数字图像处理的基本概念

合集下载

数字图像处理的概念

数字图像处理的概念

二、数字图像处理的概念 1. 什么是图像“图”是物体投射或反射光的分布,“像” 是人的视觉系统对图的接受在大脑中形成的印象或反映。

是客观和主观的结合。

2数字图像是指由被称作象素的小块区域组成的二维矩阵。

将 物理图象行列划分后,每个小块区域称为像素(pixel )。

–每个像素包括两个属性:位置和灰度。

对于单色即灰度图像而言,每个象素的亮度用一个数值来表示,通常数值范围在0到255之间,即可用一个字节来表示,0表示黑、255表示白,而其它表示灰度级别。

物理图象及对应 的数字图象3彩色图象可以用红、绿、蓝三元组的二维矩阵来表示。

–通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该象素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。

4什么是数字图像处理数字图像处理就是利用计算机系统对数字图像进行各种目的的处理 5对连续图像f (x ,y )进行数字化:空间上,图像抽样;幅度上,灰度级量化 x 方向,抽样M 行 y 方向,每行抽样N 点整个图像共抽样M ×N 个像素点一般取M=N=2n=64,128,256,512,1024,2048 6数字图像常用矩阵来表示:f(i,j)=0~255,灰度级为256,设灰度量化为8bitNN N N f N f N f N f f f N f f f y x f ⨯⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------=)1,1( )1,1( )0,1( )1,1( )1,1( )0,1( )1,0( )1,0( )0,0( ),(7 数字图像处理的三个层次8 图像处理:9建立对图像的描述;以观察者为中心研究客观世界;图像分析是一个从图像到数据的过程。

10图像理解:研究图像中各目标的性质和它们之间的相互联系;得出对图像内容含义的理解及原来客观场景的解释;以客观世界为中心,借助知识、经验来推理、认识客观世界,属于高层操作(符号运算)11图像处理是比较低层的操作,处理的数据量非常大。

数字图像处理试题

数字图像处理试题

数字图像处理试题一、图像基本概念1.什么是数字图像?数字图像有哪些特征?2.图像的灰度是什么意思?如何表示?3.图像分辨率是什么?如何计算?4.图像的位深度是什么?位深度对图像有何影响?二、图像预处理1.什么是图像预处理?为什么需要图像预处理?2.图像去噪的几种常用方法有哪些?3.图像增强的几种常用方法有哪些?4.图像平滑的常用方法有哪些?5.图像锐化的常用方法有哪些?三、图像变换1.图像平移的原理和方法是什么?2.图像旋转的原理和方法是什么?3.图像缩放的原理和方法是什么?4.图像翻转的原理和方法是什么?四、图像特征提取与描述1.图像边缘提取的常用算法有哪些?2.图像角点检测的常用算法有哪些?3.图像直方图是什么?如何计算图像的直方图?4.图像纹理特征的提取方法有哪些?五、图像分割与目标检测1.图像分割的常用方法有哪些?2.基于阈值分割的原理和方法是什么?3.基于边缘分割的原理和方法是什么?4.图像目标检测的常用方法有哪些?5.基于深度学习的图像目标检测算法有哪些?六、图像压缩与编码1.什么是图像压缩?为什么需要图像压缩?2.图像压缩的两种基本方法是什么?3.有哪些常用的图像压缩算法?4.图像编码的常用方法有哪些?七、图像复原与重建1.图像退化和图像复原有什么区别?2.图像退化模型是什么?有哪些常见的图像退化模型?3.图像复原的常见方法有哪些?4.基于深度学习的图像复原算法有哪些?以上是关于数字图像处理的试题,希望能够帮助你更好地理解和掌握数字图像处理的基本概念、图像预处理、图像变换、图像特征提取与描述、图像分割与目标检测、图像压缩与编码以及图像复原与重建等内容。

如果在学习过程中有任何问题,欢迎随时向老师和同学们提问,共同进步!。

数字图像处理基本概念

数字图像处理基本概念

本章重点:理解位图与矢量图的概念、特点及应用理解图像分辨率的概念能够根据后端输出的需要正确地设置图像分辨率了解Photoshop中常用的图像存储格式1.1 图像概念"图像”一词主要来自西方艺术史译著,通常指image、icon、picture和它们的衍生词,也指人对视觉感知的物质再现。

图像可以由光学设备获取,如照相机、镜子、望远镜、显微镜等;也可以人为创作,如手工绘画。

图像可以记录与保存在纸质媒介、胶片等对光信号敏感的介质上。

随着数字采集技术和信号处理理论的发展,越来越多的图像以数字形式存储。

因而,有些情况下,“图像”一词实际上是指数字图像,本书中主要探讨的也是数字图像的处理。

数字图像(或称数码图像)是指以数字方式存储的图像。

将图像在空间上离散,量化存储每一个离散位置的信息,这样就可以得到最简单的数字图像。

这种数字图像一般数据量很大,需要采用图像压缩技术以便能更有效地存储在数字介质上。

所谓“数字图像艺术”是指艺术与高科技结合,以数字化方式和概念所创作出的图像艺术。

它可分为两种类型:一种是运用计算机技术及科技概念进行设计创作,以表达属于数字时代价值观的图像艺术;另一种则是将传统形式的图像艺术作品以数字化的手法或工具表现出来。

Photoshop软件出现之后,数字图像艺术所特有的视觉表现语言逐步形成。

在学习应用Photoshop软件创建种种超越现实的、不可思议的新概念空间与视觉效果之前,必须先掌握Photoshop图像处理必备的一些基础概念。

在计算机中,图像是以数字方式来记录、处理和保存的,所以图像也可以称为数字化图像。

计算机图像分为位图(又称点阵图或栅格图像)和矢量图两大类,数字化图像类型分为向量式图像与点阵式图像。

1 .位图一般来说,经过扫描输入和图像软件处理的图像文件都属于位图,与矢量图形相比,位图的图像更容易模拟照片的真实效果。

位图的工作是基于方形像素点的,这些像素点像是“马赛克”,如果将这类图像放大到一定的程度时,就会看见构成整个图像的无数单个方块(图1-1),这些小方块就是图形中最小的构成元素一一像素点,因此,位图的大小和质量取决于图像中像素点的多少。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

数字图像处理技术

数字图像处理技术

数字图像处理技术数字图像处理技术是一种利用计算机对图像进行处理和分析的技术。

随着计算机技术和图像采集设备的不断发展,数字图像处理技术已经广泛应用于影像处理、医学图像分析、机器视觉、模式识别等领域。

本文将重点介绍数字图像处理技术的基本原理、常见的图像处理方法和应用领域。

一、数字图像处理技术的基本原理数字图像处理是在计算机中对图像进行数值计算和变换的过程。

图像是由像素组成的二维数组,每个像素包含了图像中某一点的亮度或颜色信息。

数字图像处理技术主要包括如下几个基本步骤:1. 图像采集:利用摄像机、扫描仪等设备将实际场景或纸质图像转换成数字图像。

2. 图像预处理:对采集到的图像进行预处理,包括图像增强、去噪、几何校正等操作,以提高图像质量。

3. 图像变换:通过一系列的数值计算和变换,改变图像的亮度、对比度、颜色等特征,以满足特定的需求。

4. 图像分析:对图像进行特征提取、目标检测、模式识别等操作,以获取图像中的各种信息。

5. 图像展示:将处理后的图像显示在计算机屏幕上或输出到打印机、投影仪等设备上,以便人们观看和分析。

二、常见的图像处理方法1. 图像增强:通过调整图像的亮度、对比度、颜色等参数,使图像更清晰、更鲜艳。

2. 图像滤波:利用滤波器对图像进行低通滤波、高通滤波、中值滤波等操作,以去除噪声、平滑图像或增强边缘。

3. 图像分割:将图像分成若干个区域,以便更好地分析和识别图像中的目标。

4. 特征提取:从图像中提取出与目标相关的特征,如纹理特征、形状特征、颜色特征等。

5. 目标检测:利用机器学习、模式识别等方法,从图像中检测和识别出目标,如人脸、车辆等。

三、数字图像处理技术的应用领域数字图像处理技术在很多领域都有广泛的应用,以下列举几个主要的应用领域:1. 影像处理:数字图像处理技术可以应用于电影特效、动画制作、数字摄影等领域,提高影像的质量和逼真度。

2. 医学图像分析:数字图像处理技术可以应用于医学影像的分析、诊断和治疗,如CT扫描、核磁共振等。

数字图像处理

数字图像处理

数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。

它涉及对数字图像进行获取、处理、分析和解释的过程。

数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。

本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。

数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。

在数字图像处理中,我们通常使用灰度图像和彩色图像。

•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。

灰度图像通常表示黑白图像。

•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。

彩色图像可以表示图像中的颜色信息。

图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。

1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。

2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。

3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。

常见的处理包括滤波、边缘检测、图像变换等。

4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。

常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。

常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。

•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。

•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。

•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。

边缘检测边缘检测是用于寻找图像中物体边缘的方法。

常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。

•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。

•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。

数字图像处理基础图像的基本概念图像的常见格式载入图像

数字图像处理基础图像的基本概念图像的常见格式载入图像
图像:具有视觉效果的画面都可以称之为图像。 x - x 坐标。
ImadgerOabswervIemr obasgervee(r)Image img, int x, int y, ImageObserver observer)
绘制指定图像中当前可用的图像。 JEPG图像文件格式
url参数必须指绘定绝制对 指定图像中当前可用的图像。图像的左上角位于该图形
仰恩大学计算机与信息学院
仰恩大学计算机与信息学院
在Applet中加载和显示图像
使用Image类对象加载图像
getCodeBase public URL getCodeBase()
获得URL。这是包含此applet的目录的URL。 返回: 包含此 applet 的目录的URL 。
getImage()方法可以为: public Image getImage(getCodeBase(),String name)
BMP图像文件格式 GIF图像文件格式 JEPG图像文件格式
图像的常见格式
仰恩大学计算机与信息学院
仰恩大学计算机与信息学院
在Applet中加载和显示图像
使用Image类对象加载图像
getImage
public Image getImage(URL url, String name)
返回能被绘制到屏幕上的Image对象。url参数必须指定绝对
仰恩大学计算机与信息学院
仰恩大学计算机与信息学院
5.1 图像的基本概念
象素是数字图像中的基本单位。一副m*n大小的图像,是由 m*n个明暗不同的象素组成的。
在数字图像中各个象素所具有的明暗程度是有一个称为灰度 值的数字来标识的。
仰恩大学计算机与信息学院
仰恩大学计算机与信息学院

数字图像处理知识点汇总

数字图像处理知识点汇总

数字图像处理知识点汇总1. 什么是数字图像处理?就是利⽤数字计算机或其他⾼速、⼤规模集成数字硬件,对从图像信息转换来的数字电信号进⾏某些数字运算或处理,以期提⾼图像的质量或达到⼈们所要求的某些预期的结果。

2.图像的表⽰⽅法:.不等长码3. 图像数字化的过程包括两个⽅⾯:采样和量化。

i. 图像在空间上的离散化称为采样,即使空间上连续变化的图像离散化。

也就是⽤空间上部分点的灰度值来表⽰图像,这些点称其为样点。

ii. 对样点灰度值的离散化过程称为量化。

也就是对每个样点值数量化,使其只和有限个可能电平数中的⼀个对应,即使图像的灰度值离散化。

量化也可以分为两种:⼀种是将样点灰度值等间隔分档取数,称为均匀量化;另⼀种是不等间隔分档取整,称为⾮均匀量化。

4. 样点的约束条件:由这些样点,采⽤某种⽅法能够正确重建原图像,采样的⽅法有两类:⼀类是直接对表⽰图像的⼆维函数值进⾏采样,即读取各离散点上的信号值,所得结果就是⼀个样点值阵列,所以也成为点阵采样;另⼀类是先将图像函数进⾏某种正交变换,⽤其变换系数作为采样值,故称为正交系数采样。

5. 最佳量化:6. 图像噪声的分类:按噪声的来源外部噪声:从处理系统外来的影响。

内部噪声:(1)由光和电的基本0(0o)1(45o) 2(90o)3(135o)4(180o) 5(225o)6(270o)7(315o)性质引起的噪声。

(2)电器的机械运动产⽣噪声。

(3)元器件材料本⾝引起的噪声。

(4)系统内部电路噪声。

从统计观点:平稳噪声、⾮平稳噪声从噪声幅度分布:⾼斯噪声、瑞利噪声、椒盐噪声……按噪声和信号之间关系:加法性噪声乘法性噪声7. 图像质量评价:(1)客观保真度准则(2)主观保真度准则相对评价::对⼀批图象从好到坏进⾏排队,按排队关系评分8.三基⾊原理:颜⾊的基本属性:⾊调(hue):由物体反射光线的波长决定,是颜⾊本质的基本特性。

饱和度(saturation):由物体反射光中混⼊⽩光的多少决定,指颜⾊的鲜明程度。

数字图像处理的基本概念(2)2022优秀文档

数字图像处理的基本概念(2)2022优秀文档
第一章 数字图像处置的根本 概念
LOGO
1.1 什么是数字图像
一幅照片、一张海报、一幅画都是图像,然而这些都是传统的模 拟图像,这些图像的载体是“原子〞。
随着数字技术的不断开展和运用,现实生活中的许多信息都可以 用数字方式的数据进展处置和存储,也就是说,以“比特〞的方式进 展存储,数字图像就是这种以数字方式进展存储和处置的图像。数字 图像的载体是计算机的硬盘、光盘、U盘等数字存储器。
LOGO
1.2 获得数字图像的方法
1.2.1 数字是如何表示图像的 如表1.1,是一个矩形数字点阵,其中每个数字都在0和255之间
,计算机运用0-255之间的数表示黑白图像的浓度,称为灰度级。0表 示纯黑色,255表示纯白色.
LOGO
1.2 获得数字图像的方法
1中的每个点“翻译〞成图1. 假设允许R、G、B分量不一样,图像就会呈现出彩色信息,构成彩色图像。 计算机图像处置中常用的颜色模型是RGB模型,这里R表示红色,G表示绿色,B表示蓝色。 1中的每个点“翻译〞成图1. 指该图像在空间域上的采样数。 在U盘、硬盘、光盘等数字存储器中,数字图像是以表1. 4 图像处置的主要入门概念 获得数字图像的过程是上述“翻译〞过程的逆过程。 3 数字图像的优势 2 获得数字图像的方法 在加工、处置、印刷方面,数字图像的优势更为明显 。 每个像素都是介于黑和白之间的一个灰度颜色,没有彩色信息,这样的图像称之为灰度图像。 思索图像分辨率和图像文件大小的关系,并举例阐明。
模拟图像中的图像信号是以延续的方式存在于图像介质中。
1,是一个矩个形数像字点素阵点,其都中每很个小数字,都在看0和起25来5之就间,成计算为机一运用个0-2延55之续间的的数图表示像黑白。图假像的设浓度我,们称为将灰度这级样。 的

数据图像处理期末复习

数据图像处理期末复习

数据图像处理期末复习1.1数字图像处理及特点1、什么是数字图像?什么是数字图像处理?数字图像:数字图像是物体的一个数字表示,是以数字格式存放的图像,它传递着物理世界事物状态的信息,是人类获取外界信息的主要途径。

数字图像处理:它指将图像信号转换成数字信号并利用计算机对其进行处理的过程,已提高图像的实用性,达到人们所要求的的预期结果。

2、图像处理的目的①提高图像的视觉质量,以达到赏心悦目的目的。

②提取图像中所包含的某些特征或特殊信息,便于计算机分析。

③对图像数据进行变换、编码和压缩,便于图像的存储和传输。

3、数字图像的特点①处理信息量很大②数字图像处理占用的频带较宽③数字图像中各个像素相关性大1.2数字图像处理系统1、数字图像处理系统的组成(结构)数字图像处理系统由输入设备、输出设备、存储、处理组成。

图像输入设备将图像输入的模拟物理量转变为数字化的电信号,以供计算机处理。

图像输出设备则是将图像处理的中间结果或最后结果显示或打印记录。

图像处理计算机系统是以软件方式完成对图像的各种处理和识别,是数字图像处理系统的核心部分。

由于图像处理的信息量大,还必须有存储设备。

2、数字图像处理的优点①精度高②再现性好③通用性、灵活性强1.3数字图像处理的主要研究内容1、数字图像处理的主要研究内容①图像增强②图像编码③图像复原④图像分割⑤图像分类⑥图像重建1.4数字图像处理的应用和发展1、举例说明数字图像处理有哪些应用和发展?①航天和航空技术方面的应用②生物医学工程方面的应用③通信工程方面的应用④工业和工程方面的应用⑤军事、公安方面的应用⑥文化艺术方面的应用⑦其他方面的应用2、数字图像处理领域的发展方向①图像处理的发展向着高速率、高分辨率、立体化、多媒体化、智能化和标准化方向发展。

②图像、图形结合朝着三维成像或多维成像的方向发展③结合多媒体技术,硬件芯片越来越多,把图像处理的众多功能固化在芯片上将会有更加广阔的应用领域④在图像处理领域近年来引入了一些新的理论并提出了一些新的算法,如神经网络。

数字图像处理概述归纳总结

数字图像处理概述归纳总结

数字图像处理概述归纳总结数字图像处理是指将图像的像素信息进行数字化并对其进行处理的一门技术。

它广泛应用于计算机视觉、医学图像处理、工业检测等领域。

本文将对数字图像处理的基本概念、常见算法以及未来发展趋势进行归纳总结。

一、数字图像处理的基本概念数字图像由像素阵列组成,每个像素存储着图像的亮度信息。

在数字图像处理中,常用的表示方法是灰度图像和彩色图像。

灰度图像是指每个像素只包含一个亮度值,通常以8位表示,取值范围为0~255。

而彩色图像则包含了红、绿、蓝三个通道的亮度值,通常以24位表示,每个通道的取值范围也为0~255。

数字图像处理的主要任务包括图像增强、图像恢复、图像分割、图像压缩等。

二、数字图像处理的常见算法1. 图像增强算法图像增强旨在改善图像的视觉品质,常用的算法包括直方图均衡化、灰度拉伸、滤波等。

直方图均衡化可以通过调整图像的亮度分布来增强图像的对比度,从而使图像细节更加清晰可见。

2. 图像恢复算法图像恢复用于去除图像中的噪声,常见的算法有均值滤波、中值滤波、小波去噪等。

其中,中值滤波可以有效地去除椒盐噪声,而小波去噪能够在保持图像细节的同时消除高频噪声。

3. 图像分割算法图像分割旨在将图像划分为不同的区域,常用的算法有阈值分割、边缘检测、区域生长等。

阈值分割根据像素灰度值与设定阈值的大小关系将图像分为前景和背景,而边缘检测则可用于检测图像中的边界。

4. 图像压缩算法图像压缩是指通过减少图像的存储空间来实现数据压缩,常见的算法有无损压缩和有损压缩。

其中,无损压缩保证了图像的质量不受损失,而有损压缩通过舍弃图像中的冗余信息来实现更高的压缩比率。

三、数字图像处理的未来发展趋势1. 深度学习在图像处理中的应用随着深度学习的发展,其在数字图像处理中的应用越来越广泛。

通过深度学习算法,可以实现更精确的图像分类、目标检测等任务,从而提升图像处理的效果和准确性。

2. 多模态图像处理多模态图像处理是指处理多个不同模态的图像,比如红外图像、可见光图像等。

数字图像处理技术简介

数字图像处理技术简介

数字图像处理技术简介在现代科技的飞速发展中,数字图像处理技术扮演了至关重要的角色。

无论是在医疗、工业、艺术还是娱乐领域,数字图像处理技术都有着广泛而深远的应用。

本文将对数字图像处理技术进行简要介绍,包括其基本概念、常见应用以及发展趋势。

1. 数字图像处理技术的基本概念数字图像处理技术是一种能够通过计算机对图像进行处理、分析和改善的方法。

它涵盖了图像获取、图像增强、图像恢复、图像压缩、图像分析和图像识别等多个方面。

在数字图像处理技术中,最常用的图像表达方式是像素矩阵,每个像素包含图像中一个单元的亮度值。

2. 数字图像处理技术的常见应用2.1 医疗图像处理在医疗领域,数字图像处理技术使得医生能够更轻松地观察和分析医疗图像,如X射线、MRI和CT扫描等。

通过数字图像处理技术,医生可以提高诊断准确性,同时减少对患者的侵入性检查。

2.2 工业品质控制数字图像处理技术在工业品质控制中也有着广泛应用。

通过对产品的图像进行处理和分析,能够快速检测和识别产品中的缺陷,实现质量的自动化控制。

这项技术不仅节省了人力成本,还提高了产品的一致性和可靠性。

2.3 艺术和娱乐数字图像处理技术在艺术和娱乐领域中揭示出了无限的想象力。

从电影特效到游戏设计,数字图像处理技术为创作者提供了广阔的创作空间。

通过对图像的处理和渲染,创作者能够打造栩栩如生的虚拟世界,为观众带来沉浸式的体验。

3. 数字图像处理技术的发展趋势随着计算机技术的不断进步,数字图像处理技术也在不断发展和创新。

下面将从三个方面展望数字图像处理技术的未来发展趋势。

3.1 深度学习的应用深度学习是人工智能领域的一个重要分支,它通过多层次的神经网络模拟人脑的工作原理,实现对图像的自动学习和分析。

未来,深度学习将广泛应用于数字图像处理技术中,从而实现更高效、更精确的图像处理和识别。

3.2 虚拟现实的融合虚拟现实技术的融合将使数字图像处理技术更具沉浸感和交互性。

未来,人们将能够通过虚拟现实设备直接与数字图像进行互动,创造全新的沉浸式体验。

数字化图像处理

数字化图像处理

数字化图像处理数字化图像处理是一种将图像信息转化为电子信号并进行处理的技术。

它已经成为各个领域中不可或缺的工具,包括医学影像、远程sensing、计算机视觉等。

本文将介绍数字化图像处理的基本原理、应用领域以及发展趋势。

一、数字化图像处理的基本原理数字化图像处理主要包括图像获取、预处理、增强、压缩、分割和识别等步骤。

首先,图像获取通过摄像机或扫描仪将物理图像转化为数字图像,通过采样和量化将连续变化的图像转化为离散的数字信号。

接下来,预处理阶段对图像进行去噪、平滑和形态学操作,以去除图像中的干扰,并提高后续处理的效果。

然后,增强步骤通过直方图均衡化、滤波和对比度增强等方法,改善图像的视觉质量。

此外,压缩技术的应用可以降低图像数据的存储和传输成本。

最后,分割和识别过程通过图像分割和特征提取,将图像中的对象与背景进行区分,并进行图像内容的解释和分析。

二、数字化图像处理的应用领域1. 医学影像处理:数字化图像处理在医学影像领域中有广泛的应用。

例如,在 X 射线和 CT 扫描中,数字化图像处理可以提高图像的清晰度和对比度,帮助医生更准确地诊断疾病。

此外,数字化图像处理还可以用于医学图像的三维重建和可视化,提供更多的诊断信息。

2. 远程 sensing:数字化图像处理在遥感领域中起着重要作用。

遥感图像的获取和解释需要大量的图像处理技术。

例如,通过对卫星图像的分割和分类,可以监测地球表面的植被覆盖、土地利用和环境变化等。

3. 计算机视觉:计算机视觉是数字化图像处理的一个重要应用领域。

它涉及到从数字图像中自动提取和分析信息的技术。

例如,人脸识别、目标检测和机器人视觉等都是计算机视觉的典型应用。

三、数字化图像处理的发展趋势1. 深度学习:随着深度学习算法的兴起,数字化图像处理正朝着自动化和智能化的方向发展。

深度学习可以通过构建深层神经网络模型,自动学习图像的特征和规律,从而提高图像处理的准确性和效率。

2. 实时处理:随着计算能力的提高,数字化图像处理在实时应用中的需求也越来越大。

数字图像处理 数字图像基础

数字图像处理 数字图像基础

数字图像处理数字图像基础数字图像处理是将数字图像进行分析、处理和理解的过程,它的目标是提高数字图像的质量、抽取图像的特征、提取图像的信息和实现图像的应用。

数字图像处理技术已经渗透到几乎所有领域,如医学、电影、远程通讯、安全监控等。

数字图像处理基础知识包括采集、压缩、存储、预处理、增强、分割、特征提取、分类和应用。

图像采集采集是数字图像处理中最基础的环节,它将物理光学信号转化为数字信号。

常见的图像采集设备包括CCD、CMOS和磁介质等。

图像压缩图像压缩是将图像文件从原始大小减小,并通过各种手段来减少文件大小和传输时间的过程。

图像压缩通常有两种方式,一种是有损压缩,一种是无损压缩。

图像存储图像存储是将数字图像保存在计算机或外部储存设备中。

常用的图像存储格式包括BMP、PNG、JPEG和GIF。

图像预处理图像预处理是在进行其他数字图像处理操作之前,对原始图像进行预处理以去除噪声、平滑、增强、锐化等。

常见的预处理方法包括空间域滤波、频率域滤波、直方图均衡化、形态学操作等。

图像增强图像增强是为了改善图像的质量、提高图像的视觉效果和增强图像的细节而进行的操作。

常见的图像增强方法包括灰度拉伸、对数变换、伽马变换、直方图规定化等。

图像分割图像分割是将数字图像分成不同的区域并对这些区域进行分析和理解的过程。

图像分割可以有多种方法,包括阈值分割、区域分割、边缘分割等。

特征提取图像特征提取是从原始图像中提取一些相关的特征以便于后续的分类和识别。

特征提取的常见方法包括边缘检测、角点检测、纹理描述等。

图像分类图像分类是将数字图像按照其特征划分为不同的类别。

常见的图像分类算法有SVM、KNN、神经网络等。

应用数字图像处理在很多领域都有广泛的应用,如医学影像处理、智能交通、虚拟现实等。

最近,随着深度学习的兴起,数字图像处理技术也被广泛应用于计算机视觉、自然语言处理等领域。

以上是数字图像处理的基础知识,数字图像处理应用广泛,研究数字图像处理可以掌握现代图像处理的基本技能,有利于提高计算机视觉,图像识别和其他领域的研究水平。

数字图像处理课件ppt

数字图像处理课件ppt
几何变换
几何变换是对图像进行形状、大小、位置等变换的过程。常见的几何变换包括 平移、旋转、缩放、扭曲等。这些变换可以通过矩阵运算来实现。
空间滤波
空间滤波是在图像上应用滤波器来改变图像的像素值。常见的空间滤波包括均 值滤波、中值滤波、高斯滤波等。这些滤波器可以用于去除噪声、增强边缘等 操作。
数字图像处理算法
01
计算机视觉
实现机器视觉,进行目标检测、识 别、跟踪等任务。
安全监控
利用数字图像处理技术实现安全监 控,提高监控的准确性和效率。
03
02
医学影像分析
对医学影像进行各种处理,以辅助 医生进行疾病诊断和治疗。
遥感影像处理
对遥感影像进行各种处理和分析, 以提取有用的地理信息。
04
数字图像处理基础
02
知识
特定目标分割
采用特定目标检测和跟踪技术,实现特定目 标的分割。
数字图像处理实践
04
使用Python进行图像处理的基本步骤和常用库
01
02
03
04
05
安装Python和相 导入图像 关库
图像预处理
图像分析
结果可视化
为了使用Python进行图像 处理,需要先安装Python 解释器和相关的图像处理 库,如OpenCV、Pillow等 。
人脸识别
人脸识别是在人脸检测的基础上,对检测到的人脸进行特征提取和比对,从而识别出不同的人脸。人脸识别算法 通常采用深度学习模型,如卷积神经网络(CNN)或循环神经网络(RNN)。
车牌识别系统
车牌定位
车牌定位是车牌识别系统的第一步,其 目的是在给定的图像中找到车牌的位置 和大小。车牌定位算法通常采用基于颜 色和形状的方法,结合图像处理技术进 行实现。

数字图像处理

数字图像处理

数字图像处理(1)(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一.名词解释1. 数字图像:是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。

2.图像:是自然生物或人造物理的观测系统对世界的记录,是以物理能量为载体,以物质为记录介质的信息的一种形式。

3. 数字图像处理:采用特定的算法对数字图像进行处理,以获取视觉、接口输入的软硬件所需要数字图像的过程。

4. 图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。

5. 灰度直方图:灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数。

或:灰度直方图是指反映一幅图像各灰度级像元出现的频率。

6. 细化:提取线宽为一个像元大小的中心线的操作。

连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。

8.中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。

9.像素的邻域:邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。

即{(x=p,y=q)}p、q为任意整数。

像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1)10.直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为平坦的直方图,以此来修正原图像之灰度值。

11.采样:对图像f(x,y)的空间位置坐标(x,y)的离散化以获取离散点的函数值的过程称为图像的采样。

12.量化:把采样点上对应的亮度连续变化区间转换为单个特定数码的过程,称之为量化,即采样点亮度的离散化。

13.灰度图像:指每个像素的信息由一个量化的灰度级来描述的图像,它只有亮度信息,没有颜色信息。

14.图像锐化:是增强图象的边缘或轮廓。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像根据灰度级数的差异可分为:黑白图像、 灰度图像和彩色图像。
黑白图像
图像的每个像素只能是黑或白,没有中间的过渡, 故又称为二值图像。二值图像的像素值为0或1。
例如
1 0 0 I 0 0 1 1 1 0
灰度图像
灰度图像是指灰度级数大于2的图像。但它不包 含彩色信息。 0 150 200 I 120 50 180 250 220 100
图像数字化器的性能评价项目
项 目 内 容
空间分辨率
灰(色)度分 辨率 图像大小
量测特征
单位尺寸能够采样的像素数。由采样孔径与间距的大 小和可变范围决定。 量化为多少等级(位深度),颜色数(色深度) 仪器允许扫描的最大图幅 数字化器所测量和量化的实际物理参数及精度
扫描速度
噪声 其他
采样数据的传输速度
目的:
1. 熟悉本章基本概念和图像处理算法形式,了解图像的特 征; 2.重点掌握图像数字化图像灰度直方图的基本概念及应用、 图像数据结构与特征
2.2 成象模型
3-D客观场景到2-D 成像平面的中心投影。 物方点空间坐标与对应 的像方点坐标满足几何 透视变换关系(共线条 件)。 f(x,y)---理想成像面坐标点(x,y) 的亮度 i(x,y)---照度分量 r(x,y)---反射分量,则 f(x,y)=i(x,y)×r(x,y) 其中 :0< i(x,y)< ∞ , 0 <r(x,y)<1
2.3.1采样
将空间上连续的图像变换成离散点的操作称为采样。 采样间隔和采样孔径的大小是两个很重要的参数。 当对图像进行实际的抽样时,怎样选择各抽样点的 间隔是个非常重要的问题。关于这一点,图像包含何种 程度的细微的浓淡变化,取决于希望忠实反映图像的程 度。
不同形状的采样孔径
采样方式:有缝、无缝和重迭
图2.4.2 不同的图像具有相同直方图 ③一幅图像分成多个区域,多个区域的直方图之 和即为原图像的直方图。
2.4.3 直方图的应用
①用于判断图像量化是否恰当
ቤተ መጻሕፍቲ ባይዱ
(a) 恰当量化
(b)未能有效利用
(c)超过了动态范围
图2.4.4直方图用于判断量化是否恰当
②用于确定图像二值化的阈值
0 g ( x, y ) 1
下图是一幅图像的灰度直方图。 频率的计算式为
灰度图像的直方图
彩色图像的分波段直方图
二、计算
该图像像元总数为8*8=64, i=[0,7]
0 0 1 2 3 2 1 3 1 5 6 6 2 2 2 1 3 7 0 7 2 5 3 2 2 6 6 5 7 6 2 3 1 2 3 3 2 2 1 1 3 5 5 6 4 7 2 2 2 6 1 5 1 6 1 2 1 7 2 0 6 0 2 1
第二章 基本概念
第二章
讲解内容
1. 图像数字化概念、数字化参数对图像质量的影响、 数 字化器性能评价 2. 图像灰度直方图的基本概念、计算、 性质及其应用 3.数字图像处理算法形式与数据结构 4.图像图像文件格式与特征 重点:图像数字化、图像灰度直方图和图像文件BMP格式 难点:图像数字化、直方图应用、图像分层结构数据 教学法:灵活应用示例法、启发式、提问法等
扫描仪的类型有很多种,按扫描仪所扫描对象来划分,可 分为反射式和透射式两种。根据其组成结构,扫描仪可分为手 持式、平板式和滚筒式等几种。
手持式扫描仪 这种扫描仪诞生于1987年,是当年使用比较广泛的扫描仪 品种,最大扫描宽度为105mm,用手推动,完成扫描工作, 也有个别产品采用电动方式在纸面上移动,称为自走式扫描仪。 手持式扫描仪扫描幅面太窄,难于操作和捕获精确图像, 扫描效果也很差。1995 ~1996年,各扫描仪厂家相继停止生 产这一产品,手持式扫描仪退出了历史的舞台
局部处理的计算表达式为
JP(i, j ) N ( N ( IP(i, j )))
例如 对一幅图象采用3×3模板进行卷积运算。
点处理 在局部处理中,当输出值JP(i,j)仅与IP(i,j)有关, 则称为点处理,如图2.5.5。
图2.5.5 点处理
点处理的计算表达式为:
JP(i, j) p (IP(i, j)) (2.5 2)
2.3.2量化 经采样图像被分割成空间上离散的像素,但其灰度 是连续的,还不能用计算机进行处理。 将像素灰度转换成离散的整数值的过程叫量化。
表示像素明暗程度的整数称为像素的灰度级(或灰 度值或灰度)。
一幅数字图像中不同灰度级的个数称为灰度级数, 用G表示。
灰度级数就代表一幅数字图像的层次。图像数据的 实际层次越多视觉效果就越好。
彩色图像
彩色图像是指每个像素由R、G、B分量构成的图 像,其中R、B、G是由不同的灰度级来描述。
255 240 240 R 255 0 80 255 0 0
0 160 80 G 255 255 160 0 255 0
80 160 0 B 0 0 240 255 255 255
大局处理 在局部处理中,输出像素JP(i,j)的值取决于输入图 像大范围或全部像素的值,这种处理称为大局处理。如图 2.5.6。
其计算表达式为:
图2.5.6 大局处理
JP(i, j ) G (G( IP(i, j )))
(2.5 3)
2.迭代处理
量化等级越多,所 得图像层次越丰富,灰 度分辨率高,图像质量 好,但数据量大; 量化等级越少,图 像层次欠丰富,灰度分 辨率低,会出现假轮廓 现象,图像质量变差, 但数据量小。 但在极少数情况下 对固定图像大小时,减 少灰度级能改善质量, 产生这种情况的最可能 原因是减少灰度级一般 会增加图像的对比度。 例如对细节比较丰富的 图像数字化。
二、扫描仪工作原理 扫描仪是图像输入的常用设备。其工作步骤是: 1.将欲扫描的原稿正面朝下铺在扫描仪的玻璃板上; 2.启动扫描仪驱动程序后,安装在扫描仪内部的可移动光源 通过机械传动机构在控制电路的控制下带动装着光学系统和 CCD的扫描头与图稿进行相对运动来完成扫描。 3.照射到原稿上的光线经反射后穿过一个很窄的缝隙,形成 横向光带,又经过一组反光镜,由光学透镜聚焦并进入分光镜 ,经过棱镜和红绿蓝三色滤色镜得到的RGB三条彩色光带,分 别照到各自的CCD上,CCD将RGB光带转变为模拟电子信号, 该信号又被A/D变换器转变为数字 电子信号。 4.将数字电子信号传送 至计算机存储起来。
2.5图像处理算法的形式 2.5.1图像处理基本功能的形式
按图像处理的输出形式,图像处理的基本功能可分 为三种形式。 1)单幅图像 → 单幅图像 ,如图2.5.1(a)。
2)多幅图像 →单幅图像, 如图2.5.1(b)。
3)单(或多)幅图像→ 数字或符号等,如图2.5.1(c)。
2.5.2图像处理的几种具体算法
均匀量化效果示意图
非均匀量化效果示意图
图像的质量
1.平均亮度
2.对比度 是指一幅图象中灰度反差的大小。 对比度=最大亮度/最小亮度
3.清晰度 由图像边缘灰度 变化的速度来描述。
4.分解力或分辨率
一般来说,采 样间隔越大,所得 图像像素数越少, 空间分辨率低,质 量差,严重时出现 像素呈块状的国际 棋盘效应; 采样间隔越小, 所得图像像素数越 多,空间分辨率高, 图像质量好,但数 据量大。
f ( x, y ) T f ( x, y ) T
具有二峰性的灰度图象
③当影像上目标的灰度值比其它部分灰度值大或者灰 度区间已知时,可利用直方图统计图像中物体的面 积。 A= n vi
i T
(2.4-3)
④ 计算图像信息量H(熵)
L1 i 0
H Pi log2 Pi
(2.4-4)
2.3.3 量化参数与数字化图像间的关系
数字化方式可分为均匀采样、量化和非均匀 采样、量化。 所谓“均匀”,指的是采样、量化为等间 隔方式。图像数字化一般采用均匀采样和均匀 量化方式。 非均匀采样是根据图象细节的丰富程度改 变采样间距。细节丰富的地方,采样间距小, 否则间距大。 非均匀量化是对图像层次少的区域采用间 隔大量化,而对图像层次丰富的区域采用间隔 小量化。 采用非均匀采样与量化,均会使问题复杂 化,因此很少采用。
v0=5/64 v1=12/64 v2=18/64 v3=8/64 v4=1/64 v5=5/64 v6=8/64 v7=5/64
vi
i
2.4.2 直方图的性质
①灰度直方图只能反映图像的灰度分布情况,而 不能反映图像像素的位置,即丢失了像素的位置 信息。 ②一幅图像对应唯一的灰度直方图,反之不成立。 不同的图像可对应相同的直方图。图2.4.2给出 了一个不同的图像具有相同直方图的例子。
数字化器的噪声水平(应当使噪声小于图像内的反差) 黑白/彩色,价格,操作性能等
2.4图像灰度直方图
2.4.1 概念 一、定义
灰度直方图反映的是一幅图像中各灰度级像素出现 的频率。以灰度级为横坐标,纵坐标为灰度级的频率, 绘制频率同灰度级的关系图就是灰度直方图。它是图像 的一个重要特征,反映了图像灰度分布的情况。
平台式扫描仪 又称平板式扫描仪、台式扫描仪,这种扫描仪诞生于 1984年,是目前扫描仪的主流产品。 它的扫描区域为一块透明的平板玻璃,将原图放在这 块玻璃平板上,光源系统通过一个传动机构作水平移动, 发射出的光线照射在原图上,经反射或透射后,由接收系 统接收并生成模拟信号,再通过A/D转换成数字信号,直 接传送到电脑,由电脑进行相应的处理,完成扫描过程。 平板式扫描仪的扫描速度、精度、质量很好,已得到了很 好的普及。
1.局部处理 邻域 对于任一像素(i,j),该像素 周围的像素构成的集合{(i+p,j+q), p、q取合适的整数},叫做该像素的邻 域。如图2.5.2(a)。 常用的邻域如图2.5.2(b)、(c), 分别表示中心像素的4-邻域、8-邻域。
相关文档
最新文档