多元线性回归
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简要回答题:
1. 在多元线性回归分析中,F检验和t检验有何不同?
答案:
在多元线性回归中,由于有多个自变量,F检验与t检验不是等价的。
F检验主要是检验因变量同多个自变量的整体线性关系是否显著,在k个自变量中,只要有一个自变量同因变量的线性关系显著,F检验就显著,但这不一定意味着每个自变量同因变量的关系都显著。检验则是对每个回归系数分别进行单独的检验,以判断每个自变量对因变量的影响是否显著。
知识点:多元线性回归
难易度:1
2. 在多元线性回归分析中,如果某个回归系数的t检验不显著,是否就意味着这个自变量与因变量之间的线性回归不显著?为什么?当出现这种情况时应如何处理?
答案:
(1)在多元线性回归分析中,当t检验表明某个回归系数不显著时,也不能断定这个自变量与因变量之间线性关系就不显著。因为当多个自变量之间彼此显著相关时,就可能造成某个或某些回归系数通不过检验,这种情况称为模型中存在多重共线性。
(2)当模型中存在多重共线性时,应对自变量有所选择。变量选择的方法主要有向前选择、向后剔除和逐步回归等。
知识点:多元线性回归
难易度:2
计算分析题:
1. 一家餐饮连锁店拥有多家分店。管理者认为,营业额的多少与各分店的营业面积和服务人员的多少有一定关系,并试图建立一个回归模型,通过营业面积和服务人员的多少来预测营业额。为此,收集到10家分店的营业额(万元)、营业面积(平方米)和服务人员数(人)的数据。经回归得到下面的有关结果(a=0.05)。
回归统计
0.91470.83660.789960.7063
方差分析
df SS MS F Significance F
回归2132093.19966046.60017.9220.002
残差725796.8013685.257
总计9157890.000
参数估计和检验
Coefficients标准误差t Stat P-value
Intercept-115.288110.568-1.0430.332
X Variable 10.5780.503 1.1490.288
X Variable 23.9350.699 5.6280.001
(1)指出上述回归中的因变量和自变量。
(2)写出多元线性回归方程。
(3)分析回归方程的拟合优度。
(4)对回归模型的线性关系进行显著性检验。
答案:
(1)自变量是营业面积和销售人员数,因变量是营业额。
(2)多元线性回归方程为:。
(3)判定系数,表明在营业额的总变差中,有83.66%可由营业额与营业面积和服务人员数之间的线性关系来解释,说明回归方程的拟合程度较高。估计标准误差,表示用营业面积和服务人员数来预测营业额时,平均的预测误差为60.7036万元。
(4)从方差分析表可以看出,,营业额与营业面积和服务人员数之间的线性模型是显著的。
知识点:多元线性回归
难易度:2
2. 机抽取的15家超市,对它们销售的同类产品集到销售价格、购进价格和销售费用的有关数据(单位:元)。设销售价格为y、购进价格为、销售费用为,经回归得到下面的有关结果(a=0.05):方差分析
df SS MS F Significance F
回归261514.1730757.0912.880.0010
残差1228646.762387.23
总计1490160.93
参数估计和检验
Coefficients标准误差t Stat P-value
Intercept637.07112.63 5.660.0001
X Variable 10.180.08 2.330.0380
X Variable 2 1.590.34 4.710.0005
(1)写出多元线性回归方程,并解释各回归系数的实际意义。
(2)计算判定系数,并解释其实际意义。
(3)计算估计标准误差,并解释其意义。
(4)根据上述结果,你认为用购进价格和销售费用来预测销售价格是否都有用?请说明理由。
答案:
(1)多元线性回归方程为:。偏回归系数表示:在销售费用不变的条件下,购进价格每增加1元,销售价格平均增加0.18元;偏回归系数表示:在购进价格不变的条件下,销售费用每增加1元,销售价格平均增加1.59元。
(2)判定系数,表明在销售价格总变差中,有68.23%可由销售价格与购进价格和销售费用之间的线性关系来解释,说明回归方程的拟合程度一般。
(3)估计标准误差,表示用购进价格和销售费用来预测销售价格时,平均的预测误差为48.86元。
(4)都有用。因为两个回归系数检验的值均小于0.05,都是显著的。
知识点:多元线性回归
难易度:3
3. 经济和管理专业的学生在学习统计学课程之前,通常已经学过概率统计课程。经验表明,统计学考试成绩的高低与概率统计的考试成绩密切相关,而且与期末复习时间的多少也有很强的关系。根据随机抽取的15名学生的一个样本,得到统计学考试分数、概率统计的考试分数和期末统计学的复习时间(单位:小时)数据,经回归得到下面的有关结果(a=0.05):
方差分析
df SS MS F Significance F
回归2A B D0.01
残差12418.46C
总计14900.86
参数估计和检验
Coefficients标准误差t Stat P-value
Intercept-15.53333.695-0.4610.653
X Variable 10.7030.203 3.4650.005
X Variable 2 1.7100.676 2.5270.027
(1)计算出方差分析表中A、B、C、D单元格的数值。