第20章 热-应力耦合分析(ansys教程)

合集下载

ANSYS耦合场分析_热应力

ANSYS耦合场分析_热应力

例如: 如果结构网格包括在热模型中不存在的圆角 时,许多节点将落在热模型的外面。如果圆角足 够大而且热模型足够细致,圆角区域的载荷将不 能写出。
10-15
基本过程
在热-应力分析中,由温度求解得到的节点温度 将在结构分析中用作体载荷。 当在顺序求解使用手工方法时将热节点温度施加到结构单元上有两种选项。选择 的原则在于结构模型和热模型是否有相似的网格划分:
如果热和结构的单元有相同 的节点号码. . .
1
• 热模型自动转换为结构模型,使用 ETCHG 命令(见相应单元表格)。 • 温度可以直接从热分析结果文件读出 并使用LDREAD 命令施加到结构模型 上。
10-3
直接方法 - 例题
在第七章对流部分中,介绍了FLUID66和FLUID116热—流单元。该单元具有 热和压力自由度,因此是直接耦合场单元。
ANSYS有一些其他的耦合单元,具有结构,热,电,磁等自由度。绝大多数 的实际问题只涉及到少数几个物理场的耦合。这里提供了几个涉及到热现象 的直接耦合场分析。
• 不同场之间使用统一的单位制。例如,在热-电分析中,如果电瓦单位使 用瓦(焦耳/秒),热单位就不能使用Btu/s。
• 由于需要迭代计算,热耦合场单元不能使用子结构。
10-6
直接方法 - 加载, 求解, 后处理
在直接方法的加载,求解,后处理中注意以下方面: • 如果对带有温度自由度的耦合场单元选择 瞬态 分析类型的话: – 瞬态温度效果可以在所有耦合场单元中使用。 – 瞬态电效果(电容,电感)不能包括在热-电分析中(除非只是TEMP和VOLT自由度 被 激活)。 – 带有磁向量势自由度的耦合场单元可以用来对瞬态磁场问题建模(如,SOLID62). 带 有标量势自由度的单元只能模拟静态现象(SOLID5)。 • 学习每种单元的自由度和允许的载荷。耦合场单元允许的相同位置(节点,单元面等)施加多 种类型的载荷 (D, F, SF, BF) 。 • 耦合场分析可以使高度非线性的。考虑使用Predictor 和 Line Search 功能改善收敛性。 • 考虑使用Multi-Plots功能将不同场的结果同时输出到多个窗口中。

热分析(ansys教程)

热分析(ansys教程)

1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。

《热分析ansys教程》课件

《热分析ansys教程》课件

汽车发动机热分析
总结词
汽车发动机热分析用于研究发动机工作过程中的热量传递和热应力分布,以提高发动机 效率和可靠性。
详细描述
发动机是汽车的核心部件,其工作过程中会产生大量的热量。通过热分析,工程师可以 了解发动机内部的温度分布和热应力状况,优化发动机设计,提高其燃油效率和耐久性

建筑物的温度分布分析
热分析的基本原理
热分析是研究温度场分布、变化 和传递规律的科学,其基本原理 包括能量守恒、热传导、对流和 辐射等。
热分析的应用领域
热分析广泛应用于能源、动力、 化工、机械、电子等众多领域, 涉及传热、燃烧、材料热物性、 电子器件散热等方面。
热分析的常用软件
ANSYS是国际上最流行的热分析 软件之一,具有强大的建模、网 格划分、加载、求解和后处理功 能,广泛应用于工程实际和科学 研究。
模拟系统在稳定状态下温度分布和热流密 度的计算方法
总结词
适用于研究系统在稳定状态下的热性能和 热量传递机制。
详细描述
稳态热分析用于计算系统在稳定状态下温 度分布和热流密度,不考虑时间因素,只 考虑热平衡状态。
详细描述
在稳态热分析中,系统的温度分布和热流 密度不随时间变化,因此可以忽略时间积 分效应,简化计算过程。
施加边界条件和载荷
根据实际情况,为模型的边界施加固 定温度、热流等边界条件,以及热载 荷。
求解和结果查看
选择求解器
根据模型的大小和复杂程度,选择合适的求解器进行求解。
结果后处理与查看
查看温度分布、热流分布等结果,并进行必要的后处理,如云图显示、数据导 出等。
03
热分析的常用方法
稳态热分析
总结词
COMSOL Multiphysics

Ansys热分析教程(全)

Ansys热分析教程(全)

章节内容概述
• 第7章-续 – 例题 6 - 低压气轮机箱的热分析
• 第 8 章 - 辐射 – 辐射概念的回顾 – 基本定义 – 辐射建模的可选择方法 – 辐射矩阵模块 – 辐射分析例题 - 使用辐射矩阵模块进行热沉分析,隐式和非隐式方 法。
• 第 9 章 - 相变 – 基本模型/术语 – 在 ANSYS中求解相变 – 相变例题 - 飞轮铸造分析
传导
• 传导的热流由传导的傅立叶定律决定:
q*
=
− Knn
∂T ∂n
=
heat
flow
rate
per
unit
area
in
direction
n
Where, Knn = thermal conductivity in direction n
T = temperature
∂T = thermal gradient in direction n ∂n
• 负号表示热沿梯度的反向流动(i.e., 热从热的部分流向冷的).
q*
T
dT
dn
n
对流
• 对流的热流由冷却的牛顿准则得出:
q* = hf (TS − TB ) = heat flow rate per unit area between surface and fluid
Where, hf = convective film coefficient TS = surface temperature TB = bulk fluid temperature
• 第 6 章 - 复杂的, 时间和空间变化的边界条件 – 表格化的热边界条件 (载荷) – 基本变量 – 用户定义的因变变量
章节内容概述

毕业设计(论文)换热器热应力耦合及有限元ansys分析

毕业设计(论文)换热器热应力耦合及有限元ansys分析

摘要换热器是传热工程必不可少的设备,几乎一切工业领域都要使用。

化工,冶金,动力,交递,航空与航天部门应用尤为广泛。

在底部有热源作用的散热片,主要通过传导与对流进行热交换。

为保证散热片的散热性能达到设计的要求,从而避免电子产品因过热而造成损坏,就需要对其进行热分析,计算在实际工况下的温度分布,校核其散热性能。

因此,对换热器进行热应力耦合分析具有十分重要意义。

传统方法的热分析其温度变化必须是非常的缓慢,而且在升降温过程中的不易控制,难以正确校核其散热性能。

随着计算机技术的发展,使得有限元法有着突飞猛进的进展。

结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。

ANSYS的热分析基于能量守恒原理的热平衡方程,正确模拟散热片的工况,通过有限元法计算各节点的温度分布,并由此导出其他热物理参数,为散热片的设计选材提供合理的参数,使产品的研发更加快速、高效和经济。

关键词:换热器;有限元;ANSYS;散热片Heat exchanger coupled thermal stress analysisAbstractHeat transfer engineering is essential equipment to be used almost all industrial fields. Chemical, metallurgical, power, handoff, application of aviation and aerospace sector is particularly extensive. In the bottom of the heat sink effect, mainly through conduction and convection heat exchange. To ensure the heat sink thermal performance to meet the design requirements, so as to avoid overheating of electronic products due to damage to its thermal analysis requiredto calculate the temperature distribution in the actual conditions, check the heat dissipation. Therefore, thermal stress coupled heat exchanger analysis is of great significance. Traditional methods of thermal analysis the temperature change must be very slow, and in heating and cooling process difficult to control, difficult to properly check its thermal performance. With the development of computer technology, finite element method has made rapidprogress. Combined with computer-aided design,finite element method is also used in computer-aided manufacturing. ANSYS thermal analysis is based on the principle of conservation of heat energybalance equation, the correct simulation of the heat sink conditions, the finite elementmethod to calculate the temperature distribution of each node, and thus other thermalphysical parameters derived for the design of heat sink to provide a reasonableselection of parameters Make product development more rapid, efficient and economical.Key Words:Heat control;Finite element;ANSYS;Heatsink目录摘要 (I)Abstract (II)第一章绪论............................ .. (1)1.1 引言 (1)1.2 计算机仿真技术的发展 (1)1.3 热分析方法的选择 (2)第二章课题相关知识介绍 (4)2.1散热片知识 (4)2.1.1散热片的材质比较 (4)散热片结构的设计 (4)2.2有限元分析理论与ANSYS (6)有限元分析理论 (6)有限元常用术语 (7)架构及命令 (7)分析典型过程与功能 (8)2.2.5 国内外发展状况 (9)有限元热分析原理 (9)第三章ANSYS三维模拟计算过程 (13)3.1 散热片模型及几何尺寸 (13)3.2 ANSYS有限元分析进程 (14)环境简介 (14)的建模过程 (15)操作条件的确定 (15)边界条件的确定 (15)计算结果与分析 (16)第四章结论 (21)谢辞 (22)参考文献 (23)附录:散热片模型建模程序 (24)第一章绪论1.1 引言热分析主要用于计算一个系统或部件的温度分布及其他热物理参数,如热量的获取或损失、热梯度、热流密度(热通量)等。

ansys中的热分析

ansys中的热分析

【转】热-结构耦合分析知识掌握篇2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析,然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析.21.1 热-结构耦合分析简介热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法.21.1.1 热分析基本知识ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传递方式.此外,还可以分析相变,有内热源,接触热阻等问题.热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程.如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变化.瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率,热边界条件以及系统内能随时间都有明显变化.ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度,对流,辐射,绝热,生热.热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表21.1所示.表21.1 热分析单元列表单元类型名称说明线性LINK32LINK33LINK34LINK31两维二节点热传导单元三维二节点热传导单元二节点热对流单元二节点热辐射单元二维实体PLANE55PLANE77PLANE35PLANE75PLANE78四节点四边形单元八节点四边形单元三节点三角形单元四节点轴对称单元八节点轴对称单元三维实体SOLID87SOLID70SOLID90六节点四面体单元八节点六面体单元二十节点六面体单元壳SHELL57 四节点四边形壳单元点MASS71 节点质量单元21.1.2 耦合分析在ANSYS中能够进行的热耦合分析有:热-结构耦合,热-流体耦合,热-电耦合,热-磁耦合,热-电-磁-结构耦合等,因为本书主要讲解结构实例分析,所以着重讲解热-结构耦合分析.在ANSYS中通常可以用两种方法来进行耦合分析,一种是顺序耦合方法,另一种是直接耦合方法.顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于某一物理分析.通过将前一个分析的结果作为载荷施加到下一个分析中的方式进行耦合.典型的例子就是热-应力顺利耦合分析,热分析中得到节点温度作为"体载荷"施加到随后的结构分析中去.直接耦合方法,只包含一个分析,它使用包含多场自由度的耦合单元.通过计算包含所需物理量的单元矩阵或载荷向量矩阵或载荷向量的方式进行耦合.典型的例子是使用了SOLID45,PLANE13或SOLID98单元的压电分析.进行顺序耦合场分析可以使用间接法和物理环境法.对于间接法,使用不同的数据库和结果文件,每个数据库包含合适的实体模型,单元,载荷等.可以把一个结果文件读入到另一个数据库中,但单元和节点数量编号在数据库和结果文件中必须是相同的.物理环境方法整个模型使用一个数据库.数据库中必须包含所有的物理分析所需的节点和单元.对于每个单元或实体模型图元,必须定义一套属性编号, 包括单元类型号,材料编号,实常数编号及单元坐标编号.所有这些编号在所有物理分析中是不变的.但在每个物理环境中,每个编号对应的实际的属性是不同的.对于本书要讲解的热-结构耦合分析,通常采用间接法顺序耦合分析,其数据流程如图21.1所示.图21.1 间接法顺序耦合分析数据流程图21.2 稳态热分析稳态传热用于分析稳定的热载荷对系统或部件的影响.通常在进行瞬态热分析以前,需要进行稳态热分析来确定初始温度分布.稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度,热梯度,热流率,热流密度等参数.ANSYS稳态热分析可分为三个步骤:前处理:建模求解:施加载荷计算后处理:查看结果21.2.1建模稳态热分析的模型和前面的结构分析模型建立过程基本相同.不同的就是需要在菜单过虑对话框中将分析类型指定为热分析,这样才能使菜单选项为热分析选项,单元类型也为热分析的单元类型,另外在材料定义时需要定义相应的热性能参数,下面为大概操作步骤.1.确定jobname,title,unit;2.进入PREP7前处理,定义单元类型,设定单元选项;3.定义单元实常数;4.定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;5.创建几何模型并划分网格,请参阅结构分析的建模步骤.21.2.2施加载荷计算热分析跟前面讲解的结构分析相比,区别在于指定的载荷为温度边条.通常可施加的温度载荷有恒定的温度,热流率,对流,热流密度和生热率五种.另外在分析选项中也包含非线性选项,结果输出选项等需要根据情况进行设置.1.定义分析类型(1) 如果进行新的热分析,则使用下面命令或菜单路径:COMMAND:ANTYPE, STATIC, NEWGUI: Main menu | Solution | -Analysis Type- | New Analysis | Steady-state (2) 如果继续上一次分析,比如增加边界条件等,则需要进行重启动功能: COMMAND: ANTYPE, STATIC, RESTGUI: Main menu | Solution | Analysis Type- | Restart2.施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件) .(1) 恒定的温度: 通常作为自由度约束施加于温度已知的边界上.COMMAND: DGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Temperature(2)热流率: 热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量.如果温度与热流率同时施加在一节点上,则ANSYS读取温度值进行计算.注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意.此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些.COMMAND: FGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Flow(3) 对流:对流边界条件作为面载施加于实体的外表面,计算与流体的热交换.它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流.COMMAND: SFGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Convection(4) 热流密度:热流密度也是一种面载荷.当通过单位面积的热流率已知或通过FLOTRAN CFD计算得到时,可以在模型相应的外表面施加热流密度.如果输入的值为正,代表热流流入单元.热流密度也仅适用于实体和壳单元.热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载荷进行计算. COMMAND: FGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Flux(5) 生热率:生热率作为体载施加于单元上,可以模拟化学反应生热或电流生热.它的单位是单位体积的热流率.COMMAND: BFGUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Generat3.确定载荷步选项对于一个热分析,可以确定普通选项,非线性选项以及输出控制.热分析的载荷不选项和结构静力分析中的载荷步相同,读者可以参阅本书结构静力分析部分的相关内容或基本分析过程中关于载荷步选项的内容.这里就不再详细讲解了.4.确定分析选项在这一步需要选择求解器,并确定绝对零度.在进行热辐射分析时,要将目前的温度值换算为绝对温度.如果使用的温度单位是摄氏度,此值应设定为273;如果使用的是华氏度,则为460.Command: TOFFSTGUI: Main Menu | Solution | Analysis Options5.求解在完成了相应的热分析选项设定之后,便可以对问题进行求解了.Command: SOLVEGUI: Main Menu | Solution | Current LS21.2.3后处理ANSYS将热分析的结果写入*.rth文件中,它包含如下数据信息:(1) 基本数据:节点温度(2) 导出数据:节点及单元的热流密度节点及单元的热梯度单元热流率节点的反作用热流率其它对于稳态热分析,可以使用POST1进行后处理.关于后处理的完整描述,可参阅本书第四章中关于利用通用后处理器进行结果观察分析的讲解.下面是几个关键操作的命令和菜单路径.1.进入POST1后,读入载荷步和子步:COMMAND: SETGUI: Main Menu | General Postproc | -Read Results-By Load Step2.在热分析中可以通过如下三种方式查看结果:彩色云图显示COMMAND: PLNSOL, PLESOL, PLETAB等GUI: Main Menu | General Postproc | Plot Results | Nodal Solu, Element Solu, Elem Table矢量图显示COMMAND: PLVECTGUI: Main Menu | General Postproc | Plot Results | Pre-defined or Userdefined列表显示COMMNAD: PRNSOL, PRESOL, PRRSOL等GUI: Main Menu | General Postproc | List Results | Nodal Solu, Element Solu, ReactionSolu21.3瞬态传热分析瞬态热分析用于计算一个系统随时间变化的温度场及其它热参数.在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析.瞬态热分析的基本步骤与稳态热分析类似.主要的区别是瞬态热分析中的载荷是随时间变化的.为了表达随时间变化的载荷,首先必须将载荷~时间曲线分为载荷步.载荷~时间曲线中的每一个拐点为一个载荷步,如下图所示.图21.2 瞬态热分析载荷-时间曲线对于每一个载荷步,必须定义载荷值荷对应的时间值,同时必须指定载荷步的施加方式为渐变或阶越.21.3.1建模一般瞬态热分析中,定义材料性能时要定义导热系数,密度及比热,其余建模过程与稳态热分析类似,这里就不再赘述.21.3.2加载求解和其它ANSYS中进行的分析一样,瞬态热分析进行加载求解时同样需要完成如下的工作.包括定义分析类型,定义初始条件,施加载荷,指定载荷步选项,指定结果输出选项以及最后进行求解.1. 定义分析类型指定分析类型为瞬态分析,通用可以进行新的分析或进行重启动分析.2.获得瞬态热分析的初始条件(1) 定义均匀温度场如果已知模型的起始温度是均匀的,可设定所有节点初始温度Command: TUNIFGUI: Main Menu | Solution | -Loads- | Settings | Uniform Temp如果不在对话框中输入数据,则默认为参考温度.参考温度的值默认为零,但可通过如下方法设定参考温度:Command: TREFGUI: Main Menu | Solution | -Loads- | Settings | Reference Temp注意:设定均匀的初始温度,与如下的设定节点的温度(自由度)其作用不同.Command: DGUI: Main Menu | Solution | -Loads- | Apply | -Thermal- | Temperature | On Nodes初始均匀温度仅对分析的第一个子步有效;而设定节点温度将保持贯穿整个瞬态分析过程,除非通过下列方法删除此约束:Command: DDELEGUI: Main Menu | Solution | -Loads- | Delete | -Thermal-Temperature | On Nodes (2) 设定非均匀的初始温度在瞬态热分析中,用下面的命令或菜单路径可以将节点温度设定为不同的值. Command: ICGUI: Main Menu | Solution | Loads | Apply | -Initial Condit'n | Define如果初始温度场是不均匀的且又是未知的,就必须首先作稳态热分析确定初始条件.设定载荷(如已知的温度,热对流等)将时间积分设置为OFF:Command: TIMINT, OFFGUI: Main Menu | Preprocessor | Loads | -Load Step Opts-Time/Frequenc | Time Integration设定一个只有一个子步的,时间很小的载荷步(例如0.001):Command: TIMEGUI: Main Menu | Preprocessor | Loads | -Load Step Opts-Time/Frequenc | Time and Substps写入载荷步文件:Command: LSWRITEGUI: Main Menu | Preprocessor | Loads | Write LS File或先求解:Command: SOLVEGUI: Main Menu | Solution | Solve | Current LS注意:在第二载荷步中,要删去所有设定的温度,除非这些节点的温度在瞬态分析与稳态分析相同.3.设定载荷步选项进行瞬态热分析需要指定的载荷步选项和进行瞬态结构分析相同,主要有普通选项,非线性选项和输出控制选项.(1) 普通选项时间:本选项设定每一载荷步结束时的时间.Command: TIMEGUI: Main Menu | Solution | -Load Step Opts-Time/Frequenc | Time and Substps 每个载荷步的载荷子步数,或时间增量.对于非线性分析,每个载荷步需要多个载荷子步.时间步长的大小关系到计算的精度.步长越小,计算精度越高,同时计算的时间越长.根据线性传导热传递,可以按如下公式估计初始时间步长:ITS=δα24其中δ为沿热流方向热梯度最大处的单元的长度,α为导温系数,它等于导热系数除以密度与比热的乘积(αρ=kc).Command: NSUBST or DELTIMGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time and Substps 如果载荷值在这个载荷步是恒定的,需要设为阶越选项;如果载荷值随时间线性变化,则要设定为渐变选项.可以下面命令或菜单路径来实现.Command: KBCGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time and Substps (2) 非线性选项迭代次数:每个子步默认的次数为25,这对大多数非线性热分析已经足够.如果分析的问题不容易收敛,可以通过下面的命令来指定迭代次数.Command: NEQITGUI: Main Menu | Solution | -Load step opts | Nonlinear | Equilibrium Iter自动时间步长:本选项为ON时,在求解过程中将自动调整时间步长.Command: AUTOTSGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time and Substps 时间积分效果:如果将此选项设定为OFF,将进行稳态热分析.Command: TIM(1) INTGUI: Main Menu | Solution | -Load Step Opts- | Time/Frequenc | Time Integration GUI: Main Menu | Solution | -Load Step Opts- | Output Ctrls | DB/Results File4.在定义完所有求解分析选项后,进行结果求解.21.3.3 结果后处理对于瞬态热分析,ANSYS提供两种后处理方式.通用后处理器POST1,可以对整个模型在某一载荷步(时间点)的结果进行后处理;Command: POST1GUI: Main Menu | General Postproc.时间-历程后处理器POST26,可以对模型中特定点在所有载荷步(整个瞬态过程)的结果进行后处理.Command: POST26GUI: Main Menu | TimeHist Postproc1.用POST1进行后处理进入POST1后,可以读出某一时间点的结果.Command: SETGUI: Main Menu | General Postproc | Read Results | By Time/Freq如果设定的时间点不在任何一个子步的时间点上,ANSYS会进行线性插值.此外,还可以读出某一载荷步的结果.GUI: Main Menu | General Postproc | Read Results | By Load Step然后,就可以采用与稳态热分析类似的方法,对结果进行彩色云图显示,矢量图显示,打印列表等后处理.2,用POST26进行后处理首先,要定义变量.Command: NSOL or ESOL or RFORCEGUI: Main Menu | TimeHist Postproc | Define Variables然后,就可以绘制这些变量随时间变化的曲线.Command: PLVARGUI: Main Menu | TimeHist Postproc | Graph Variables或列表输出Command: PRVARGUI: Main Menu | TimeHist Postproc | List Variables21.4 热-结构耦合分析前面讲了热-结构耦合分析是一种间接法顺序耦合分析的典型例子.其主要分三步完成:1.进行热分析,求得结构的的温度场;2.将模型中的单元转变为对应的结构分析单元,并将第一步求得的热分析结构当作体载荷施加到节点上;3.定义其余结构分析需要的选项, 并进行结构分析.前面已经介绍了如何单独进行热分析和结构分析,下面介绍如何转换模型并将第一步求解的结果施加到节点上.1.完成必要的热分析,并进行相应的后处理,对结果进行查看分析.2.重新进入前处理器,并指定新的分析范畴为结构分析.选择菜单路径Main Menu | Preference ,在弹出的对话框中选择"Strutural"选项,使所有菜单变为结构分析的选项.3.进行单元转换.选择菜单路径Main Menu | Preprocessor | Element Type | Switch ElemType,将弹出Swithch Elem Type (转换单元类型)对话框,如图21.3所示.图21.3 转换单元类型对话框4.在对话框中的Change element type (改变单元类型)下拉框中选择"Thermal to Struc", 然后单击关闭对话框,ANSYS程序将会自动将模型中的热单元转换为对应的结构单元类型.5.定义材料的性能参数.跟通常的结构分析不同的是,除了定义进行结构静力分析需要的材料弹性模量,密度,或强化准则的定义之外.在热-结构耦合分析的第二个分析中,还需要定义材料的热膨胀系数,而且材料性能应该随温度变化的.6.将第一次分析得到的温度结果施加到结构分析模型上.选取菜单路径Main Menu | Solution | Define Loads | Apply | Structural | Temperature | From Therm Analy,将弹出ApplyTEMP from Themal Analysis (从已进行的热分析结果中施加温度载荷)对话框,如图21.4所示.单击对话框中的按钮,选择前面热分析的结果文件*.rth,作为结构分析的热载荷加到节点上.图21.4从已进行的热分析结果中施加温度载荷对话框7.定义其它结构分析的载荷步选项和求解分析选项,并进行结构分析求解.8.进行结果后处理,观察分析所求得的结果.盛年不重来,一日难再晨。

换热器热应力耦合分析有限元分析

换热器热应力耦合分析有限元分析

第一章 课题相关知识介绍2.1散热片知识散热片是一种给电器中的易发热电子元件散热的装置,多由铝合金,黄铜或青铜做成板状,片状,多片状等,如电脑中CPU 中央处理器要使用相当大的散热片,电视机中电源管,行管,功放器中的功放管都要使用散热片。

一般散热片在使用中要在电子元件与散热片接触面涂上一层导热硅脂,使元器件发出的热量更有效的传导到散热片上,在经散热片散发到周围空气中去。

2.1.1散热片的材质比较就散热片材质来说,每种材料其导热性能是不同的,按导热性能从高到低排列,分别是银,铜,铝,钢。

不过如果用银来作散热片会太昂贵,故最好的方案为采用铜质。

虽然铝便宜得多,但显然导热性就不如铜好(大约只有铜的50%左右)。

目前常用的散热片材质是铜和铝合金,二者各有其优缺点。

铜的导热性好,但价格较贵,加工难度较高,重量过大(很多纯铜散热器都超过了CPU 对重量的限制),热容量较小,而且容易氧化。

而纯铝太软,不能直接使用,都是使用的铝合金才能提供足够的硬度,铝合金的优点是价格低廉,重量轻,但导热性比铜就要差很多。

有些散热器就各取所长,在铝合金散热器底座上嵌入一片铜板。

对于普通用户而言,用铝材散热片已经足以达到散热需求了。

北方冬季取暖的暖气片也叫散热片。

散热片在散热器的构成中占有重要的角色,除风扇的主动散热以外,评定一个散热器的好坏,很大程度上取决于散热片本身的吸热能力和热传导能力 2.1.2散热片结构的设计 1. 肋片的散热量肋基导入的热量向肋端传递,经肋片传给流体,因此肋片得热平衡方程为: 肋基导入的热量Φ=Φ流体带走的热量λ所以肋片向流体的传热量恒等于肋基截面上导入的热量,根据傅立叶定律得 每片等截面直肋散热量的计算式为:)(1)(0mH th m h m h mH th m A H Hλλθλ++=Φ (2—1)式中:Φ ——散热量,W ;λ ——肋片导热率,W/(m.K );A ——肋片的横截面积,2m ;0θ——肋基过余温度,C 0;m —— 肋片组合参数,Azm λα=H h ——肋端处的对流换热系数,W/(2m ·K );H ——肋高,m 。

热分析(ansys教程)..

热分析(ansys教程)..

施加载荷计算(续)
c、对流 对流边界条件作为面载施加于实体的外表面,计算与
流体的热交换,它仅可施加于实体和壳模型上,对 于线模型,可以通过对流线单元LINK34考虑对流。
Command Family: SF GUI:Main Menu>Solution>-Loads-Apply>-Thermal-
热传递的方式(续)
3、热辐射
✓ 热辐射指物体发射电磁能,并被其它物体吸收转变 为热的热量交换过程。物体温度越高,单位时间辐 射的热量越多。热传导和热对流都需要有传热介质, 而热辐射无须任何介质。实质上,在真空中的热辐 射效率最高。
✓ 在工程中通常考虑两个或两个以上物体之间的辐射,
系统中每个物体同时辐射并吸收热量。它们之间的
稳态传热
➢ 如果系统的净热流率为0,即流入系统的热量加上 系统自身产生的热量等于流出系统的热量:q流入+q 生成-q流出=0,则系统处于热稳态。在稳态热分析中 任一节点的温度不随时间变化。稳态热分析的能量 平衡方程为(以矩阵形式表示):[K]{T}={Q}
➢ 式中: [K]为传导矩阵,包含导热系数、对流系数 及辐射率和形状系数;{T}为节点温度向量;{Q}为 节点热流率向量,包含热生成;
✓ ANSYS热分析基于能量守恒原理的热平衡方程,用 有限元法计算各节点的温度,并导出其它热物理参 数
✓ ANSYS热分析包括热传导、热对流及热辐射三种热 传递方式。此外,还可以分析相变、有内热源、接 触热阻等问题
ANSYS的热分析分类
❖ ANSYS的热分析分类 ✓ 稳态传热:系统的温度场不随时间变化 ✓ 瞬态传热:系统的温度场随时间明显变化 ❖ 与热有关的耦合分析 ✓ 热-结构耦合 ✓ 热-流体耦合 ✓ 热-电耦合 ✓ 热-磁耦合 ✓ 热-电-磁-结构耦合等

Ansys热分析教程

Ansys热分析教程

Ansys热分析教程Ansys 热分析教程第⼀章简介⼀、热分析的⽬的热分析⽤于计算⼀个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。

热分析在许多⼯程应⽤中扮演重要⾓⾊,如内燃机、涡轮机、换热器、管路系统、电⼦元件等。

⼆、ANSYS的热分析?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。

ANSYS热分析基于能量守恒原理的热平衡⽅程,⽤有限元法计算各节点的温度,并导出其它热物理参数。

ANSYS热分析包括热传导、热对流及热辐射三种热传递⽅式。

此外,还可以分析相变、有内热源、接触热阻等问题。

三、ANSYS 热分析分类?稳态传热:系统的温度场不随时间变化瞬态传热:系统的温度场随时间明显变化四、耦合分析?热-结构耦合热-流体耦合热-电耦合热-磁耦合热-电-磁-结构耦合等第⼆章基础知识⼀、符号与单位项⽬国际单位英制单位ANSYS代号长度m ft时间s s质量Kg lbm温度℃oF⼒N lbf能量(热量)J BTU功率(热流率)W BTU/sec热流密度W/m2BTU/sec-ft2⽣热速率W/m3BTU/sec-ft3导热系数W/m-℃BTU/sec-ft-oF KXX对流系数 W/m2-℃BTU/sec-ft2-oF HF密度Kg/m3lbm/ft3DENS⽐热J/Kg-℃BTU/lbm-oF C●对于⼀个封闭的系统(没有质量的流⼊或流出〕式中:Q——热量;W——作功;——系统内能;——系统动能;——系统势能;●对于⼤多数⼯程传热问题:;●通常考虑没有做功:,则:;●对于稳态热分析:,即流⼊系统的热量等于流出的热量;●对于瞬态热分析:,即流⼊或流出的热传递速率q等于系统内能的变化。

三、热传递的⽅式1、热传导热传导可以定义为完全接触的两个物体之间或⼀个物体的不同部分之间由于温度梯度⽽引起的内能的交换。

Ansys电机电磁(Maxwell)、热(Fluent)耦合分析流程演示文稿

Ansys电机电磁(Maxwell)、热(Fluent)耦合分析流程演示文稿

• 启动Maxwell
• 导入Maxwell文件后会形成一个Maxwell分析系统 • 启动Maxwell
• 双击Maxwell分析系统中的solution
ANSYell)、热(Fluent)耦合分析流程
• 更新Maxwell项目
•右键点击solution •选择Update
Stator
Shaft
ANSYS 中国
Magnets
Rotor
w2
电机电磁(Maxwell)、热(Fluent)耦合分析流程
• Fluent项目
•The Maxwell project contains a 3D mesh model of a ITRI motor •The setup of this motor has already been partially done •注意:考虑到设置效率,建议对Fluent的设置在Workbench外完成,特别是当网格是 四面体,并希望在FLUENT中转化为多面体网格时。在Workbench下Fluent的所有操作 都会被记录,并在重新打开时重新运行所有操作,非常费时。所以建议在Workbench 外将Fluent设置好,这样在Workbench内打开时较为节省时间。
• 由于此处采用现有的Maxwell项目,所以只需要在Workbench中导入即可。用户也 可以新建一个项目,并进行重新设置。
• 导入Maxwell文件 • 菜单栏 File > Import • 更改文件类型为Maxwell Project File (*.mxwl) • 通过导航确定输入文件的位置 • 选择文件“modified.mxwl” • Open打开
• 该教程已经提供了一个完整的CFD案例,并且已经设置好,此处只需要导入,并 设置损耗的映射即可。

基于ANSYS的发动机气门热—应力耦合分析

基于ANSYS的发动机气门热—应力耦合分析

基于ANSYS的发动机气门热—应力耦合分析文章利用ANSYS软件的APDL命令流对气门进行建模,并对其进行热-应力耦合分析,研究气门在高温高压状态下的应力分布情况,结果表明:气门盘部和过渡圆弧位置应力最大,并以实际案例证明了分析结果的正确性,研究结果可为气门的结构优化和疲劳寿命分析提供理论依据。

标签:气门;ANSYS;热-应力耦合引言发动机工作的时候,在气缸体、气缸盖、活塞和气门等组成的密闭环境中,可燃性气体不断地进行燃烧,使这些零件都处于高温、高压的工作环境中,除此之外还受到燃气腐蚀的作用,工况条件十分恶劣,特别是在发动机进气和压缩行程中承担着换气功能的进气门和排气门。

气门在工作过程中,不仅受到高速频繁的落座冲击作用、气缸内部燃气燃烧产生的热应力和交变的拉压应力等作用,还受到高速燃气冲刷和高温气体腐蚀的作用,除此之外,由于气门材料导热系数较小以及冷却条件不好,所以积存在气门上的热量很难散发出去,从而使气门温度上升。

在密闭燃烧空间工作的零件中,气门的温度最高,一般情况下,进气门工作温度为200~450℃,排气门工作温度为600~800℃,有的甚至能达到850~900℃[1]。

通常,许多材料的很多性能都会因受到高温作用而发生变化,如机械性能下降,产生蠕变等等。

气门在工作过程中,除了受到上述的高温作用之外,还要承受气缸内燃气燃烧时产生的高压作用。

耦合场分析是指在有限元分析的过程中考虑两种或者两种以上工程学科的交叉作用和相互影响,常用的耦合场分析包括:热-应力耦合分析,热-电耦合分析,流体-结构耦合分析等[2]。

耦合场分析方法有两种:直接耦合分析法(是运用包括所有必须自由度的耦合单元类型,只通过一次求解就能够得到耦合场的分析结果,主要用于多个物理场的响应相互依赖的情况)和间接耦合分析法(按照一定的顺序求解两个或多个物理场的分析,它能把第一次场分析的结果作为载荷施加到下一次场的分析中)[2]。

在很多工程实践中,采用ANSYS进行分析时,热分析得到的结果对结构分析有着很大的影响,但结构分析的结果对热分析的影响却不理想,所以一般情况下采用间接耦合分析法来进行热-应力耦合分析。

Ansys 应力分析ppt课件

Ansys 应力分析ppt课件
– 梁单元是由连接两个节点的线来定义的,这只定义了梁的长度。要指 明梁的横截面属性,如面积和惯性矩,就要用到实常数。
– 壳单元是由四面体或四边形来定义的,这只定义了壳的表面积,要指 明壳的厚度,必须用实常数。
– 许多 3-D 实体单元不需要实常数,因为单元几何模型已经由节点完全 定义。
应力分析 - 前处理
– Preprocessor > Element Type > Add/Edit/Delete • [Add] 添加新单元类型 • 选择想要的类型(如 SOLID92) 并按 OK键 • [Options] 指定附加的单元选 项
– 或使用 ET 命令: • et,1,solid92
Training Manual
第4章
应力分析
应力分析
概述
Training Manual
INTRODUCTION TO ANSYS 5.7 - Part 1
• 应力分析 是用来描述包括应力和应变在内的结果量分析的通用术
语,也就是结构分析。
• 正如第二章描述的, ANSYS 的应力分析包括如下几个类型:
静态分析
瞬态动力分析
模态分析
应力分析
...应力分析步骤
Training Manual
INTRODUCTION TO ANSYS 5.7 - Part 1
• 注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的
应力分析
...应力分析步骤
Training Manual
INTRODUCTION TO ANSYS 5.7 - Part 1
Training Manual
INTRODUCTION TO ANSYS 5.7 - Part 1

Ansys--热耦合

Ansys--热耦合

ansys热力耦合分析单元简介SOLID5-三维耦合场实体具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。

本单元由8个节点定义,每个节点有6个自由度。

在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。

在结构和压电分析中,具有大变形的应力钢化功能。

与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。

INFIN9-二维无限边界用于模拟一个二维无界问题的开放边界。

具有两个节点,每个节点上带有磁向量势或温度自由度。

所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。

使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。

使用热自由度时,只能进行线性稳态分析。

PLANE13-二维耦合场实体具有二维磁场、温度场、电场和结构场之间有限耦合的功能。

由4个节点定义,每个节点可达到4个自由度。

具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。

具有大变形和应力钢化功能。

当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。

LINK31-辐射线单元用于模拟空间两点间辐射热流率的单轴单元。

每个节点有一个自由度。

可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。

允许形状因子和面积分别乘以温度的经验公式是有效的。

发射率可与温度相关。

如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。

LINK32-二维传导杆用于两节点间热传导的单轴单元。

该单元每个节点只有一个温度自由度。

可用于二维(平面或轴对称)稳态或瞬态的热分析问题。

如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。

LINK33-三维传导杆用于节点间热传导的单轴单元。

该单元每个节点只有一个温度自由度。

ANSYS热应力分析实例

ANSYS热应力分析实例

A N S Y S热应力分析实例-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN热流体在代有冷却栅的管道里流动,如图为其轴对称截面图。

管道及冷却栅的材料均为不锈钢,导热系数为1.25Btu/hr-in-oF,弹性模量为28E6lb/in2泊松比为0.3。

管内压力为1000 lb/in2,管内流体温度为450 oF,对流系数为1 Btu/hr-in2-oF,外界流体温度为70 oF,对流系数为0.25 Btu/hr-in2-oF。

求温度及应力分布。

7.3.2菜单操作过程7.3.2.1设置分析标题1、选择“Utility Menu>File>Change Title”,输入Indirect thermal-stress Analysis of a cooling fin。

2、选择“Utility Menu>File>Change Filename”,输入PIPE_FIN。

7.3.2.2进入热分析,定义热单元和热材料属性1、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,选择PLANE55,设定单元选项为轴对称。

2、设定导热系数:选择“Main Menu>Preprocessor>MaterialPorps>Material Models”,点击Thermal,Conductivity,Isotropic,输入1.25。

7.3.2.3创建模型1、创建八个关键点,选择“MainMenu>Preprocessor>Creat>Keypoints>On Active CS”,关键点的坐标如下:编号 1 2 3 4 5 6 7 8X 5 6 12 12 6 6 5 5Y 0 0 0 0.25 0.25 1 1 0.252、组成三个面:选择“MainMenu>Preprocessor>Creat>Area>Arbitrary>Throuth Kps”,由1,2,5,8组成面1;由2,3,4,5组成面2;由8,5,6,7组成面3。

Ansys热分析教程(全)

Ansys热分析教程(全)

热传递的类型
• 热传递有三种基本类型: – 传导 - 两个良好接触的物体之间的能量交换或一个物体内由于温 度梯度引起的内部能量交换。 – 对流 - 在物体和周围介质之间发生的热交换。 – 辐射 - 一个物体或两个物体之间通过电磁波进行的能量交换。
• 在绝大多数情况下,我们分析的热传导问题都带有对流和/或辐射边 界条件。
目录
第1章
– 介绍
1-3
– 概述
1-5
– 相关讲座 & 培训
1-12
– 其他信息来源
1-13
第 2章
– 基本概念
2-1Biblioteka 第3章 3-1– 稳态热传导(no mass transport of heat)
第4章
4-1
– 附加考虑非线性分析
第 5章
5-1
– 瞬态分析
目录
(续)
第6章
– 复杂的, 时间和空间变化的边界条件
章节内容概述
• 第7章-续 – 例题 6 - 低压气轮机箱的热分析
• 第 8 章 - 辐射 – 辐射概念的回顾 – 基本定义 – 辐射建模的可选择方法 – 辐射矩阵模块 – 辐射分析例题 - 使用辐射矩阵模块进行热沉分析,隐式和非隐式方 法。
• 第 9 章 - 相变 – 基本模型/术语 – 在 ANSYS中求解相变 – 相变例题 - 飞轮铸造分析
– 时间,载荷步, 子步和迭代方程 – 收敛准则 – 初始温度 – 阶跃或渐进载荷 – 其他非线性选项 – 输出控制选项
章节内容概述
• 第4章-续 – 控制/查看非线性分析 – 例题 3 - 晶体管的非线性热分析
• 第 5 章 - 瞬态分析 – 控制方程 – 与稳态分析的区别 – 查看瞬态结果 – 例题 4 - 晶体管的瞬态热分析

Ansys耦合热分析教程ppt课件

Ansys耦合热分析教程ppt课件
Main Menu->Solution->Apply->Structural->Pressure
45
施加表载荷
46
定义温度载荷
47
定义约束
48
施加约束的结果
49
施加位移载荷
50
选择铜块的节点
51
旋转节点坐标系
52
旋转节点坐标系
53
施加位移载荷
54
施加位移载荷
55
设置求解选项
56
30
STEP4:建立几何模型
31
STEP4:建立几何模型
32
STEP 5: 划分网格
33
指定单元类型及材料属性
34
网格控制
35
网格控制
36
网格划分结果
37
定义接触对
38
定义接触对
39
定义接触对
40
STEP 6:定义载荷
41
定义表
42
定义表
43
施加压力表载荷
44
施加表载荷
5A
检查实常数和单元选项是否正确。
14
流程细节 (续)
5B. 从热分析中施加温度体载荷(LDREAD 命令):
5B 确定结果的 时间和子步 确定温度结 果文件 9. 求解当前载荷步
15
流程细节 (续)
下面六页 (步骤 5a-5d) 假设热网格不在结构模型中使用 (选项2)。
5a. 清除热网格 . . .
热网格
Using the default tolerance, these two nodes would not be assigned a load
结构网格边界

第20章热应力耦合分析ansys教程

第20章热应力耦合分析ansys教程

间接方法
❖ 最适合于那种单向耦合的 情况,一种分析的结果能够 影响到另一种分析,反之不 能
❖ 独立进行两种分析,较灵活 ❖ 不能用于非线形 ❖ 非常好但耗费时间较长(全
自由度设置) ❖ 例子:结构特性随温度而变
的分析 ❖ 涡流的焦耳热
20.8 其它耦合场分析
定义耦合场分析:耦合场分析考虑了两个或多个工
6.定义结构的材料特性(EX等),特别注意不要忘记 输入热膨胀系数(ALPX)和其它建模细节
Main Menu: Preprocessor > Materail Props > Constant- Isotropic
a.单击OK b.输入结构的材料特性值,包括热膨胀系数ALPX,
然后单击OK
注意:如果没有 定 义 ALPX 或 将 该项设置为0,则 不能计算热应变。 用户可以使用该 项技巧 “关闭” 温度的影响!
20.1 热应力的产生
❖ 当一个结构被加热或冷却时,如果满足下列条件, 则在结构中只会发生自由热膨胀,不会有应力出现: 均匀 只约束刚体运动 在整个结构中除了一个均匀的温度变化外没有其 它载荷
❖ 然而,如果温度变化均匀,但有其它的约束,或者 有不同的热膨胀系数,那么结构中将会产生热应力。
20.1 热应力的产生(续)
3.删除热载荷,并将分析从热分析转换到结构分析 Main Menu: Preferences a.选择结构分析。 b.单击OK。 注意:如果在开始分析时没有明确指定热分析,则
不需要转换分析类型。
20.4 间接耦合的分析过程(续)
4.将单元类型从热分析转换到结构分析 Main Menu: Preprocessor > Element Type > Switch

ANSYS Example07热-结构耦合分析算例 (ANSYS)

ANSYS Example07热-结构耦合分析算例 (ANSYS)
k,3,0,5
k,4,8,
k,0,6
k,5,0,8
larc,2,3,1,5
larc,4,5,1,8
l,2,4
l,3,5
al,1,2,3,4
esize,0.5
amesh,all
!!!!!!!!!!!!!
FINISH
/SOL
!*
ANTYPE,0
DL,1, ,TEMP,1000,0
DL,2, ,TEMP,20,0
(6)下面首先进入热分析,进入ANSYS主菜单Solution->Analysis Type->New Analysis,设置分析类型为稳态分析Steady-state
(7)输入热边界条件,进入ANSYS主菜单Solution-> Define Loads-> Apply-> Thermal-> Temperature-> On Lines,在直线1上加上1000度的温度荷载,如图所示,在直线2上加上20度的温度荷载。
(5)下面划分网格,由于本模型只有一种单元一种材料,所以不必复杂的设置属性。进入ANSYS主菜单Preprocessor->Meshing->Size Cntrls->ManualSize->Global->Size,在Global Element Size窗口中设置单元尺寸为0.5。在ANSYS主菜单Preprocessor->Meshing->Mesh->Areas,点选圆环进行网格划分
solve
!!!!!!!!!!!!
FINISH
/POST1
!*
/EFACET,1
PLNSOL, TEMP,, 0
FINISH

Ansys热分析教程(全)

Ansys热分析教程(全)

generated
• 将其应用到一个微元体上,就可以得到热传导的控制微分方程。
控制微分方程
• 热传导的控制微分方程
F I F I F I ∂ HG KJ HG KJ HG KJ ∂x
Kxx
∂T ∂x
+∂ ∂y
K yy
∂T ∂y
+∂ ∂z
Kzz
∂T ∂z
+ &q&& = ρc dT dt
expanding the total time derivative, yields
热传递的类型
• 热传递有三种基本类型: – 传导 - 两个良好接触的物体之间的能量交换或一个物体内由于温 度梯度引起的内部能量交换。 – 对流 - 在物体和周围介质之间发生的热交换。 – 辐射 - 一个物体或两个物体之间通过电磁波进行的能量交换。
• 在绝大多数情况下,我们分析的热传导问题都带有对流和/或辐射边 界条件。
Hale Waihona Puke dT dt=∂T ∂t
+ Vx
∂T ∂x
+ Vy
∂T ∂y
+ Vz
∂T ∂z
where Vx ,Vy ,Vz = velocities of the conducting medium.
The terms which include velocities come from mass transport of heat effects. It is interesting to note that, even in steady - state, ρ and c are important when mass transport of heat effects are included.

ANSYS热分析教程及命令流算例

ANSYS热分析教程及命令流算例

=====【热力耦合分析单元简介】======SOLID5-三维耦合场实体具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。

本单元由8个节点定义,每个节点有6个自由度。

在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。

在结构和压电分析中,具有大变形的应力钢化功能。

与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。

INFIN9-二维无限边界用于模拟一个二维无界问题的开放边界。

具有两个节点,每个节点上带有磁向量势或温度自由度。

所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。

使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。

使用热自由度时,只能进行线性稳态分析。

PLANE13-二维耦合场实体具有二维磁场、温度场、电场和结构场之间有限耦合的功能。

由4个节点定义,每个节点可达到4个自由度。

具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。

具有大变形和应力钢化功能。

当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。

LINK31-辐射线单元用于模拟空间两点间辐射热流率的单轴单元。

每个节点有一个自由度。

可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。

允许形状因子和面积分别乘以温度的经验公式是有效的。

发射率可与温度相关。

如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。

LINK32-二维传导杆用于两节点间热传导的单轴单元。

该单元每个节点只有一个温度自由度。

可用于二维(平面或轴对称)稳态或瞬态的热分析问题。

如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。

LINK33-三维传导杆用于节点间热传导的单轴单元。

该单元每个节点只有一个温度自由度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1 热应力的产生 续) 热应力的产生(续
结构受热或变冷时, 结构受热或变冷时,由于热胀冷 缩产生变形 若变形受到某些限制—如位移受 若变形受到某些限制 如位移受 到约束或施加相反的力—则在结 到约束或施加相反的力 则在结 构中 产生热应力 产生热应力的另一个原因是由于 材料不同而形成的 不均匀变形 (如, 不同的热膨胀系数 如 不同的热膨胀系数) 约束产生 热 应力
20.7 耦合场分析方法的选择
直接方法 最适合于那种耦合效 应是循环的双向耦合 的情况 真正的“多物理场” 真正的 “ 多物理场 ” 分析 不能用于非线形 非常好但耗费时间较 全自由度设置) 长(全自由度设置 全自由度设置 例子:结构特性随温 度而变的分析 间接方法 最适合于那种单向耦合的 情况,一种分析的结果能够 情况 一种分析的结果能够 影响到另一种分析,反之不 影响到另一种分析 反之不 能 独立进行两种分析,较灵活 独立进行两种分析,较灵活 不能用于非线形 非常好但耗费时间较长(全 非常好但耗费时间较长 全 自由度设置) 自由度设置 例子:结构特性随温度而变 例子 结构特性随温度而变 的分析 涡流的焦耳热
第20章 热-应力耦合分析 章 应力耦合分析
引子: 引子: 考虑两块焊在一起的板, 考虑两块焊在一起的板,它们有不同的热膨胀 系数。 系数。如果复合材料棒的右半部分的热膨胀系 数大于左半部分, 数大于左半部分,当其受热时将会发生图示的 弯曲现象,因为右半部分伸长比左半部分多。 弯曲现象,因为右半部分伸长比左半部分多。 问题: 问题: 如何施加 热载荷? 热载荷? 如何进行 耦合分析? 耦合分析?
20.8 其它耦合场分析
定义耦合场分析:耦合场分析考虑了两个或多个工 定义耦合场分析:
程学科间的相互耦合作用 Examples Thermal-stress Magnetic-thermal Electromagnetic Piezoelectric Fluid-structural Applications Pressure vessels Induction heating Transmission lines Ultrasonic transducers Airplane wing
20.4 间接耦合的分析过程 续) 间接耦合的分析过程(续
4.将单元类型从热分析转换到结构分析 将单元类型从热分析转换到结构分析 Main Menu: Preprocessor > Element Type > Switch Element Type 或用 ETCHG 命令 a.选择“thermal to structure” 选择“ 选择 b.单击 单击OK 单击
热分析
jobname.rth
温度结Βιβλιοθήκη 分析jobname.rst
20.4 间接耦合的分析过程
采用间接耦合法进行热- 应力 采用间接耦合法进行热 - 耦合分析的全过程
1.进行瞬态或稳态的热分析以得 进行瞬态或稳态的热分析以得 到结点温度 2.查看结果,并确定温度梯度较 查看结果, 查看结果 大的时间点(或载荷步 或载荷步) 大的时间点 或载荷步 Main Menu: General PostProc > 在每个对话框中输入对应值
20.3 间接耦合
间接耦合涉及到两个分析: 间接耦合涉及到两个分析: 1.首先做一个稳态 或瞬态 热分析 首先做一个稳态(或瞬态 首先做一个稳态 或瞬态)热分析 建立热单元模型 施加热载荷 求解并查看结果 2.然后做静力结构分析 然后做静力结构分析 把单元类型转换成结构单元 定义包括热膨胀系数在内的 结构材料属性 施加包括从热分析得到的温 度在内的结构载荷 求解并查看结果
20.1 热应力的产生
当一个结构被加热或冷却时, 如果满足下列条件, 当一个结构被加热或冷却时 , 如果满足下列条件 , 则在结构中只会发生自由热膨胀, 不会有应力出现: 则在结构中只会发生自由热膨胀 , 不会有应力出现 : 均匀 只约束刚体运动 在整个结构中除了一个均匀的温度变化外没有其 它载荷 然而, 如果温度变化均匀, 但有其它的约束, 然而 , 如果温度变化均匀 , 但有其它的约束 , 或者 有不同的热膨胀系数, 那么结构中将会产生热应力。 有不同的热膨胀系数 , 那么结构中将会产生热应力 。
20.4 间接耦合的分析过程 续) 间接耦合的分析过程(续
5.验证单元选项设置 验证单元选项设置
Main Menu:Preprocessor>Element Type> Add/Edit/Delete
a.选定单元类型,然后选择Option… 选定单元类型,然后选择 选定单元类型 b.验证 如果需要可以更改 验证, 验证 c.选择 选择OK 选择
材料不同产 生热应力
20.2 求解热 应力问题的方法 求解热-应力问题的方法
中解决热-应力问题的方法有两种 在ANSYS中解决热 应力问题的方法有两种: 中解决热 应力问题的方法有两种:
20.2 求解热 应力问题的方法(续) 求解热-应力问题的方法 续 应力问题的方法
间接耦合 + 传统方法 : 使用两种单元类型 , 将热分析的 传统方法:使用两种单元类型, 结果做为结构温度载荷 + 当运行很多热瞬态时间点但结构时间点很少 时效率较高 + 可以很容易地用输入文件实现自动处理 直接耦合 + 新方法 : 使用一种单元类型就能求解两种物 新方法: 理问题 + 热问题和结构现象之间可实现真正的耦合 - 在某些分析中可能耗费过多的时间
或使用 ETLIST 和 KEYOPT 命令
20.4 间接耦合的分析过程 续) 间接耦合的分析过程(续
6.定义结构的材料特性 定义结构的材料特性(EX等 ), 特别注意不要忘记 定义结构的材料特性 等 , 输入热膨胀系数(ALPX)和其它建模细节 输入热膨胀系数 和其它建模细节 Main Menu: Preprocessor > Materail Props > Constant- Isotropic a.单击 单击OK 单击 b.输入结构的材料特性值,包括热膨胀系数 输入结构的材料特性值, 输入结构的材料特性值 包括热膨胀系数ALPX, , 然后单击OK 然后单击 注意 : 如果没有 定 义 ALPX 或 将 该项设置为0, 该项设置为 ,则 不能计算热应变。 不能计算热应变 。 用户可以使用该 关闭” 项技巧 “关闭” 温度的影响! 温度的影响
20.5 直接耦合
分析, 分析,该单元包括必要的自由度 1.首先用以下耦合单元之一建立模 首先用以下耦合单元之一建立模 型并划分网格 PLANE13 (板实体单元 板实体单元) 板实体单元 SOLID5 (六面体单元 六面体单元) 六面体单元 SOLID98 ( 四 面 体 单 元 tetrahedron) 2.在模型上施加结构载荷、热载荷 在模型上施加结构载荷、 在模型上施加结构载荷 及约束 3.求解并查看热分析结果和结构分 求解并查看热分析结果和结构分 析结果
直接耦合通常只涉及用耦合单元的
热分析 合并的 结构分析
jobname.rst
20.6 间接耦合和直接耦合的比较
间接耦合 对不是高度非线性的耦合 情况, 间接方法更有效, 情况 间接方法更有效 , 更灵活, 更灵活 , 因为可以相互独 立地执行两种分析 在间接热-应力分析中, 例如, 例如 , 在非线性瞬态热分 析之后可以紧接着进行线 性静力分析。 然后可以把 性静力分析 。 然后可以 把 热分析中任意荷载步或时 间点的节点温度作为应力 分析的载荷 直接耦合 对耦合场的相互作 用是高度非线性的 情况,直接方法优 先,并且该方法在 用耦合公式单一求 解时是最好的 直接耦合的例子包 括压电分析, 有流体 括压电分析 流动的共轭传热问 题及电路电磁分析
20.4 间接耦合的分析过程 续) 间接耦合的分析过程(续
b.选择分析选项 选择分析选项 Main Menu: Solution > Analysis Options
20.4 间接耦合的分析过程 续) 间接耦合的分析过程(续
8.施加结构载荷并包括温度作为加载的一部分 施加结构载荷并包括温度作为加载的一部分 Main Menu: Solution > -Load- Apply > Structure- Temperature > From Therm Analy a.输入期望的载荷步和子步号 缺省为第一个载荷 输入期望的载荷步和子步号(缺省为第一个载荷 输入期望的载荷步和子步号 步和最后一个子步) 步和最后一个子步 b. 选择热分析的 结果文件,以rth为扩展名 结果文件, 为扩展名 c. 单击 单击OK
20.4 间接耦合的分析过程 续) 间接耦合的分析过程(续
7.指定静力分析类型和分析选项。 指定静力分析类型和分析选项。 指定静力分析类型和分析选项 a.选择分析类型(缺省是静态,该步仅在热分析类型为 选择分析类型( 选择分析类型 缺省是静态, 瞬态时使用) 瞬态时使用) Main Menu: Solution > -Analysis Type- > New Analysis
20.4 间接耦合的分析过程 续) 间接耦合的分析过程(续
9.画图核定温度 画图核定温度 a. PlotCtrls> Symbols. b. Choose None in Boundary Cond. Symbol c. Turn “body load symbol” to “structural temps” d. Choose Do not replot 10.指定载荷步选项 指定载荷步选项 Main Menu: Solution 在每个对话框中输入对应值 11.开始求解 开始求解 Main Menu: Solution
20.4 间接耦合的分析过程 续) 间接耦合的分析过程(续
3.删除热载荷,并将分析从热分析转换到结构分析 删除热载荷, 删除热载荷 Main Menu: Preferences a.选择结构分析。 选择结构分析。 选择结构分析 b.单击 单击OK。 单击 。 注意:如果在开始分析时没有明确指定热分析, 注意:如果在开始分析时没有明确指定热分析,则 不需要转换分析类型。 不需要转换分析类型。
相关文档
最新文档