大学有机化学第12章羧酸
有机化学第12章 羧酸
四、α-H的卤代反应
羧酸的α-H可在光、碘、红磷、硫等催化剂存在下被溴 或氯取代生成卤代酸。
RCH2COOH
Br2 PΔ
RCHCOOH Br2
Br
PΔ
Br R-C-COOH
Br
控制条件,反应可停留在一取代阶段。
CH3CH2CH2CH2COOH + Br2
P Br2 70 ℃
实质上并非两者的简单组合
醛酮中 C O 键长 0.122nm
醇中
C OH 键长 0.143nm
O HC
OH
(甲酸)
0.1245nm 0.1312nm 电子衍射实验证明
O RC
O-H
P-π 共轭体系
RC sp2 杂化
O OH
O RC
OH O HC OH
O RC
O
O 0.127nm HC
O 0.127nm
O RC
O
O HC
O
羧酸的化学性质
H
脱羧反应
O
RCC
羟基断裂呈酸性
H
OH
α H 的反应
羟基被取代的反应
一、酸性
羧酸具有弱酸性,在水溶液中存在着如下平衡:
RCOOH
RCOO + H+
乙酸的离解常数Ka为1.75×10-5 , pKa =4.76 甲酸的Ka=2.1×10-4 , pKa =3.75 其他一元酸的Ka在1.1~1.8×10-5之间, pKa在4.7~5之间。 可见羧酸的酸性小于无机酸而大于碳酸(H2CO3 pKa1=6.73)。
oocoh形式上看羧基是由一个和一个组成coh实质上并非两者的简单组合醛酮中coo01245nm键长0122nmhc01312nmoh醇中coh甲酸电子衍射实验证明键长0143nmoorcohrc2ohp共轭体系sp杂化ooorcrcrcohoooo0127nmohchchcohoo0127nm羧酸的化学性质h脱羧反应orcc羟基断裂呈酸性ohhh的反应羟基被取代的反应一酸性?羧酸具有弱酸性在水溶液中存在着如下平衡
课件有机化学第12章 羧酸及衍生物
O H3C C O
H H
O C O
6
CH3
乙酸的二缔合体
12.2 羧酸的化学性质
7
12.2 羧酸的化学性质
1. 酸性
R C O R C O
• 酸性比醇强得多 O O • 仍是一种弱酸 • 一元饱和脂肪族羧酸的pKa值一般在3~5之间
pKa
HCl -7
CH3COOH CH3CH2OH 4.72 16
H+
-H 2O
OH C OCH 2 CH 3
-H +
O C OCH 2 CH 3
14
加成-消除机理
Example
O C OH H2SO4 O C OC2 H5
+ C2H5OH
+ H2O
CH3 CH2 CH2 CH3COCl 或 (CH3CO)2O
O C ONa
+ CH3I
CH3 CH2 CH2 O C OC2 H5
酸性
8
取代基对羧酸酸性的影响
Structure pKa 1.26 2.85 4.72
• 吸电子取代基使酸性增强 • 给电子取代基使酸性减弱
Cl2CHCOOH ClCH2COOH CH3COOH
O
吸电子基
O
给电子基
C O
C O
吸电子取代基 提高羧酸盐稳定性
给电子取代基 降低羧酸盐稳定性
9
羧酸的酸性反应
H2SO4
CH3CO2CH2CH3 + H2O
O HOCH2CH2CH2COH
O O
13
反应机理(掌握)
O C OH H+ OH C OH 慢 OH C H OH 2 C OH OCH 2 CH 3 OH O CH 2 CH 3 CH 3 CH 2 OH
有机化学:12 羧酸及羧酸衍生物
C
+
O C O
H
(二)羧基上羟基的取代反应
O 酰卤 O 酸酐 O O 酯 O 酰胺 R C X R C O C R R C O R R C NH2(R)
1.成酯反应
O R C OH + H OR' H
+
O R C OR' + H2O
称酯化反应 反应特点:用酸做催化剂,反应可逆,速率慢
1.成酯反应
(1)诱导效应
HCOOH > CH3COOH > CH3CH2COOH
pKa 3.77 4.76 4.88
(一)酸性
如:卤素的位置——越靠近羧基影响越大
CH3CH2CHCOOH Cl
CH3CHCH2COOH CH2CH2CH2COOH Cl Cl
pKa
2.86
4.41
4.70
卤素的数目——越多,酸性越强
RCH2COOH + RCHCOX
X RCHCOOH
X X 该反应称为赫尔-佛尔哈德-泽林斯基(Hell-VolhardZelinsky)反应。 α-位如果还有H,可以进一步发生卤代反应,直至 所有α-H全部反应完。
问:
COOH CH3COOH 1 COOH 2 H2C COOH COOH 3
CH3COOH+SOCl2
pKa
4.20
3.83
4.09
4.10
2.电子效应的影响
邻位取代:
C和 I 都发挥作用,还有空间效应,情况复杂。
除氨基外,-X、-CH3、-OH、NO2酸性都比间 位或对位取代的强。邻位有取代时,羧基与 苯环不共平面,苯环电子云向羧基偏移少。
第12章 羧酸和取代羧酸
b-酮酸
芳香酸的脱羧反应较脂肪酸容易,尤其是邻、对位 上连有吸电子基,如:
NO 2 O 2N CO2H NO 2
H2O
NO 2 O 2N NO 2 + CO2
六)二元酸的热解反应
二元酸受热后,由于两个羧基的位置不同,而发生不同的 化学反应,有的失水,有的失羧,有的同时失水失羧。
1、乙二酸和丙二酸------脱羧
3、烷基苯氧化:制备苯甲酸及其部分衍生物
CH3 KMnO4 Cl COOH Cl
4、格氏试剂与CO2反应后水解
O RMgX + O=C=O RCOMgX H 3 O+
RCOOH
5、羧酸衍生物水解:酰卤、酸酐、酯、酰胺、腈
O RC L H 2O O L=X, OCR, OR, NH2(R) O RC OH + HL
系统命名法原则与醛相同。
1. 选择含羧基在内的最长碳链为主链
2. 从羧基碳原子开始用阿拉伯数字标明取代基等的位置 3. 按所含碳原子数目称为某酸,取代基及位次写在某酸 之前。
对于简单的脂肪酸也常用 α、β、γ 等希腊字 母表示取代基的位次;羧基永远作为C-1。
CH3 CH3-CH2-CH-CH2-CO2H
15.7 16-19
羧酸酸性的强弱决定于电离后所成的羧酸根负离子 (即共轭碱)的相对稳定性。
诱导效应、共轭效应对酸性的影响
1. 诱导效应的影响
G CH2COOG
酸性增强
CH2COO-
酸性减弱
G CH2COO-
各取代基的吸电子诱导效应的强弱次序:
NO2> CN> F> Cl> Br> I> C≡CH> OCH 3> OH > C6H5> CH=CH2> H
有机化学:第12章 羧酸
RCOONa + HCl RCOOH + NaCl
应用:用于羧酸的鉴别,分离,提纯。
另外,C12~18的RCOONa是肥皂的主要成份。
RCOOH > H2CO3 > C6H5OH > H2O >
pka: 4 ~ 5
6.38
10 15.74
RCH2OH > RNH2
16 ~ 19
~ 34
例如: 用化学方法鉴别(酸、酚、醇)
共轭效应的影响受到阻碍。
吸电子共轭效应
(-C )只能传递
到邻、对位。
• 卤素原子具有-I和+C效应,-I > +C。
COOH
COOH Cl
COOH
Cl
pKa: 4.2
2.92
3.82
• 羟基具有-I和+C效应,-I < +C。
COOH COOH OH
COOH OH
pKa: 4.2
2.98
4.08
COOH
O R C CH3
OH R CH CH3
X2 NaOH
RCOOH + CHX3
O CH3(CH2)4CCH3 I2/NaOH CH3(CH2)4COOH
4、由腈的水解制备:制备比原料多一个碳的羧酸
R CN
H
H2O,
OH
H
R COOH
H2O
CH3(CH2)4CN H2O/H+ CH3(CH2)4COOH
O CH2CH3
O
HOCCH2CHCH2CH2CHCH2COH
CH3
3–甲基–6–乙基辛二酸
(3-ethyl-6-methyloctanedioic acid)
第十二章 羧 酸
CH COOH 2 CH COOH CH CH COOH β -苯2 基 丙 烯酸 (肉 桂酸 )
丁二酸(琥珀酸)
CH3CH CHCOOH
CH3CHCH2COOH CH3 3-甲 基 丁酸
2-丁烯酸
书 P2 问题12-1
酰基: 羧酸分子中的羧基除去羟基后的基团;
酰氧基:羧酸分子中的羧基除去氢原子后的基团。
O
O18 CH3C-OC(CH3)3 + H2O
三、 脱羧反应
*1.强热脱羧 CH3COONa
*2.催化脱羧
2RCOOH
400—500℃
+
NaOH
CaO
强热
CH4
+
Na2CO3
ThO2
O
+
R
CO2
+
H2O
R
3.α-C原子连有吸电基的一元羧酸易脱羧
HOOCCH2COOH
O2N COOH NO2
H2O
O H3C C H3C O C O
乙 酰基
O PhCH2 C
乙 酰氧 基
O PhCH2 C O
苯 乙 酰基
O O
苯 乙 酰氧 基
O O
CH3CCH3CCH3 乙酰丙酮 CH3CCH3COCH2CH3 乙酰乙酸乙酯
第二节 羧酸的物理性质
1. 沸点:由于羧酸分子间及羧酸 分子与水分子间形成氢键,羧酸的 沸点高于分子量相近的醇。
5.比重:一元羧酸:甲酸、乙酸比重大于1; 其它羧酸的比重小于1。 二元羧酸、芳香羧酸的比重大于1。 6.状态: 十个碳原子以下的饱和一元酸是液体。 高级脂肪酸是蜡状固体。 二元脂肪酸和芳香酸都是结晶固体。
羧 烃 基 基
有机化学12羧酸衍生物
环状酸酐与氨或胺反应,先开环生成酰胺羧酸,然后很容易转变成环状酰亚胺。
酯的氨解,与氨反应不需加酸碱催化,氨本身就是碱。
酯的氨解反应比酸酐温和,与亲核性较弱的胺反应,常在碱催化剂存在下进行。
反应可用于酯的鉴别,酰卤和酸酐也呈正反应。
羟肟酸和FeCl3作用时,生成红色络合物。
氨的衍生物,也可以和羧酸衍生物发生氨解反应。
碳酸在结构上,可以看成羟基甲酸,碳酸在结构上可以看作是羟基甲酸,或共有一个羰基的二元酸。 由于二个羟基连在同一个碳上,H2CO3不稳定,不能以游离态存在,但它的许多的衍生物却很稳定。 碳酰氯(光气) 碳酰胺(尿素) 碳酸二乙酯
*
碳酸是二元酸,应有二种衍生物,即酸性衍生物和中性衍生物,但酸性衍生物都是不稳定的。 氯甲酸乙酯 氨基甲酸乙酯 Y为:卤素、RO、NH2等。 碳酸的混合衍生物是稳定的。
原因:酰胺分子中氨基上的氢原子可以形成氢键。
酰胺是有机物和无机物的良好溶剂。
N,N-二甲基甲酰胺,是常用的非质子极性溶剂。
第三节 化学反应
*
反应的活性和离去基团的性质有关,羧酸衍生物的离去基团L同时具有-I和+C效应。 第一步亲核加成,取决于羰基碳原子的亲电性。 电子效应:-I效应使羰基碳原子的电子密度减小,更容易与亲核试剂起加成反应; +C效应,使反应物的稳定性增加,羰基更不容易和亲核试剂起加成反应。 -I效应 +C效应
尿素与次卤酸钠溶液作用时,放出氮气,机理与霍夫曼反应相似。
尿素与亚硝酸作用,也能放出氮气和二氧化碳。 常用尿素在一些有机合成反应,如重氮化反应中, 除去过量的亚硝酸。
把固体尿素小心加热,分子间脱去一分子氨,生成双缩脲。 双缩脲反应:双缩脲和少量的CuSO4的碱性溶液生成紫红色。 分子链中含有不只一个酰胺键的化合物,都能发生这个显色反应,常用于蛋白质和多肽的定性检验。
第12章 羧酸
第12章 羧酸§12.1 羧酸的分类、结构与命名12.1.1 结构和分类 1、定义分子中含有C OH O基团(羧基)的有机化合物称为羧酸。
2、羧酸的结构通式:R-COOH (-R=烷基或芳基) 3、羧酸(RCOOH)的分类方法☐ 按照羧基连的烃基构造: ☐ 按照分子中羧基的数目:脂肪族羧酸(饱和及不饱和) 一元羧酸 脂环族羧酸 二元羧酸 芳香族羧酸 多元羧酸其中链状的一元羧酸(包括饱和的及不饱和的)通称为脂肪酸12.1.2 命名 1、系统命名法A 、饱和脂肪酸的命名1)选择含有羧基的最长碳链为主链,并按主链碳数称“某酸”; 2)从羧基碳原子开始编号,用阿拉伯数字标明取代基的位置; 3)并将取代基的位次、数目、名称写于酸名前。
如:C H 3 C H 2 C H 2 CO O H丁酸 C H 3 C H C H 3 C H C H 3C H 2 C O O H 3 , 4 - 二甲基戊酸 β , γ - 二甲基戊酸12 3 4 5 α β γB 、不饱和脂肪酸的命名1)选择包括羧基碳原子和各C=C 键的碳原子都在内的最长碳链为主链,根据主链上碳原子的数目称“某酸”或“某烯(炔)酸”;2)从羧基碳原子开始编号;3)在“某烯(炔)酸”前并注明取代基情况及双键的位置。
如:CH 3CCHCH CH 3CH 3COOHC CCOOHHOOCH H2, 4–二甲基–3–戊烯酸 (E ) –丁烯二酸 3-苯基丙烯酸C 、脂环族羧酸的命名1)羧基直接连在脂环上时,可在脂环烃的名称后加上“羧酸或二羧酸”等词尾; 2)不论羧基直接连在脂环上还是在脂环侧链上,均可把脂环作为取代基来命名。
如:D 、芳香族羧酸的命名1)以芳甲酸为母体;2)若芳环上连有取代基,则从羧基所连的碳原子开始编号,并使取代基的位次最小。
如:E 、二元酸的命名选包括两个羧基碳原子在内的最长碳链作为主链,按主链的碳原子数称为“某二酸”。
有机化学 第十二章 羧酸
王鹏
山东科技大学 化学与环境工程学院
12.3 羧酸的物理和波谱性质
二、1H-NMR:
-COOH: δ范围 10~14 邻近羧基的碳上的氢移向低场区, δ约2~2.6 O CH2 C O H
δ: 2~3
10~13
如p282 图13-2异丁酸的核磁图 羧酸核磁的另一特点是活性氢交换后低场区信号 减弱或消失
王鹏
12.4 羧酸的化学性质
酯化反应的亲核取代机理:
O R C OH + H
+
快
+OH
慢
OH R
快
R
快
C
OH
.. R'O H ..
C
+.. O R'
OH H O R C OR'
OH
快
+ OH OR'
H2O 快 慢
R
C
R
C
OR'
H
+
+ OH2
快
叔醇更倾向于酸碱中和机理,即酸失去H+,叔醇 失去OH-,剩余部分结合成酯
溶解性:
低级脂肪酸是极性分子,易溶于水(因为易与水成分子间 氢键)。随着碳原子数增加,水溶性逐渐降低
熔沸点:
羧酸的熔沸点比分子量相近的其他化合物高许多
王鹏
山东科技大学 化学与环境工程学院
12.3 羧酸的物理和波谱性质
一、IR:
O-H:3560~3500(单体)3000~2500(二聚) C=O:1720,C-O:1250 羧酸的红外特征是强而宽的羧基峰和羰基峰
王鹏
山东科技大学 化学与环境工程学院
12.2 羧酸的分类和命名
有机化学第十二章 羧酸
2020/1/31
C H 2C O O H
C H 2C O O H C H 3(C H 2)7C H =H C (C H 2)7C O O H
α -萘基乙酸 β -萘基乙酸 9-十八碳烯酸
也可以用△表示双键的位次,把双键碳 原子的位次写在△的右上角。例如 △9-十八 碳2、烯俗酸名法:根据来源命名
由于P-Π 共轭的结果,使得C=O双键与 C-OH单键的键长平均化:
羧基λ C=O 0.125nm 醛酮:λ C=O 0.122nm λ C-O 0.131nm 醇 :λ C-O 0.143nm
2020/1/31
醛 酮 中CO 键 长 0.122nm
醇 中 COH 键 长 0.143nm
O 0.1245nm HCOH0.1312nm
§12-2 羧酸的物理性质
一、物理性质 强调:
1、沸点:由于羧酸是极性化合物,它的 沸点比相应的醇高
甲酸(46):100.7
乙醇(46): 78.5
乙酸(60):bp. 118 丙醇(60): 97
2020/1/31
2、熔点:从丁酸开始,羧酸的熔点随分子 量的增大呈交替上升,一般偶数碳原子比相 邻的奇数的酸的熔点高,原因P3。例如
即HCOOH > 1°RCOOH > 2°RCOOH > 3°RCOOH 2.酰卤的生成 被卤素所取代生成酰卤
羧酸与PX3、PX5、SOCl2作用则生成酰卤
2020/1/31
(1) 与PX3作用
R C O O H+P X 3
R C O X+H 3 P O 320 D e 0 c .
此法适用于:低沸点的酰卤的制备。例如
(2)除去反应生成的水。可以用分水 器或202加0/1/31入浓硫酸吸水;
第十二章 羧酸
此性质可用于醇、酚、酸的鉴别和分离,不溶于 水的羧酸既溶于NaOH也溶于NaHCO3,不溶于水的酚 能溶于NaOH不溶于NaHCO3,不溶于水的醇既不溶于 NaOH也溶于NaHCO3。 RCOOH + NH4OH RCOONH4 + H2O 高级脂肪酸高级脂肪酸的钠、钾盐是肥皂的主 要成分,高级脂肪酸的铵盐是雪花膏的主要成分, 镁盐可用于医药工业,钙盐用于油墨工业。
影响羧酸酸性的因素: 影响羧酸酸性的因素复杂,这里主要讨论电 子效应和空间效应。 1. 电子效应对酸性的影响 1)诱导效应 1°吸电子诱导效应使酸性增强。 FCH2COOH > ClCH2COOH > BrCH2COOH > ICH2COOH > CH3COOH pKa值 2.66 2.86 2.89 3.16 4.76 2°供电子诱导效应使酸性减弱。 CH3COOH > CH3CH2COOH > (CH3)3CCOOH pKa值 4.76 4.87 5.05
3°吸电子基增多酸性增强。 ClCH2COOH < Cl2CHCOOH < Cl3CCOOH pKa值 2.86 1.29 0.65 4°取代基的位置距羧基越远,酸性越小。
2) 共轭效应 当能与基团共轭时,则酸性增强,例如: CH3COOH Ph-COOH pKa值 4.76 4.20
2.取代基位置对苯甲酸酸性的影响 取代苯甲酸的酸性与取代基的位置、共轭效 应与诱导效应的同时存在和影响有关,还有场效 应的影响,情况比较复杂。 可大致归纳如下: a 邻位取代基(氨基除外)都使苯甲酸的酸 性增强(位阻作用破坏了羧基与苯环的共轭)。 b 间位取代基使其酸性增强。 c 对位上是第一类定位基时,酸性减弱;是 第二类定位基时,酸性增强。见P7表12-3。
有机化学(第二版)第十二章 羧酸及其衍生物
CH2=CHOCOC2H5
丙二酸二乙酯
醋酸乙烯酯
12.9 羧酸衍生物的化学性质 12.
一、羧酸衍生物的亲核取代反应 • 加成-消除历程:
O 1) R C L O
+
Nu
R C Nu L 亲 亲亲 亲
O 2) R C Nu L:-X,-OCOR,-OR,-NH 2 L R
O C OH HO
O C
O C OH
pKa
4.76
3.75
1.23
2、α-H卤代
• 赫尔-乌尔哈-泽林斯基反应
Br2/P
Br CH2COOH CH2COOH Cl
CH3COOH
Cl2/S
CN
NaCN
CN
H+/H 2 O
RCHCOOH X
① OH
+
-
RCHCOONa OH RCHCOONa RCHCOONa NH 2
②羧酸氯化水解
RCH2COOH Cl2 P RCHCOOH Cl OH .H2O RCHCOOH OH
2、β-羟基酸
• ① 通过次卤酸(p.55)
OH
HOCl
OH Cl
NaCN
OH
R
R
R
CN
1) NaOH
2) H
+
R
COOH
② Reformasky反应
Zn+BrCH2COOC2H5 RCHCH2COOC2H5 OZnBr 无 RCHO ZnBrCH2COOC2H5 .H2O RCHCH2COOH OH
.H2O H
+
三、化学性质
1、酸性
第十二章 羧酸
- H+ O R C OR'
OH slow R C OH
HO R'
..
加成
OH + OH fast + R C OH2 R C OR' 消除 H 2O OR'
..
H2O中无O18,说明反应为酰氧断裂。
(4)酯化反应历程
1°、2°醇为酰氧断裂历程,
O R C OH
OH
O C OH
1700~1725 cm C O 在 -1 OH 二聚体 2500~3000 cm -1 3100~3650 cm 游离
-1
1HNMR:RCOOH
δH
=10.5~13
RCH2COOH
R2CHCOOH
δH = 2~2.6
第三节 羧 酸 的 化 学 性 质
4. 脱羧反应; 氧化与还原
*3.α-H 的反应
CH3COOH
酯键 O C2H5OH H2 O 110~120℃ CH3C-O-C2H5
浓H2SO4
乙酸乙酯
O O H2SO4 C6H5-C—OH + H O-CH3 C6H5-C—O-CH3 +H2O
苯甲酸甲酯 (85-95%) (1) 酯化反应是可逆反应,Kc≈4,一般只有2/3的转化率 提高酯化率的方法: 增加反应物之一,或不断从反应体系中移去一种生成物,可促 使平衡右移,提高酯的收率。
C
δ+
N O O
O-
COOH
COOH CH3 CH3
COOH H3C
COOH
pKa
4.17
3.89
4.28
4.35
有机化学 第十二章+羧酸
pka 1 HOOCCOOH HOOCCH 2 COOH 1.27 4.21
pka 2 4.27 5.64
24
2. 酸性顺序
影响RCOOH酸性强弱的因素
(2) 共轭效应 -C越大,酸性越大(使-COO-负电荷分散) O2 N pKa 3.42 COOH CH3O 4.47 COOH COOH 4.20
34
(二)羧基中羟基被取代的反应
2. 酯化反应 (esterification) (★) (2) 催化剂 (catalyst)
C H3C O O H + H O C2H5 H+ C H3C O O C 2H5 + H2O
催化剂对平衡时间的影响
编号 1 2 3
反应温度(℃) 室温(25℃) 150℃ 室温(25℃)
类型 间位(m-)
对位(p-) 邻位(o-)
距羟基距离 中等
最远 最近
诱导效应 (-I)中
(-I) 小 (-I)大
共轭效应 无(-C)
(-C) (-C)
氢键 无
分子间 分子内
酸性
小 大 中
30
(二)羧基中羟基被取代的反应
31
(二)羧基中羟基被取代的反应
1. 酰卤
比较:醇类的卤代
SOCl2 R R OH PBr3 R Cl Br
R' R- CH = C R"
R'
KMnO4 △
R- C= O +O = C OH R"
2
一.羧酸的制备
1. 氧化反应 (1) 烯烃、炔烃的氧化断裂 ◆ 烯烃:用热的或酸性KMnO4 ◆ 炔烃:用碱性KMnO4
CH3CH2CH2CH2C CH
有机化学 第十二章 羧酸衍生物和碳酸衍生物
第一节 第二节 第三节 羧酸衍生物 羧酸衍生物涉及碳负离子的反应及其 在合成中的应用 碳酸衍生物、油脂和原酸酯
第一节
一、结构
羧酸衍生物
O O O O O R C X R C O C R' R C OR' R C NH2
酰卤
酸酐
酯
酰胺
羧基中羟基被置换生成羧酸衍生物,它们经简单 的水解反应可转变为羧酸. 腈 ( RCN ) 水解生成羧酸,故也在本章予以讨论.
NHCOCH3
5-乙酰氨基-7-(2氧代丙基)-2-萘甲酸
2-乙酰氧基苯甲酸
乙酸(3-甲氧基-4氰基苯基)酯
三、物理性质
酰氯酸酐:低级的酰氯和酸酐是有刺鼻气味的液体, 高级的为固体。 酯:低级的酯具有芳香的气味,可作为香料。乙酸 异戊酯(香蕉味);丁酸甲酯(菠萝味); -辛內酯(椰子味)。十四碳酸以下的甲酯和 乙酯均为液体。 酰胺: 由于形成分子间氢键,沸点高。除甲酰胺外均是
4-Chlorocarbonylbezioc acid
普通命名法: -溴丁酰溴 IUPAC 命名法: 2-溴丁酰溴 对氯甲酰基苯甲酸 对甲氧基苯甲酰氯
4-氯甲酰基苯甲酸
2 酸酐的命名
单酐:在羧酸的名称后加酐字; 混酐:将简单的酸放前面,复杂的酸放后面再加酐字 O 环酐:在二元酸的名称后加酐字。
O O CH3COCCH3 Acetic anhydride O O CH3COCCH2CH3 O Aceticpropionic anhydride Succinic anhydride O
快
R'OH +RCO-
2. 酸性下水解
O C2H5CO18C2H5 + H2O
华中科技大学有机化学第十二章 羧酸及其衍生物
工业上应用这个反应合成聚酰胺纤维:
三、还原反应 羧酸是许多有机物氧化的最终产物,性质稳定,催化加氢和一般的还 原剂都不能使羧酸还原。但用氢化铝锂可以顺利地将羧酸还原成伯醇。
由于LiAIH4价格昂贵且使用不便,常用间接的方法使羧酸还原, 即先把羧酸转变成酯然后再用适当的还原剂还原。 四、-卤代反应 脂肪族羧酸中的-氢在红磷的催化下能被卤素取代。例如
生成酸酐的反应机理是一分子羧酸对另一分子羧酸的亲核加成-消去反应
3.生成酯 羧酸和醇或在强酸(硫酸,对甲苯磺酸等)催化下分子间脱水生成酯, 这个反应叫做酯化反应(esterification)。 酯化反应是可逆反应。为了提高产率,一般采用的方法是增加某 一种反应物的用量,或不断从体系中移去某一种产物。 实验证明,羧酸酯化时生成的水分子中的氧原子一般是来自羧酸 的羟基。例如,用同位素标记的醇与羧酸反应,其结果是同位素标记 的氧原子留在酯分子中。
命名含有多官能团的羧酸衍生物时,要先确定主官能团并写出主 官能团为母体的名称,然后把其它官能团作为取代基,连同它们在母 体碳架上的位次写在母体名称之前。 常见羧酸衍生物功能基作为取代基的名称如下:
3. 酸衍生物的物理性质 一些羧酸衍生物的物理性质见下表。 C14以下的直链酰氯、甲酯和乙酯在室温下为液体。壬酸酐以上的酸酐 在室温下是固体。 甲酯、乙酯和酰氯的沸点比相应的羧酸低,酸酐和酰胺的沸点比相应 的羧酸高。除甲酰胺外,其它的酰胺RCONH2在室温下都是固体。 具有氢键给予体(N-H)和氢键受体(C=O)的酰胺可以通过氢键互相缔 合:
二、羧酸的命名 根据与羧基相连的烃基的种类,可将羧酸分为芳香族羧酸和脂肪 族羧酸、饱和羧酸和不饱和羧酸;根据羧基数目的不同,又可分为 一元羧酸、二元羧酸和多元羧酸。 羧酸的系统命名原则与醛类似,即选择含有羧基的最长碳链为 主链,从羧基的碳原子开始编号,用阿拉伯数字表示取代基的位次。 简单的羧酸习惯上也使用希腊字母来编号,从羧基相邻碳原子起, 分别用、、、……字母表示,末端碳原子用表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C O + H2O
C
O
邻苯二甲酸
邻苯二O 甲酸酐(100%)
羧酸的钠盐 酰氯 共热
O
O
OO
CH3 C O Na + CH3CH2 C Cl CH3 C O C CH2CH3 + NaCl
混合酸酐的生成
(3) 酯的生成和酯化反应机理 羧酸 醇 在强酸催化下 酯
酯化反应(esterification) O
+ H2O
(92%)
制备乙酸、苯甲酸的工业方法
(2) 由一氧化碳、甲醇或醛制备
CO与NaOH水溶液作用,生成HCOOH:
CO + NaOH
~210℃ ~0.8 MPa
HCOONa H2SO4
丙醛氧化法:
HCOOH
CH3CH2CHO +
1/2
O2
(CH3CH2COO)2 0.1 MPa,
Mn
甲醇法:
CH3 CN
H2O, H2SO4 ~85%
CH3 COOH
12.3.4 Grignard 试剂与CO2作用
Grignard 试剂的羧化作用 (carbonation)
(CH3)3C MgCl + O C O
O
C(CH3)3
H3O+
C O MgCl
(CH3)3CCOOH
反应特点:
• RX RCOOH
• 增长1个C的碳链
O C6H5 C 18OCH3 + H2O
羧酸
醇
酯化反应机理:
第一步 羰基质子化:
O R C OH H+
OH R C OH
酯
OH R C OH
第二步 醇分子对质子化羰基的亲核进攻:
OH
R'OH
R C OH
OH R C OH R' O H
四面体中间体
第三步 质子转移与脱水:
OH R C OH R' O H
•
限制:底物分子中不能含有–OH, –SH 或C=O等基团
–
NH2,
Mg
Br 乙醚
MgBr
①CO2 ②H3O+
COOH
12.3.5 酚酸的合成
Kolbe–Schmitt 反应
酚钠、CO2 水杨酸
ONa
OH
OH
+ CO2
150℃ 0.5MPa
COONa H3O+
90%
COOH
水杨酸
(邻羟基苯甲酸)
OK
取代酸:
酰胺
RCHCOOH RCHCH2COOH RCHCOOH
X
卤代酸
OH
羟基酸
NH2
氨基酸
12.1 羧酸的分类和命名
羧酸的命名: • 选择含羧基的最长的C链为主链,称“某酸” • 二元酸:称“某二酸” • 含脂环和芳环的羧酸:当羧基直接与环相
连时,“环的名称 + 甲酸”;当羧基与侧链 相连时,环作为取代基;当环上和侧链都 连有羧基时,以脂肪酸为母体
NR3 > NO2 > SO2R > CN > SO2Ar >COOH >
F > Cl > Br > I >OAr > COOR > OR > COR > SH > OH
> C CR > C6H5 > CH CH2 > H
+I: O- > COO- > (CH3)3C > (CH3)2CH > CH3CH2 > CH3 >H
T/%
σ/ cm-1
图 12.1 正癸酸的红外光谱图
图12.2 异丁酸的核磁共振谱图
12.6 羧酸的化学性质 反应部位:
酰基上的 亲核取代反应
酸性
O
RC COH
H
还原成 CH2
α–H 反应
脱羧反应
12.6.1 羧酸的酸性和极化效应
(1) 羧酸的酸性
RCOOH + NaOH RCOO Na + H2O RCOOH + NaHCO3 RCOO Na + CO2 + H2O RCOONa + HCl RCOOH + NaCl
二元羧酸的酸性:
HOOCCH2COOH pKa1 = 2.9
HOOCCH2COO pKa2 = 5.7
HOOCCH2COO + H+ OOCCH2COO + H+
pKa1 < pKa2, 解离常数 Ka1 > Ka2
OOC CH2 COOH
羧基的-I效应利于羧酸的第一次解离。
O 场效应:通过空间传递的电子效应。
CHCOOH OH
2–苯基–2–羟基乙酸
(扁桃酸)
CH2COOH CH2COOH
1,2–苯二乙酸
12.2 羧酸的结构
甲酸:
124 ° O 125 ° HCO H
111 °
C: sp2 杂化 平面结构 键角:~120℃ C O : 一个σ键,
一个π键
12.3 羧酸的制法 12.3.1 羧酸的工业制合成
①LiAlH4 ②H2O
CH3O CH3O
CH2OH
(93%)
12.6.4 脱羧反应 (decarboxylation)
羧酸或羧酸盐分子 ―CO2 脱羧反应
吸电基团: NO2, C N, C O, Cl
加热 脱羧
△
Cl3CCOOH
CHCl3 + CO2
CH3CH2CHCOOH
Cl
pKa
2.86
CH3CHCH2COOH Cl
4.0
CH2CH2CH2COOH Cl
4.52
CH3CH2CH2COOH 4.82
供电基:
CH3
H COOH CH3 COOH CH3CH2 COOH CH3 C COOH
pKa 3.75
4.75
4.87
CH3
5.07
–I:
+
第十二章 羧酸
12.1 羧酸的分类和命名 12.2 羧酸的结构 12.3 羧酸的制法 12.3.1 羧酸的工业合成 (1)烃的氧化 (2) 由一氧化碳、甲醇或醛制备 12.3.2 伯醇和醛的氧化 12.3.3 腈水解 12.3.4 Grignard 试剂与二氧化碳作用 12.3.5 酚酸的合成 12.4 羧酸的物理性质 12.5 羧酸的波谱性质
(1) 烃的氧化 烷烃的氧化:
CH3CH2CH2CH3
O2, 醋酸钴 ~95℃
CH3COOH + HCOOH + CH2CH2COOH
(57%)
(1~2%)
(2~3%)
1.01~5.47MPa
+ CO + CO2 +酯和酮
烃基芳烃的氧化: (17%) (22%)
CH3
COOH
钴盐或锰盐
+ 3/2 O2 165℃,0.88MPa,
HY > RCOOH > H2CO3 >C6H5OH > H2O > RCH2OH >
pka: 4 ~ 5 6.38
10 15.74 16 ~ 19
C CH > RNH2 > RH
~ 25 ~ 34 ~50
HY:无机酸
由此可把羧酸与中性、碱性化合物及酚分离。
思考题:如何将以下三种化合物进行分离:
COOH OH
O
BrCH2CH2CH2COOH CH3CH CHCH2CH2C OH
4–溴丁酸
4–己烯酸
HOOC COOH
乙二酸(草酸)
COOH
CH3
对甲基苯甲酸
O CH2CH3
O
HOCCH2CHCH2CH2CHCH2COH
CH3
3–甲基–6–乙基辛二酸
COOH
1 52
43
1–环戊烯甲酸
COOH
H 反–1,2–环戊烷二甲酸 H COOH
OH
OH
R C OH2 -H2O R C O R'
R' O
第四步 脱质子:
OH
O
R
C
O
R'
-H+
R
C
O R'
叔醇的酯化反应是断裂醇中的C―O键:
O R C OH + HO CR'3
O R C O CR'3
酯化反应机理: 第一步:
图 12.3 羰基质子化步骤示意图
第二步:
图 12.4 醇分子亲核进攻步骤示意图
羧酸
O
(carboxylic acid) 羧基(carboxyl group)
R
C
OH
酰基(acyl group) 羧酸衍生物(carboxylic acid derivatives):
O
O
O
O
R C X R C O C R R C OR' RC N
酰卤
酸酐
酯
腈
O
O
O
R C NH2 R C NHR R C NR2
pKa 2.66
2.81
2.87
3.31
不同数目
Cl3CCOOH Cl2CHCOOH ClCH2COOH CH3COOH
pKa 0.70
1.29
2.81
4.75
不同杂化
HC CCH2COOH
CH2COOH H2C CHCH2COOH CH3CH2COOH
pKa 3.32
4.31
4.35
4.82