矢量的运算法则ppt
矢量的加减运算法则
矢量的加减运算法则
摘要:
一、矢量加减法简介
1.矢量加减法的基本概念
2.矢量加减法在物理中的应用
二、矢量加法法则
1.平行四边形法则
2.三角形法则
3.叉乘法
三、矢量减法法则
1.矢量减法的定义
2.矢量减法的几何意义
四、矢量加减法的应用实例
1.力的合成与分解
2.运动轨迹的计算
3.速度与加速度的计算
正文:
矢量加减法是物理学中矢量运算的基本方法,它涉及到矢量加法和矢量减法两个方面。
矢量加减法广泛应用于物理学的各个领域,如力学、电磁学等。
矢量加法是指将两个矢量相加得到一个新的矢量的过程。
矢量加法有三种基本法则:平行四边形法则、三角形法则和叉乘法。
其中,平行四边形法则是
矢量加法的基本法则,它是指将两个矢量的起点连接起来,形成一个平行四边形,新矢量的长度和方向分别等于平行四边形的对角线长度和方向。
三角形法则是将两个矢量的起点连接起来,形成一个三角形,新矢量的大小和方向分别等于三角形的第三边长度和方向。
叉乘法是将两个矢量进行向量积运算,得到一个垂直于原来两个矢量所在平面的新的矢量。
矢量减法是指将一个矢量从另一个矢量中减去得到一个新的矢量的过程。
矢量减法的定义是:将减法中的被减矢量取相反数,然后与减矢量相加。
矢量减法的几何意义是将减矢量沿着被减矢量的方向平移,使得两者相接。
矢量加减法在物理学的应用非常广泛。
例如,力的合成与分解中,我们可以通过矢量加法将多个力的矢量相加得到总力,也可以将总力分解为多个分力的矢量之和。
在运动轨迹的计算中,我们可以通过矢量加法计算物体在某一时间段内的位移和速度。
矢量的定义和加减法运算法则
A=AaA=Ad y yy z zz
矢量表示为:冒=4A + Ayay + "
在直角坐标系下的矢量表示:
矢量:冒=4,+4句+AZ(:I z
+模的计算:1冒1= M+A; + A;
令单位矢量:
a=
A Ax .
4八 &八
a* + 0,
+
a
Z
Ml Ml Ml J Ml
=cos a a + cos pay + cosEz
第1章电磁学的数学基= 础
矢量分析
—,矢量的定义和表示
矢量的基_=|— 本运算'- 法则
h
F
—
三,矢量微分元:线11 = 元,面元,体元
111 标量场的梯度
五,矢量场的散度 六■矢量场的旋度
—■矢量的定义和表示
1. 标量:只有大小,没有方向的物理量。 如:温度T、长度L等
2. 矢量:不仅有大小,而且有方向的物理量。
例: 已知^点和因点对于原点的位置矢量为刁和方,
求:通过4点和3点的直线方程。 解:
在通过力点和3点的直线上,任取
一 点G对于原点的位置矢量为c, 则:
c — a = k (b — 1)
c = (1 — k)a + kb 其中:k为任意实数。
小结:
、矢量的定义和表示 、矢量的加减法运算法则
如:重力电场强度E、磁场强度可 等
3-矢量表示
—个矢量可以表示成矢量的模与单位矢量的乘积。 矢量 表示为: A=\A\a
其中:| A |为矢量的模,表示该矢量的大小。 a为单位矢量,表示矢量的方向,其大小为1。
矢量的运算
这时 r 是矢量的模,括号中的量是单位矢量。 cosα,cosβ,cosγ也称为该矢量的方向余弦。
矢量与数量相乘时,各分量也相应扩大同样的倍数。
如
F ma maxi may j mazk
9
矢量的乘法
物矢理量学的中 点用 乘到 :的F矢• 量S的 乘FS法c还os有点乘和叉F乘。
sin
j)
其中r是该矢量的模,而括号中的 项是r方向上的单位
矢量。
r0
cos
i sin
j
在已知x及y的情况下
r x2 y2
tg y
x
例1、设矢量
r
(6i
8
j )m
写出该矢量的模和单位矢量,并用图表示该矢量。
6
Y
y r2
y2 y1
0 x2
利用矢量的解析表示法,设两矢量
dt t0
t
当上述极限存在时 r 的导数存在。对直角坐标系来说:
dr
dx
i
dy
j
dz
k
dt dt dt dt
15
如果
r rr0
问这时
d r dt
?
单位矢量表示方向,是可以随时间变化的,所以求导
时要考虑单位矢量的导数。这时:
dr dt
dr dt
r0
试证明矢量合成的平行四边形法则,即两矢量的
合矢量r的大小为:
r
r12 r22 2r1r2 cos
解: r r1 r2
两边对自身点乘
r • r (r1 r2 ) • (r1 r2 )
矢量点乘矢量
矢量点乘矢量
矢量是一种既有大小又有方向的量,又称为向量。
矢量点乘和叉乘运算法则:点乘,也叫向量的内积、数量积。
运算法则为向量a乘向量
b=allbcos。
叉乘,也叫向量的外积、向量积。
运算法则为向量c=向量a 乘向量b=absin。
1、点乘,也叫向量的内积、数量积。
顾名思义,求下来的结果是一个数。
向量a乘向量b=abcos。
在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。
2、叉乘,也叫向量的外积、向量积。
顾名思义,求下来的结果是一个向量,记这个向量为c。
向量c=向量a乘向量b=absin,向量c的方向与ab所在的平面垂直,且方向要用“右手法则”判断用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向。
因此向量的外积不遵守乘法交换率,因为向量a乘向量b=向量b乘向量a在物理学中,已知力与力臂求力矩,就是向量的外积,良即叉乘。
《矢量分析》多媒体课件
z
az
ax
ay
M
z=z1平面
ax ay az ay az ax
x x=x1平面
y
y=y1平面
az ax ay
思考:单位坐标矢量ax、ay、az是不是常矢量??
(常矢量:其方向不随点的位置改变而改变)
直角坐标系
➢ 任意矢量A的表示: A Axax Aya y Azaz
α,β,γ分别为矢量A与坐标轴的夹角,cosα , cosβ ,cosγ称为矢量的方向余弦
B
AB A B cosA,B
A
•两个矢量的 点积是一个标 量,可正可负
Bcos
A
点积等于矢量A的模与矢量B在矢量A的方向上的投影大小 的乘积,或者说等于矢量B的模和矢量A在矢量B方向上 的投影大小的乘积。
0
A
B
A
B
A B 两矢量垂直的充要条件 A // B
矢量的点积(标量积,标积)
标量场与矢量场
矢量
➢矢量:具有大小和方向的量
➢矢量的表示:A=aAA (
A
aA
A
),其中A表示模
或长度,aA表示方向的单位矢量 (大小为1).
AA
A =aAA
aA
aA
A A
A A
矢量的分量表示法
➢ 利用正交坐标系中的坐标单位矢量,可以把矢量分解为:
A Axa x Aya y Aza z
➢标量积的结果是标量,满足交换律和分配律
AB BA
A (B C) A B A C
➢并且有: A A A2 Ax2 Ay2 Az2
点积的计算方法:
矢量运算法则
03
矢量减法
矢量减法的几何意义
• 矢量减法的几何意义 • 矢量减法表示两个矢量的头和尾相连,然后去掉第一个矢量的 尾巴 • 矢量减法的模等于两个矢量模的差 • 矢量减法的方向等于两个矢量方向的差
矢量减法的计算方法与性质
矢量减法的计算方法
• 矢量减法可以通过对应分量的相减得到 • 矢量减法的计算公式为:A - B = (A1 - B1, A2 - B2, ..., An - Bn)
矢量的方向
• 矢量的方向可以用矢量的单位向量表示 • 矢量的单位向量是矢量除以其模的结果
02
矢量加法
矢量加法的几何意义
• 矢量加法的几何意义 • 矢量加法表示两个矢量的头和尾相连 • 矢量加法的模等于两个矢量模的和 • 矢量加法的方向等于两个矢量方向的合成
矢量加法的计算方法与性质
矢量加法的计算方法
矢量减法的性质
• 矢量减法满足交换律:A - B = B - A • 矢量减法满足结合律:(A - B) - C = A - (B + C)
矢量减法的应用实例 • 矢 量 减 法 的 应 用 实 例 • 计算两个力的差力:F = F1 - F2 • 计算两个速度的差速度:v = v1 - v2
04
矢量运算在计算机图形学中的 应用
• 矢量运算在计算机图形学中的应用 • 计算物体的运动轨迹:s = v0t + 0.5at^2 • 计算光照和阴影:L = I * (N · L) / (N · V) • 计算物体的表面法向量:N = (A × B) / |A × B|
CREATE TOGETHER
矢量叉积的几何意义
• 矢量叉积表示两个矢量的模和角度的乘积 • 矢量叉积的结果等于两个矢量模的乘积乘以它们夹角的 余弦
矢量的定义和加减法运算法则
第1章电磁学的数学基础——矢量分析一、矢量的定义和表示二、矢量的基本运算法则三、矢量微分元:线元,面元,体元四、标量场的梯度五、矢量场的散度六、矢量场的旋度一、矢量的定义和表示1.标量:只有大小,没有方向的物理量。
如:温度T、长度L 等2.矢量:不仅有大小,而且有方向的物理量。
如:重力、电场强度、磁场强度等G E H矢量表示为:一个矢量可以表示成矢量的模与单位矢量的乘积。
其中:为矢量的模,表示该矢量的大小。
为单位矢量,表示矢量的方向,其大小为1。
||Aˆaˆ||A A a3. 矢量表示例1:在直角坐标系中,x 方向的大小为6 的矢量如何表示?图示法:GNF fF ˆ6x axy例2:力的图示法:ˆ||A A a=ˆ6x a =矢量的图示方法1、矢量的加法运算法则加法:矢量加法是矢量的几何和,服从平行四边形规则。
a.满足交换律:A B B A+=+b.满足结合律:C A B=+BAC⇒BAC()()()()A B C D A C B D +++=+++二、矢量的基本运算法则zoyx AxA yA zA 三个方向的单位矢量表示:ˆˆˆ,,x y z aa a 根据矢量加法运算:x y zA A A A =++在直角坐标系下的矢量表示:ˆx x x A A a =其中:ˆy y y A A a=ˆz z z A A a=矢量表示为:ˆˆˆx x y y z z A A aA a A a =++矢量:ˆˆˆx x y y z z A A aA a A a =++⇩模的计算:222||xyzA A A A=++⇩单位矢量:ˆˆˆˆ||||||||y x z x y z A A A Aa a a a A A A A ==++⇩方向角与方向余弦:γβα,,||cos ,||cos ,||cos A A A A A A z y x===γβαˆˆˆcos cos cos x y z aa a αβγ=++αβγzoyxAxA yA zA 在直角坐标系下的矢量表示:矢量加法运算:ˆˆˆ()()()x x x x y y y y z z z z A B C A B C aA B C a A B C a ++=++++++++zoyxA在直角坐标系下的矢量的加法运算:BCˆˆˆx x y y z z A A aA a A a =++ˆˆˆx x y y z zB B aB a B a =++ˆˆˆx x y y z zC C aC a C a =++减法:换成加法运算()D A B A B =-=+-A B C ++BAB-逆矢量:和的模相等,方向相反,互为逆矢量。
矢量运算
z
y
x
分别为矢量
和x,y,z轴的夹角,其中两个是独立的。
三. 矢量的和与差
1. 和
1) 图形法 三角形法则: 平行四边形法则: 2) 解析法
2. 差:
1)图形法
2)解析法
四. 矢量的标积(点乘)
1. 矢量的点乘是标量 ( 为两矢量的夹角) 2. 解析表示
3. 性质:
五. 矢量的矢积(叉乘)
二. 矢量的表示
1. 文字表示: 印刷体:加粗的字符 书写:顶部加箭头 2. 图形表示:
带有箭头的有向线段。箭头表示矢量方向, 线段的长短表示 矢量大小。
3. 单位矢量表示:
A
的大小,即
方向同 大小为1的矢量,即单位矢量。
4. 直角坐标系中的解析表示:
矢量表示: ----三坐标轴正向单位矢量。 大小: 方向余弦:
1. 矢量的叉乘是矢量
大小: 方向:右手螺旋 2. 矢矢量的导数
1. 一般表示法:
2. 解析表示法:
七. 矢量的积分
若:
则:
矢量及其运算
一. 标量和矢量 二. 矢量的表示 三. 矢量的和与差 四. 矢量的标积(点乘) 五. 矢量的矢积(叉乘) 六. 矢量的导数 七. 矢量的积分
一. 标量和矢量
1. 标量: 定义:只有大小没有方向的物理量。 例如:长度、质量、时间、能量、温度、压强等。 2. 矢量:
定义:既有大小又有方向的物理量。 例如:速度、加速度、力、动量等。
矢量的运算法则
z
v Az
v A
根据矢量加法运算:
vv v v A Ax Ay Az
vo
Ax
x
其中:
v
v
v
Ax Axaˆx , Ay Ayaˆy , Az Azaˆz
v Ay
y
v 所以: A Axaˆx Ayaˆy Azaˆz
矢量运算法则
v
矢量: A Axaˆx Ayaˆy Azaˆz
两矢量的叉积又可表示为:
v v aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
矢量运算法则
(3)三重积:
三个矢量相乘有以下几种形式:
v vv (A B)C
矢量,标量与矢量相乘。
vvv A (B C)
标量,标量三重积。
v vv A (B C)
矢量,矢量三重积。
推论3:当两个非零矢量点积为零,则这两个矢量必正交。
•在直角坐标系中,已知三个坐标轴是相互正交的,即 aˆx aˆy 0, aˆx aˆz 0, aˆy aˆz 0 aˆx aˆx 1, aˆy aˆy 1, aˆz aˆz 1
有两矢量点积:
vv A B (Axaˆx Ayaˆy Azaˆz ) (Bxaˆx Byaˆy Bzaˆz )
矢量运算法则
在直角坐标系中,两矢量的叉积运算如下: z
vv A B (Axaˆx Ayaˆy Azaˆz ) (Bxaˆx Byaˆy Bzaˆz )
o y
x
(AyBz AzBy )aˆx (AzBx AxBz )aˆy (AxBy AyBx )aˆz
Ax Bx Ay By Az Bz •结论: 两矢量点积等于对应分量的乘积之和。
矢量计算
F Fxi Fy j Fz k
F
x
dx
F
y
dy
F
z
dz
i
x
2012/10/22
C A B ( Ax Bx )i ( Ay By ) j
3
C ( Ax Bx ) ( Ay B y )
2
2
y
B
C
tg
Ay B y Ax B x
A
r
O 在三维坐标中引入三个单位矢量; i , j , k .
m,T,t,E能,A功。。。。。 2、矢量的加法;
C
平行四边形法则或三角形法则 A C A B 交换率: A B B A C 结合率: A ( B C ) ( A B) C
2012/10/22
B
x
A Ax i Ay j Az k r xi yj zk
y
j
i , j, k ,
是三个常矢量,(大小,
z
k
i
x
方向都不变。)
2012/10/22
矢量的乘法; 三种 1)标量(或常数)乘矢量
b kA.,...k 0 k 0
矢量计算矢量矢量运算矢量计算公式一方通行矢量图向量计算平行四边形定则矩阵arcgis计算矢量面积
矢量(vector)
1、矢量和标量
矢量; 大小, 方向, 按平行四边形法则或三角形法则合成
1
f , r , r , v, a, E, B,.........
矢量运算的法则-三角形法则
位移,速度,加速度,力等都是矢量,矢量的运算可不是简单的代数加减,而是满足三角形法则。
如图所示,某同学从A地到B地的位移为S1,从B地到C地的位移为S2,则总位移S--即前两段位移的和为从A指向C的有向线段AC---矢量相加的三角形法则。
若已知总位移S和第一段的位移S1,则第二段位移S2--即总位移与第一段位移S2的差为由B指向C的有向线段BC --矢量相减的三角形法则。
(减量指向被减量) 典型应用1.
解答:将力矢量F3平移至F4-F1,先将力矢量F3和F4相加,则和矢量恰为F1.如下图所示。
同理可知,力矢量F2和F5相加,则和矢量 也恰为F1.
所以这5个力的和矢量为3F,大小为30牛。
典型应用2.
如图所示,物体以速率v做匀速圆周运动,经时间t由A点运动到B点,AB之间恰为1/4圆弧。
物体在这段时间内的平均加速度多大?
解答:如下图所示,将物体在A点的速度矢量平移至B点,根据矢量相减的三角形定则可确定这段时间内的速度变化量,再根据加速的定义式可确定这段时间内的平均加速度大小。
看来,物体的速率不变时,物体仍可能具有加速度!。
矢量乘法运算法则
1.2矢量的乘法运算1. 标量与矢量的乘积2. 矢量与矢量乘积(1) 标量积(点积)(2) 矢量积(叉积)3. 矢量三重积1. 标量与矢量的乘积0ˆ||00k kA k A ak k >⎧⎫⎪⎪==⎨⎬⎪⎪<⎩⎭方向不变,大小为|k |倍方向相反,大小为|k |倍A(0)kA k >(0)kA k <图示:计算:ˆˆˆx x y y z zkA kA a kA a kA a =++2. 矢量与矢量乘积(1) 标量积(点积):||||cos A B A B θ⋅=⋅θBA两矢量的点积含义:一矢量在另一矢量方向上的投影与另一矢量模的乘积,其结果是一标量。
推论1:满足交换律推论2:满足分配律推论3:当两个非零矢量点积为零,则这两个矢量必正交。
A B B A⋅=⋅()A B C A B A C⋅+=⋅+⋅•在直角坐标系中,已知三个坐标轴是相互正交的,即ˆˆˆˆˆˆ1,1,1ˆˆˆˆˆˆ0,0,0x x y y z z x y x z y z aa aa aa aa aa aa ⋅=⋅=⋅=⋅=⋅=⋅=有两矢量点积:ˆˆˆˆˆˆ()()x x y y z z x x y y z z A B A aA a A aB a B a B a ⋅=++⋅++zz y y x x B A B A B A ++=•结论: 两矢量点积等于对应分量的乘积之和。
(2) 矢量积(叉积):ˆ||||sin n A B A B aθ⨯=⋅BAˆn aθ含义:两矢量叉积,结果得一新矢量,其大小为这两个矢量组成的平行四边形的面积,方向为该面的法线方向,且三者符合右手螺旋法则。
推论1:不服从交换律,A B B A A B B A⨯≠⨯⨯=-⨯()A B C A B A C⨯+=⨯+⨯推论2:服从分配律推论3:不服从结合律()()A B C A B C⨯⨯≠⨯⨯推论4:当两个非零矢量叉积为零,则这两个矢量必平行。
在直角坐标系中,两矢量的叉积运算如下:ˆˆˆx y z xy z x y zaa a A B A A A B B B ⨯=ˆˆˆˆˆˆ()()x x y y z z x x y y z z A B A aA a A aB a B a B a ⨯=++⨯++ˆˆˆ()()()y z z y x z x x z y x y y x z A B A B aA B A B a A B A B a =-+-+-两矢量的叉积又可表示为:xyz o例21234ˆˆˆˆˆˆ2,32ˆˆˆˆˆˆ23,325x y z x y z x y z x y z r aa a r a a a r aa a r a a a =-+=+-=-+-=++求:4123r ar br cr =++中的标量a 、b 、c 。
矢量分析-PPT
0
2 2 2 2
x2 y2 z2
1 .4 .2 格林定理
将散度定理中矢量A表示为某标量函数的梯度 ψ与另一标 量函数 φ的乘积, 则有
A ( ) 2
取上式在体积V内的积分, 并应用散度定理, 得
(2 )dv
V
s( ) nˆds
s
n
ds
(1 -49)
式中S是包围体积V的封闭面, nˆ 是封闭面S的外法线方向单位矢
量。此式对于在体积V内具有连续二阶偏导数的标量函数φ和ψ都 成立, 称为格林( G .Green)第一定理。
divA A
A
xˆ
x
yˆ
y
zˆ
z
(xˆAx
yˆAy
zˆAz
)
Ax Ay Az x y z
利用哈密顿算子, 读者可以证明, 散度运算符合下列规则:
(A B) A B
(A) A A
1 .2 .3 散度定理
既然矢量的散度代表的是其通量的体密度, 因此直观地可知, 矢量场散度的体积分等于该矢量穿过包围该体积的封闭面的总 通量, 即
ds nˆds
nˆ 是面元的法线方向单位矢量。nˆ 的取法(指向)有两种情形: 对
开曲面上的面元, 设这个开曲面是由封闭曲线l所围成的, 则当选
定绕行l的方向后, 沿绕行方向按右手螺旋的姆指方向就是 nˆ 的方 向, 如图1 -4所示; 对封闭曲面上的面元, nˆ 取为封闭面的外法线方
向。
图 1 -4 开曲面上的面元
为A , B崐所在平面的右手法向 n:ˆ
A B nˆAB sin aAB
它不符合交换律。 由定义知,
A B (B A)
并有
xˆ xˆ yˆ yˆ zˆ zˆ 0 xˆ yˆ zˆ, yˆ zˆ xˆ, zˆ xˆ yˆ
电磁场与电磁波之矢量运算法则
vv A B (Axaˆx Ayaˆy Azaˆz ) (Bxaˆx Byaˆy Bzaˆz )
Ax Bx Ay By Az Bz •结论: 两矢量点积等于对应分量的乘积之和。
电磁场与电磁波
第1章 矢量分析
b.矢量积(叉积):
aˆc
vv v v
B
A B | A | | B | sin aˆc
两矢量的叉积又可表示为:
v v aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
电磁场与电磁波
第1章 矢量分析
(3)三重积:
三个矢量相乘有以下几种形式:
v vv (A B)C
矢量,标量与矢量相乘。
vvv A (B C)
标量,标量三重积。
v vv A (B C)
矢量,矢量三重积。
(
v A
v B)
v (C
v D)
v (A
v C)
v (B
v D)
电磁场与电磁波
第1章 矢量分析
在直角坐标系下的矢量表示: 三个方向的单位矢量用 aˆx , aˆy , aˆz 表示。
z
v Az
v A
根据矢量加法运算:
vv v v A Ax Ay Az
vo
Ax
x
其中:
v
v
v
Ax Axaˆx , Ay Ayaˆy , Az Azaˆz
其结果是一标量。
电磁场与电磁波
第1章 矢量分析
推论1:满足交换律
vv vv A B B A
推论2:满足分配律
v v v vv vv A(B C) A B AC
推论3:当两个非零矢量点积为零,则这两个矢量必正交。
§2矢量的加减法
§2 矢量的加减法一 矢量的加法:定义1 设a OA =、b OB =,以OA 与OB 为边作一平行四边形OACB ,取对角线矢量OC ,记c OC =,如图1-3,称 c 为 a 与b 之和,并记作c a b =+这种用平行四边形的对角线矢量来规定两个矢量之和的方法称作矢量加法的平行四边形法则.如果矢量a OA =与矢量b OB =在同一直线上,那么,规定它们的和是这样一个矢量: 若OA 与OB 的指向相同时,和向量的方向与原来两矢量相同,其模等于两矢量的模之和(图1-4).oB ooC若OA 与OB 的指向相反时,和矢量的模等于两矢量的模之差,其方向与模值大的矢量方向一致(图1-5).o BoC由于平行四边形的对边平行且相等,可以这样来作出两矢量的和矢量: 定义2 作OAa =,以OA 的终点为起点作ACb =,联接OC (图1-6)得a bOC c +==. (1.2-1)该方法称作矢量加法的三角形法则.(图1.1)(图1.2)(图1.3) (图1.4)矢量加法的三角形法则的实质是:将两矢量的首尾相联,则一矢量的首与另一矢量的尾的连线就是两矢量的和矢量. 据矢量的加法的定义,可以证明矢量加法具有下列运算规律: 定理 矢量的加法满足下面的运算律:1、交换律 a b b a +=+, (1.2-2)2、结合律 ()()a b c a b c a b c ++=++=++. (1.2-3) 证 交换律的证明从矢量的加法定义即可得证,结合律的证明从图1-7可得证.二 矢量的减法定义3 若c a b =+,则我们把b 叫做c 与a 的差,记为b c a =-显然, ()a b a b -=+-, 特别地, ()0a a a a -=+-=.由三角形法则可看出:要从a 减去b ,只要把与b 长度相同而方向相反的矢量b -加到矢量a 上去.由平行四边形法则,可如下作出矢量ab -(图1-8).例1 设互不共线的三矢量a 、b 与c ,试证明顺次将它们的终点与始点相连而成一个三角形的充要条件是它们的和是零矢量.证 必要性 设三矢量a 、b 、c 可以构成三角形ABC (图1-9),即有,,AB a BC b CA c ===,那么, 0,AB BC CA AA ++== 即 0a b c ++=.(图1.5)(图1.6) ABCabc(图1.8)充分性 设0a b c ++=,作,,AB a BC b ==那么AC a b =+,所以0AC c +=,从而c CA =,所以a 、b 、c 可以构成三角形ABC .例2 用矢量法证明:对角线互相平分的四边形是平行四边形.证 设四边形ABCD 的对角线AC 、BD 交于O 点且互相平分(图1-10)因此从图可看出:AB AO OB OB AO DO OC DC =+=+=+=,所以,AB ∥DC ,且AB DC=,即四边形ABCD 为平行四边形.(图1.9)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
A
AD
B
B
B
C
推论:
B
ABC 0 A
任意多个矢量首尾相连组成闭合多边形,其矢量和必为零。
在直角坐标系中两矢量的减法运算:
A B (Ax Bx )aˆx (Ay By )aˆy (Az Bz ) aˆz
矢量运算法则
3.乘法:
(1)标量与矢量的乘积:
k 0 方向不变,大小为|k|倍
单位矢量:
aˆ
|
A A
|
Ax | A|
aˆx
Ay | A|
aˆ y
Az | A|
aˆz
cos aˆx cos aˆy cos aˆz 方向角与方向余弦: , ,
Az
A
o
Ay
Ax
y
x
cos Ax , cos Ay , cos Az
aˆx aˆz 0, aˆy aˆy 1,
aˆy aˆz 0 aˆz aˆz 1
A B (Axaˆx Ayaˆy Azaˆz ) (Bxaˆx Byaˆy Bzaˆz )
Ax Bx Ay By Az Bz •结论: 两矢量点积等于对应分量的乘积之和。
定义: A BC | A|| B || C | sin cos
含义: 标量三重积结果为三矢量构成
的平行六面体的体积 。
h BC
A C
B
矢量运算法则
SUCCESS
THANK YOU
2020/1/7
THANK YOU
2020/1/7
矢量运算法则
推论1:满足交换律 A B B A 推论2:满足分配律 A (B C) A B AC
推论3:当两个非零矢量点积为零,则这两个矢量必正交。
•在直角坐标系中,已知三个坐标轴是相互正交的,即
aˆx aˆy 0, aˆx aˆx 1, 有两矢量点积:
矢量运算法则
1.加法: 矢量加法是矢量的几何和,服从平行四边形规则。
B
C
C AB
C B
A
A
a.满足交换律: A B B A
b.满足结合律: (A B) (C D) (A C) (B D)
矢量运算法则
在直角坐标系下的矢量表示: 三个方向的单位矢量用 aˆx , aˆy , aˆz 表示。
矢量运算法则
b.矢量积(叉积):
aˆc
B
A B | A | | B | sin aˆc
•含义:
A
两矢量叉积,结果得一新矢量,其大小为这两个矢量
组成的平行四边形的面积,方向为该面的法线方向,且三
者符合右手螺旋法则。
推论1:不服从交换律: A B B A, A B B A
| A|
| A|
| A|
在直角坐标系中三个矢量加法运算:
A B C (Ax Bx Cx )aˆx (Ay By Cy )aˆy (Az Bz Cz ) aˆz
矢量运算法则
2.减法:换成加法运算
D A B A (B)
逆矢量:B 和 (B) 的模相等,方向相反,互为逆矢量。
推论2:服从分配律: A(B C) A B AC 推论3:不服从结合律: A(BC) (A B)C 推论4:当两个非零矢量叉积为零,则这两个矢量必平行。
矢量运算法则
在直角坐标系中,两矢量的叉积运算如下: z
A B (Axaˆx Ayaˆy Azaˆz ) (Bxaˆx Byaˆy Bzaˆz )
kA k | A | aˆ
k
0
k
0
方向相反,大小为|k|倍
(2)矢量与矢量乘积分两种定义
a. 标量积(点积):
B
A B | A| | B | cos
A
两矢量的点积含义: 一矢量在另一矢量方向上的投影与另一矢量模的乘积,
其结果是一标量。
矢量运算法则
SUCCESS
z
Az
A
根据矢量加法运算:
其中:
A Ax Ay Az
o
Ax
x
Ax Axaˆx , Ay Ayaˆy , Az Azaˆz
Ay
所以: A Axaˆx Ayaˆy Azaˆz
矢量运算法则
矢量: A Axaˆx Ayaˆy Azaˆz
z
模的计算: | A | Ax2 Ay2 Az2
o y
x
(AyBz AzBy )aˆx (AzBx AxBz )aˆy (AxBy AyBx )aˆz
两矢量的叉积又可表示为:
aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
矢量运算法则
(3)三重积: 三个矢量相乘有以下几种形式: (A B)C 矢量,标量与矢量相乘。 A (B C) 标量,标量三重积。 A(BC) 矢量,矢量三重积。 a. 标量三重积 法则:在矢量运算中,先算叉积,后算点积。