仿真电路图输入如下频率为1kHZ幅值为1V的正弦波时如图5.10所示:图5.10函数发生器参数图音频放大器仿真波形图形为图5.11所示:图5.11音频放大器输出波形图可以通过改变R3值的大小来改变放大倍数。

5.5振幅调制模块集电极调幅电路具有调制线性好,集电极效率高的优点。

广泛用于输出功率较大的发射机中。

振幅调制仿真电路图如图5.12所示:图5.12振幅调制仿真电路图振幅调制输出波形图如图5.13所示:图5.13振幅调输出波形图输出波形原理分析载波C U 直接加到放大器的基极。

调制信号0c U 加到集电极电路且与直流电源相串联。

集电极谐振回路LC 调谐在载频C ω 上。

由于0c U 与C E 相串联,因此,丙类被调放大器集电极等效电源CC U 将随0C U 变化,从而导致被调放大器工作状态发生变化,在过压状态下,集电极电流C I 的基波分量振幅1C I 随0C U 成正比变化,从而实现调幅。

5.6高频功放模块:功率激励级—为末级功放提供激励功率。

末级功放—将前级送来的信号进行功率放大,使负载(天线)上获得满足要求的发射功率。

如果要求整机效率较高,应采用丙类功率放大器,本题要求50%η≥,故选用丙类功率放大器较好。

隔离的作用是为了防止发射的部分高频信号对载波信号产生干扰;放大的作用是为下一级提供足够的功率,采用自给负偏压丙类谐振功率放大器,通过改变电位器改变负偏压大小。

回路谐振在工作频率,可以改变变压器耦合输出。

功率放大器电路如图5.14所示:图5.14功率放大器电路图公路放大器输出波形如图5.15所示:图5.15功率放大器输出波形5.7整体电路原理整机电路是由LC电容三点式主振级、缓冲级、高频电压放大级、低频电压放大级、调制级、高频功率放大级。

其中,LC电容三点式振荡电路产生高频率且相对稳定的输入载波信号,倍频器电路是将振荡电路产生的载波信号进行进一步的放大,使其变化为更高频率的信号。

调幅电路是将载波信号与低频信号源产生的调制信号相乘来产生调幅信号。

混频电路是实现将已调信号与本振信号相乘进行变频(其中fi=fo+fs).功率放大电路是将调制信号的能量放大同时滤除不需要的频率(高次谐波),以免造成对其他电台的干扰。

六、电路设计总结整体电路共分为六个模块,分别为主振级、缓冲级、高频电压放大级、低频电压放大级、调制级、高频功率放大级。

首先由克拉波振荡器产生频率为10MHZ的载波信号,再经过缓冲级,让振荡器与振幅调制器隔离开来,不影响载波频率的稳定,然后经过高频电压放大器,将输入电压进行放大,使输出电压满足高电平的集电极调制器,接着将调制信号经过音频放大器放大,最后将载波信号与调制信号输入到集电极调制电路进行普通调幅,然后进行丙类功率放大,经天线输出普通调幅波。

由于选用的仿真软件为multisim,有些元件在元件库里没有,仿真时就选用了理想的虚拟元件,比如型号为BJT_NPN_VIRTUAL的三极管就是理想的三极管,由于改变了三极管的型号,所以在实际仿真调试时改变了好多偏置电阻的阻值以便是电路输出所需的波形七、收获、体会这次课程设计对于自己来说是一次很大的挑战,做起来我感觉比较吃力,虽然刚刚学完了高频电子线路,但是一直有种云里雾里的感觉,虽然知道应该由哪几部分构成,每一部分的原理也知道,但是实际做起来就很吃力了,要根据实际元件的特性去设计元件的参数,感觉无从下手,,但是有困难不能够放弃,于是我查阅了一些资料,和同学们一起讨论计算,并且去请教学长,慢慢的我有了一点眉目,接着我便开始设计各个单元模块,对于各个模块的比较选择还是比较容易,就是参数设计比较困难,主要原因是因为对于电路的分析不清楚,我只有接着查找资料,结合老师所将知识,慢慢的一点点的明白计算,最终才算是有些明白。

相关文档
最新文档