浙江省金华市东阳市2019-2020学年九年级上学期期末数学试题

合集下载

浙江省金华东阳市九年级上学期期末考试数学考试卷(解析版)(初三)期末考试.doc

浙江省金华东阳市九年级上学期期末考试数学考试卷(解析版)(初三)期末考试.doc

浙江省金华东阳市九年级上学期期末考试数学考试卷(解析版)(初三)期末考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】抛物线y=(x-2)2+3的对称轴是( )A. 直线x=3B. 直线x=-3C. 直线x=-2D. 直线x=2【答案】D【解析】试题分析:抛物线y=(x-2)2+3的对称轴是直线x=2.故选D考点:二次函数的对称轴【题文】两个相似多边形的面积之比是1:4,则这两个相似多边形的周长之比是()A. 1:2B. 1:4C. 1:8D. 1:16【答案】A【解析】分析:根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比可得。

解:∵两个相似多边形面积比为1:4,∴周长之比为=1:2.故选B.点睛:相似多边形的性质,相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方。

【题文】如图⊙O的半径为5,弦心距,则弦的长是()A. 4B. 6C. 8D. 5【答案】C【解析】分析:连接OA,在直角三角形OAC中,OC=3,OA=5,则可求出AC,再根据垂径定理即可求出AB 。

解:连接OA,如下图所示:评卷人得分∵在直角三角形OAC中,OA=5,弦心距,∴AC=,又∵OC⊥AB,∴AB=2AC=2×4=8。

故选A。

【题文】如图,在△ABC中,DE∥BC,若AD:AB=1:3,DE=4,则BC= ( )A. 10B. 12C. 15D. 16【答案】B【解析】分析:由DE∥BC得到△ABC∽△ADE,所以,再求BC。

解:∵DE∥BC(已知),∴∠ADE=∠B,∠AED=∠C(两直线平行,同位角相等),在△ABC和△ADE中∴△ABC∽△ADE(AAA),∴,又∵AD:AB=1:3(已知),∴,又∵DE=4,∴BC=12;故选B。

(金华)2019-2020学年第一学期九年级期末测试-数学试题卷

(金华)2019-2020学年第一学期九年级期末测试-数学试题卷

2019-2020学年第一学期九年级期末测试数学试题卷一、选择题(每题3分,共30分)1.把抛物线y=x2+4先向下平移3个单位,再向左平移1个单位,所得抛物线的表达式为()A.y=(x+1)2+7 B.y=(x-1)2+7 C.y=(x-1)2+1 D.y=(x+1)2+1 2.若一个不透明的袋子中装有2个白球,3个黄球和1个红球,它们除颜色外都相同,则从袋子中随机摸出一个球是白球的概率为()A.16B.14C.13D.123.下列阴影三角形分别在小正方形组成的网格中,则与图中的三角形相似的是()A.B.C.D.第3题图第6题图4.在Rt△ABC中,∠C=90°,AC=3,AB=5,那么sin A的值是()A.34B.45C.35D.435.下列四个立体图形中,左视图为矩形的是()① ② ③ ④A.①③B.①④C.②③D.③④6.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.32° B.116° C.58° D.64°1.2.3.7.小红在周末到某小镇去旅游,欣赏伟大祖国的大好河山,拍了一张照片如图,某桥桥身为一巨型单孔圆弧,全部由石块砌成,犹如一道彩虹横卧河面上,经测算,桥拱拱高为CD,河面宽AB为6 m,△ABC为等边三角形,则桥拱直径..为()A m B. m C.D. m第7题图第9题图第10题图8.已知二次函数y=ax2+bx+3(a≠0),当x=1和x=2019时函数的值相等,则当x=2020时,函数的值等于()A.32B.3 C.32D.-39.如图,已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以点A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠P AD=∠PDA=60°;②△P AO≌△ADE;③PO;④AO∶OP∶P A=1.A.①④B.②③C.③④D.①③④10.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若点A(0.5,y1),B,y2)在此抛物线上,则y1<y2,其中正确的有().A.2个B.3个C.4个D.5个二、填空题(每题4分,共24分)11.已知扇形的圆心角为30°,面积为3π,则该扇形的半径为.12.如图,点P为⊙O外一点,P A,PB为⊙O的切线,A,B为切点,PO交⊙O于点D,∠APO =30°,OD=5,则线段BP的长为.第12题图第13题图13.如图,在△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E.若AB=4,则BC 的长为.14.已知一个三角形的三边长分别为3、4、5,则该三角形的内切圆的半径为 . 15.如图,在△ABC 中,∠A =90°,CB =10,sin B =0.6,D 是BC 边上异于B ,C 两点的一个动点,过点D 分别作AB ,AC 边的垂线,垂足分别为E ,F ,则EF 的最小值为 .16.抛物线y =x 2+2x -3与x 轴交于A ,B 两点(点B 在点A 的左侧),与y 轴交于点C .(1)抛物线的对称轴为 .(2)若抛物线上存在点P ,使得锐角∠PCO >∠OCA ,则点P 的横坐标x P 的取值范围为 .三、解答题(17~19每题6分,20~21每题8分,22~23每题10分,24题12分,共66分)17.(6分)计算:21()4sin 602tan 453---︒+︒+.18.(6分)“建设美丽的新农村”正在如火如荼建设当中,其中某村的标志性雕塑如图,某中学九年级数学兴趣小组想测量雕塑AB 的高度,小敏在雕塑前C 、D 两点处用测角仪测得顶端A 的仰角分别为45°和30°,测角仪高EC =FD =1 m ,EF =4 m ,求该雕塑的高度.(结果保留根号)19.(6分)在如图所示的正方形网格中(每个小正方形的边长都为1)建立平面直角坐标系,△ABC的三个顶点分别为(2,-4),B(4,-4),C(1,-1).(1)请在图中画出△ABC的外接圆.(2)画出△ABC绕原点O逆时针旋转90°后得到的△A1B1C1,并求出点B旋转所经过的路径长.(结果保留π)20.(8分)某中学九(1)班调查了全班同学的兴趣爱好,根据调查的结果组建了4个兴趣小组,分别是足球、乒乓球、篮球、排球,并将统计结果绘制成如图所示的两幅不完整的统计图(要求每位同学只能选择一种自己喜欢的球类).①②请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)图②中的m= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组的4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.21.(8分)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.22.(10分)如图,已知AB为⊙O的直径,AC是⊙O的切线,连结BC交⊙O于点F,取弧BF的中点D,连结AD交BC于点E,过点E作EH⊥AB于点H.(1)求证:△HBE∽△ABC.(2)若CF=4,BF=5,求AC及EH的长.23.(10分)设二次函数y1、y2的图象顶点分别为(a,b)、(c,d),当a+c=0,bd=-1时,则称y1是y2的“顶好二次函数”.(1)理解:通过计算判断二次函数y1=x2-2x-1是否是y2=2x2+4x+2.5的“顶好二次函数”.(2)应用:请写出一个与二次函数y=2x2+8x+7开口方向相反的“顶好二次函数”.(3)拓展:已知关于x的二次函数y1=x2+nx和二次函数y2=nx2+x,函数y1+y2恰好是函数y1-y2的“顶好二次函数”,求n的值.24.(12分)定义:若抛物线y=ax2+bx+c(a≠0)满足a-b+c=0,则称该抛物线为“智慧抛物线”.如图1,“智慧抛物线”y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,若OB=3OA,点D为y轴上的一个动点.探究:(1)若“智慧抛物线”必过一点,求该点的坐标及此抛物线的解析式.(2)当△BCD的面积为6时,求点D的坐标.(3)在抛物线上是否存在点Q,使△BCQ是以BC为直角边的直角三角形?(4)如图2,过点C作CE⊥BD于点E,连结AE,直接写出线段AE的最小值.。

浙江省金华市东阳市2019-2020学年九年级上学期期末数学试题(附带详细解析)

浙江省金华市东阳市2019-2020学年九年级上学期期末数学试题(附带详细解析)
A.21个B.14个C.20个D.30个
7.如图,以(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是()
A.2<x<3B.3<x<4C.4<x<5D.5<x<6
8.已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有()个.
绝密★启用前
浙江省金华市东阳市2019-2020学年九年级上学期期末数学试题
试卷副标题
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号



总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、单选题
根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.
【详解】
解:A、a:d=c:b⇒ab=cd,故正确;
B、a:b=c:d⇒ad=bc,故错误;
C、d:a=b:c⇒dc=ab,故正确;
D、a:c=d:b⇒ab=cd,故正确.
故选B.
【点睛】
本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.
(1)求证: 为 切线.
(2)求 的度数.
(3)若 的半径为1,求 的长.
23.在平面直角坐标系中,已知 , .
(1)如图1,求 的值.
(2)把 绕着点 顺时针旋转,点 、 旋转后对应的点分别为 、 .
①当 恰好落在 的延长线上时,如图2,求出点 、 的坐标.

浙江省东阳市九年级数学上学期期末考试试题

浙江省东阳市九年级数学上学期期末考试试题

九年级数学期末考试卷温馨提示:请仔细审题,细心作答,相信你一定会有出色的表现!请注意:1.全卷满分为120分,考试时间120分钟.试卷共4页,有三大题,24小题.2.本卷答案必须做在答题纸的相应位置上,做在试题卷上无效.3.请用钢笔或圆珠笔将学校、班别、姓名、学号分别写在答题卷的左上角.4. 考试过程中不得使用计算器。

一、仔细选一选(本题有10个小题, 每小题3分, 共30分)1.已知反比例函数y=xk的图象经过点(1,-2),则k的值为……………………(▲)A.-2 B. -21C.1 D.22.抛物线y=3(x-2)2+3的顶点坐标为…………………………………………………(▲)A.(-2,3)B.(2,3) C(-2,-3) D.(2, -3)3.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=(▲)A.20° B.40° C.50° D.80°4.如图,△ABC中,E、D分别是AC、BC的中点,则S△EDC:S△ABC=(▲)A.1:4 B.2:3 C.1:3 D.1: 25.如图,修建抽水站时,沿着坡度为i=1:6的斜坡铺设管道,下列等式成立的是(▲)A.sinα=61B.cosα=61C.tanα=61D.tanα=66.已知⊙O1与⊙O2相切,它们的直径分别为2cm和8cm,则O1 O2的长为………(▲)A、10cmB、6cmC、5cmD、5cm或3cm7.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为………………(▲)A.3 B.4 C.23 D.248.如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为…………………………………………………(▲)A.4 B.5 C.29D.211第3题第4题第5题第10题第7题9. 如图,一次函数y 1=x+1的图象与反比例函数y 2=x2的图象交于两点A 、B 两点,过点作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,连接AO 、BO ,下列说法正确的是( )A . 点A 和点B 关于原点对称 B . 当x <1时,y 1>y 2C . S △AOC=S △BOD D . 当x >0时,y 1、y 2都随x 的增大而增大 10.已知:如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(10,0),对角线OB 、AC 相交于D 点,双曲线y=xk (x >0)经过D 点,交BC 的延长线于E 点,且OB•AC=160,有下列四个结论:①菱形OABC 的面积为80; ②E 点的坐标是(4,8); ③双曲线的解析式为y=x20 (x >0); ④s in ∠COA=54,其中正确的结论有(▲)个。

2019-2020学年浙江省金华市东阳市九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省金华市东阳市九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省金华市东阳市九年级(上)期末数学试卷一、选择题(共10小题).1.(3分)已知线段a ,b ,c ,d 满足ab cd =,则把它改写成比例式正确的是( )A .::a d c b =B .::a b c d =C .::c a d b =D .::b c a d =2.(3分)已知圆内接四边形ABCD 中,::1:2:3A B C ∠∠∠=,则D ∠的大小是( )A .45︒B .60︒C .90︒D .135︒3.(3分)如图,AC ,BE 是O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是点O 的是( )A .ABE ∆B .ACF ∆C .ABD ∆ D .ADE ∆4.(3分)若把抛物线231y x =-向右平移2个单位,则所得抛物线的表达式为( )A .233y x =-B .231y x =+C .23(2)1y x =++D .23(2)1y x =--5.(3分)已知O 的半径为3,圆心O 到直线L 的距离为4,则直线L 与O 的位置关系是( )A .相交B .相切C .相离D .不能确定6.(3分)在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球( )A .21个B .14个C .20个D .30个7.(3分)如图,以(1,4)-为顶点的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( )A.23x<<B.34x<<C.45x<<D.56x<<8.(3分)已知点E在半径为5的O上运动,AB是O的一条弦且8AB=,则使ABE∆的面积为8的点E共有()个.A.1B.2C.3D.49.(3分)一张圆心角为α的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知4tan3α=,则扇形纸板和圆形纸板的半径之比是()A.1304B.22C.23D.67210.(3分)如图,周长为定值的平行四边形ABCD中,60B∠=︒,设AB的长为x,平行四边形ABCD的面积为y,y与x的函数关系的图象大致如图所示,当63y=时,x的值为( )A.1或7B.2或6C.3或5D.4二、用心填一填(本题共24分,每小题4分)11.(4分)圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为2cm.12.(4分)如图,直线////a b c,若12ABBC=,则DEDF的值为.13.(4分)如图,要拧开一个边长为8a mm =的正六边形螺料,扳手张开的开口b 至少为 mm .14.(4分)设1(2,)A y -,2(1,)B y ,3(2,)C y 是抛物线2(1)1y x =-++上的三点,则1y ,2y ,3y 的大小关系为 .15.(4分)如图,已知等边OAB ∆的边长为23+,顶点B 在y 轴正半轴上,将OAB ∆折叠,使点A 落在y 轴上的点A '处,折痕为EF .当△OA E '是直角三角形时,点A '的坐标为 .16.(4分)在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图所示的“L ”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知9AB =,16BC =,FG AD ⊥.(1)线段AF 与EC 的差值是 .(2)FG 的长度是 .三.细心答一答(本题共66分)17.(6分)计算:01182sin 45(2)()3π--︒+--. 18.(6分)如图1是小区常见的漫步机,从侧面看如图2,踏板静止时,踏板连杆与立柱DE 上的线段AB 重合,BE 长为0.2米,当踏板连杆绕着点A 旋转到AC 处时,测得37CAB ∠=︒,此时点C 距离地面的高度CF 为0.44米,求:(1)踏板连杆AB 的长;(2)此时点C 到立柱DE 的距离、(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75)︒≈19.(6分)“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.20.(8分)在下列1115⨯的网格中,横、纵坐标均为整数的点叫做格点.例如正方形ABCD 的顶点(2,3)A -,(1,0)C 都是格点,要求在下列问题中仅用无刻度的直尺作图.(1)画出格点M ,连AM 或延长AM 交边BC 于E ,使BE EC =,写出点M 的坐标为 ;(2)画出格点N ,连AN (或延长)AN 交边DC 于F ,使14DF DC =,则满足条件的格点N 有 个.21.(8分)采用东阳南枣通过古法熬制而成的蜜枣是我们东阳的土特产之一,已知蜜枣每袋成本10元,试销后发现每袋的销售价x(元)与日销售量y(袋)之间的关系如下表:x(元)152030⋯y(袋)252010⋯若日销售量y是销售价x的一次函数,试求,(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)要使这种蜜枣每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?22.(10分)平行四边形ABCD的对角线相交于点M,ABM∆的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若45∠=︒.BCD(1)求证:BC为O切线;(2)求ADB∠的度数;(3)若O的半径为1,求ME的长.23.(10分)在平面直角坐标系中,已知5B.AO AB==,(6,0)(1)如图1,求sin AOB∠的值;(2)把OAB∆绕着点B顺时针旋转,点O、A旋转后对应的点分别为M、N.①当M恰好落在BA的延长线上时,如图2,求出点M、N的坐标;②若点C 是OB 的中点,点P 是线段MN 上的动点,如图3,在旋转过程中,请直接写出线段CP 长的取值范围.24.(12分)已知抛物线2y x ax b =++与x 轴交于(1,0)A ,(3,0)B 两点,与y 轴交于点C .(1)填空:a = b = ;(2)如图1,已知5(2E ,0),过点E 的直线与抛物线交于点M 、N ,且点M 、N 关于点E 对称,求直线MN 的解析式;(3)如图2,已知(0,1)D ,P 是第一象限内抛物线上一点,作PH y ⊥轴于点H ,若PHD ∆与BDO ∆相似,请求出点P 的横坐标.参考答案一.精心选一选:(本题共30分,每小题3分)1.(3分)已知线段a ,b ,c ,d 满足ab cd =,则把它改写成比例式正确的是( )A .::a d c b =B .::a b c d =C .::c a d b =D .::b c a d = 解:A 、::a d c b =,ab cd ∴=,故选项正确;B 、::a b c d =,ad bc ∴=,故选项错误;C 、::c a d b =,bc ad ∴=,故选项错误;D 、::b c a d =,ac bd ∴=,故选项错误.故选:A .2.(3分)已知圆内接四边形ABCD 中,::1:2:3A B C ∠∠∠=,则D ∠的大小是( )A .45︒B .60︒C .90︒D .135︒ 解:四边形ABCD 为圆的内接四边形,:::1:2:3:2A B C D ∴∠∠∠∠=,而180B D ∠+∠=︒, 2180904D ∴∠=⨯︒=︒. 故选:C .3.(3分)如图,AC ,BE 是O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是点O 的是( )A .ABE ∆B .ACF ∆C .ABD ∆ D .ADE ∆解:如图所示:只有ACF ∆的三个顶点不都在圆上,故外心不是点O 的是ACF ∆. 故选:B .4.(3分)若把抛物线231y x =-向右平移2个单位,则所得抛物线的表达式为( )A .233y x =-B .231y x =+C .23(2)1y x =++D .23(2)1y x =-- 解:因为抛物线231y x =-向右平移2个单位,得:23(2)1y x =--,故所得抛物线的表达式为23(2)1y x =--.故选:D .5.(3分)已知O 的半径为3,圆心O 到直线L 的距离为4,则直线L 与O 的位置关系是( )A .相交B .相切C .相离D .不能确定 解:圆半径3r =,圆心到直线的距离4d =.故34r d =<=,∴直线与圆的位置关系是相离.故选:C .6.(3分)在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球( )A .21个B .14个C .20个D .30个解:设口袋中红球有x 个, 根据题意,得:90.39x=+, 解得21x =,经检验:21x =是分式方程的解,所以估计口袋中大约有红球21个,故选:A .7.(3分)如图,以(1,4)-为顶点的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( )A .23x <<B .34x <<C .45x <<D .56x <<解:二次函数2y ax bx c =++的顶点为(1,4)-,∴对称轴为1x =,而对称轴左侧图象与x 轴交点横坐标的取值范围是32x -<<-,∴右侧交点横坐标的取值范围是45x <<.故选:C .8.(3分)已知点E 在半径为5的O 上运动,AB 是O 的一条弦且8AB =,则使ABE ∆的面积为8的点E 共有( )个.A .1B .2C .3D .4解:过圆心向弦AB 作垂线,再连接半径设ABE ∆的高为h 182ABC S AB h ∆=⨯⨯= 可得:2h =弦心距2215(8)32=-⨯= 321-=,故过圆心向AB 所在的半圆作弦心距为1的弦与O 的两个点符合要求; 325+=,故将弦心距AB 延长与O 相交,交点也符合要求,故符合要求的点由3个. 故选:C .9.(3分)一张圆心角为α的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知4tan 3α=,则扇形纸板和圆形纸板的半径之比是( )A .1304B .22C .23D .672解:如图1,连接DO ,4 tan3AB BOα==,3BO∴=,7CO∴=,22164965 DO CD CO∴=+=+=,如图2,连接GE,GF,24EF GE∴==,22GE∴=,∴扇形纸板和圆形纸板的半径之比65130422==,故选:A.10.(3分)如图,周长为定值的平行四边形ABCD中,60B∠=︒,设AB的长为x,平行四边形ABCD的面积为y,y与x的函数关系的图象大致如图所示,当63y=时,x的值为( )A.1或7B.2或6C.3或5D.4解:如图,作AE BC⊥于点E,60B∠=︒,设AB的长为x,32AE x ∴=, 设平行四边形ABCD 的周长为a , 则1(2)2BC a x =-13(2)22y a x x ∴=-,根据函数图象可知: 当8x =时,0y =, 代入函数解析式,得16a =, 3(8)2y x x ∴=- 当63y =时, 363(8)2x x =- 解得2x =或6x =. 故选:B .二、用心填一填(本题共24分,每小题4分)11.(4分)圆锥的底面半径为6cm ,母线长为10cm ,则圆锥的侧面积为 60π 2cm . 解:圆锥的侧面积261060cm ππ=⨯⨯=. 12.(4分)如图,直线////a b c ,若12AB BC =,则DE DF 的值为 13.解:直线////a b c , ∴12AB DE BC EF ==, ∴13DE DF =, 故答案为:13.13.(4分)如图,要拧开一个边长为8a mm =的正六边形螺料,扳手张开的开口b 至少为83 mm .解:设正六边形的中心是O ,其一边是AB ,连接OA 、OB 、OC 、AC ,OB 交AC 于M ,如图所示:60AOB BOC ∴∠=∠=︒, OA OB AB OC BC ∴====, ∴四边形ABCO 是菱形,AC OB ∴⊥,AM CM =, 8AB mm =,60AOB ∠=︒,sin AM AMAOB OA AB∴∠==, 3843()2AM mm ∴=⨯=, 283AC AM mm ∴==,故答案为:83.14.(4分)设1(2,)A y -,2(1,)B y ,3(2,)C y 是抛物线2(1)1y x =-++上的三点,则1y ,2y ,3y 的大小关系为 123y y y >> .解:1(2,)A y -、2(1,)B y 、3(2,)C y 是抛物线2(1)1y x =-++上的三点,10y ∴=,23y =-,38y =-, 038>->-,123y y y ∴>>.故答案为:123y y y >>.15.(4分)如图,已知等边OAB ∆的边长为23+,顶点B 在y 轴正半轴上,将OAB ∆折叠,使点A 落在y 轴上的点A '处,折痕为EF .当△OA E '是直角三角形时,点A '的坐标为 (0,1)或(0,13)+ .解:等边OAB ∆的边长为23, 60AOB ∴∠=︒,23AO =+将OAB ∆折叠,使点A 落在y 轴上的点A '处, AE A E '∴=,△OA E '是直角三角形, 90A EO '∴∠=︒,或90EA O '∠=︒,当90EA O '∠=︒,且60A OE '∠=︒, 2OE A O '∴=,3A E O AE ''==,23OE AE AO +==+ 2323A O O ''∴+=+ 1A O '∴=, ∴点(0,1)A '当90A EO '∠=︒,且60A OE '∠=︒, 2A O OE '∴=,3A E OE '=,23OE AE AO +==+ 323OE OE ∴+=+13OE +∴=,13A O '∴=+, ∴点(0,13)A '+故答案为:(0,1)或(0,13)+.16.(4分)在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图所示的“L ”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知9AB =,16BC =,FG AD ⊥.(1)线段AF 与EC 的差值是 9 . (2)FG 的长度是 .解:(1)如图1,延长FG 交BC 于H , 设CE x =,则E H CE x ''==,由轴对称的性质得:9D E DC E F ''''===, 9H F AF x ''∴==+, 16AD BC ==,16(9)7DF x x ∴=-+=-,即7C D DF x F G ''''==-=, 7FG x ∴=-,9(7)2GH x x ∴=--=+,16(9)72EH x x x =--+=-, //EH AB ∴, EGH EAB ∴∆∆∽, ∴GH EHAB BE =, ∴272916x xx+-=-, 1x =或31(舍),1EC ∴=,10AF =,1019AF EC ∴-=-=,故答案为9.(2)由(1)可知:76FG x =-=, 故答案为6.三.细心答一答(本题共66分)17.(6分)计算:01182sin 45(2)()3π--︒+--.解:原式2222132=-⨯+- 22=-.18.(6分)如图1是小区常见的漫步机,从侧面看如图2,踏板静止时,踏板连杆与立柱DE 上的线段AB 重合,BE 长为0.2米,当踏板连杆绕着点A 旋转到AC 处时,测得37CAB ∠=︒,此时点C 距离地面的高度CF 为0.44米,求: (1)踏板连杆AB 的长;(2)此时点C 到立柱DE 的距离、(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75)︒≈解:(1)过点C 作CG AB ⊥于G , 则四边形CFEG 是矩形, 0.44EG CF ∴==,在Rt ACG ∆中,90AGC ∠=︒,37CAG ∠=︒, 0.22cos 0.8AG AC CAG AC AC-∠===, 解得: 1.2AC =, 1.2AB ∴=米;(2) 1.2AC =, 1.20.220.98AG =-=,220.72CG AC AG m ∴=-=,答:点C 到立柱DE 的距离为0.72m .19.(6分)“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放. (1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率; (2)求小聪所提的两袋垃圾不同类的概率.解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A ,B ,C ,D , 垃圾要按A ,B ,C 、D 类分别装袋,甲拿了一袋垃圾, ∴小明拿的垃圾恰好是厨余垃圾的概率为:14; (2)画树状图如下:由树状图知,小聪拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以小聪拿的两袋垃圾不同类的概率为123164=. 20.(8分)在下列1115⨯的网格中,横、纵坐标均为整数的点叫做格点.例如正方形ABCD的顶点(2,3)A-,(1,0)C都是格点,要求在下列问题中仅用无刻度的直尺作图.(1)画出格点M,连AM或延长AM交边BC于E,使BE EC=,写出点M的坐标为(1,3)-;(2)画出格点N,连AN(或延长)AN交边DC于F,使14DF DC=,则满足条件的格点N有个.解:(1)如图点E即为所求.(1,3)M-.故答案为(1,3)-.(2)如图点F即为所求,满足条件的点N有3个,故答案为3.21.(8分)采用东阳南枣通过古法熬制而成的蜜枣是我们东阳的土特产之一,已知蜜枣每袋成本10元,试销后发现每袋的销售价x(元)与日销售量y(袋)之间的关系如下表:x(元)152030⋯y(袋)252010⋯若日销售量y 是销售价x 的一次函数,试求,(1)日销售量y (袋)与销售价x (元)的函数关系式;(2)要使这种蜜枣每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?解:(1)依题意,根据表格的数据,设日销售量y (袋)与销售价x (元)的函数关系式为y kx b =+得15252020k b k b +=⎧⎨+=⎩,解得140k b =-⎧⎨=⎩, 故日销售量y (袋)与销售价x (元)的函数关系式为:40y x =-+;(2)依题意,设利润为w 元,得2(10)(40)50400w x x x x =--+=-+-整理得2(25)225w x =--+ 10-<∴当25x =时,w 取得最大值,最大值为225故要使这种蜜枣每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.22.(10分)平行四边形ABCD 的对角线相交于点M ,ABM ∆的外接圆交AD 于点E 且圆心O 恰好落在AD 边上,连接ME ,若45BCD ∠=︒. (1)求证:BC 为O 切线; (2)求ADB ∠的度数;(3)若O 的半径为1,求ME 的长.【解答】(1)证明:连接OB , 四边形ABCD 是平行四边形,45BAD BCD ∴∠=∠=︒, 290BOD BAD ∴∠=∠=︒, //AD BC ,180DOB OBC ∴∠+∠=︒, 90OBC ∴∠=︒, OB BC ∴⊥, BC ∴为O 切线;(2)解:连接OM ,四边形ABCD 是平行四边形, BM DM ∴=, 90BOD ∠=︒, OM BM ∴=, OB OM =, OB OM BM ∴==, 60OBM ∴∠=︒, 30ADB ∴∠=︒;(3)解:连接EM ,过M 作MF AE ⊥于F , OM DM =,30MOF MDF ∴∠=∠=︒,则1OM OE ==,12FM ∴=,OF =1EF ∴=-AE 是直径, 90AME ∴∠=︒,22(12EM EF AE ∴==-=-EM ∴=.23.(10分)在平面直角坐标系中,已知5AO AB ==,(6,0)B . (1)如图1,求sin AOB ∠的值;(2)把OAB ∆绕着点B 顺时针旋转,点O 、A 旋转后对应的点分别为M 、N . ①当M 恰好落在BA 的延长线上时,如图2,求出点M 、N 的坐标;②若点C 是OB 的中点,点P 是线段MN 上的动点,如图3,在旋转过程中,请直接写出线段CP 长的取值范围.解:(1)如图1中,作AH OB ⊥于H .5AO AB ==,(6,0)B ,AH OB ⊥,3OH HB ∴==,2222534AH AO OH ∴=-=-=,4sin 5AH AOB OA ∴∠==.(2)①如图2中,作ME OB ⊥于E .AOB ABO =∠,sin sin EM ABO AOB BM ∴∠=∠=, ∴465EM =, 245EM ∴=, 222224186()55EB BM EM ∴=-=-=, 1812655OE OB EB ∴=-=-=, 12(5M ∴,24)5, NMB AOB ABO ∠=∠=∠,//MN OB ∴,5MN OA ==, 37(5N ∴,24)5.②如图3中,连接BP .点D 为线段OA 上的动点,OA 的对应边为MN∴点P 为线段MN 上的动点∴点P 的运动轨迹是以B 为圆心,BP 长为半径的圆C 在OB 上,且132CB OB == ∴当点P 在线段OB 上时,CP BP BC =-最短;当点P 在线段OB 延长线上时,CP BP BC =+最如图2,当BP MN ⊥时,BP 最短NBM ABO S S ∆∆=,5MN OA ==∴1122A MN BP OB y = 462455BP ⨯∴==, 249355CP ∴=-=最小值, 当点P 与M 重合时,BP 最大,6BP BM OB ===639CP ∴=+=最大值∴线段CP 长的取值范围为995CP 24.(12分)已知抛物线2y x ax b =++与x 轴交于(1,0)A ,(3,0)B 两点,与y 轴交于点C .(1)填空:a = 4- b = ;(2)如图1,已知5(2E ,0),过点E 的直线与抛物线交于点M 、N ,且点M 、N 关于点E 对称,求直线MN 的解析式;(3)如图2,已知(0,1)D ,P 是第一象限内抛物线上一点,作PH y ⊥轴于点H ,若PHD ∆与BDO ∆相似,请求出点P 的横坐标.解:(1)抛物线的表达式为:2(1)(3)43y x x x x =--=-+⋯①, 故答案为:4-,3;(2)设点M 、N 的横坐标为m ,n ,直线MN 的表达式为:5()2y k x =-⋯②, 联立①②并整理得:25(4)(3)2x k x k -++-, 则4m n k +=+, 点M 、N 关于点E 对称,则55()5022M N y y km k kn k k m n k +=-+-=+-=, 即(4)50k k k +-=,解得:0k =(舍去)或1, 故直线MN 的表达式为:52y x =-;(3)设点2(,43)P m m m -+,则PH m =,2|431|HD m m =-+-,而3OB =,1OD =,则1tan 4DOB ∠=, 若PHD ∆与BDO ∆相似,则1tan 4HPD ∠=或4, 即14HD PH =或4,即2|42|14m m m -+=或4, 解得:23m =1397±741±。

浙江省金华市东阳市2019-2020学年九年级上学期期末数学试题(word无答案)

浙江省金华市东阳市2019-2020学年九年级上学期期末数学试题(word无答案)

浙江省金华市东阳市2019-2020学年九年级上学期期末数学试题(word无答案)一、单选题(★★) 1 . 已知线段a、b、c、d满足ab=cd,把它改写成比例式,错误的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d(★) 2 . 已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45°B.60°C.90°D.135°(★★) 3 . 如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O 的是()A.△ABE B.△ACF C.△ABD D.△ADE(★) 4 . 将抛物线向右平移2个单位,则所得抛物线的表达式为( )A.B.C.D.(★) 5 . 已知的半径为3,圆心到直线的距离为4,则直线与的位置关系是()A.相交B.相切C.相离D.不能确定(★) 6 . 在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球()A.21个B.14个C.20个D.30个(★★) 7 . 如图,以(1,-4)为顶点的二次函数y=ax 2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax 2+bx+c=0的正数解的范围是()A.2<x<3B.3<x<4C.4<x<5D.5<x<6(★★) 8 . 已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有()个.A.1B.2C.3D.4(★) 9 . 一张圆心角为的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知,则扇形纸板和圆形纸板的半径之比是()A.B.C.D.(★) 10 . 如图,周长为定值的平行四边形中,,设的长为,周长为16,平行四边形的面积为,与的函数关系的图象大致如图所示,当时,的值为()A.1或7B.2或6C.3或5D.4二、填空题(★) 11 . 圆锥的底面半径为6 ,母线长为10 ,则圆锥的侧面积为__________ . (★) 12 . 如图,直线,若,则的值为 _________(★) 13 . 如图,要拧开一个边长为的正六边形螺帽,扳手张开的开口至少为__________ .(★) 14 . 设,,是抛物线上的三点,则,,的大小关系为__________.(★★) 15 . 如图,已知等边的边长为,顶点在轴正半轴上,将折叠,使点落在轴上的点处,折痕为.当是直角三角形时,点的坐标为__________ .三、解答题(★★) 16 . 在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图2所示的“ ”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知,,.求(1)线段与的差值是___(2)的长度.(★) 17 . 计算:(★) 18 . 如图1是小区常见的漫步机,从侧面看如图2,踏板静止时,踏板连杆与立柱上的线段重合,长为0.2米,当踏板连杆绕着点旋转到处时,测得,此时点距离地面的高度为0.44米.求:(1)踏板连杆的长.(2)此时点到立柱的距离.(参考数据:,,)(★) 19 . 现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.(★★) 20 . 在下列的网格中,横、纵坐标均为整数的点叫做格点,例如正方形的顶点,都是格点.要求在下列问题中仅用无刻度的直尺作图.(1)画出格点,连(或延长)交边于,使,写出点的坐标.(2)画出格点,连(或延长)交边于,使,则满足条件的格点有个.(★) 21 . 采用东阳南枣通过古法熬制而成的蜜枣是我们东阳的土特产之一,已知蜜枣每袋成本10元.试销后发现每袋的销售价(元)与日销售量(袋)之间的关系如下表:(元)152030…(袋)252010…若日销售量是销售价的一次函数,试求:(1)日销售量(袋)与销售价(元)的函数关系式. (2)要使这种蜜枣每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?(★★) 22 . 平行四边形的对角线相交于点,的外接圆交于点且圆心恰好落在边上,连接,若.(1)求证:为切线.(2)求的度数.(3)若的半径为1,求的长.(★★) 23 . 在平面直角坐标系中,已知,.(1)如图1,求的值.(2)把绕着点顺时针旋转,点、旋转后对应的点分别为、.①当恰好落在的延长线上时,如图2,求出点、的坐标.②若点是的中点,点是线段上的动点,如图3,在旋转过程中,请直接写出线段长的取值范围.(★★) 24 . 已知抛物线与轴交于,两点,与轴交于点.(1)填空:, .(2)如图1,已知,过点的直线与抛物线交于点、,且点、关于点对称,求直线的解析式.(3)如图2,已知,是第一象限内抛物线上一点,作轴于点,若与相似,请求出点的横坐标.。

浙教版2019--2020学年度第一学期期末考试九年级数学试卷

浙教版2019--2020学年度第一学期期末考试九年级数学试卷

试卷第1页,总8页绝密★启用前浙教版2019--2020学年度第一学期期末考试九年级数学试卷考试时间:100分钟;满分120分钟 一、单选题1.(3分)对于二次函数y=x 2-4x+7的图象,下列说法正确的是( )A .开口向下B .对称轴是x=-2C .顶点坐标是(2,3)D .与x 轴有两个交点2.(3分)现有两个可以自由转动的转盘,每个转盘分成三个相同的扇形,涂色情况如图所示,指针的位置固定,同时转动两个转盘,则转盘停止后指针指向同种颜色区域的概率是( )A .19B .16C .23D .133.(3分)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC ,若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为( )A .8cmB .4cmC .D .5cm4.(3分)已知:如图,小华在打羽毛球时,扣球要使球恰好能打过网,而且落在离网前4米的位置处,则球拍击球的高度h 应为( )试卷第2页,总8页A .1.55mB .3.1mC .3.55mD .4m5.(3分)飞机着陆后滑行的距离y (单位:m )关于滑行时间以(单位:)的函数解析式是y =6t ﹣32t 2.在飞机着陆滑行中,滑行最后的150m 所用的时间是( )s . A .10B .20C .30D .10或306.(3分)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,如果∠ACD =34°,那么∠BAD 等于( )A .34°B .46°C .56°D .66°7.(3分)如图,AB,CD 都垂直于x 轴,垂足分别为B,D,若A (6,3),C (2,1),则三角形OCD 与四边形ABCD 的面积比为( )A .1:2B .1:3C .1:4D .1:88.(3分)如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2)9.(3分)如图所示,矩形纸片ABCD 中,6AD cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧试卷第3页,总8页面和底面,则AB 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm10.(3分)如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④ 当-1<x<3时,y>0 其中正确的个数为()A .1B .2C .3D .4二、填空题11.(4分)在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同。

(浙教版)金华市2019届九年级上期末数学测试卷(含答案)

(浙教版)金华市2019届九年级上期末数学测试卷(含答案)

浙江省金华市2019届九年级上学期期末测试数学试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣2016的相反数是()A.B.C.6102 D.20162.四边形的内角和为()A.90°B.180°C.360°D.720°3.已知=,则的值是()A.B.C.D.4.将抛物线y=3x2向上平移1个单位,得到抛物线()A.y=3(x﹣1)2 B.y=3(x+1)2C.y=3x2﹣1 D.y=3x2+15.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(如图),则它的主视图是()A.图①B.图②C.图③D.图④6.在Rt△ABC中,∠ACB=Rt∠,BC=1,AB=2,则sinA的值为()A.B.C.D.7.已知半径为3的圆⊙O外有一条直线l,已知⊙O与直线l相切,则圆心到直线l的距离为()A.1 B.2 C.3 D.48.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为()A.B.C.D.9.如果正比例函数y=ax(a≠0)与反比例函数y=(b≠0 )的图象有两个交点,其中一个交点的坐标为(﹣3,﹣2),那么另一个交点的坐标为()A.(2,3)B.(3,﹣2)C.(﹣2,3)D.(3,2)10.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=C.当0<t≤10时,y=t2D.当t=12s时,△PBQ是等腰三角形二、填空题(共6小题,每小题4分,满分24分)11.函数中,自变量x的取值范围是.12.因式分解:ab2﹣64a=.13.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,若不计接缝和损耗,则圆锥底面半径为.14.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是.15.对任意两实数a、b,定义运算“*”如下:.根据这个规则,则方程2*x=9的解为.16.如图,梯形OABC中,BC∥AO,O(0,0),A(10,0),B(10,4),BC=2,G(t,0)是底边OA 上的动点.(1)tan∠OAC=.(2)边AB关于直线CG的对称线段为MN,若MN与△OAC的其中一边平行时,则t=.三、解答题(共8小题,满分66分)17.计算:.18.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.19.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).20.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形的面积S.21.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:(A组:x<155;B组:155≤x<160;C组:160≤x<165;D组165≤x<170;E组:x≥170)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组.(2)样本中,女生的身高在E组的人数有人.(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?22.阅读下列材料:小华遇到这样一个问题:已知:如图1,在△ABC中,三边的长分别为AB=,AC=,BC=2,求∠A的正切值.小华是这样解决问题的:如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点△ABC(△ABC三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和△ABC相似的格点△DEF,从而使问题得解.(1)如图2,△DEF中与∠A相等的角为,∠A的正切值为.(2)参考小华的方法请解决问题:若△LMN的三边分别为LM=2,MN=2,LN=2,求∠N的正切值.23.某公司装修需用A型板材240块,B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)m=,n=;(2)若裁完剩余的部分可以拼接成A型或B型板材使用,则至少需要几张标准板材?(3)若裁完剩余的部分不能拼接成A型或B型板材使用,已知用170张标准板材,可以完成装修任务.请通过计算写出两种剪裁方案(要求:①其中一种方案三种剪裁方法都使用,另一种方案只用到两种剪裁方法;②每种方案需写出使用各种裁剪方法裁剪标准板的张数).24.在平面直角坐标系中,O是坐标原点,矩OABC的位置如图所示,点A,C的坐标分别为(10,0),(0,8),点P是y轴上的一个动点,将△OAP沿AP翻折得到:△O′AP,直线BC与直线O′P交于点E,与直线O′A交于点F.(1)当O′落在直线BC上时,求折痕AP的长.(2)当点P在y轴正半轴上时,若△PCE与△POA相似,求直线AP的解析式;(3)在点P的运动过程中,是否存在某一时刻,使得?若存在,求点P坐标;若不存在,请说明理由.浙江省金华市婺城区2018届九年级上学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣2016的相反数是()A.B.C.6102 D.2016【考点】相反数.【分析】根据相反数的定义回答即可.【解答】解:﹣2016的相反数是2016.故选;D.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.四边形的内角和为()A.90°B.180°C.360°D.720°【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180°(n≥3)且n为整数)进行计算即可.【解答】解:四边形的内角和为180°(4﹣2)=360°,故选:C.【点评】此题主要考查了多边形内角,关键是掌握多边形内角和计算公式.3.已知=,则的值是()A.B.C.D.【考点】比例的性质.【分析】根据合比性质,可得的值,再根据反比性质,可得答案.【解答】解:由合比性质,得=,由反比性质,得=,故选:A.【点评】本题考查了比例的性质,利用了和比性质:=⇒=,又利用了反比性质:=⇒=.4.将抛物线y=3x2向上平移1个单位,得到抛物线()A.y=3(x﹣1)2 B.y=3(x+1)2C.y=3x2﹣1 D.y=3x2+1【考点】二次函数图象与几何变换.【分析】因为函数y=3x2的图象沿y轴向上平移1个单位长度,所以根据左加右减,上加下减的规律,直接在函数上加1可得新函数y=3x2+1.【解答】解:∵函数y=3x2的图象沿y轴向上平移1个单位长度.∴y=3x2+1.故选:D.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.5.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(如图),则它的主视图是()A.图①B.图②C.图③D.图④【考点】简单组合体的三视图.【分析】先细心观察原立体图形中圆柱和正方体的位置关系,找到从正面看所得到的图形即可.【解答】解:圆柱的主视图是矩形,正方体的主视图是正方形,所以它们的主视图是图②.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.在Rt△ABC中,∠ACB=Rt∠,BC=1,AB=2,则sinA的值为()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据正弦的定义进行计算即可.【解答】解:∵∠ACB=Rt∠,BC=1,AB=2,∴sinA==,故选:A.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.已知半径为3的圆⊙O外有一条直线l,已知⊙O与直线l相切,则圆心到直线l的距离为()A.1 B.2 C.3 D.4【考点】直线与圆的位置关系.【分析】连接OP,根据切线的性质得出OP⊥AB,根据垂线段最短得出OP的长最短,得出选项即可.【解答】解:连接OP,∵直线AB切⊙O于P,∴OP⊥AB,即OP的长是圆心到直线的最短距离,∴OP=3,故选C.【点评】本题考查了点到直线的距离,切线的性质,直线和圆的位置关系的应用,解此题的关键是找出OP 的位置,难度适中.8.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球恰好是一个黄球和一个红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两球恰好是一个黄球和一个红球的有6种情况,∴两球恰好是一个黄球和一个红球的为:=.故选A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.如果正比例函数y=ax(a≠0)与反比例函数y=(b≠0 )的图象有两个交点,其中一个交点的坐标为(﹣3,﹣2),那么另一个交点的坐标为()A.(2,3)B.(3,﹣2)C.(﹣2,3)D.(3,2)【考点】反比例函数图象的对称性.【专题】常规题型.【分析】利用待定系数法求出两函数解析式,然后联立两解析式,解方程组即可得到另一交点的坐标;或根据两交点关于原点对称求解.【解答】解:由题设知,﹣2=a•(﹣3),(﹣3)•(﹣2)=b,解得a=,b=6,联立方程组得,解得,,所以另一个交点的坐标为(3,2).或:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).故选:D.【点评】本题考查了反比例函数图象的对称性,联立两函数解析式求交点坐标是常用的方法,也是基本的方法,需熟练掌握,另外,利用对称性求解更简单,且不容易出错.10.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=C.当0<t≤10时,y=t2D.当t=12s时,△PBQ是等腰三角形【考点】动点问题的函数图象.【专题】压轴题.【分析】由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;(2)在ED段,y=40是定值,持续时间4s,则ED=4;(3)在DC段,y持续减小直至为0,y是t的一次函数.【解答】解:(1)结论A正确.理由如下:分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm;(2)结论B正确.理由如下:如答图1所示,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,S△BEC=40=BC•EF=×10×EF,∴EF=8,∴sin∠EBC===;(3)结论C正确.理由如下:如答图2所示,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴y=S△BPQ=BQ•PG=BQ•BP•sin∠EBC=t•t•=t2.(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.此时AN=8,ND=2,由勾股定理求得:NB=,NC=,∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.【点评】本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.二、填空题(共6小题,每小题4分,满分24分)11.函数中,自变量x的取值范围是x≠1.【考点】函数自变量的取值范围;分式有意义的条件.【分析】分式的意义可知分母:就可以求出x的范围.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.因式分解:ab2﹣64a=a(b+8)(b﹣8).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据平方差公式进行二次分解即可求得答案,注意分解要彻底.【解答】解:ab2﹣64a=a(b2﹣64)=a(b+8)(b﹣8).故答案为:a(b+8)(b﹣8).【点评】本题考查了提公因式法,公式法分解因式的知识.注意因式分解的步骤:先提公因式,再利用公式法分解,注意分解要彻底.13.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,若不计接缝和损耗,则圆锥底面半径为10cm.【考点】圆锥的计算.【分析】由于弧长=圆锥底面周长==20π,故由底面周长公式可求得圆锥底面的半径.【解答】解:由题意知:圆锥底面周长==20πcm,圆锥底面的半径=20π÷2π=10cm.故答案为:10cm.【点评】此题主要考查了圆锥的计算,用到的知识点为:弧长=圆锥底面周长;底面半径=底面周长÷2π.14.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是3n+4.【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;【解答】方法一:解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;故答案为:3n+4方法二:当n=1时,s=7,当n=2时,s=10,当n=3时,s=13,经观察,此数列为一阶等差,∴设s=kn+b,,∴,∴s=3n+4.【点评】此题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.15.对任意两实数a、b,定义运算“*”如下:.根据这个规则,则方程2*x=9的解为x=﹣3或.【考点】一元二次方程的应用.【专题】新定义.【分析】根据题意可得2*x=9要分两种情况讨论:①当x≤2时②当x>2时,分别代入数计算可得到x的值,要根据条件进行取舍.【解答】解:由题意得:当x≤2时,2*x=x2=9,解得:x1=3(不合题意舍去),x2=﹣3,则x=﹣3,当x>2时:2*x=x2+x=9,解得:x1=,x2=(不合题意舍去),则x=,故答案为:x=﹣3或.【点评】此题主要考查了一元二次方程的应用,关键是看懂公式所表示的意义,根据公式列出一元二次方程.16.如图,梯形OABC中,BC∥AO,O(0,0),A(10,0),B(10,4),BC=2,G(t,0)是底边OA 上的动点.(1)tan∠OAC=.(2)边AB关于直线CG的对称线段为MN,若MN与△OAC的其中一边平行时,则t=4或4或10﹣2.【考点】梯形;坐标与图形性质;轴对称的性质.【分析】(1)根据∠OAC=∠ACB求出tan∠ACB即可.(2)分①A′B′∥OA②A′B′∥AC③A′B′∥OC三种情形讨论即可.【解答】解:(1)∵BC∥AO,∴∠OAC=∠ACB,∵AB=4,BC=2,∴tan∠OAC=tan∠ACB===.故答案为.(2)情形①图1中,当A′B′∥OA时,作CD⊥OA垂足为D,∵∠BCB′=90°,CG平分∠BCB′,∴∠GCD=∠NCB′=45°∴△CGD是等腰直角三角形,∴DG=CD=4,t=OG=OD﹣GD=8﹣4=4.情形②图2中,A′B′∥AC,∵OC=4,AC=2,AO=10,∴AO2=OC2+AC2,∴∠OCA=90°,∵A′B′∥AC,∠A′B′C=90°,∴点B′在线段OC上,∵CG平分∠BCB′,BC∥OA,∴∠BCG=∠OGC=∠OCG,∴OG=OC==4,∴t=4.情形③图3中,A′B′∥OC时,∵CG平分∠BCB′,BC∥OA,∴∠ACG=∠B′CE=′BCE=′AGC,∴AG=AC==2,∴t=CG=AO﹣AG=10﹣2.故答案为4或4或10﹣2.【点评】本题考查平面直角坐标系、对称的性质、勾股定理等知识,正确画出图象是解题的关键,学会分类讨论,注意不能漏解.三、解答题(共8小题,满分66分)17.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+2+2×﹣=1+2+﹣=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质;平行四边形的判定与性质.【专题】证明题.【分析】(1)运用AAS证明△ABD≌△CAE;(2)易证四边形ADCE是矩形,所以AC=DE=AB,也可证四边形ABDE是平行四边形得到AB=DE.【解答】证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.【点评】本题主要考查了三角形全等的判定与性质,矩形的判定与性质以及平行四边形的判定与性质,难度不大,比较灵活.19.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题.【分析】设EC=x,则在RT△BCE中,可表示出BE,在Rt△ACE中,可表示出AE,继而根据AB+BE=AE,可得出方程,解出即可得出答案.【解答】解:设EC=x,在Rt△BCE中,tan∠EBC=,则BE==x,在Rt△ACE中,tan∠EAC=,则AE==x,∵AB+BE=AE,∴300+x=x,解得:x=1800,这座山的高度CD=DE﹣EC=3700﹣1800=1900(米).答:这座山的高度是1900米.【点评】此题考查了解直角三角形的应用,解答本题的关键是两次利用三角函数的知识,求出BE及AE的表达式,属于基础题,要能将实际问题转化为数学计算.20.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形的面积S.【考点】扇形面积的计算;含30度角的直角三角形;垂径定理;圆周角定理.【分析】(1)根据∠D=60°,可得出∠B=60°,继而求出BC,判断出OE是△ABC的中位线,就可得出OE 的长;(2)连接OC,将阴影部分的面积转化为扇形FOC的面积.【解答】解:(1)∵∠D=60°,∴∠B=60°(圆周角定理),又∵AB=6,∴BC=3,∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE∥BC,又∵点O是AB中点,∴OE是△ABC的中位线,∴OE=BC=;(2)连接OC,则易得△COE≌△AFE,故阴影部分的面积=扇形FOC的面积,==π.S扇形FOC即可得阴影部分的面积为π.【点评】本题考查了扇形的面积计算、含30°角的直角三角形的计算及圆周角定理及垂径定理的知识,综合考察的知识点比较多,难点在第二问,注意将不规则图形转化为规则图形.21.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:(A组:x<155;B组:155≤x<160;C组:160≤x<165;D组165≤x<170;E组:x≥170)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在B组,中位数在C组.(2)样本中,女生的身高在E组的人数有2人.(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图;中位数;众数.【分析】(1)根据众数和中位数的概念进行解答;(2)根据男生和女生的人数相等求出女生人数,求出女生的身高在E组的人数的百分比,计算即可;(3)求出身高在160≤x<170之间女生人数和男生人数即可.【解答】解:(1)男生身高在B组的人数最多,所以男生的身高众数在B组,男生人数为4+12+10+8+6=40,∴中位数是第20和21个数的平均数,所以中位数在C组;(2)女生的身高在E组的人数为40×(1﹣17.5%﹣37.5%﹣25%﹣15%)=2人;(3)400×+380×40%=332人,答:身高在160≤x<170之间的学生约有332人.【点评】本题考查的是频数分布直方图,掌握用样本估计总体的方法、正确读懂扇形图的信息、理解中位数和众数的概念是解题的关键.22.阅读下列材料:小华遇到这样一个问题:已知:如图1,在△ABC中,三边的长分别为AB=,AC=,BC=2,求∠A的正切值.小华是这样解决问题的:如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点△ABC(△ABC三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和△ABC相似的格点△DEF,从而使问题得解.(1)如图2,△DEF中与∠A相等的角为∠D,∠A的正切值为.(2)参考小华的方法请解决问题:若△LMN的三边分别为LM=2,MN=2,LN=2,求∠N的正切值.【考点】作图—相似变换.【分析】(1)先证明△DEF∽△ACB得∠D=∠A,根据tan∠A=tan∠D即可解决.(2)构造一个△RKT∽△MLN得∠T=∠N,根据tan∠N=tan∠T即可解决.【解答】解:(1)由图2 可知DE=2,EF=2,DF=2,AB=,AC=,BC=2,∵,∴△DEF∽△ACB,∴∠D=∠A,∴tan∠A=tan∠D=,故答案分别为∠D,(2)在图3中,作一个△RKT,使得PK=,RT=,KT=5,∵LM=2,NM=2,LN=2,∴=,∴△RKT∽△MLN,∴∠T=∠N,∴tan∠N=tan∠T=.【点评】本题考查相似三角形的判定和性质、勾股定理、三角函数的定义等知识,学会用转化的数学思想解决问题,构造一个三角形和已知三角形相似是解题的关键.23.某公司装修需用A型板材240块,B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图),;(2)若裁完剩余的部分可以拼接成A型或B型板材使用,则至少需要几张标准板材?(3)若裁完剩余的部分不能拼接成A型或B型板材使用,已知用170张标准板材,可以完成装修任务.请通过计算写出两种剪裁方案(要求:①其中一种方案三种剪裁方法都使用,另一种方案只用到两种剪裁方法;②每种方案需写出使用各种裁剪方法裁剪标准板的张数).【考点】二元一次方程组的应用.【分析】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块B型板材块的长为160cm>150所以无法裁出4块B型板;(2)根据裁法一和裁法二及裁法三的剩余量分析得出至少需要2张板材;(3)设裁法一用x张,裁法二用y张,则裁法三用(170﹣x﹣y)张,列出方程组解答即可.【解答】解:(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150cm,所以无法裁出4块B型板;则m=0,n=3;(2)裁法一的剩余量是150﹣60﹣40﹣40=10裁法二的剩余量是150﹣60﹣60=30;裁法三的剩余量是150﹣40﹣40﹣40=30;拼接成A型可用裁法二和裁法三共2张,拼接成B型可用裁法一和裁法二共2张,故可得至少需2张板材;(3)方案一:三种裁法都用,设裁法一用x张,裁法二用y张,则裁法三用(170﹣x﹣y)张,列出方程组解得:答:裁法一用60张,裁法二用90张,裁法三用20张,共用170张;方案二:用裁法一用x张,裁法二用y张,列出方程组解得:答:裁法一用90张,裁法二用75张,共用165张【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,在做题时要明缺所裁出A型板材和B型板材的总张数不能超过170张.24.在平面直角坐标系中,O是坐标原点,矩OABC的位置如图所示,点A,C的坐标分别为(10,0),(0,8),点P是y轴上的一个动点,将△OAP沿AP翻折得到:△O′AP,直线BC与直线O′P交于点E,与直线O′A交于点F.(1)当O′落在直线BC上时,求折痕AP的长.(2)当点P在y轴正半轴上时,若△PCE与△POA相似,求直线AP的解析式;(3)在点P的运动过程中,是否存在某一时刻,使得?若存在,求点P坐标;若不存在,请说明理由.【考点】相似形综合题.【分析】(1)先在RT△ABO′求出BO′,设PO=PO′=x,在RT△PCO′中利用勾股定理解决即可.(2)当∠CPE=∠APO时得∠CPE=∠APO=∠APO′=60°求出OP=OA即可.当∠CPE=∠OAP时,∠CEP=∠APO=∠APO′,此时AP∥EC,显然不可能.(3)分四种情形讨论,在RT△PCE中利用E2=PC2+CE2列出方程求解.【解答】解:(1)图1,当O′落在直线BC上时,在RT△ABO′中,∵AO′=10,AB=8,∴BO′===6,∵△APO′是由△AOP翻折,∴可以设PO=PO′=x,在RT△PCO′中,∵PO′2=PC2+CO′2,∴x2=(8﹣x)2+42,∴x=5,∴AP===5,(2)当∠CPE=∠APO时,∵∠CPE=∠APO=∠APO′=60°,∴OP=OA=,设直线AP为y=kx+b,由题意解得,∴直线AP为y=﹣x+.当∠CPE=∠OAP时,∠CEP=∠APO=∠APO′,此时AP∥EC,显然不可能.(3)情形1如图2中,∵CE=BC=2,∴BE=8,AE==8,EO′==2,设OP=x,在RT△PCE中,∵PE2=PC2+CE2,∴(x﹣2)2=(8﹣x)2+22,∴x=,此时P[0,],情形2如图3中,同理O′E=2,设OP=x,在RT△PCE中,∵PE2=PC2+CE2,∴(x+2)2=(8﹣x)2+22,∴x=,此时P[0,],情形3如图4中,AE===4,EO′==6,设OP=x,在RT△PCE中,∵PE2=PC2+CE2,∴(6﹣x)2=(x﹣8)2+22,∴x=,此时P[0,],情形4如图5中,设OP=x,在RT△PCE中,∵PE2=PC2+CE2,∴(6﹣x)2=(x+8)2+22,∴x=,此时P[0,].【点评】本题考查矩形的性质、勾股定理等知识,用到转化的思想,分类讨论的方法,灵活运用勾股定理是解题的关键,分类讨论时考虑问题要全面.。

浙江省金华市2019-2020学年九年级第一学期期末统考数学试卷

浙江省金华市2019-2020学年九年级第一学期期末统考数学试卷

2019学年第一学期初三数学调研测试试题卷一、选择题。

1.下列各数属于无理数的是…………………………………()A. B. C. 0 D. 12.据国家外汇管理局公布的数据,截止2019年9月末,我国外汇储备规模为30924亿美元较年初上升197 亿美元,升幅0.6%. 数据30924亿用科学记数法表…………()A. B. C. D.3.计算………………………………………………………………()A. B. C. D.4.下列几何图形中,既是轴对称图形,又是中心对称图形的是………()A.等腰三角形B.正三角形C.平行四边形D.正方形5.下列函数中,y的值随着x逐渐增大而减小的是……………………()A. B. C. D.6.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是()A.众数是6吨B.平均数是5吨C. 中位数是5吨D. 方差是34(第6题图)(第8题图)(第9题图)2481030924⨯12100924.3⨯11100924.3⨯13100924.3⨯ba79ba7379ba79baxy2=2xy=xy2-=xy-=17. 把多项式分解因式,结果正确的是………………………( )A. B. C. D.8.通过计算几何图形的面积可表示化数但等式,图中可表示的代数恒等式…………( )A. B.C. D.9.把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图所示的方式叠放在-一起,延长LG 交AF 于点P ,则∠APG ……………………( )A.144B.141°C.147°D.15010.使用家用燃气灶烧开同一壶水所需的燃气量(单位: )与旋钮的旋转角度(单位:度) (0°<≤90°)近似满足函数关系,如图记录了某种家用燃气灶烧开同壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约…………………………………( )A. 18°B.36°C.41°D.58°二、填空题。

2019-2020学年浙教版九年级上学期期末数学试卷(含答案)

2019-2020学年浙教版九年级上学期期末数学试卷(含答案)

2019-2020学年九年级(上)期末数学试卷一、选择题(本题有10小题,每小题4分,共40分)1.小明同学在街头观察出下列四种汽车标志,其中是中心对称图形的是()A.B.C.D.2.下列事件中是必然事件的是()A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹骑自行车上学,轮胎被钉子扎坏C.小红期末考试数学成绩得满分D.画一个三角形,其内角和是180°3.判断一元二次方程x2+2x﹣6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.抛物线y=(x﹣3)2+2的顶点坐标是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(3,2)5.为了展示台州市的自然、人文风光,提高城市知名度,更好地彰显马拉松体育精神,台州市连续三年举办马拉松邀请赛,参加人数逐年增加,2015年参加人数约是10000人,到2017年增加到15000人.设参加人数每年增长率为x,由题意,所列方程正确的是()A.10000(1+x)=15000B.10000(1+x)2=15000C.10000(1+2x)=15000D.15000(1+x)2=100006.如图,反比例函数(x>0)的图象上一动点B,点A是x轴上一个定点.当点B的横坐标逐渐变大的过程中,△OAB的面积()A.不变B.逐渐变大C.逐渐变小D.无法判断7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°8.如图,点P是直线l外一个定点,点A为直线l上一个定点,点P关于直线l的对称点记为P1,将直线l绕点A顺时针旋转30°得到直线l′,此时点P2与点P关于直线l′对称,则∠P1AP2等于()A.30°B.45°C.60°D.75°9.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,则菱形ABCD沿x轴正方向平移的距离()A.B.C.D.10.当1≤x≤2时,函数y=(x﹣a)2+1有最小值2,则a的所有可能取值为()A.0或2B.1或3C.1或2D.0或3二、填空题(本题有6小题,每小题5分,共30分)11.请你写出一个有一根为0的一元二次方程:.12.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出红色笔芯的概率是.13.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为.14.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,CD=10,EM=25,则⊙O的半径.15.如图,正△ABC在正方形EFGH内,顶点A与E重合,点B在EF上,将正△ABC沿正方形EFGH的内壁作无滑动的滚动.已知正△ABC边长为1,正方形EFGH边长为2,当滚动一周回到原位置时,点C运动的路径长为.16.正方形ABCD,边长为4,E是边BC上的一动点,连DE,取DE中点G,将GE绕E 顺时针旋转90°到EF,连接CF,当CE为时,CF取得最小值.三、解答题(本题有8小题,共80分)17.解下列方程(1)4x2﹣81=0(2)x2﹣x﹣1=018.在平面直角坐标系中,△ABC的位置如图,网格中小正方形的边长为1,点A坐标为(1,2),请解答下列问题:(1)直接写出点B,C两点的坐标;(2)将△ABC向下平移3个单位得到△A1B1C1,作出平移后的△A1B1C1;(3)作出△ABC绕点O的逆时针旋转90°,得到△A2B2C2,作出旋转后的△A2B2C2.19.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.20.如图,正比例函数y1=x的图象与反比例函数(k≠0)的图象相交于A、B两点,点A的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当y1>y2时,自变量x的取值范围.21.某商场购进某种商品时的单价是40元,根据市场调查:在一段时间内,销售单价是60元时,销售量是300件,而销售单价每涨1元,就会少售出10件.(1)设该种商品的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润W元,并把结果填写在表格中:(2)在(1)的条件下,若商场获得了4000元销售利润,求该商品销售单价x应定为多少元?(3)当定价多少时,该商场获得的最大利润,最大利润是多少元?22.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,AD∥BC,连接OD,AC.(1)求证:△ABC∽△DCA;(2)若AC=2,BC=4,求DO的长.23.如图1,已知抛物线y=x2+bx﹣3(b是常数)与x轴交与A,B两点,与y轴交于点C,且点A坐标为(﹣1,0).(1)求该拋物线的解析式和对称轴;(2)如图2,抛物线的对称轴与x轴交于点D,在对称轴上找一个点E,使△OAC与△ODE相似,直接写出点E的坐标;(3)如图3,平行于x轴的直线与抛物线交于P(x1,y1),Q(x2,y2)两点,与直线BC交于点N(x3,y3).若x1<x2<x3时,结合图象,求x1+x2+x3的取值范围.24.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为度,x轴关于线段AB的视角为度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF=1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P(,2),Q(+1,1),直线y=ax+b(a >0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分)1.小明同学在街头观察出下列四种汽车标志,其中是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、是中心对称图形;D、不是中心对称图形;故选:C.2.下列事件中是必然事件的是()A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹骑自行车上学,轮胎被钉子扎坏C.小红期末考试数学成绩得满分D.画一个三角形,其内角和是180°【解答】解:A、从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球是随机事件;B、小丹骑自行车上学,轮胎被钉子扎坏是随机事件;C、小红期末考试数学成绩得满分是随机事件;D、画一个三角形,其内角和是180°是必然事件;故选:D.3.判断一元二次方程x2+2x﹣6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【解答】解:△=4+24>0,故选:A.4.抛物线y=(x﹣3)2+2的顶点坐标是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(3,2)【解答】解:∵y=(x﹣3)2+2,∴该函数的顶点坐标是(3,2),故选:D.5.为了展示台州市的自然、人文风光,提高城市知名度,更好地彰显马拉松体育精神,台州市连续三年举办马拉松邀请赛,参加人数逐年增加,2015年参加人数约是10000人,到2017年增加到15000人.设参加人数每年增长率为x,由题意,所列方程正确的是()A.10000(1+x)=15000B.10000(1+x)2=15000C.10000(1+2x)=15000D.15000(1+x)2=10000【解答】解:设参加人数每年增长率为x,根据题意即可列出方程1000(1+x)2=15000.故选:B.6.如图,反比例函数(x>0)的图象上一动点B,点A是x轴上一个定点.当点B的横坐标逐渐变大的过程中,△OAB的面积()A.不变B.逐渐变大C.逐渐变小D.无法判断【解答】解:由图可知,反比例函数y=的函数值y随x的增大而减小,所以,点B的横坐标逐渐变大则,点B的纵坐标逐渐减小,∵△AOB的底边OA不变,∴面积随点B的纵坐标的变化而变化,∴△OAB的面积将逐渐减小.故选:C.7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°【解答】解:∵∠BOD=100°,∴∠A=∠BOD=50°,∵∠B=60°,∴∠C=180°﹣∠A﹣∠B=70°.故选:C.8.如图,点P是直线l外一个定点,点A为直线l上一个定点,点P关于直线l的对称点记为P1,将直线l绕点A顺时针旋转30°得到直线l′,此时点P2与点P关于直线l′对称,则∠P1AP2等于()A.30°B.45°C.60°D.75°【解答】解:如图,∵点P关于直线l的对称点记为P1,点P2与点P关于直线l′对称,∴∠P1AD=∠PAD,∠PAC=∠P1AC,∵∠BAC=30°,∴∠DAC=150°,∴∠DAP1+P2AC=150°,∠DAP1+∠P2AB=150°﹣30°=120°,∴∠P1AP2=180°﹣120°=60°,故选:C.9.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,则菱形ABCD沿x轴正方向平移的距离()A.B.C.D.【解答】解:过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴反比例函数为y=,将菱形ABCD沿x轴正方向平移,使得点D落在函数y=(x>0)的图象D′点处,过点D′作x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3,∵点D′在y=(x>0)的图象上∴3=,解得:x=,即OF′=,∴FF′=﹣4=,∴菱形ABCD平移的距离为,故选:B.10.当1≤x≤2时,函数y=(x﹣a)2+1有最小值2,则a的所有可能取值为()A.0或2B.1或3C.1或2D.0或3【解答】解:函数y=(x﹣a)2+1在x=a时取得最小值1,而当1≤x≤2时,函数y=(x﹣a)2+1有最小值2,∴a<1或a>2,四选项中满足此条件的只有0或3,故选:D.二、填空题(本题有6小题,每小题5分,共30分)11.请你写出一个有一根为0的一元二次方程:x2﹣4x=0.【解答】解:设方程的另一根为4,则根据因式分解法可得方程为x(x﹣4)=0,即x2﹣4x=0;本题答案不唯一.12.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出红色笔芯的概率是.【解答】解:因为全部是3+2=5支笔,3支红色笔芯,所以从中任意拿出一支笔芯,拿出红色笔芯的概率是.故答案为13.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为y=(x﹣2)2+3.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向上平移2个单位,再向右平移3个单位得到的点的坐标为(2,3),所以平移后抛物线的解析式为y=(x﹣2)2+3.故答案为:y=(x﹣2)2+3.14.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,CD=10,EM=25,则⊙O的半径13.【解答】解:连接OC,∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,又CD=10则有:CM=CD=5,设圆的半径是x米,在Rt△COM中,有OC2=CM2+OM2,即:x2=52+(25﹣x)2,解得:x=13,故答案为:13.15.如图,正△ABC在正方形EFGH内,顶点A与E重合,点B在EF上,将正△ABC沿正方形EFGH的内壁作无滑动的滚动.已知正△ABC边长为1,正方形EFGH边长为2,当滚动一周回到原位置时,点C运动的路径长为π.【解答】解:如图,如图点C的运动轨迹是图中的红线.路径长=3×+2×=2π+π=π,故答案为π.16.正方形ABCD,边长为4,E是边BC上的一动点,连DE,取DE中点G,将GE绕E顺时针旋转90°到EF,连接CF,当CE为时,CF取得最小值.【解答】解:作GM⊥BC于M,FN⊥BC于N,如图所示:则GM∥CD,∵四边形ABCD是正方形,∴BC=CD=4,∵G是DE的中点,∴GM是△CDE是中位线,∴CM=EM,GM=CD=2,由旋转的性质得:EF=EG,∠GEF=90°,即∠GEM+∠FEN=90°,∵∠GEM+∠EGM=90°,∴∠EGM=∠FEN,在△GEM和△EFN中,,∴△GEM≌△EFN(AAS),∴GM=EN=2,EM=FN,设CE=x,则CM=EM=FN=x,在Rt△CFN中,由勾股定理得:CF2=CN2+FN2=(x﹣2)2+(x)2=x2﹣4x+4=(x ﹣)2+,∴当x=时,CF的最小值==;故答案为:.三、解答题(本题有8小题,共80分)17.解下列方程(1)4x2﹣81=0(2)x2﹣x﹣1=0【解答】解:(1)∵4x2﹣81=0,∴x2=,∴x=±;(2)∵x2﹣x﹣1=0,∴a=1,b=﹣1,c=﹣1,∴△=1+4=5,∴x=18.在平面直角坐标系中,△ABC的位置如图,网格中小正方形的边长为1,点A坐标为(1,2),请解答下列问题:(1)直接写出点B,C两点的坐标;(2)将△ABC向下平移3个单位得到△A1B1C1,作出平移后的△A1B1C1;(3)作出△ABC绕点O的逆时针旋转90°,得到△A2B2C2,作出旋转后的△A2B2C2.【解答】解:(1)由图知,点B的坐标为(4,3)、C(5,1);(2)如图所示,△A1B1C1即为所求.(3)如图所示,△A2B2C2即为所求.19.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.【解答】解:(1)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号相同的有4种,所有两次摸出的小球标号相同的概率为=;(2)因为两次取出的小球标号的和等于4的有3种,所以其概率为.20.如图,正比例函数y1=x的图象与反比例函数(k≠0)的图象相交于A、B两点,点A的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当y1>y2时,自变量x的取值范围.【解答】解:(1)设A点的坐标为(m,2),代入y1=x得:m=2,∴点A的坐标为(2,2),∴k=2×2=4,∴反比例函数的解析式为y2=;(2)当y1=y2时,x=,解得:x=±2,∴点B的坐标为(﹣2,﹣2),则由图象可知,当y1>y2时,自变量x的取值范围是:﹣2<x<0或x>2.21.某商场购进某种商品时的单价是40元,根据市场调查:在一段时间内,销售单价是60元时,销售量是300件,而销售单价每涨1元,就会少售出10件.(1)设该种商品的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y 件和销售该品牌玩具获得利润W元,并把结果填写在表格中:(2)在(1)的条件下,若商场获得了4000元销售利润,求该商品销售单价x应定为多少元?(3)当定价多少时,该商场获得的最大利润,最大利润是多少元?【解答】解:(1)由题意得,销售量为:300﹣10(x﹣60)=900﹣10x,销售获服装得利润为:(x﹣40)(900﹣10x)=﹣10x2+1300x﹣36000;(2)列方程得:﹣10x2+1300x﹣36000=4000,解得:x1=50,x2=80.答:玩具销售单价为50元或80元时,可获得4000元销售利润;(3)w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+6250,所以当定价为65元时的利润最大,最大利润为6250元.故答案为:900﹣10x,﹣10x2+1300x﹣36000.22.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,AD∥BC,连接OD,AC.(1)求证:△ABC∽△DCA;(2)若AC=2,BC=4,求DO的长.【解答】解:(1)证明:如图,连接OC,∵CD与⊙O相切∴∠OCD=90°,∴∠DCA+∠OCA=90°,∵AB为直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∴∠DCA=∠BCO,∵OC=OB,∴∠BCO=∠CBO,∴∠ABC=∠DCA,∴△ABC∽△DCA;(2)∵△ABC∽△DCA,∴=,∴=,∴DA=5,在Rt△ADC中,DC===3,在Rt△ABC中,AB==6,∴CO=3,在Rt△OCD中,OD==3,∴DO的长为3.23.如图1,已知抛物线y=x2+bx﹣3(b是常数)与x轴交与A,B两点,与y轴交于点C,且点A坐标为(﹣1,0).(1)求该拋物线的解析式和对称轴;(2)如图2,抛物线的对称轴与x轴交于点D,在对称轴上找一个点E,使△OAC与△ODE相似,直接写出点E的坐标;(3)如图3,平行于x轴的直线与抛物线交于P(x1,y1),Q(x2,y2)两点,与直线BC交于点N(x3,y3).若x1<x2<x3时,结合图象,求x1+x2+x3的取值范围.【解答】解:(1)∵抛物线y=x2+bx﹣3(b是常数)与x轴交与A,B两点,∴0=1﹣b﹣3∴b=﹣2,∴抛物线解析式为:y=x2﹣2x﹣3,当y=0时,x1=﹣1,x2=3,∴B(3,0)∴对称轴为直线x=1;(2)∵抛物线y=x2﹣2x﹣3与y轴交于点C,∴点C(0,﹣3),且点A坐标为(﹣1,0),∴OA=1,OB=3,∵△OAC与△ODE相似,且∠AOC=∠ODE=90°,∴或,∴DE=3或,∴点E(1,﹣3)或(1,3)或(1,)或(1,﹣),(3)∵点B(3,0),点C(0,﹣3)∴直线BC的解析式为:y=x﹣3,∵平行于x轴的直线与抛物线交于P(x1,y1),Q(x2,y2)两点,∴点P,点Q关于对称轴对称,∴x1+x2=2,∵x1<x2<x3,∴直线PQ在AB的上方,∴x3>3,∴x1+x2+x3>5.24.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为45度,x轴关于线段AB的视角为45度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF=1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P(,2),Q(+1,1),直线y=ax+b(a >0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.【解答】解:(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线,OQ=1,OM=2,故直线的倾斜角为30°,故k=;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(﹣1,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y=x+b,将点Q′的坐标代入上式并解得:直线的表达式为:y=x+﹣2。

浙江省金华市上学期期末考试九年级数学试卷(解析版)

浙江省金华市上学期期末考试九年级数学试卷(解析版)

浙江省金华市2019-2019学年上学期期末考试九年级数学试卷一、仔细选一选(本题共10小题,每3分,共30分)1.(3分)下列y关于x的函数中,属于二次函数的是()A.y=x﹣1 B.y=C.y=(x﹣1)2﹣x2D.y=﹣2x2+1【专题】函数思想.【分析】整理成一般形式,根据二次函数定义即可解答.【解答】解:A、该函数中自变量x的次数是1,属于一次函数,故本选项错误;B、该函数是反比例函数,故本选项错误;C、由已知函数关系式得到:y=-2x+1,属于一次函数,故本选项错误;D、该函数符合二次函数定义,故本选项正确.故选:D.【点评】考查了二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.2.(3分)已知2x=5y(y≠0),则下列比例式成立的是()A.B.C.D.【分析】本题须根据比例的基本性质对每一项进行分析即可得出正确结论.【解答】解:∵2x=5y,∴故选:B.【点评】本题主要考查了比例的性质,在解题时要能根据比例的性质对式子进行变形是本题的关键.3.(3分)如图,将长方体表面展开,下列选项中错误的是()A.B.C.D.【分析】长方体的表面展开图的特点,有四个长方形的侧面和上下两个底面组成.【解答】解:A、是长方体平面展开图,不符合题意;B、是长方体平面展开图,不符合题意;C、有两个面重合,不是长方体平面展开图,不符合题意;D、是长方体平面展开图,不符合题意.故选:C.【点评】本题考查的是长方体的展开图,关键是要注意上下底面的长和宽是否可以围成长方体.4.(3分)如图,点A、B、C是⊙O上的点,∠AOB=80°,则∠ACB的度数是()A.30°B.40°C.45°D.80°5.(3分)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.6.(3分)正三角形外接圆的半径为2,那么它内切圆的半径为()A.1 B. C. D.2【分析】由正三角形外接圆的半径和它的内切圆的数量关系直接得到.【解答】解:等边三角形的外接圆半径是它的内切圆半径的2倍,所以当正三角形外接圆的半径为2时,它的内切圆的半径为1.故选A.【点评】熟练掌握等边三角形的有关性质.特别记住等边三角形的内切圆半径,外接圆半径和它的高的比(1:2:3).7.(3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30°B.45°C.60°D.90°【专题】压轴题.【点评】本题考查了扇形的弧长公式,是一个基础题.8.(3分)如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是()A.cm B.cm C.cm D.cm【专题】压轴题.【分析】【解答】解:以BC上一点O为圆心的圆经过A、D两点,则OA=OD,△AOD 是等腰直角三角形.易证△ABO≌△OCD,则OB=CD=4cm.在直角△ABO中,根据勾股定理得到OA2=20;在等腰直角△OAD中,过圆心O作弦AD的垂线OP.故选:B.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.9.(3分)一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形,正四边形,正六边形,则另外一个为()A.正三角形B.正四边形C.正五边形D.正六边形【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明才可能进行平面镶嵌;反之,则说明不能进行平面镶嵌.【解答】解:∵正三角形、正四边形、正六边形的内角分别为60°、90°、120°,又∵360°-60°-90°-120°=90°,∴另一个为正四边形,故选:B.【点评】本题考查平面密铺的知识,难度一般,解决此类题,可以记住几个常用正多边形的内角,及能够用多种正多边形镶嵌的几个组合.10.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③ B.①③④C.②④⑤D.①③④⑤【专题】二次函数图象及其性质.【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,-2)和(0,-1)之间可以判断c的大小得出④的正误.【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(-1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(-1,0),∴当x=-1时,y=(-1)2a+b×(-1)+c=0,∴a-b+c=0,即a=b-c,c=b-a,∵对称轴为直线x=1∴c=b-a=(-2a)-a=-3a,∴4ac-b2=4•a•(-3a)-(-2a)2=-16a2<0∵8a>0∴4ac-b2<8a故③正确④∵图象与y轴的交点B在(0,-2)和(0,-1)之间,∴-2<c<-1∴-2<-3a<-1,故④正确⑤∵a>0,∴b-c>0,即b>c;故⑤正确;故选:D.【点评】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.二、认真填一填(共6题,每题4分,共24分)11.(4分)已知A、B两地的实际距离为100千米,地图上的比例尺为1:2019000,则A、B两地在地图上的距离是cm.【专题】几何图形.【分析】根据比例尺=图上距离:实际距离.依题意由实际距离乘以比例尺即可得出图上距离.【解答】解:根据比例尺=图上距离:实际距离.100千米=10000000厘米得:A,B两地的图上距离为10000000÷2019000=5cm,故答案为:5.【点评】此题考查比例线段问题,能够根据比例尺正确进行计算,注意单位的统一.12.(4分)在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE 的面积为4,四边形BCED的面积为5,那么AB的长为.【分析】由∠AED=∠B,∠A是公共角,根据有两角对应相等的两个三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长.【点评】此题考查了相似三角形的判定与性质,注意掌握有两角对应相等的三角形相似与相似三角形面积的比等于相似比的平方.13.(4分)如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部宽为2m,坝高为6m,则坝底AB的长为.【专题】常规题型.【分析】过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.【解答】解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,∵坝顶部宽为2m,坝高为6m,∴DC=EF=2m,EC=DF=6m,∵α=30°,【点评】此题主要考查了解直角三角形的应用,解决本题的关键是利用锐角三角函数的概念和坡度的概念求解.14.(4分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为弧BC的中点,作DE⊥AC,交AB的延长线于点F,连接DA.若∠F=30°,DF=6,则阴影区域的面积.【专题】与圆有关的计算.【分析】直接利用平行线的判定方法结合圆心角定理分析得出OD⊥EF,即可得半径OD的长,证明△COD和△AOC是等边三角形,CD∥AB,故S△AC D=S△COD,再利用S阴影=S△AED-S扇形COD,求出答案.【解答】解:连接OC、CD、OD,∵D为弧BC的中点,∴∠1=∠2,∵OA=OD,∴∠2=∠ODA,∴∠1=∠ODA,∴OD∥AE,∵DE⊥AC,∴OD⊥EF,∵∠F=30°,∵∠COD=∠AOC=60°,∴△COD和△AOC是等边三角形,∴∠OAC=60°,∠2=∠1=30°,∴∠F=∠2=30°,∴DA=DF=6,【点评】此题主要考查了圆心角与圆周角的关系、等边三角形的判定以及扇形面积求法等知识,得出S△ACD=S△C OD是解题关键.15.(4分)如图,正方形AEFG与正方形ABCD的边长都为1,正方形AEFG绕正方形ABCD的顶点A旋转一周,在此旋转过程中,线段DF的长取值范围为.【专题】矩形菱形正方形;平移、旋转与对称.【点评】本题考查了旋转的性质,正方形的性质,利用点F的轨迹求DF的取值范围是本题的关键.16.(4分)如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.【专题】压轴题.【分析】设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,通过△BMC∽△ABO,即可得到结果.【点评】本题考查了直线与圆的位置关系,一次函数的性质,相似三角形的判定和性质,注意分类讨论是解题的关键.三、全面解一解〔共8个小,共66分,各小题都必须写出解答过程)17.(6分)计算:|﹣3|+(2019﹣π)0﹣﹣.【专题】计算题.【分析】分别根据0指数幂、负整数指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解:原式=3+1﹣3﹣×=3+1﹣3﹣【点评】本题考查的是实数的运算,熟知0指数幂、负整数指数幂及特殊角的三角函数值的运算是解答此题的关键.18.(6分)在一个不透明的小口布袋中装有4个标有1,2,3,4的小球,它们的质地、大小完全相同,小明从布袋里随机摸出一个小球,记下数字为x,小红在剩下的3个小球中随机摸出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标.(2)小明和小红约定做一个游戏,其规则为:x、y若满足<1,则小明胜;否则,小红胜;这个游戏公平吗?说明理由.【专题】常规题型.【分析】(1)利用树状图法展示所有12种等可能的结果数;(2)利用概率公式计算出小明胜的概率为,小红胜的概率为,从而可判断这个游戏公平.解:(1)画树状图为:共有12种等可能的结果数,它们为(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,2),(3,1),(3,4),(4,1),(4,2),(4,3);(2)这个游戏公平.理由如下:小明胜的概率==,小红胜的概率==,而=,所以这个游戏公平.【点评】本题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.也考查了树状图法.19.(6分)如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【专题】应用题.【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用-仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.20.(8分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓,我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.(1)若某月空气净化器售价降低30元,则该月可售出多少台?(2)试确定月销售量y(台)与售价x(元/台)之间的函数关系式,并求出售价x的范围;(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获的利润w(元)最大,最大利润是多少?【专题】应用题;二次函数的应用.【分析】(1)由“原销售量+5×降低的价格=实际销售量”列式计算可得;(2)根据销售量=原来的销售量+降价后的销售量就可以表示出y与x之间的关系式;(3)由总利润=每台的利润×数量就可以得出w与x直接的关系式,由二次函数的性质就可以得出结论.【解答】解:(1)若某月空气净化器售价降低30元,该月可售出200+5×30=350台.(2)由题意,得:y=200+5(400-x)=2200-5x.∵售价不低于330元/台∴x≥330∵数量不低于450元∴y≥450,2200-5x≥450x≤350∴330≤x≤350.答:y与x之间的函数关系式为:y=2200-5x;(3)由题意,得:w=(x-200)(2200-5x)=-5(x-320)2+72019,∵a=-5<0,∴在对称轴的右侧w随x的增大而减小,∴x=330时,w最大=71500.答:当售价为330元/台时,月利润最大为71500元.【点评】本题考查了二次函数的应用,以及对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.21.(8分)如图,BF和CE分别是钝角△ABC(∠ABC是钝角)中AC、AB边上的中线,又BF⊥CE,垂足是G,过点G作GH⊥BC,垂足为H.(1)求证:GH2=BH•CH;(2)若BC=20,并且点G到BC的距离是6,则AB的长为多少?【专题】三角形.【分析】(1)只要证明△CGH∽△GBH即可解决问题;(2)作EM⊥CB交CB的延长线于M.设CH=x,HB=y.构建方程组求出x、y,解直角三角形求出EM、BM即可;【解答】(1)证明:∵CE⊥BF,GH⊥BC,∴∠CGB=∠CHG=∠BHG=90°,∴∠CGH+∠BGH=90°,∠BGH+∠GBH=90°,∴∠CGH=∠GBH,∴△CGH∽△GBH,∴GH2=BH•CH;(2)解:作EM⊥CB交CB的延长线于M.设CH=x,HB=y.则有,解得或,∵∠ABC是钝角,∴CH>BH,∴CH=18,BH=2,∵G是△ABC的重心,∴CG=2EG,∵GH⊥BC,EM⊥BC,∴GH∥EM,∴EM=9,CM=27,∴BM=CM﹣BC=7,∴BE==,∴AB=2BE=2.【点评】本题考查相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若AC=24,AF=15,求⊙O的半径.(3)在(2)的条件下,求AP.【专题】综合题.【分析】(1)根据平行线的性质和三角形全等的判定和性质可以解答本题;(2)根据三角形的全等和相似三角形的判定与性质即可解答本题;(3)根据(2)中的条件和题意,利用三角形相似的判定和性质可以解答本题.解:(1)AF与⊙O相切,理由:连接OC,∵OC=OB,∴∠OCB=∠OBC,∵OF∥BC,∴∠OCB=∠COF,∠OBC=∠FOA,∴∠COF=∠AOF,在△OCF和△OAF中,∴△OCF≌△OAF(SAS),∴∠OCF=∠OAF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴AF与⊙O相切;(2)由(1)知△OCF≌△OAF,则∠COE=∠AOE,∵OA=OC,∴OE是等腰△AOC的中线,也是高线,∴AC⊥OE,∵AC=24,∴AE=12,∵AF=15,∴EF=9,∵∠AFO=∠EFA,∠OAF=∠AEF,∴△OAF∽△AEF,即,解得,OA=20,即⊙O的半径是20;(3)∵OA=20,∴AB=40,∵△ABC内接于⊙O,AB是直径,∴∠ACB=90°,∵AC=24,∴BC=32,∵OA=20,AF=15,∠OAF=90°,∴OF=25,∵OF∥BC,即,解得,PA=,即AP的长是.【点评】本题是一道圆的综合题目,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和全等三角形的判定和性质、数形结合的思想即可解答本题.23.(10分)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:(1)若直线y=x﹣2与直线y=mx+2互相垂直,求m的值;(2)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.①求该抛物线的解析式;②在抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.专题】综合题.【分析】(1)直接利用l1⊥l2,则k1•k2=-1建立方程即可求出m的值,(2)①直接利用待定系数法即可得出结论;②分两种情况先求出直线PA和PB的解析式,联立抛物线解析式,解方程组求解即可得出结论.【解答】解解:(1)∵直线y=x﹣2与直线y=mx+2互相垂直,∴m=﹣1,∴m=﹣4;(2)①抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点,∴抛物线的解析式为y=﹣x2+x+1;②∵A(﹣1,0),B(1,1),∴直线AB的解析式为y=x+,∵△PAB是以AB为直角边的直角三角形,∴当∠PAB=90°时,PA⊥AB,∴直线PA的解析式为y=﹣2x﹣2(Ⅰ),∵抛物线的解析式为y=﹣x2+x+1(Ⅱ),联立(Ⅰ)(Ⅱ)得,,∴(舍)或∴P(6,﹣14),当∠PBA=90°时,PB⊥AB,∴直线PB的解析式为y=﹣2x+3(Ⅲ),∵抛物线的解析式为y=﹣x2+x+1(Ⅳ),联立(Ⅲ)(Ⅳ)得,,∴(舍)或,∴P(4,﹣5),即:点P的坐标为(6,﹣14)或(4,﹣5).【点评】此题是二次函数综合题,主要考查了待定系数法,新定义的理解和应用,应用方程的思想解决问题是解本题的关键.24.(12分)二次函数y=(m﹣1)x﹣6x+9的图象与x轴交于点A和点B,以AB 为边在x轴下方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)求出m的值并求出点A、点B的坐标.(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED 与正方形ABCD重叠部分的面积;若不存在,请说明理由.【专题】综合题.【分析】(1)利用二次函数的定义求出m的知,再令y=0即可得出点A,B坐标;(2)设PA=t(-3<t<0),则OP=3-t,如图1,证明△DAP∽△POE,(3)讨论:当点P在y轴左侧时,如图2,DE交AB于G点,证明△DAP≌△POE 得到PO=AD=4,则PA=1,OE=1,再利用平行线分线段成比例定理计算出AG=,则计算S△D AG即可得到此时△PED与正方形ABCD重叠部分的面积;当P点在y轴右侧时,如图3,DE交AB于G点,DP与BC相交于Q,同理可得△DAP≌△POE,则PO=AD=4,PA=7,OE=7,再利用平行线分线段成比例定理计算出OG和BQ,然后计算S四边形DG BQ得到此时△PED与正方形ABCD重叠部分的面积.当点P和点A重合时,点E和和点O重合,此时,△PED是等腰三角形,求出三角形PDE的面积即可.【解答】解:解:(1)∵二次函数y=(m﹣1)x﹣6x+9,∴m2+m=2且m﹣1≠0,∴m=﹣2,∴二次函数解析式为y=﹣3x2﹣6x+9,令y=0,∴0=﹣3x2﹣6x+9,∴x=1或x=﹣3,∴A(﹣3,0),B(1,0);(2)设PA=t(﹣3<t<0),则OP=3﹣t,∵DP⊥PE,∴∠DPA=∠PEO,∴△DAP∽△POE,∴,即,∴OE=﹣t2+t=﹣(t﹣)2+,∴当t=时,OE有最大值,即P为AO中点时,OE的最大值为;(3)存在.当点P在y轴左侧时,如图1,DE交AB于G点,∵PD=PE,∠DPE=90°,∴△DAP≌△POE,∴PO=AD=4,∴PA=1,OE=1,∵AD∥OE,∴=4,∴AG=,∴S△DAG=××4=,∴P点坐标为(﹣4,0),此时△PED与正方形ABCD重叠部分的面积为;当P点在y轴右侧时,如图2,DE交AB于G点,DP与BC相交于Q,同理可得△DAP≌△POE,∴PO=AD=4,∴PA=7,OE=7,∵AD∥OE,∴OG=,同理可得BQ=,∴S四边形DGBQ=×(+1)×4+×4×=∴当点P的坐标为(4,0)时,此时△PED与正方形ABCD重叠部分的面积为.当点P和点A重合,此时,点E和点O重合,满足条件,即:P(﹣3,0),此时△PED与正方形ABCD重叠部分的面积为OA×AD==6,【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和正方形性质;会利用待定系数法求二次函数解析式;会利用全等和相似的知识解决线段之间的关系和进行几何计算;理解坐标与图形性质;会运用分类的思想解决数学问题.参考答案1.D.2.B.3.C.4.B5.C6.A.7.C.8.B.9.B.10.D.11.5.12.3.13.(7+6)m.14.﹣2π..15.≤DF≤+116.2﹣2,2+2.17.解:原式=3+1﹣3﹣×=3+1﹣3﹣18.19.20.解:(1)若某月空气净化器售价降低30元,该月可售出200+5×30=350台.(2)由题意,得:y=200+5(400﹣x)=2200﹣5x.∵售价不低于330元/台∴x≥330∵数量不低于450元∴y≥450,2200﹣5x≥450x≤350∴330≤x≤350.答:y与x之间的函数关系式为:y=2200﹣5x;(3)由题意,得:w=(x﹣200)(2200﹣5x)=﹣5(x﹣320)2+72019,∵a=﹣5<0,∴在对称轴的右侧w随x的增大而减小,∴x=330时,w最大=71500.答:当售价为330元/台时,月利润最大为71500元.21.22.解:(1)AF与⊙O相切,理由:连接OC,∵OC=OB,∴∠OCB=∠OBC,∵OF∥BC,∴∠OCB=∠COF,∠OBC=∠FOA,∴∠COF=∠AOF,在△OCF和△OAF中,∴△OCF≌△OAF(SAS),∴∠OCF=∠OAF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴AF与⊙O相切;(2)由(1)知△OCF≌△OAF,则∠COE=∠AOE,∵OA=OC,∴OE是等腰△AOC的中线,也是高线,∴AC⊥OE,∵AC=24,∴AE=12,∵AF=15,∴EF=9,∵∠AFO=∠EFA,∠OAF=∠AEF,∴△OAF∽△AEF,即,解得,OA=20,即⊙O的半径是20;(3)∵OA=20,∴AB=40,∵△ABC内接于⊙O,AB是直径,∴∠ACB=90°,∵AC=24,∴BC=32,∵OA=20,AF=15,∠OAF=90°,∴OF=25,∵OF∥BC,即,解得,PA=,即AP的长是.23.解:(1)∵直线y=x﹣2与直线y=mx+2互相垂直,∴m=﹣1,∴m=﹣4;(2)①抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点,∴抛物线的解析式为y=﹣x2+x+1;②∵A(﹣1,0),B(1,1),∴直线AB的解析式为y=x+,∵△PAB是以AB为直角边的直角三角形,∴当∠PAB=90°时,PA⊥AB,∴直线PA的解析式为y=﹣2x﹣2(Ⅰ),∵抛物线的解析式为y=﹣x2+x+1(Ⅱ),联立(Ⅰ)(Ⅱ)得,,∴(舍)或∴P(6,﹣14),当∠PBA=90°时,PB⊥AB,∴直线PB的解析式为y=﹣2x+3(Ⅲ),∵抛物线的解析式为y=﹣x2+x+1(Ⅳ),联立(Ⅲ)(Ⅳ)得,,∴(舍)或,∴P(4,﹣5),即:点P的坐标为(6,﹣14)或(4,﹣5).24.解:(1)∵二次函数y=(m﹣1)x﹣6x+9,∴m2+m=2且m﹣1≠0,∴m=﹣2,∴二次函数解析式为y=﹣3x2﹣6x+9,令y=0,∴0=﹣3x2﹣6x+9,∴x=1或x=﹣3,∴A(﹣3,0),B(1,0);(2)设PA=t(﹣3<t<0),则OP=3﹣t,∵DP⊥PE,∴∠DPA=∠PEO,∴△DAP∽△POE,∴,即,∴OE=﹣t2+t=﹣(t﹣)2+,∴当t=时,OE有最大值,即P为AO中点时,OE的最大值为;(3)存在.当点P在y轴左侧时,如图1,DE交AB于G点,∵PD=PE,∠DPE=90°,∴△DAP≌△POE,∴PO=AD=4,∴PA=1,OE=1,∵AD∥OE,∴=4,∴AG=,∴S△DAG=××4=,∴P点坐标为(﹣4,0),此时△PED与正方形ABCD重叠部分的面积为;当P点在y轴右侧时,如图2,DE交AB于G点,DP与BC相交于Q,同理可得△DAP≌△POE,∴PO=AD=4,∴PA=7,OE=7,∵AD∥OE,∴OG=,同理可得BQ=,∴S四边形DGBQ=×(+1)×4+×4×=∴当点P的坐标为(4,0)时,此时△PED与正方形ABCD重叠部分的面积为.当点P和点A重合,此时,点E和点O重合,满足条件,即:P(﹣3,0),此时△PED与正方形ABCD重叠部分的面积为OA×AD==6,。

2019-2020学年度浙教版九年级数学上册期末考试题(有答案)

2019-2020学年度浙教版九年级数学上册期末考试题(有答案)

2019-2020学年度浙教版九年级数学上册期末考试题(有答案) 学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)∥BC ,若BM=4AM ,MN=1,则BC 的长是( )A 、6B 、5C 、4D 、32.已知二次函数y=a (x ﹣2)2+c ,当x=x 1时,函数值为y 1;当x=x 2时,函数值为y 2,若|x 1﹣2|>|x 2﹣2|,则下列表达式正确的是( ).A .y 1+y 2>0B .y 1﹣y 2>0C .a (y 1﹣y 2)>0D .a (y 1+y 2)>03.下列说法中,不成立的是( )A .弦的垂直平分线必过圆心B .弧的中点与圆心的连线垂直平分这条弧所对的弦C .垂直于弦的直线经过圆心,且平分这条弦所对的弧D .垂直于弦的直径平分这条弦4.下列各式中,y 是x 的二次函数的是( )A .21(0)y mx m =+≠B .2y ax bx c =++C .22(2)y x x =--D .31y x =-5.已知二次函数y=a (x ﹣2)2+c ,当x=x 1时,函数值为y 1;当x=x 2时,函数值为y 2,若|x 1﹣2|>|x 2﹣2|,则下列表达式正确的是( )A .y 1+y 2>0B .y 1﹣y 2>0C .a (y 1﹣y 2)>0D .a (y 1+y 2)>06.抛物线y=﹣3x 2﹣x+4与坐标轴的交点个数是( )A .3B .2C .1D .07.抛物线()21y x =-与y 轴的交点坐标是A .(0,1);B .(1,0);C .(0,-1);D .(0,0).8.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A=22.5°,OC=4,CD 的长为( )A ..4 C . D .89.一个扇形的弧长是20πcm ,面积是240πcm 2,那么扇形的圆心角是( )A .120° B.150° C.210° D.240°10.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6间的大小关系是( )A .S 3>S 4>S 6B .S 6>S 4>S 3C .S 6>S 3>S 4D .S 4>S 6>S 311.如图,已知△ABC ,P 为AB 上一点,连接CP ,以下条件中不能判定△ACP ∽△ABC 的是( )A .∠ACP=∠B B .∠APC=∠ACBC .AC AB AP AC =D .BC CP AB AC = 评卷人 得分二、填空题(题型注释)“剪刀”的概率是 .13.不透明袋子中有1个红球、2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是 .14.如图,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30°, 则点O 到CD 的距离OE= .ED CBAO 15.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD=BC ,∠PEF=18°,则∠PFE 的度数是 度.16.圆心角为120°,弧长为12π的扇形半径为 .17.如图,点G 为△ABC 的重心,GE ∥BC ,BC=12,则GE= .18.如图,∠BAC=120°,AD 平分∠BAC ,且AD=4,点P 是射线AB 上一动点,连接DP ,△PAD 的外接圆于AC 交于点Q ,则线段QP 的最小值是 .19.一人乘雪橇沿坡比110米,则此人下降的高度为米.20.将边长为4的正方形ABCD向右倾斜,边长不变,∠ABC逐渐变小,顶点A、D及对角线BD的中点N分别运动列A′、D′和N′的位置,若∠A′BC=30°,则点N到点N′的运动路径长为.三、计算题(题型注释),以A为圆心,5为半径作圆A,点C在⊙A上,过点C作CD∥AB交⊙A于点D(点D在C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的关系式及x的取值范围;(3)设BC的中点为M,AD的中点为N,MN∥CD,线段MN交⊙A于点E,联结CE,当CD取何值时,CE∥AD.22.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x 轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N ,连接MN ,直线AC 分别交x 轴,y 轴于点H ,G ,试求线段MN 的最小值,并直接写出此时m 的值.23.如图1,直线l :y=34x+m 与x 轴、y 轴分别交于点A 和点B (0,﹣1),抛物线y=12x 2+bx+c 经过点B ,与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)点D 在抛物线上,DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2),设点D 的横坐标为t (0<t <4),矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.24.如图,抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足S △PAB =8,并求出此时P 点的坐标.四、解答题(题型注释) +c 的图象经过点(2,1),(0,1).(1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q22,4(y a +)在抛物线上,试判断y1与y2的大小.(写出判断的理由)26.小明在课外学习时遇到这样一个问题:定义:如果二次函数21111(a 0)y a x b x c =++≠与22222(a 0)y a x b x c =++≠满足120a a +=,12b b =,120c c +=,则称这两个函数互为“旋转函数”.求函数232y x x =--的“旋转函数”.小明是这样思考的:由函数232y x x =--可知,11a =,13b =-,12c =-,根据120a a +=,12b b =,120c c +=,求出2a ,2b ,2c ,就能确定这个函数的“旋转函数”. 请参考小明的方法解决下面问题:(1)直接写出函数232y x x =--的“旋转函数”;(2)若函数2335y x mx =-+-与23y x nx n =-+互为“旋转函数”,求2015415m n +()的值;(3)已知函数1142y x x =-+()(﹣)的图象与x 轴交于点A 、B 两点(A 在B 的左边),与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1,B 1,C 1,试证明经过点A 1,B 1,C 1的二次函数与函数1142y x x =-+()(﹣)互为“旋转函数”。

每日一学:浙江省金华市东阳市2019届九年级上学期数学期末考试试卷_压轴题解答

每日一学:浙江省金华市东阳市2019届九年级上学期数学期末考试试卷_压轴题解答

每日一学:浙江省金华市东阳市2019届九年级上学期数学期末考试试卷_压轴题解答答案浙江省金华市东阳市2019届九年级上学期数学期末考试试卷_压轴题~~ 第1题 ~~(2019东阳.九上期末) 如图,抛物线y = x +bx+c 与x 轴交于点A 和点B ,与y 轴交于点C ,点B 的坐标为(3,0),点C 的坐标为(0,﹣5).有一宽度为1,长度足够长的矩形(阴影部分)沿x 轴方向平移,与y 轴平行的一组对边交抛物线于点P和点Q ,交直线AC 于点M 和点N ,交x 轴于点E 和点F.(1) 求抛物线的解析式及点A 的坐标;(2)当点M 和N 都在线段AC 上时,连接MF ,如果sin ∠AMF = ,求点Q 的坐标;(3) 在矩形的平移过程中,是否存在以点P ,Q ,M ,N 为顶点的四边形是平行四边形,若存在,求出点M 的坐标;若不存在,请说明理由.考点: 待定系数法求二次函数解析式;二次函数的实际应用-动态几何问题;~~ 第2题 ~~(2019东阳.九上期末) 在平面直角坐标系xOy 中,A (4,0),B (0,4),CD 是△AOB 的中位线.若将△COD 绕点O 旋转,得到△C′OD′,射线AC′与射线BD′的交点为P.(1) ∠APB 的度数是°.(2) 在旋转过程中,记P 点横坐标为m ,则m 的取值范围是.~~ 第3题 ~~(2019东阳.九上期末) 如图,跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y =ax +bx+c (a≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )A . 10mB . 20mC . 15mD . 22.5m浙江省金华市东阳市2019届九年级上学期数学期末考试试卷_压轴题解答22~~ 第1题 ~~答案:解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:C解析:。

浙江省金华市东阳市2019届九年级上学期数学期末考试试卷及参考答案

浙江省金华市东阳市2019届九年级上学期数学期末考试试卷及参考答案

浙江省金华市东阳市2019届九年级上学期数学期末考试试卷一、单选题1. 抛物线y =﹣3x +1的对称轴是( )A . 直线x =B . 直线x =﹣C . y 轴D . 直线x =32. 如图所示的几何体的俯视图是()A .B .C .D .3. 若关于x 的方程x +bx+1=0有两个不相等的实数根,则b 的值可以是( )A . 0B . 1C . 2D . 34. 如图,A ,B 是两座灯塔,在弓形AmB 内有暗礁,游艇C 在附近海面游弋,且∠AOB =80°,要使游艇C 不驶入暗礁区,则航行中应保持∠ACB ( )A . 小于40°B . 大于40°C . 小于80°D . 大于80°5. 为了解某班学生一周的体育锻炼的时间,某综合实践活动小组对该班50名学生进行了统计如表:则这组数据中锻炼时间的众数是( )锻炼的时间(小时)78910学生人数(人)816188A . 16人B . 8小时C . 9小时D . 18人6. 一张半径为6cm 的扇形纸片卷成一个圆锥的侧面,要求圆锥底面圆的半径为4cm ,那么这张扇形纸片的圆心角度数是( )A . 150°B . 240°C . 200°D . 180°7. 如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 是OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A . 1:4B . 1:3C . 1:2D . 1:18. 在平面直角坐标系中,如果抛物线y =3x +3不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A . y =3(x ﹣2)+5B . y =3(x+2)+1C . y =3(x+2)+5D . y =3(x ﹣2)+19. 正多边形的内切圆与外接圆的周长之比为 ∶2,则这个正多边形为( )A . 正十二边形B . 正六边形C . 正四边形D . 正三角形10. 如图,跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y =ax +bx+c (a≠0).如图记录了某运动员起跳后的x 与y 22222222的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )A . 10mB . 20mC . 15mD . 22.5m二、填空题11. 在函数y= 的表达式中,自变量x 的取值范围是________.12. 如图,在△ABC 中,EF ∥BC ,AE =2BE ,则△AEF 与△ABC 的面积比为________.13. 已知A(1,y ),B(2,y )两点在双曲线y = 上,且y >y , 则m 的取值范围是________.14. 如图,将矩形ABCD 沿CE折叠,点B 恰好落在边AD 的F 处,如果,那么tan ∠DCF 的值是________.15. 点A 、C 为半径是8的圆周上两动点,点B 为的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆半径的中点上,则该菱形的边长为________.16. 在平面直角坐标系xOy 中,A (4,0),B (0,4),CD是△AOB 的中位线.若将△COD 绕点O 旋转,得到△C′OD′,射线AC′与射线BD′的交点为P.(1) ∠APB 的度数是°.(2) 在旋转过程中,记P 点横坐标为m ,则m 的取值范围是.三、解答题17. 计算: sin45°﹣|﹣3|+( ﹣1)+2.18. 如图,游客在点A 处坐缆车出发,沿A ﹣B ﹣D 的路线可至山顶D 处,假设AB 和BD 都是直线段,且AB =BD =600m ,α=75°,β=45°,求DE 的长.(参考数据:sin75°≈0.97,cos75°≈0.26, ≈1.41)12120﹣119. 已知一次函数y =x+4图象与反比例函数y = (k≠0)图象交于A (﹣1,a ),B 两点.(1) 求此反比例函数的表达式;(2) 若x+4≥ ,利用函数图象求x 的取值范围.20. 今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s )频数(人数)A90<s≤1004B80<s≤90x C70<s≤8016D s≤706根据以上信息,解答以下问题:(1) 表中的x=;(2) 扇形统计图中m=,n=,C 等级对应的扇形的圆心角为度;(3) 该校准备从上述获得A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a ,a 表示)和两名女生(用b ,b 表示),请用列表或画树状图的方法求恰好选取的是a 和b 的概率.21. 如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC.(1) 求证:DE 是⊙O 的切线;(2) 若AC ∥DE ,当AB=8,CE=2时,求AC 的长.22. 某商品的进价为每件50元,售价为每件60元,每天可卖出190件;如果每件商品的售价每上涨1元,则每天少卖10件,设每件商品的售价上涨x 元(x 为正整数),每天的销售利润为y 元.(1) 求y 关于x 的关系式;(2) 每件商品的售价定为多少元时,每天的利润恰为1980元?(3) 每件商品的售价定为多少元时,每天可获得最大利润?最大利润是多少元?12121123. 在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A B C D , A B C D , AB C D 都是点A ,B ,C 的覆盖矩形,其中矩形AB C D 是点A ,B ,C 的最优覆盖矩形.(1) 已知A (﹣2,3),B (5,0),C (t ,﹣2).①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2) 已知点D (1,1).E (m ,n )是函数y= (x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.24. 如图,抛物线y = x +bx+c 与x 轴交于点A 和点B ,与y 轴交于点C ,点B 的坐标为(3,0),点C 的坐标为(0,﹣5).有一宽度为1,长度足够长的矩形(阴影部分)沿x 轴方向平移,与y 轴平行的一组对边交抛物线于点P 和点Q ,交直线A C于点M 和点N ,交x 轴于点E 和点F.(1) 求抛物线的解析式及点A 的坐标;(2) 当点M 和N 都在线段AC 上时,连接MF ,如果sin ∠AMF = ,求点Q 的坐标;(3) 在矩形的平移过程中,是否存在以点P ,Q ,M,N 为顶点的四边形是平行四边形,若存在,求出点M 的坐标;若不存在,请说明理由.参考答案1.2.3.4.5.6.7.8.1111222233333329.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.。

浙江省金华市东阳市2019-2020学年九年级上学期期末数学试题(解析版)

浙江省金华市东阳市2019-2020学年九年级上学期期末数学试题(解析版)
2019 年下期九年级数学(上册)期末质量检测卷
一、精心选一选:
1.已知线段 a、 b、 c、 d 满足 ab=cd,把它改写成比例式,错误的是(

A. a: d= c:b
B. a: b= c:d
C. c: a= d: b
D. b: c= a: d
【答案】 B
【解析】 【分析】 根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案. 【详解】解: A 、 a: d=c:b?ab=cd ,故正确; B 、 a:b=c: d?ad=bc ,故错误; C、 d:a=b: c?dc=ab ,故正确; D 、 a:c=d: b?ab=cd ,故正确. 故选 B. 【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.
.
3. ???AC?BE??O?????AD?BE???F?????????????O??? ?
A. ?ABE
B. ?ACF
C. ?ABD
【答案】 B
【解析】
试题分析: A .OA=OB=OE, 所以点 O 为 △ABE 的外接圆圆心;
B . OA=O≠C OF ,所以点不是 △ ACF 的外接圆圆心;
2.已知圆内接四边形 ABCD 中,∠ A:∠ B:∠ C=1: 2: 3,则∠ D 的大小是(

A. 45°
B. 60°
C. 90°
D. 135°
【答案】 C
【解析】
【分析】
根据圆内接四边形对角互补,结合已知条件可得
?A : ?B : ?C : ?D=1 : 2: 3:2, ?B+?D=180° ,由此即故选 D.ຫໍສະໝຸດ B. y 3x2 +1

2019-2020学年浙江省金华市九年级上册期末数学试卷

2019-2020学年浙江省金华市九年级上册期末数学试卷

2019-2020学年浙江省金华市九年级上册期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.−6的绝对值是()A. −6B. 6C. 16D. −162.a5÷a−2÷a7=()A. 1B. a−4C. a7 D. a143.如图图形中的轴对称图形是()A. B.C. D.4.已知⊙O的半径为10cm,点A是线段OP的中点,且OP=25cm,则点A和⊙O的位置关系是()A. 点A在⊙O内B. 点A在⊙O上C. 点A在⊙O外D. 无法确定5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c=2;③a>12;④b>1.其中正确的结论个数是()A. 1个B. 2个C. 3个D. 4个6.下列事件属于必然事件的是()A. 打开电视,正在播放新闻B. 我们班的同学将会有人成为航天员C. 实数a<0,则2a<0D. 新疆的冬天不下雪7.抛物线y=−(x−2)2向右平移2个单位得到的抛物线的解析式为()A. y=−x2B. y=−(x−4)2C. y=−(x−2)2+2D. y=−(x−2)2−28.如图,小正方形的边长均为1,则下列图中的三角形与△ABC相似的是()A.B.C.D.9.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(分)之间的关系,则以下说法正确的是()①若通话时间少于120分,则A方案比B方案便宜②若通话时间超过200分,则B方案比A方案便宜③若通讯费用为60元,则B方案比A方案的通话时间多④当通话时间是170分钟时,两种方案通讯费用相等.A. 1个B. 2个C. 3个D. 4个.10.在平面直角坐标系中,直线y=−√33x+1分别与x轴、y轴交于B、C点,点A沿着某条路径运动,以点A为旋转中心,将点C逆时针方向旋转90°后,刚好落在线段OB上,则点A的运动路径长为()A. √62B. √6 C. √22π D. 2√2第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)11.因式分解:3a3−3a=______.12.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为13,那么袋中的球共有______个.13.如果点P(m−3,1)在反比例函数y=1x的图象上,那么m的值是______.14.如图,D,E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE=________.15. 如图,已知在△ABC 中,AB =4,BC =5,∠ABC =60°,在边AC 上方作等边△ACD ,则BD 的长为________.16. 已知:二次函数y =x 2+bx +c 的图象与x 轴交于A ,B 两点,其中A 点坐标为(−3,0),与y 轴交于点C ,点D(−2,−3)在抛物线上.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q ,使得△QAD 的周长最小?若存在,求出点Q 的坐标,若不存在,请说明理由;(3)在抛物线上求一点P(P 与C 不重合),使S △PAB =S △ABC ,直接写出P 点的坐标. 三、计算题(本大题共1小题,共3.0分)17. 计算:20180+(12)−1−√4.四、解答题(本大题共8小题,共63.0分)18.已知x3=y4=z5,求x+yx−2y+3z的值.19.解不等式组:{2x−4<0 x−32≤x−120.随着信息技术的迅猛发展,人们购物的支付方式更加多样、便捷,为调查大学生购物支付方式,某大学一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了______人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______.(2)将条形统计图补充完整;(3)若该大学有10000名学生,请你估计购物选择用支付宝支付方式的学生约有多少人?21.在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)(1)画出△ABC关于原点对称的△A1B1C1;(2)将△ABC绕点B逆时针旋转90°,画出旋转后得到的△A2BC2,并求出此过程中线段BA扫过的区域的面积.(结果保留π)22.如图,AB是⊙O的直径,∠ACD=25∘,求∠BAD的度数.23.某农场造一个矩形饲养场ABCD,如图所示,为节省材料,一边靠墙(墙足够长),用总长为77m的木栏围成一块面积相等的矩形区域:矩形AEGH,矩形HGFD,矩形EBCF,并在①②③处各留1m装门(不用木栏),设BE长为x(m),矩形ABCD 的面积为y(m2)(1)∵S矩形AEGH =S矩形HGFD=S矩形EBCF,∴S矩形AEFD=2S矩形EBCF,∴AE:EB=____.(2)求y关于x的函数表达式和自变量x的取值范围.(3)当x为何值时,矩形ABCD的面积有最大值?最大值为多少?24.已知关于x的一元二次方程mx2+(1−5m)x−5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1−5m)x−5=0与x轴交于A(x1,0),B(x2,0)两点,且|x1−x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P,Q不重合),求代数式4a2−n2+8n的值.25.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.=______.(1)线段BE与AF的位置关系是______,AFBE(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6−2√3,求旋转角a的度数.答案和解析1.【答案】B【解析】【分析】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.根据负数的绝对值是它的相反数,可得答案.【解答】解:−6的绝对值是6.故选:B.2.【答案】A【解析】【分析】本题主要考查同底数幂的除法,解题的关键是掌握同底数幂的除法法则:同底数幂相除,底数不变,指数相减.根据同底数幂的除法法则计算可得.【解答】解:a5÷a−2÷a7=a5−(−2)−7=a0=1.故选A.3.【答案】B【解析】【分析】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称图形的概念判断即可.【解答】解:A.不是轴对称图形;B.是轴对称图形;C.不是轴对称图形;D.不是轴对称图形;故选B.4.【答案】C【解析】【分析】先计算出OA的长,再比较OA与圆的半径的大小,然后根据点与圆的位置关系判断点A和⊙O的位置关系.本题考查了点与圆的位置关系,根据点到圆心距离与半径的关系可以确定该点与圆的位置关系.【解答】解:∵点A是线段OP的中点,且OP=25cm,∴OA=12.5cm,而⊙O的半径为10cm,∴OA>圆的半径,∴点A在⊙O外.故选C.5.【答案】C【解析】【分析】本题考查了二次函数图象与系数的关系,主要利用了二次函数的开口方向,对称轴,与y轴的交点,此题要会利用图象找到所需信息,也要会用不等式和等式结合来解题.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线上过点(1,2),进而对所得结论进行判断.【解答】解:①∵抛物线的开口方向向上,∴a>0.<0,∵对称轴x=−b2a∴b>0,又∵该抛物线与y轴交于负半轴,∴c<0.∴abc<0;故①错误;②根据图象知,当x=1时,y=2,即a+b+c=2;故②正确;④当x=−1时,y<0,即a−b+c<0(1),由②a+b+c=2可得:c=2−a−b(2),把(2)式代入(1)式中得:b>1;故④正确;>−1,③∵对称轴x=−b2a∴2a>b,∵b>1,∴2a>1,即a>1;故③正确;2综上所述,正确的说法是:②③④.故选C.6.【答案】C【解析】【分析】本题考查必然事件、不可能事件、随机事件的概念.根据事件的分类判断,必然事件就是一定发生的事件,根据定义即可解决.【解答】解:A、B、D都有可能发生,也可能不发生,是随机事件,只有C实数a<0,则2a<0是必然事件.故选C.7.【答案】B【解析】【分析】本题考查的是二次函数的图象与几何变换,熟知“左加右减”的法则是解答此题的关键.直接根据函数图象平移的法则即可得出结论.【解答】解:抛物线y=−(x−2)2向右平移2个单位得到的抛物线的解析式为y=−(x−2−2)2,即y=−(x−4)2.故选:B.8.【答案】B【解析】【试题解析】【分析】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.根据网格中的数据及勾股定理求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:由勾股定理得:BC=√12+12=√2,AB=2,AC=√32+12=√10,∴AB:BC:AC=√2:1:√5,A.三边之比为2√2:1:√5,图中的三角形与△ABC不相似;B.三边之比为√2:1:√5,图中的三角形与△ABC相似;C.三边之比为√2:3:√5,图中的三角形与△ABC不相似;D.三边之比为2:√5:√13,图中的三角形与△ABC不相似.故选B.9.【答案】D【解析】【分析】此题主要考查了函数图象、一次函数的图象与性质、一次函数的应用的知识点,解题的关键是从图象中找出隐含的信息解决问题.根据图象知道:在通话170分钟收费一样,在通话120时A收费30元,B收费50元,其中A超过120分钟后每分钟加收0.4元,B超过200分钟加收每分钟0.4元,由此即可确定有几个正确.【解答】解:依题意得:A:当0≤x≤120,y A=30,当x>120,y A=30+(x−120)×[(50−30)÷(170−120)]=0.4x−18;B:当0≤x<200,y B=50,当x>200,y B=50+[(70−50)÷(250−200)](x−200)=0.4x−30,所以当x≤120时,A方案比B方案便宜20元,故①正确;当x≥200时,B方案比A方案便宜12元,故②正确;当y=60时,A:60=0.4x−18,∴x=195,B:60=0.4x−30,∴x=225,故③正确;当A方案与B方案的费用相等,通话时间为170分钟,故④正确;∴①②③④全部正确.故选D.10.【答案】A【解析】【分析】本题主要考查坐标与图形的变化及相似三角形的判定与性质,根据旋转的定义和性质得出点C的运动路径为线段E′E″及依据相似三角形的判定与性质得出其长度是解题的关键.根据题意画出图形,由点C(0,1)逆时针方向旋转90°刚好落在线段OB得出其运动路径为线段E′E″,证Rt△E″E′C∽Rt△CBO可得E′E′′OB =E′COC,继而可得出答案.【解答】解:如图,作第一象限的角平分线,E′、E′′在此角平分线上,且∠CE′O=∠CE′′B=90°,作由题意知点A的运动路径为线段E′E″,∵y=−√33x+1中,x=0时y=1,y=0时x=√3,∴OC=1、OB=√3,∴BC=2,∵E′C=E′O、E″C=E″B,∴E′C =√22、E″C =√22BC =√2, 则E ′C OC =E ′′C BC =√22, ∴Rt △E″E′C∽Rt △BOC ,则E ′E ′′OB =E ′C OC ,即′′′√3√22,∴E′E″=√62, 故选A .11.【答案】3a(a +1)(a −1)【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 首先提取公因式3a ,进而利用平方差公式分解因式得出答案.【解答】解:原式=3a(a 2−1)=3a(a +1)(a −1).故答案为:3a(a +1)(a −1).12.【答案】12【解析】解:设袋中的球共有m 个,其中有4个红球,则摸出红球的概率为4m , 根据题意有4m =13,解得:m =12.故答案为:12.根据红球的概率公式列出方程求解即可.本题考查的是随机事件概率的求法的运用,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=m n . 13.【答案】4【解析】解:∵点P(m−3,1)在反比例函数y=1x的图象上,∴1=1m−3,解得m=4.故答案为:4.直接把点P(m−3,1)代入反比例函数y=1x,求出m的值即可.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.【答案】3【解析】【分析】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.只要证明△ADE∽△ACB,推出ADAC =AEAB,即可求出AE.【解答】解;∵∠A=∠A,∠ADE=∠ACB,∴△ADE∽△ACB,∴ADAC =AEAB,∵AD=2,AB=6,AC=4,∴24=AE6,∴AE=3,故答案为3.15.【答案】√61【解析】【分析】本题考查全等三角形的判定和性质,等边三角形的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题,如图,以AB为边,在AB的左侧作等边△ABE,连接EC,作EF⊥CB交CB的延长线于F.利用全等三角形的性质证明BD =EC ,解直角三角形求出EC 即可解决问题.【解答】解:如图,以AB 为边,在AB 的左侧作等边△ABE ,连接EC ,作EF ⊥CB 交CB 的延长线于F .∵△ABE ,△ACD 都是等边三角形,∴AE =AB ,AC =AD ,∠EAB =∠DAC =60°,∴∠EAC =∠BAD ,∴△EAC≌△BAD(SAS),∴EC =BD ,∵∠ABE =∠ABC =60°,∴∠EBF =60°,在Rt △EFB 中,∵∠F =90°,BE =AB =4,∠BEF =30°,∴BF =12BE =2,EF =√3BF =2√3, 在Rt △ECF 中,∵∠F =90°,CF =BF +BC =2+5=7,EF =2√3,∴EC =√EF 2+CF 2=√(2√3)2+72=√61, 故答案为√61.16.【答案】解:(1)因为二次函数y =x 2+bx +c 的图象经过A(−3,0),D(−2,−3),所以 {9−3b +c =04−2b +c =−3, 解得 {b =2c =−3, 所以一次函数解析式为y =x 2+2x −3;(2)Q(−1,−2)(3)设点P坐标(m,m2+2m−3),令y=0,x2+2x−3=0,x=−3或1,则AB=4,∵三角形ABP的面积为6,∴P点到AB的距离为3,故当P点纵坐标为3时,3=x2+2x−3,解得x=−1±√7,符合题意的P点坐标为(−1+√7,3),(−1−√7,3)当P点纵坐标为−3时,−3=x2+2x−3,解得x=0或−2,符合题意的P点坐标为:(0,−3),(−2,−3),综上所述:符合题意的P点坐标为:(−1+√7,3),(−1−√7,3),(0,−3),(−2,−3).【解析】此题考查了二次函数的综合应用,要注意数形结合思想的应用.(1)根据题意可知,将点A、D代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式;(2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ 最小,所以此题的关键是确定点Q的位置,找到点A的对称点B,求得直线BC的解析式,求得与对称轴的交点即是所求;(3)存在,设得点P的坐标,由三角形ABP的面积6得P点到AB的距离为3,用带入法求得P点坐标.17.【答案】解:原式=1+2−2=1【解析】本题主要考查了负整数指数幂、零指数幂和二次根式化简3个考点,解题的关键在于熟练掌握实数的混合运算法则.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.18.【答案】解:设x3=y4=z5=k(k≠0),则x=3k,y=4k,z=5k,∴x+yx−2y+3z =3k+4k3k−2×4k+3×5k=7k10k=710.【解析】本题考查了比例的性质,属于基础题.可以设x3=y4=z5=k,则x=3k,y=4k,z=5k,把这三个式子代入所要求的式子,进行化简就可以求出式子的值.19.【答案】解:{2x−4<0①x−32≤x−1②解①得,x<2,解②得,x≥−1,∴不等式组的解是:−1≤x<2.【解析】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.先求出每个不等式的解集,再求出不等式组的解集即可.20.【答案】(1)200,81°;(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,补充完整的条形统计图如下图所示:(3)10000×45200=2250(人),答:购物选择用支付宝支付方式的学生约有2250人.【解析】解:(1)本次调查的人数为:(45+50+15)÷(1−15%−30%)=200,表示“支付宝”支付的扇形圆心角的度数为:360°×45200=81°,故答案为:200,81°;(2)见答案;(3)见答案.【分析】(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)画图如下,△A1B1C1即为所求:(2)如图所示,△A2BC2即为所求,由勾股定理得AB=√22+32=√13,∴线段BA在上述旋转过程中扫过图形的面积为:90⋅π⋅(√13)2360=13π4.【解析】本题主要考查作图−旋转变换,解题的关键是根据旋转变换得出变换后的对应点,也考查扇形的面积公式的应用.(1)分别作出三顶点关于原点的对称点,再顺次连接即可得;(2)分别作出点A和C旋转后的对应点,再顺次连接即可得,继而由扇形的面积公式计算可得.22.【答案】解:∵AB为⊙O的直径,∴∠ADB=90∘.∵同弧所对的圆周角相等,且∠ACD=25∘,∴∠B=∠ACD=25∘,∴∠BAD=90∘−∠B=65∘.【解析】【分析】本题考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键,根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.23.【答案】(1)2:1;(2)y=−12x2+120x(0<x<10);(3)当x=5m时,y有最大值,最大值为300m2.【解析】【分析】本题是二次函数应用的综合题,主要考查了矩形的性质,矩形的面积计算,列代数式,二次函数的应用,求二次函数的最值.关键是正确表示矩形的长与宽和正确列出函数解析式.”进行解答;(1)根据矩形面积公式与已知条件“S矩形AEFD=2S矩形EBCF(2)用x表示出矩形的长与宽,再由面积公式得y与x的函数表达式,根据长与宽的条件限制求出自变量的取值范围便可;(3)由函数的解析式,根据函数的性质求得结果.【解答】解:(1)∵S矩形AEFD=2S矩形EBCF,∴AE⋅EF=2BE⋅EF,∴AE=2BE,∴AE:BE=2:1,故答案为:2:1;(2)∵BE=x,∴AE=HG=DF=2x,根据题意得,EF =BC =77−2x−2x×3+32=40−4x ,∴y =(40−4x)⋅3x ,即y =−12x 2+120x ,∵0<BC <77+32,且0<AB <77+383,∴0<40−4x <40,且0<3x <30,∴0<x <10,故y =−12x 2+120x(0<x <10);(3)∵y =−12x 2+120x =−12(x −5)2+300(0<x <10),∴当x =5时,y 有最大值为:300,故当x =5m 时,y 有最大值,最大值为300m 2.24.【答案】解:(1)由题意,得Δ=(1−5m)2−4m ×(−5)=(1+5m)2≥0, 故无论m 为任何非零实数,此方程总有两个实数根.(2)由mx 2+(1−5m)x −5=0,解得x 1=−1m ,x 2=5,由|x 1−x 2|=6,得|−1m −5|=6,解得m =1或m =−111.(3)由(2)得,当m >0时,m =1,此时抛物线为y =x 2−4x −5,其对称轴为x =2. 由题意,可知P ,Q 关于x =2对称,∴a+a+n 2=2,即2a =4−n ,∴4a 2−n 2+8n =(4−n)2−n 2+8n =16.【解析】本题考查一元二次方程的定义,根的判别式,二次函数图象上点的坐标特征,抛物线与x 轴的交点.(1)直接利用△=b2−4ac ,进而利用偶次方的性质得出答案;(2)首先解方程,进而由|x 1−x 2|=6,求出答案;(3)利用(2)中所求得出m 的值,进而利用二次函数对称轴得出答案.25.【答案】(1)互相垂直;√3(2)(1)中结论仍然成立.证明:如图2,∵点E,F分别是线段BC,AC的中点,∴EC=12BC,FC=12AC,∴ECBC =FCAC=12,∵∠BCE=∠ACF=α,∴△BEC∽△AFC,∴AFBE =ACBC=√3,∴∠1=∠2,延长BE交AC于点O,交AF于点M∵∠BOC=∠AOM,∠1=∠2∴∠BCO=∠AMO=90°∴BE⊥AF;(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°过点D作DH⊥BC于H∴DB=4−(6−2√3)=2√3−2,∴BH=√3−1,DH=3−√3,又∵CH=2−(√3−1)=3−√3,∴CH=DH,∴∠HCD=45°,∴∠DCA=45°,∴α=180°−45°=135°.【解析】解:(1)如图1,线段BE与AF的位置关系是互相垂直;∵∠ACB=90°,BC=2,∠A=30°,∴AB=4,∴AC=√AB2−BC2=√16−4=2√3,∵点E,F分别是线段BC,AC的中点,∴AF=√3;BE故答案为:互相垂直;√3;(2)见答案;(3)见答案.【分析】(1)结合已知角度和勾股定理求出AC的长,进而得出答案;(2)利用已知得出△BEC∽△AFC,进而得出∠1=∠2,即可得出答案;(3)过点D作DH⊥BC于H,则DB=4−(6−2√3)=2√3−2,进而得出BH=√3−1,DH=3−√3,求出CH=BH,得出∠DCA=45°,进而得出答案.此题主要考查了相似三角形的判定与性质以及勾股定理等知识,得出△BEC∽△AFC是解题关键.。

浙江省金华市2020年(春秋版)九年级上学期数学期末考试试卷(I)卷

浙江省金华市2020年(春秋版)九年级上学期数学期末考试试卷(I)卷

浙江省金华市2020年(春秋版)九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2019·高港模拟) 如图,四个手机应用图标中是轴对称图形的是()A .B .C .D .2. (2分)(2019·温州模拟) 掷一枚质地均匀的正方体骰子,骰子的六个面上分别标有1,2,3,4,5,6,的点数,掷得面朝上的点数为奇数的概率为()A .B .C .D .3. (2分)一个形如圆锥的冰淇淋纸筒,其底面直径为6cm,母线长为5cm,围成这样的冰淇淋纸筒所需纸片的面积是()A . 66πcm2B . 30πcm2C . 28πcm2D . 15πcm24. (2分) (2017九上·吴兴期中) 把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A .B .C .D .5. (2分) (2017九上·宁县期末) 用配方法解方程x2+10x+9=0,配方正确的是()A . (x+5)2=16B . (x+5)2=34C . (x﹣5)2=16D . (x+5)2=256. (2分) (2016九上·萧山期中) 在⊙O中, 所对的圆心角为60°,半径为5cm,则的长为()A .B .C .D .7. (2分)(2017·仙游模拟) 如图,PA、PB分别切⊙O于A、B两点,点C在优弧上,∠P=80°,则∠C的度数为()A . 50°B . 60°C . 70°D . 80°8. (2分) (2017九上·红山期末) 在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象可能是()A .B .C .D .二、填空题 (共6题;共6分)9. (1分)(2019·贵港) 有理数9的相反数是________.10. (1分) (2018九上·金山期末) 点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a________ b(填“>”或“<”或“=”).11. (1分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是________.12. (1分)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是________.13. (1分) (2016九上·西青期中) 如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC 于点D,则OD的长为________.14. (1分) (2019七上·深圳期末) 下图,每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为________.三、解答题 (共9题;共85分)15. (15分) (2019九上·港口期中) 解方程:16. (5分)计算。

浙江省金华市2020版九年级上学期数学期末考试试卷A卷

浙江省金华市2020版九年级上学期数学期末考试试卷A卷

浙江省金华市2020版九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·涟源期中) 在实数,有理数有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2019七下·南县期中) 计算的结果是()A .B .C .D .3. (2分)(2018·江都模拟) 如图是某个几何体的三视图,该几何体是()A . 三棱柱B . 圆柱C . 六棱柱D . 圆锥4. (2分) (2019九上·句容期末) 有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A . 平均数B . 方差C . 中位数D . 极差5. (2分)若式子有意义,在实数范围内有意义,则x的取值范围是()A . x≥3B . x≤3C . x>3D . x<36. (2分)把只有颜色不同的1个白球和2个红球装入一个不透明的口袋里搅匀,从中随机地摸出1个球后放回搅匀,再次随机地摸出1个球,两次都摸到红球的概率为A .B .C .D .7. (2分)如图,点D,E,F分别是△ABC(AB>AC)各边中点,下列说法不正确的是()A . AD平分∠BACB . EF与AD相互平分C . 2EF=BCD . △DEF是△ABC的位似图形8. (2分)如图,BC∥DE,∠1=105°,∠AED=65°,则∠A的大小是A . 25°B . 35°C . 40°D . 60°9. (2分)如图,若車的位置是(5,1),那么兵的位置可以记作()A . (1,5)B . (4,3)C . (3,4)D . (3,3)10. (2分)(2016·宜昌) 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A . 垂线段最短B . 经过一点有无数条直线C . 经过两点,有且仅有一条直线D . 两点之间,线段最短二、填空题 (共8题;共8分)11. (1分)(2019·平阳模拟) 如图,已知函数y=x+2的图象与函数y=(k≠0)的图象交于A、B两点,连接BO并延长交函数y=(k≠0)的图象于点C,连接AC,若△ABC的面积为8.则k的值为________.12. (1分)(2013·南宁) 分解因式:x2﹣25=________.13. (1分)如图,AO⊥OC,DO⊥OB,∠AOD=61°,则∠BOC=________°.14. (1分)(2017·莱芜) 如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=________.15. (1分)(2017·樊城模拟) 如图,在△ABC中,∠BAC=45°,AB=4cm,将△ABC绕点B按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为________cm2 .16. (1分) (2016九上·嘉兴期末) 将抛物线y=x2向左平移1个单位后的抛物线表达式为________.17. (1分) (2017八下·海安期中) 如图,在□ABCD中,∠BAD的平分线AE交边DC于E,若∠DAE=30°,则∠B =________°.18. (1分)方程x(x﹣2)=﹣(x﹣2)的根是________ .三、解答题 (共10题;共105分)19. (10分)(2018·江油模拟)(1) |1﹣ |﹣12tan30°+ +(π﹣3.14)0+(﹣1)2018+(2)先化简,再求值:÷(﹣),其中a= .20. (5分)求不等式组的解集,并求它的整数解.21. (10分) (2016九上·兖州期中) 如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.22. (15分)(2019·江陵模拟) 已知关于x的一元二次方程ax2+x+2=0.(1)求证:当a<0时,方程ax2+x+2=0一定有两个不等的实数根;(2)若代数式﹣x2+x+2的值为正整数,且x为整数时,求x的值;(3)当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x 轴的正半轴相交于点N(n,0);若点M在点N的左边,试比较a1与a2的大小.23. (5分) (2016九上·端州期末) 在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,求两次摸出的小球的标号之和大于4的概率?24. (5分)两个直角三角形按如图方式摆放,若AD=10,BE=6,∠ADE=37°,∠BCE=29°. 求CD长(精确到0.01).(sin37°≈0.602,cos37°≈0.799,tan37°≈0.754,sin29°≈0.485,cos29°≈0.875,tan29°≈0.554)25. (10分) (2018八下·深圳月考) 如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,连接AP.(1)求证:PA平分∠BAC的外角∠CAM;(2)过点C作CE⊥AP,E是垂足,并延长CE交BM于点D.求证:CE=ED.26. (10分) (2017八下·新野期中) 如图所示,小华设计了一个研究杠杆平衡条件的实验,在一根长为1000cm 的匀质木杆的中点左侧固定位置B处悬挂重物A,在中点的右侧用一个弹簧秤向下拉,改变弹簧与点O的距离x(cm)观察弹簧的示数y(N)的变化情况,实验数据记录如下:(1)观察数据,求出y(N)与x(cm)之间的函数关系式,写出自变量的取值范围;(2)当弹簧秤的示数是24N时,弹簧与点O的距离是多少?随着弹簧秤与点O的距离不断减小,弹簧秤上的示数将发生怎样的变化?27. (20分)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG 于点M,N,求证:点M,N是线段FG的勾股分割点;(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S△AMF,S△BEN和S四边形MNHG的数量关系,并说明理由.28. (15分) (2019八上·昆山期末) 如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4 ,(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共105分)19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、24-1、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年下期九年级数学(上册)期末质量检测卷
一、精心选一选:
1.已知线段a 、b 、c 、d 满足ab=cd ,把它改写成比例式,错误的是( ) A. a :d =c :b
B. a :b =c :d
C. c :a =d :b
D. b :c =a :d
2.已知圆内接四边形ABCD 中,∠A :∠B :∠C =1:2:3,则∠D 的大小是( )
A. 45°
B. 60°
C. 90°
D. 135°
3. 如图,AC ,BE 是⊙O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是点O 的是( )
A. △ABE
B. △ACF
C. △ABD
D. △ADE
4.将抛物线2
31y x =-向右平移2个单位, 则所得抛物线的表达式为( )
A. 2
33y x =- B. 2
3+1y x = C. 2
3(2)1y x =+-
D. 2
3(2)1y x =--
5.已知O e 的半径为3,圆心O 到直线l 的距离为4,则直线l 与O e 的位置关系是( ) A. 相交
B. 相切
C. 相离
D. 不能确定
6.在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球( ) A. 21个
B. 14个
C. 20个
D. 30个
7.如图,以(1,-4)为顶点的二次函数y=ax 2+bx+c 的图象与x 轴负半轴交于A 点,则一元二次方程ax 2+bx+c=0的正数解的范围是( )
A 2<x <3
B. 3<x <4
C. 4<x <5
D. 5<x <6
8.已知点E 在半径为5的⊙O 上运动,AB 是⊙O 的一条弦且AB=8,则使△ABE 的面积为8的点E 共有( )个. A. 1
B. 2
C. 3
D. 4
9.一张圆心角为α的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知4
tan 3
α=,则扇形纸板和圆形纸板的半径之比是( )
A.
B.
C.
D.
10.如图,
周长为定值的平行四边形ABCD 中,60B ∠=o ,设AB 的长为x ,周长为16,平行四边形ABCD 的面积为y ,y 与x
的函数关系的图象大致如图所示,当y =时,x 的值为( )
.
A. 1或7
B. 2或6
C. 3或5
D. 4
二、用心填一填
11.圆锥的底面半径为6cm ,母线长为10cm ,则圆锥的侧面积为__________2cm . 12.如图,直线////a b c ,若
12AB BC =,则DE
DF
的值为_________
13.如图,要拧开一个边长为8a mm =的正六边形螺帽,扳手张开的开口b 至少为__________mm .
14.设1(2,)A y -,2(1,)B y ,3(2,)C y 是抛物线2
(1)1y x =-++上的三点,则1y ,2y ,3y 的大小关系为__________.
15.如图,已知等边OAB ∆的边长为2,顶点B 在y 轴正半轴上,将OAB ∆折叠,使点A 落在y 轴上的点'A 处,折痕为EF .当'OA E ∆是直角三角形时,点'A 的坐标为__________.
16.在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠拼成如图2所示的“L ”形
状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知9AB =,16BC =,FG AD ⊥. 求(1)线段AF 与EC 的差值是___ (2)FG 的长度.
三、细心答一答:
17.
()
1
12sin 4523π-⎛⎫+-- ⎪⎝⎭
18.如图1是小区常见漫步机,从侧面看如图2,踏板静止时,踏板连杆与立柱DE 上的线段AB 重合,BE
长为0.2米,当踏板连杆绕着点A 旋转到AC 处时,测得37CAB ∠=o ,此时点C 距离地面的高度CF 为0.44米.求:
(1)踏板连杆AB 的长.
(2)此时点C 到立柱DE 的距离.(参考数据:sin 370.60≈o ,cos370.80≈o ,tan 370.75≈o ) 19.现如今,
“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.
(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率; (2)求乙所拿
两袋垃圾不同类的概率.
20.在下列1115⨯的网格中,
横、纵坐标均为整数的点叫做格点,例如正方形ABCD 的顶点(2,3)A -,(1,0)C 都是格点.要求在下列问题中仅用无刻度的直尺作图.

(1)画出格点M ,连AM (或延长AM )交边BC 于E ,使BE EC =,写出点M 的坐标. (2)画出格点N ,连AN (或延长AN )交边DC 于F ,使1
4
DF DC =
,则满足条件的格点N 有 个. 21.采用东阳南枣通过古法熬制而成的蜜枣是我们东阳的土特产之一,已知蜜枣每袋成本10元.试销后发现每袋的销售价x (元)与日销售量y (袋)之间的关系如下表:
若日销售量y 是销售价x
一次函数,试求:
(1)日销售量y (袋)与销售价x (元)的函数关系式.
(2)要使这种蜜枣每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元? 22.平行四边形ABCD 的对角线相交于点M ,ABM ∆的外接圆交AD 于点E 且圆心O 恰好落在AD 边上,连接ME ,若45BCD ∠=o .
(1)求证:BC 为O e 切线.

(2)求ADB ∠的度数.
(3)若O e 的半径为1,求ME 的长.
23.在平面直角坐标系中,已知5AO AB ==,(6,0)B . (1)如图1,求sin AOB ∠的值.
(2)把OAB ∆绕着点B 顺时针旋转,点O 、A 旋转后对应的点分别为M 、N . ①当M 恰好落在BA 的延长线上时,如图2,求出点M 、N 的坐标.
②若点C 是OB 的中点,点P 是线段MN 上的动点,如图3,在旋转过程中,请直接写出线段CP 长的取值范围.
24.已知抛物线2
y x ax b =++与x 轴交于(1,0)A ,(3,0)B 两点,与y 轴交于点C .
(1)填空:a = ,b = .
(2)如图1,已知5(,0)2
E ,过点E 的直线与抛物线交于点M 、N ,且点M 、N 关于点E 对称,求直线MN 的解析式.
(3)如图2,已知(0,1)D ,P 是第一象限内抛物线上一点,作PH y ⊥轴于点H ,若PHD ∆与BDO ∆相似,请求出点P 的横坐标.。

相关文档
最新文档