部分特殊角和任意角简易角三等分尺规作图

合集下载

三大尺规作图问题

三大尺规作图问题

引人入胜的千古难题——三大尺规作图问题尺规作图是我们熟知的内容。

尺规作图对作图的工具——直尺和圆规的作用有所限制。

直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。

公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。

在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。

于是他们热衷于在尺规限制下探讨几何作图问题。

数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。

尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。

所谓三大几何作图难题就是在这种背景下产生的。

传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。

起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。

人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。

这就是古希腊三大几何问题之一的倍立方体问题。

用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。

任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。

于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。

但是,尽管费了很大的气力,却没能把看来容易的事做成。

于是,第二个尺规作图难题——三等分任意角问题产生了。

正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。

古希腊三大几何问题既引人入胜,又十分困难。

尺规作图数学史

尺规作图数学史
这三个问题后被称为“几何作图三大问题”.直至 1837 年,万芝尔(Pierre Laurent
Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882 年,德国数学
单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交
点 ,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!.
五种基本作图:
初中数学的五种基本尺规作图为:
1.做一线段等于已知线段
2.做一角等于已知角
3.做一角的角平分线
4.过一点做一已知线段的垂线
在什么位置?
F
m
A
误作法结集成书.
还有另外两个著名问题:
⑴ 正多边形作法
·只使用直尺和圆规,作正五边形.
·只使用直尺和圆规,作正六边形.
·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著
名数学家都束手无策,因为正七边形是不能由尺规作出的.
5.做一线段的中垂线
下面介绍几种常见的尺规作图方法:
⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这
两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的
位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一
条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的
方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.
【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇
A 、 B 的距离必须相等,到两条高速公路 m 、 n 的距离也必须相等,发射塔 P 应修建

初中尺规作图详细讲解(含图)

初中尺规作图详细讲解(含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法。

最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题。

历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”。

直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书。

还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形—-这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的。

尺规作图三等分任意角

尺规作图三等分任意角

尺规作图三等分任意角(0°<α≤180°)黑龙江省巴彦县兴隆镇第二中学谭忠仁邮编:151801电话:150****5590目录关于三等分角的由来 (1)三等分任意角(0°<α≤180°) (2)已知:∠AOB (2)求作:∠AOB的两条三等分射线OC、OD (2)作法: (2)证明: (2)关于三等分角的由来众所周知,三等分角是著名的几何作图三大问题之一(另外两个问题是化圆为方、倍立方体),近两千年来,几十代人为这三大问题绞尽脑汁,希腊人的巧思、阿拉伯人的学识、文艺复兴时期大师们的睿智都曾倾注于此,却均以失败告终。

1837年范兹尔首先证明三等分角与倍立方体不能有限次使用尺规作出。

1895年,克莱因给出三大问题有限次使用尺规作图不可能的简单而清晰的证明,阿基米德在几何学上的造诣是很深的,从他的著作里可以看到他对三等分角问题的研究,他先采用在直尺上标注一个点的方法,然后把一个角三等分,显然,这一方法取消了直尺上无刻度的限制,此外,喜庇亚斯借助割圆曲线、尼克曼得斯借助于蚌线、巴普士借助于双曲线、帕斯卡借助于蚶线,解决了三等分角的问题,但所有这些曲线都不能仅用尺规来完成。

综上所述,尺规作图三等分任意角尚无先例,本人自1971年参加工作后,任初中数学教师,由于专业的需要、兴趣及其爱好,使我涉猎了大量数学方面的资料和相关知识,下决心研究三等分角问题,历尽40年时间,苦心钻研,现终得一法,并且给出了科学、严谨的证明,借此恳请数学专家和导师予以审核、验证,并提出宝贵意见。

注:本文所举资料,请详见《陕西中学数学》1991年第二期谭忠仁2011年5月10日三等分任意角(0°<α≤180°)已知:∠AOB求作:∠AOB的两条三等分射线OC、OD作法:1、以O为圆心,以任意长为半径作⊙O,交射线OA于A,交射线OB于B;2、连结AB,引直径EE1,并且使EE1⊥AB,垂足为H;3、连结BE,以B为圆心,以BE的长为半径画弧,交AB于F;4、连结EF并延长,交⊙O于G1,交BE1的延长线于T;5、以T为圆心,以TB的长为半径画弧,交⊙O于C1,连结TC1,交⊙O 于G;6、在⌒AB上截取⌒BC2,使⌒BC2=2⌒E1G;7、连结BC2,作BC2的垂直平分线T1D2,垂足为H2,交TB于T1,,连结T1 C2;8、作射线TP,在射线TP上依次截取TP1= P1P2= P2P3,连结T1P3,作T2P1∥T1P3,交TT1于T2;9、以T2为圆心,以T2B的长为半径画弧,交⊙O于C,连结T2C,交⊙O 于G2;10、连结BC,作BC的垂直平分线T2D,交⊙O于G3、D,垂足为H3,(T2D 必经过圆心O、必经过等腰三角形T2BC的顶角的顶点T2);11、作射线OC,则射线OC、OD即为所求作的∠AOB的两条三等分射线。

角的三等分(尺规作图)

角的三等分(尺规作图)

1 . 以图 1中的 A O为轴 , 将 已三 等 分一 角 的 AA O C向
AA O B方 向旋转任意角度 O t ( 1 8 0 。> O t >0 。 ) , 连接 B C , 即形
数 学 学 习与 研 究 2 0 1 6 . 2 3

任意角被 三等分. O F 、 O G 为任意角的三等分线.
4 . 证 明图 2 、 图 3中的 ,点与 F 点、 G点与 G 点在 线段
. .
A B上分别为 同一 个 点 , 从 而 逆推 证 明在平 面 图二 中 , 用 尺

, ●
规作 图方法 三等分任意角的正确结论.
因图 3 AA B C中, A C、 A B 的 长 度 及 D、 E两 点 在 A C上 的
位置与图 2 AA B C中的对应 部分相等 ( 旋 转后未发生 变化 ) ,
个三角形 中 E F , B C、 DG / B C、 E F t 力B C、 D G t / B C .
7 . 连接 O F 、 O G, 所 得 LA O F( 1 )= F O G ( 2 )=
A F=A F , F点与 F 点在 A B上为 同一个点 , 同理 , A G= A G , G点与 G 点在 A B上为同一个点.
-G / O B( / _ 3 ) . O G、 O F为任意 LA O B三等分线 , 任意 角被三
解 题 技 巧 与 方 法
◎ 栾鹤 臣
( 黑 龙 江省 朗 乡林 区基 层 法 院 , 黑龙 江
铁力
1 5 2 5 1 9 )
【 摘 要】 用已 被 三等分 一角 的三角 形, 通 过平 行投 影 与
求解 的任 意角所在 的三角形重合 , 三等分任 意角.

关于三等分任意角尺规作图的方法步骤(作者:张爱献)

关于三等分任意角尺规作图的方法步骤(作者:张爱献)

关于三等分任意角尺规作图的方法步骤
作者:张爱献
(铁铁道部四局三处,1990年于山西沁水)
已知一任意角∠SOT用尺规作图法三等分该角的作图方法步骤
1、作角∠SOT。

2、以O为圆心以任意长为半径画弧,交∠SOT的两边于A、B两点得弧AB。

3、以A、B为圆心以大于1/2AB长为半径画弧交于一点,以O为起点过交点作射线,交弧AB于C点(简称作AB的平分线得C点)。

4、连AC并过C点作射线AC,在射线AC上截取AD=2AC。

5、将AD线段三等分(利用平行线截得成比例线段定理),得AH=1/3AD。

6、过H点作AD的垂线交弧AB于E点。

7、以A点为圆心,以AE长为半径画弧交AD线段于I点。

8、将HI线段九等分(利用平行线截得成比例线段定理),得HK=5/9HI。

9、过K点作AB线段的垂线交弧AB于F点。

10、以AF长为定长三等分弧AB,得三等分点F点和Y点。

11、以O点为起点过F点、Y点作射线,并去掉所有多余的辅助作图线。

说明:
1、作图中的第4条和第7条将线段三等分和9等分利用三角形中平行线截得成比例例线段定理进行等分,不再详细讲解等分步骤。

2、对于90度以下的锐角来说:因H点和I点近似重合,也可近似以E点作为等分点进行等分,(视分割精度要求而定)。

作者简介:张爱献(1964—)男河南省民权县高级工程师
4。

尺规作图法简介

尺规作图法简介

一、尺规作图在中学就知道,几何作图所使用的工具是严格限制的,只准用圆规和直尺,直尺不能有刻度,不能使用量角器及其他任何工具.其实,这种限制自古希腊就有而且沿用至今.为什么要加以这样的限制呢?比如说,要找出一个线段的中点来,就不可以先用(有刻度的)尺去量,看它的长度是多少,然后取这个长的一半,再用这一半去量就找出中点来了.何必一定要用无刻度的直尺和圆规去寻求呢?是自己跟自己过不去吗?古希腊认为,所有的几何图形是由直线段和圆弧构成的,圆是最完美的,他们确信仅靠直尺和圆规就可绘出图形来.古希腊人十分讲究理性思维,讲究精确、严谨.他们认为依据从少数假定出发的、经由逻辑把握的东西最可靠.例如前面所说的寻求一已知线段AB的中点问题,作图的步骤是:1.以A为圆心,以一适当长度为半径画弧;2.又以B为圆心,以同样的长度为半径画弧;3.这两弧相交于两点,作两点连线,此连线与已知直线之交点即为所求之中点.然后,要根据已知几何命题来证明这个点必是中点.人们认为,这不仅是最可靠地找到了中点,而且体现了一种完美的思路和做法.正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如F i=22i+1的数.费马的一个著名猜想是,当n≥3时,不定方程x n+y n=z n没有正整数解.现在他又猜测F i都是素数,对于i=0,1,2,3,4时,容易算出来相应的F i:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如F i=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如F i=22i+1的数的一般结论很难做出,而且具体分解某个F i也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k或2k×p1×p2×…×p s,其中,p1,p2,…,p s是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而3=F0.从古希腊流传下来的几何作图还有三大难题,一个是化圆为方问题,即求作一正方形,使其面积等于已知圆的面积;二是倍立方体问题,即求作一立方体,使其体积等于已知立方体的体积;三是将一任意角三等分.某些特殊角的三等分并不困难,例如将90°的角、135°的角三等分并不难,但是任意角就不一样了.例如,60°的角,你试试看,能否将它三等分?现在已有了结论,告诉你不要再试了,否则是白费时间了.可以取单位圆作代表,其面积即为π.那么,化圆为方的问题相当能吗?古希腊人对化圆为方的问题有极大兴趣,许多人进行研究.这一研究推动了圆面积的近似计算,促进了极限思想的萌生,但是并没有解决化圆为方的问题.另外两大难题虽也没解决,但也促进了对另一些数学问题的研究.尺规作图的实质在于限制只使用两种工具的条件下通过有限步骤完成作图.长度为任一有理数平方根的线段来.当然还可通过有限步骤作出长度为一有理数平方根的平方根的线段来.我们把凡能用尺规经有限次步骤作出的线段或量叫做“可作几何量”.可以证明,“可作几何量”就是那些有理数经有限次+、-、×、÷和开方这类运算得到的量.否则叫“不可作几何量”.化圆为方的问题直至19世纪才得到答案:它是不可能的.因为可作几何量”.这一悬而未决、延宕两千多年的古老问题,最终得以解决.属“不可作几何量”,所以,倍立方体问题的答案也明确了:不可能!再以60°角为例来分析任意角的三等分问题.为把60°三等分,必然要用尺规作出量cos 20°或sin 20°.以下三角恒等式是我们熟知的:cos 3x=4cos3x-3cos x,将x=20°代入,得将cos 20°换写为y,即是三次代数方程:这个三次方程的一个正实根当为其所需之解,然而,它必会有有理数的立方根表示.因而y=cos 20°也是一个“不可作几何量”.故三等分问题亦属不可能.难怪古希腊人对这三个问题久久未找到答案,难怪这是真正的难题.不是古希腊人不智,确实是当时的数学水平还难以使他们得出三大几何作图难题均以“不可能”为结局的结论来.二、解析几何与微积分数学以两千多年的历史伴随人类文明.从公元前到公元16世纪,几何与代数各自平行发展着,几何则以更大的魅力影响着人类文明.但几何似乎仅是关于形的科学而与数无关;代数则似乎与形无关而仅是关于数的科学.代数与几何难以被联系起来的原因是,人们心目中的数是一个个孤立的定数,因而难以从数想到由无穷多个点连成的线条等图形;而对于形,例如,线段和封闭图形,它们与数的联系似乎仅有由数刻画的长度和面积,因而难以从图形想到数的其他表现能力.把数与形密切联系起来的关键是变量概念的形成;另一个同等重要的问题是把图形如线条视为是由动点形成的.只有变动的数与变动的点联系起来,才使数与形的密切关系被深刻地揭示出来了.这里,决定性的工具是坐标,有了坐标,数就是点,点就是数,变动的点就是变动的数,变动的数就是变动的点,于是变数与图形结合在一块了.真正的困难还在于,任何一个具体的图形都不带有一个坐标在身上,亦即,人们在现实生活中是不能直接看到坐标的.当然,稍稍想一想,生活中也有根本感受不到的坐标存在着.例如,在我们说东、南、西、北的时候,一般是确定的站在某一点来说,比如说“北京在东面”,这对站在兰州的人来讲是对的,对站在济南的人来讲是不对的.同样,站在郑州应当说“武汉在南面”,而站在广州,则只能说“武汉在北面”.这实际上就是有了坐标原点的概念,有了坐标的思想.可是,问题还没有那样简单,还需要有运动的观念,还需要有更精确的描述,才能借以刻画几何图形,才能实现数与形的有效融合.数与形的充分结合才产生解析几何.解析几何的主要创始人笛卡儿的有关工作也经历了一个发展过程,所以解析几何并不是瞬间的、偶然出现的产物.让我们看一个实例.首先,我们回顾一下已知两线段而由尺规作出比例中项的办法,如果两线段一样长,那它们本身就是比例中项.如果不一样,那么,可在较长的线段AC上取一点B,使AB等于较短线段的长.再以AC为直径画圆,然后过B作AC的垂线交圆于D,连接AD,AD即为所求之比例中项.在右图中,我们按以上方式作出了AB与AC的比例中项,即接着,我们容易作出E、F、G、H、…使得如果设AB=1,AD=x,上式就变成了从线段看,AD=x时AF=x3,AF=AD+DF,若记DF=a,我们得到x3=x+a.反过来看,a作为已知数,容易作出一长度为a的线段DF,根据由以上分析所得之启示可作出AD,那么,AD实际上便是三次方程式x3=x+a的根.这就是笛卡儿在正式形成其明确的解析几何思想之前的一例,把代数方程与几何结合起来的一例.他还曾利用几何方法探寻四次代数方程求根的方法.这是把几何与代数问题结合的一个方面.另一方面,笛卡儿对几何问题又运用了代数方法,例如,研究几何轨迹的问题.解析几何的精华在于把几何曲线用代数方程来表达,同时又利用代数的研究方法来研究几何.从进一步的分析还可发现,这种方法其所以十分强有力,是因为形与数的联系比人们想象的要紧密得多,许多复杂的几何现象是通过解析的方法发现的,许多复杂的几何问题是通过解析方法解决的.这不仅是一个手段问题,也是对世界本质的看法问题.所以,笛卡儿的解析几何具有深远的意义.我们从所熟知的内容来看看解析几何的意义.例如,我们知道椭圆、双曲线、抛物线的标准方程是:y2=2px我们并不需要画出图形来而只要一看式子就知道它是个什么样子.所谓标准方程,是从代数表达形式来看的,而从几何上看,则是其图形摆得方方正正,例如,标准椭圆方程实际上是其圆心摆在原点,其长短半轴分别与平面的两条坐标轴重合.但是,实际的情况并不总是以标准的形式呈现在我们面前的.直线也有其标准形式,但一般形式是ax+by+c=0;二次曲线的一般方程式是ax2+2bxy+cy2+dx+ey+f=0.然后,我们可以通过解析的方法、代数的方法把它们化为标准形式,例如,对二次方程,我们可以通过以下的变换来做这件事情:通过这样的变换,就可以把一般方程化为标准方程.这一过程,这种工作,从表面看来似与几何毫无关系,我们只是在做着代数的工作.通过上面的变换,原来的方程就变为一个新的形式了,现在把它们并列写下来:ax2+2bxy+cy2+dx+ey+f=0a′x′2+2b′x′y′+c′y′2+d′x′+e′y′+f′=0这成了两个不同的式子,却有3个相等的式子:a+c=a′+c′,换句话说,在前述变换之下,有两个东西不变(对此,我们前面曾提到过).至此,我们对一般二次代数方程所作的叙述全是代数的,对方程进行代数变换(两种线性变换),以及这种变换之下的不变量.接下去我们还可以说明,一般二次方程能在变换之下化为标准方程.下面将用全套的几何语言来叙述与以上相关的全套代数涵义,或说明全套代数语言的几何涵义:在给出了一般二次曲线之后,我们总可以通过平移和旋转,把它摆在标准位置上.以椭圆为例,即把它的圆心移到原点来,把它的长短轴移至坐标轴上来,而二次曲线的原形是不变的.可见,用几何的语言来说,也是很简单的.那么,代数的讨论有什么实际的意义呢?在一般地给出了一个二次代数方程后,你很难看出它会是怎样一条曲线,如果一点一点地描绘也不是件简单的事.然而,代数的讨论告诉我们有几个不变式在那里,我们甚至不必最终化成标准表达式,就能由几个不变式看出曲线的类型和性质.这是重要的定性分析.此外,这种分析也使我们能把所有的二次曲线准确无误地详尽无遗地予以归类了.从哲学上说,笛卡儿的解析几何可说是他理性主义的产物.上面以二次曲线为例,表明代数方法与几何问题的结合,产生了最充分的理论说明.笛卡儿们认为世界是十分有秩序有条理的,是可以用方程来表达的.奇异就出在这种有序的世界和有序的运动里面.在解析几何出现后不久,微积分被发现了.微积分与解析几何不仅是伟大的数学发现,而且为近代科学开辟了道路;它们不仅是17世纪的伟大发现,而且在人类文明史上写下了极其灿烂的一页;它们不仅为近代科学开辟了道路,而且它们本身就是划时代的成果.在微积分产生之前,人们已比较普遍地接触这样几类问题:物理方面,求速度、求距离的问题;几何方面,求切线、求长度、求面积、求体积、求物体重心的问题;在各种实际问题中,求极大、极小的问题等.因此,在微积分正式诞生之前,关于极限的思想,关于微分的思想,关于积分的思想,已经零星可见.关于极限的思想在我国古代早已出现.求速度,求切线,这就会接近微分;求距离,求长度和面积、体积,这就会接近积分.古代中国的祖暅原理与近代西方的卡瓦列里原理说的是同一原理,前者先于后者约1100年左右.这一原理当为一般大学生所熟悉:当两立体介入两平行平面之间,又为平行于这两平面的任何一平行平面所截得之截面面积相等时,那么两立体之体积相等.用符号来表达,用同一平面截得两立体之截面面积分别表示为f(x)dx和g(x)dx,原理说的是:当对于所有的x有f(x)dx=g(x)dx时,便有:作为一个著名例子,我们看看半球体积的计算.这一计算,现在看来似乎是轻而易举的,但在没有微积分之前是十分困难的.所以下面的计算方式在当时是很有意义的,它利用了祖暅——卡瓦列里原理.设半球的半径为r.以半球的大圆为底面,球顶朝上.作一平面与底面平行并与底面之距离为h.这个平面截半球所得之截面为一圆,该π(r2-h2).再看看一个截面半径为r的圆柱,其高度也为r.其下底与上面所说的半球底面摆在一个平面.现在将以此圆柱的上底为底、以下底圆的圆心为顶点作一圆锥.这一圆锥完全含于圆柱,现在把这一圆锥挖去,并考虑被挖去一圆锥的圆柱所形成的立体.当用一平行于底面的平面去截它时,其截面为一圆环,设这一平行于底面的平面距底面h,那么,这一圆环的面积也等于πr2-πh2=π(r2-h2).可见,这一立体与半球被任何同一平行平面所截之截面面积相等.根据祖暅原理,半球体积应与被挖去一圆锥的圆柱体积相等.而被挖去一圆锥的圆柱体积是:尽管在牛顿和莱布尼茨之前,人们从不同的角度接触到了微分和积分,但是对于微分与积分的关系并没有真正弄清楚.而真正的困难亦在此.很容易明白,加法与减法是互逆的运算,也不难明白,乘法与除法是互逆的运算.开方作为乘方的逆运算,在技术上更困难了;作为指数运算逆运算的对数运算的产生并不容易.逆运算常常带来一些新问题,程序性问题,多值性问题.对于微分与积分之间的联系,认识上更有特殊的困难,这样两个似乎十分不同的两种运算竟然是互逆的,这正是使人惊讶不已的地方,也是使人感到其发现之特别不易的地方.以具体问题来说,求一曲线所围成图形的面积运算怎么会与求这一曲线的切线的运算是互逆的运算呢?微积分的创立正是以发现微分与积分的互逆关系为标志的.如今我们所说的牛顿—莱布尼茨定理即微积分基本定理,讲的就是两者关系.微积分基本定理可主要以微分的形式出现,亦可主要以积分的形式出现.我们分别叙述如下:微分形式.(x)在[a,b]上可微,且积分形式.可微,且发现f(x)的积分的微分正是它自己(在一定条件下即可保证).只有在这一发现得到之后,才能说微积分产生了,因为这一定理奠定了微积分的理论基础.牛顿的发现在莱布尼茨之前,但发表的时间在莱布尼茨之后,他们两人又确系各自独立的发现,而且背景也有所不同.因此,虽然后来也曾出现过关于发现的优先权的争议,最终的看法却达成一致:牛顿和莱布尼茨共同创立了微积分的基本定理.微积分的伟大意义可以从4个方面去看.1.对数学自身的作用.自从有了解析几何和微积分,就开辟了变量数学的时代,因而数学开始描述变化,描述运动.微积分改变了整个数学世界的面貌.牛顿、莱布尼茨17世纪创立的微积分还存在着明显的逻辑缺陷,但是这种缺陷并未抑制它旺盛的生命力.18世纪的数学家们在微积分提供的思维和工具的基础上阔步前进,迅速创立了许多数学分支,诸如微分方程,无穷级数,变分法等.在进入19世纪之后,还有诸多与微积分直接相关的数学分支产生,原有的一些数学分支也开始利用微积分的方法,前者包括复变函数,微分几何等,后者包括数论,概率论等.可以说,在有了微积分之后的两、三百年期间,数学获得了极大的发展,获得了空前的繁荣.微积分的严密逻辑基础也在19世纪完善地建立起来.微积分基本定理的表现形式在多维空间和一般拓扑空间中也获得了拓广,在更广阔的领域中延伸,进一步显示了它在数学领域里的普遍意义.2.对其他自然科学和工程技术的作用.有了微积分,整个力学、物理学都得以它为工具来加以改造,微积分成了物理学的基本语言,而且,许多物理学问题要依靠微积分来寻求解答.“数理不分家”,这句话在有了微积分之后就具有了真实的意义,离开了微积分不可能有现代物理,无论是力学、电学还是光学、热学.微积分的创立得到了天文学的启示,此后,天文学再也离不开微积分.19世纪上半叶可能还认为化学只需要简单的代数知识,而生物学基本上与数学没有联系.现在,化学、生物学、地理学等都必须深入地同微积分打交道.3.对人类物质文明的影响工程技术是最直接影响人类物质生活的,然而工程技术的基础即数理科学,也可以说,现代工程技术少不了微积分的支撑.从机械到材料力学,从大坝到电站的建设,都要利用微积分的思想和方法.如果说在落后的生产方式之下,只需要少量的几何、三角知识就可以工作的话,如今,任何一个未学过微积分的人都不可能从事科学技术工作.在有了微积分和万有引力原理之后,人们就预见了人造卫星及宇宙飞行的可能,并且早已利用微积分计算出了宇宙速度.今日满天飞行的人造卫星早在微积分产生之初就已在学者们的预料之中.在今天人类广泛的经济活动、金融活动中,微积分也成了必不可少的工具.微积分诞生之初的主要背景是物理学和几何学,而今,它几乎为一切领域所运用.它对人类物质生活的影响是越来越大.4.对人类文化的影响只要研究变化规律就要用上微积分,在人文、社会科学领域亦如此,因而微积分也渗透于人文、社会科学,用它来描述和研究规律性的东西.哲学尤其关注微积分,那是因为微积分给了哲学许多的启示,它不仅影响到哲学方法,也影响到世界观.辩证唯物主义更关注微积分.马克思十分关心数学,何止是关心,他对数学还曾有过广泛而深入的研究,特别对微积分有专门的研究.马克思在1863年7月6日致恩格斯的信中说:“有空时我研究微积分.顺便说说,我有许多关于这方面的书籍,如果您愿意研究,我准备寄给您一本.”①1865年5月20日,马克思又在给恩格斯的一封信中说到:“在工作之余——西,任何其他读物总是把我赶回写字台来.”②马克思不只研究牛顿、莱布尼茨,而且研究了牛顿、莱布尼茨之后一个多世纪内的一批著名数学家,如达朗贝尔,欧拉,拉格朗日等人.1882年11月22日,马克思在致恩格斯的一封信中还说到:“我未尝不可用同样的态度去对待所谓微分方法的全部发展——这种方法始于牛顿和莱布尼茨的神秘方法,继之以达朗贝尔和欧拉的唯理论的方法,终于拉格朗日的严格的代数方法(但始终是从牛顿—莱布尼茨的原始的基本原理出发的),——我未尝不可以用这样的话去对待分析的这一整个发展过程,说它在利用几何方法于微分学方面,也就是使之几何形象化方面,实际上并未引起任何实质性的改变.”③马克思那个时代写到了“终于拉格朗日”表明马克思已站在前沿,他可能还未看到柯西、魏尔斯特拉斯的分析方法、极限方法,但也是从“牛顿—莱布尼茨”那里出发的.从1863年的信到1882年的信,从信中表现出来的对微积分越来越深入的分析,可以看出,马克思是多么认真、多么深入又在多么漫长的时间里关注和研究着微积分!我们可以想一想,马克思作为一位哲学家、思想家、经济学家、政治家为何如此深切地关心和深入地研究数学尤其是微积分?再看看恩格斯本人.恩格斯在《自然辩证法》中有一段许多人熟悉的话:“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分学和积分学也就立刻成为必要的了,而它们也就立刻产生,并且是由牛顿和莱布尼茨大体上完成的,但不是由他们发明的.”①当然,应当说大体上是由他们发现的,另一位可以说接近这一发现的是牛顿的老师——巴罗.恩格斯还在《反杜林论》这部著作中说到:“因为辩证法突破了形式逻辑的狭隘界限,所以它包含着更广的世界观的萌芽.在数学中也存在着同样的关系.初等数学,即常数的数学,是在形式逻辑的范围内活动的,至少总的说来是这样,而变数的数学——其中最重要的部分是微积分——本质上不外是辩证法在数学方面的运用.”②事实上,恩格斯不只是注意深入研究微积分,研究数学,他还令人敬佩地广泛地研究了他所处时代的数十个自然科学领域的最新成果.也许,恩格斯是一个杰出的榜样,是从社会文化的角度深刻分析过自然科学的榜样.顺便说说,列宁对于数学,尤其是物理学,也有过浓厚的兴趣.似乎在马克思、恩格斯、列宁之后的马克思主义者很少有这种兴趣,更少有这样深刻的见解.这是不是一种遗憾呢?也许,不一定每位马克思主义者都需要有如此广博而深刻的自然科学见解,也许学识与智慧及其表现形式也不一样.然而,有一点似乎应当是共同的,任何一位真正的马克思主义者必然是对自然科学的各种进步寄予深切关注和满腔热情的支持,并且特别关注它们对社会进步的巨大影响.邓小平具有这样的品质,邓小平亦可算这一方面的典范,虽然他没有可能熟悉现代意义下的微积分,但他把社会文化与自然文化也联系在一起.三、非欧几何直到现在,知道非欧几何的大学生还少得可怜,甚至大学数学专业本科毕业了,学习了大约15年以上的数学,不少人还是不知道非欧几何.这一事实,让人在赞美非欧几何之时多少有些遗憾.为了使我们的叙述更实在些,不能不以尽可能简洁的方式介绍一下有关背景.欧几里得几何在公元前300年就产生了,现在简称欧氏几何.中学生所学的几何基本上是欧氏几何,这种几何已流传两千多年,至今每个学生仍然学习它,多多少少要学习;它的影响遍及世界各国.欧氏几何的主要特征是首开公理方法,不仅是在数学领域,而且是在整个科学领域开创了公理方法.公理方法的基本要点是,从少数几个概念(原始概念)和少数几个命题(原始命题,又称公理)出发;演绎出本学科其他所有概念和命题,从而构成这一学科的全貌.运用这种方法的学科因而自然地被认为具有最严密的演绎体系,做到了这一点的学科就被认为是严谨的科学,也被认为是十分成熟的学科门类.所以,几何被认为是最早成熟的自然科学分支.由于几何在数学领域长期作为主要的代表,。

角三等分

角三等分

角三等分和平前言一百多年来,国内外数学界一致认为用尺规(尺指的是不带刻度的直尺,规指的是圆规,简称为尺规)作图将一任意角三等分已被证明了这是一个“作图不能问题”的结论是完全正确的。

其实这个结论肯定是错误的,我就能,肯定能推翻这个错误的结论。

下面我用角三等分和剖析角三等分及解两种不同的解题方法中的一种方法即角三等分来证明用尺规作图可将一任意角三等分,並对大小各不相等的角进行角三等分尺规作图达2470多次,装订成册24本,验证了这个理论是完全正确的。

让角三等分无解的结论彻底破灭,也为角的其他等分的解决打下基础,角三等分也是角尺规等分法中的一部分。

由于本人水平有限,如有错误和缺欠,恳请给以指正。

2011-4-3 和平一角三等分∠α为任意一个角,用尺规作图将∠α三等分。

以∠α角顶点o为圆心,以任意长为半径画圆为A圆(图中只画圆的一部分),见图3-1,A 圆交∠α两边分别是A点和B点,在A圆上作∠AOB=∠BOC=∠AOD=∠α=1/3∠DOC,设∠OCD=∠β,2∠β+3∠α=180°.如果3∠α大于或等于180°时,先将∠α缩小偶数倍的角再扩大3倍的角小于180°为止。

连接CD交OA线上G点,作∠AOB角平分线OH,∠AOH=∠HOB=1/2∠AOB=1/2∠α,连接BD交OH 线上H1点,连接BG並延长交OD线上P点,连接AP交CD线上F点,连接BF交OH线上b2点,连接GH1、Gb2、H1A、AD、AB、BC,求证:∠H1Gb2=1/3×1/2∠α=1/3∠GOH1=1/3×1/2∠AOB。

在△OGH1中,分别作OG和GH1边的垂直平分线交于O2点,连接O2O, 以O2点为圆心,以O2O为半径经过O、G、H1三点的圆为B圆(图中只画圆的一部分),GD=GB,ABGD为菱形,H1A=H1G=H1B,证明省略,B圆也经过B点,∠H1GB=∠H1BG=∠GBD=1/2∠α,∠DH1G=∠H1GB+∠H1BG=∠α=∠GOB,∠DH1G=∠GOB, ∠GOB+∠GH1B=180°,O、G、H1、B四点共圆,又∵O、G、H1三点可确定一个圆均在B圆上,∴B点也在B圆上。

任意一个角三等分的尺规画法

任意一个角三等分的尺规画法

龙源期刊网
任意一个角三等分的尺规画法
作者:李文贵
来源:《中学生数理化·教研版》2008年第08期
任意一个角二等分比较容易,而任意一个角三等分就比较困难,通常只能是用量角器量出角度算出,或用尺规近似画分.本人通过研究,总结出一种尺规画法,以供大家探讨.具体画法如下:
一、设∠AOB为一任意角,使用一个扇形器(可用量角器代替,或用硬质纸板制作)放在∠AOB上,使其圆心O′与∠AOB的顶点O重合,设扇形器圆弧边与∠AOB两射线的
交点为A和B(在扇形器圆弧边上对应标记为A′和B′,沿扇形器的圆弧边沿画一圆弧AB(如图1).。

尺规三等分任意角画法和证明

尺规三等分任意角画法和证明

〈〈用直尺和圆规把一个任意角分成三个相等的小角的画法和证明〉〉(1)在图[1]中,圆心角AOB,圆心是O,边OA=OB是半径,弧AB。

(2)在AB弧上任意截取一段AC弧,再任意截取一段BD弧,令BD弧=2AC 弧,剩余一段CD弧;剩余CD弧=AB弧-AC弧-BD弧=AB弧-3AC弧,(BD弧=2AC弧),请看图[1]。

(3)连C点和D点,CD线段为剩余弧CD的弦;因为剩余弧CD很短与CD 弦重合成一段线段,所以,我们只要把CD弦三等分,剩余弧CD也就被三等分了,请看图[1]。

(4)大家知道CD弦是一段线段,我们用“平行线等分线段定理”把CD弦等分成三段:CH=HK=KD,因为,剩余弧CD很短与CD弦重合成一段线段,所以,CD弧也被同时三等分为:CH弧=HK弧=KD弧,请看图[1],H点和K点便是CD 弦上的两个三等分点同时也是剩余弧CD上的两个三等分点,所以,剩余弧CD=3CH 弧(CH弧=HK弧=KD弧),请看图[1]。

(5)因为,AB弧=AC弧+BD弧+CD弧=3AC弧+3CH弧(BD弧=2AC弧,剩余弧CD=3CH弧),所以,AB弧=3(AC弧+CH弧)=3AH弧,请看图[1]。

所以,1/3AB弧=AH弧,请看图[1],所以,H点是AB弧上的一个三等分点,请看图[1]。

(6)以H点为原点、以HA弧长为标准长在BH弧上截取一段弧HM,截点为M,则M点和H点便是AB弧上的两个三等分点,所以,AH弧=HM弧=MB弧=1/3AB弧,请看图[1]。

(7)连OH和OM,OH和OM把圆心角AOB分成三个小圆心角:小圆心角AOH、小圆心角HOM和小圆心角MOB,请看图[1]。

(8)在圆心角AOB中,依据圆心角、弧、弦的关系定理:因为:小圆心角AOH对应AH弧,小圆心角HOM对应HM弧,小圆心角MOB对应MB弧,AH弧=HM弧=MB弧=1/3AB弧,所以:小圆心角AOH=小圆心角HOM=小圆心角MOB=1/3圆心角AOB(依据圆心角、弧、弦的关系定理,等弧对等角),请看图[1],所以,任意角AOB被尺规三等分了。

尺规三平分角,角三等分

尺规三平分角,角三等分

三等分角、三平分角1、废话部分先说明我没有破解,但是有很多很接近的作图方法,在这里都写出来,希望接下来有共同兴趣的人可以少一点的弯路。

因为这方面的书籍和讯息都很少,我的想法不知道会不会和以前的人的想法重合 另一个就是,利用双曲线的这种方法可以解决任意角度(︒︒360~0),相比我知道的几种工具解决三等分的办法是便捷了许多另外就是由这个三等分衍生出来的好多概念在以后应该会有价值,就不知道是多少年后, 最后对于想深入研究的人我奉劝一句|“放弃吧,很费脑细胞还有时间的”2、双曲线的由来取任意一个角度每一个角度,以顶点为圆心,以任意长度画圆,被这个角度的两条边截出一段弧这段弧会根据圆半径的长短,弧长会相应变化,但是圆心角是不会变化的我们只要三等分弧AB ,就能等到AOB ∠的三平分角,这点不证明把A 、B 为两点连接直线,从圆心O 点作直线AB 的垂线,我们会得到一个类似直角坐标系的图形(可能有人在这里要彪了,你这是要利用直角坐标系,不是的哈,乖乖看下去,我只如果A、B间距是固定的,随着圆心在垂线DE上下运动,我们就能得到任意一个角度我用几何画板作图,大家可以学一下这个软件,毕竟手工作图误差是很大的对于这个任意角度,我们反推,在已知弧AB的两个三等分点的情况下,得到三平分点随着圆心上下移动的轨迹这个是一条栓曲线的一部分图像,接下来我给出证明把两个三平分点与点A 、B 连接,我们会得到一个等腰梯形,并且线段AF=FG=GB因为F 、G 点事三平分点,GOB FOG AOF ∠=∠=∠,点A 、F 、G 、B 在同一圆上,所以AF=FG=GB接下来是证明线段FG 平行AB ,弧AF=弧GB (因为FG 是三平分点),所以线段FG 平行于AB ,线段FG 也是垂直于DE 的直线DE 垂直于AB ,FG 平行于AB ,又DE 平分线段AB ,所以直线DF 也是FOG ∠的平分线,最主要的,我们要得到线段HG=21GB , FG=GB (相等角在同一个圆上所对应的弦是相等的),DE 平分线段FG , ∴ HG=21 FG=21GB ∴HG=21GBHG=21GB 圆心O 是直线DE 上任一点,恒有HG=21GB ,这个符合双曲线的第二个定义:平面内到一个定点B 和一条直线DF 的距离的比是常数e=2,e 〉1时的动点曲线轨迹叫做双曲线,∴∠AOB 的之中右边的三等分点的轨迹是一条双曲线,同理得证左边的三等分点也是一条双曲线3、接下来是推理出双曲线的解析式,求出解析式112422=-y x当∠AOB 是零度的时候, AB 的长度不随着圆点O 的变动而变动∴零度的弧就是与线段AB 重合,三等分点如图所示为i ,i 同时是线段AB 的三等分点,同时也是三等分点轨迹与线段AB 的轨迹的交点和双曲线的顶点之一设直线AB 与直线DE 的交点是j,假设线段ji 是一个距离单位,那么根据数量关系就有线段AB=6ji, iB=2ji B 点事双曲线的一个焦点我们假设双曲线的解析式是12222=-by a x , 222c b a =+,原点到双曲线顶点的距离是a,原点到焦点的距离是c, iB=c-a=2ij 我们已经把ij 设为基本距离单位,∴c-a=2离心率e=ac =2 联立方程⎪⎩⎪⎨⎧==-22ac a c 解得a=2,c=4, 222c b a =+ ∴b=32所以双曲线的方程式112422=-y x上边的是繁琐的一些证明,无非我们要得到的就是三等分点的轨迹是双曲线,要得到这条双曲线的相关的一些规律,希望这些规律能够在你尺规作图三等分角的时候有所帮助,现在我把我掌握的一些好玩的规律给大家介绍介绍。

优质文档尺规作图三等分随便率性角和结构正十七边形

优质文档尺规作图三等分随便率性角和结构正十七边形

[优质文档]尺规作图三等分随便率性角和结构正十七边形尺规作图三等分任意和构造正十七边形饶剑明摘要:将角的等分问题转化为线段的等分问题,从而实现尺规作图的任意等分任意角。

对线段的任意等分是很容易做到的,就是根据平行线间线段对应成比例。

只要将角的等分转换成线段的段分问题就自然解决了,我们知道,角和线的关系在圆中可以实现,在一个圆中等角对应的弦长相等。

从而实现角的三等分和正十七边形的尺规作法。

关键词:三等分角平分线圆弧正十七边形一、任意角的三等分,,作角的平分线。

半径为的圆弧,所对的弦长为设角为,,a2,Ma,2sin 14,角所对的弦长 4,Ma,2sin 28,角所对的弦长为 3,Ma,2sin。

3642MMM,, 2313342,sin,,,MMM,,由于当很小时有,即有。

231332,,4,sin()sin()sin()当取不同值时,和的近似值如下: ,346381111可以看出利用会比更为精确,但在操作上会更为方便。

从数据上可以看出,锐角用4222,1就足够用了,在操作上也得到同样的结果。

但角度大于是就最好使用了。

由于尺规作42图本身在操作上就存在误差,所以这样的误差是允许的。

利用几何画板完全按尺规作图的步42MM,骤可以看到当角为锐角时有,即两个点完全重合。

2133操作步骤如下:1. 对角平分 ,1,2. 取上作图时角所对的弦长2AB3. 对线段AB三等分24.取线段AB的长线段AC 34. 以线段AB为半径,在圆弧等分 AB这样就对弧进行了三等分,标记三等分点,然后与顶点O连接就对角三等分了。

,除去多余的痕迹用这样的方法可以对任意角任意等分。

当角为锐角就一次性完成了操作。

,4,asin()当角是钝角是,就要用四分角去作图了,且从理论上要比稍微少一点,尤其,38是当接近平角时。

当角大于,时,就平分其补角然后反向延长。

,,24MM当一次实现不了的时候可以在和之间取值,每次折中而逼近,一般最多在两到1233三个循环操作能完成。

解决不可能的问题---尺规作图三等分任意角

解决不可能的问题---尺规作图三等分任意角

解决不可能的问题---尺规作图三等分任意⾓
介绍
三等分⾓是古希腊三⼤⼏何问题之⼀。

三等分⾓是古希腊⼏何尺规作图当中的名题,和化圆为⽅、倍⽴⽅问题被并列为古代数学的三⼤难题之⼀,⽽如今数学上已证实了这个问题⽆解。

该问题的完整叙述为:在只⽤圆规及⼀把没有刻度的直尺将⼀个给定⾓三等分。

在尺规作图(尺规作图是指⽤没有刻度的直尺和圆规作图)的前提下,此题⽆解。

若将条件放宽,例如允许使⽤有刻度的直尺,或者可以配合其他曲线使⽤,可以将⼀给定⾓分为三等分。

题⽬:
已知:∠ABC
求作:HB,IB平分∠ABC
众所周知,尺规作图⽆解
但在运⽤弧长转换时会有⼀些解法
基本思路:
构造3个等边三⾓形得弦相等,再得圆弧相等,最后得圆周⾓相等
solve:
1.画任意⾓∠ABC
2. 以任意长为半径,B为圆⼼作弧 交AB,BC为EF
3.作垂直平分线求线段EF中点 G
4.以EG为半径分别以E,F,G作弧交于I,H两点连BI,BH
5.∠ABH,∠HIB,∠IBC即为所求。

尺规作图法

尺规作图法

尺规作图法尺规作图是指用没有刻度的直尺和圆规作图。

一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。

其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。

运用尺规作图可以画出与某个角相等的角,十分方便。

尺规作图是起源于古希腊的数学课题。

只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。

平面几何作图,限制只能用直尺、圆规。

在历史上最先明确提出尺规限制的是伊诺皮迪斯。

他发现以下作图法:在已知直线的已知点上作一角与已知角相等。

这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题。

在这以前,许多作图题是不限工具的。

伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中。

若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论。

尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意。

数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书。

编辑本段基本要求·它使用的直尺和圆规带有想像性质,跟现实中的并非完全相尺规作图同:·直尺必须没有刻度,无限长,且只能使用直尺的固定一侧。

只可以用它来将两个点连在一起,不可以在上画刻度。

·圆规可以开至无限宽,但上面亦不能有刻度。

它只可以拉开成你之前构造过的长度。

编辑本段五种基本作图·作一条线段等于已知线段·作一个角等于已知角·作已知线段的垂直平分线·作已知角的角平分线·过一点作已知直线的垂线编辑本段尺规作图公法以下是尺规作图中可用的基本方法,也称为作图公法,任何尺规作图的步骤均可分解为以下五种方法:·通过两个已知点可作一直线。

·已知圆心和半径可作一个圆。

尺规作图·若两已知直线相交,可求其交点。

关注尺规作图 发展核心素养

关注尺规作图 发展核心素养

关注尺规作图发展核心素养作者:陈文胜杨娜来源:《小学教学参考(数学)》2024年第04期[摘要]《义务教育数学课程标准(2022年版)》(文章简称《课程标准》)在图形与几何领域增加了尺规作图的内容。

然而,部分教师对尺规作图的教学价值认识不够,只重视让学生掌握具体的画法,忽视了其育人价值。

教师关注《课程标准》中对尺规作图的教学要求,研究其蕴含的育人价值,对实现素养导向的课程目标具有重要意义。

[关键词]小学数学;尺规作图;核心素养[中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2024)11-0048-04尺规作图是指运用无刻度直尺和圆规,在有限的使用次数下解决平面几何问题的操作方法。

尺规作图是古希腊数学研究的重要课题之一,数学家欧几里得在《几何原本》中进行了系统性的研究。

从《几何原本》中的几何命题到古希腊著名的“三等分任意角”“立方倍积”“化圆为方”三大作图难题,尺规作图有着悠久的历史,能提高学生的几何直观、数学量感、推理意识、创新意识与应用意识,并深刻影响着他们核心素养的发展。

一、概念可视化,凸显几何直观《课程标准》从第二学段开始,便在图形与几何领域呈现与尺规作图有关的学习内容,具体为“会用直尺和圆规作一条线段等于已知线段”和“用直尺和圆规将三角形的三条边画到一条直线上”,学业要求分别是“感知线段长度与两点间距离的关系”与“感知线段长度的可加性,理解三角形的周长”。

到了第三学段,与尺规作图相关的内容是“基于给定线段用直尺和圆规画三角形”“探索并说明三角形任意两边之和大于第三边的道理”。

从学业要求中的“感知”“直观感受”“感悟”等行为动词,可以看出尺规作图的教学必须凸显几何直观。

尺规作图中直尺的主要功能是画线段、直线和射线,圆规的主要功能是画圆或圆弧,以及截取等长的线段。

通过尺规作图,可以将一些抽象的、枯燥的数学概念及性质以具象的形式展现出来,如周长、平行、垂直、角度、比例等,帮助学生更好地理解与掌握知识。

尺规作图三等分角[整理]

尺规作图三等分角[整理]

尺规作图三等分角——致中国数学界大师们的一封公开信尊敬的中国数学界大师们:你们好!几何学发展至今,虽为完备,但仍有缺憾,尺规三分角就是其一。

数学先哲们曾断言定论,尺规三分角是尺规不能问题。

不才无学,但也相信科学和尊重客观事实,现为一村学教师。

在闲暇之际,偶生兴趣,突发灵感,得一妙法,可将任意角二分为三。

后附详细作法和证明。

万望大师们慧眼识宝,将此妙法推广,让国人之智慧得以光大。

(注:该方法在相关机构已注册、立案。

垂询:131****9044,鄙人常居山野,不便上网,且莫发邮件,也望各类媒体关注。

)三等分线段(角)的尺规作图法崔谧(安定区风翔学区小西岔小学甘肃定西 743000)几何学从诞生到发展,再到逐步完善,除一些特殊角(直角、平角和圆周角)外,至今还没有一种严格的几何方法能将任意一个角三等分。

经过长期的探究,本人发现有一种严格的几何方法可以将一个任意角三等分(包括直角、平角和圆周角)。

该方法分小于180°的角和大于180°而小于360°的角两种情况论述。

为了简单明了起见,在陈述该方法之前,先详细介绍一种用尺规作图将一条线段三等分的新方法。

作法:1.画一条线段AB,用尺规作图法求其中点C。

2.用尺规作图法求线段AC的中点D。

3.在点D和点C之间任取一点E,使得线段AE的长度大于线段AC的三分之二而小于线段AC的长度,用尺规作图法求线段AE的中点F。

4.以点A为圆心,以线段AE的长度为半径画弧线,以点C为圆心,以线段AF的长度为半径画弧线,使得两条弧线相交与点G;以点A为圆心,以线段AC的长度为半径画弧线,以点C为圆心,以线段AD的长度为半径画弧线,使两条弧线相交于H点。

(确保点G和H在线段AB的同侧)5.连接GH,用尺规做图法求其中垂线IJ,延长IJ交AB于点K。

6.以点K为圆心,以线段BK的长度为半径画弧交线段AB于点L。

则点L和点K将线段AB三等分。

如下图所示:依据以上将一条线段三等分的尺规作图法的新方法,也可以将一条弧线三等分,即将一个角三等分。

部分特殊角和任意角简易角三等分尺规作图

部分特殊角和任意角简易角三等分尺规作图

部分特殊角和任意角简易角三等分尺规作图上次我用尺规作图已将120°角三等分了,下面我用一本180例简易大小各不相等的角三等分尺规作图中的部分特殊角和任意角三等分尺规作图来验证角三等分确实有解。

一. 用尺规作图将30°角三等分(一)以O点为圆心,以任意长为半径画弧,在弧上任取一点为D,连接OD,在弧上作OD=DE,连接OE,∠EOD=60°,作∠COE=∠EOA=∠AOH=∠HOB=∠BOD=∠DOK=15°,∠AOB=∠α=30°,将∠α=30°角三等分。

连接CK交OA线上G点,连接BG並延长交OC线上P点,连接AP交CK线上F点,连接BC交OH线上H1点,连接BF交OH线上b2点,连接GH1、Gb2、AH1、 AB、AC,ABGC为菱形,H1G=AH1=H1B,则∠H1BG=∠H1GB=1/2∠α=15°,∠H1Gb2=∠a1Ga2=∠a2Ga3=∠a3Ga4=1/3×1/2∠α=5°,证明省略,∠AOm=∠mON=∠NOB=1/3∠α=1/3∠AOB=∠a1Ga3=10°,即将30°角三等分。

该图和编号就是一本180例简易大小各不相等的角三等分尺规作图中的一张图和编号。

图号和页号是3-1-15 , 15。

应该注意的是如果∠α大于或等于60°时,必须将大于或等于60°的角缩小偶数倍的角小于60°后才能进行角三等分。

如果60°≤∠α<120°时,∠α缩小两倍,如果120°≤∠α<240°时,∠α缩小四倍。

值得注意的是角的所在区域相同,角的尺规作图方式也应相同。

∠α缩小偶数倍的角已被分成三等分的角扩大同样偶数倍后的角才是∠α被分成三等分的角,∠α是否需要缩小和缩小多少偶数倍可用圆的半径来确定。

一. 用尺规作图将60°角三等分(二)以O点为圆心,以任意长为半径画弧,在弧上任取一点为A,连接OA ,在弧上作AB=OA,连接OB, ∠AOB=∠A1OA4=60°=∠α,∠α应该缩小两倍方可以进行角三等分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

部分特殊角和任意角简易角三等分尺规作图
上次我用尺规作图已将120°角三等分了,下面我用一本180例简易大小各不相等的角三等分尺规作图中的部分特殊角和任意角三等分尺规作图来验证角三等分确实有解。

一. 用尺规作图将30°角三等分(一)
以O点为圆心,以任意长为半径画弧,在弧上任取一点为D,连接OD,在弧上作OD=DE,连接OE,∠EOD=60°,作∠COE=∠EOA=∠AOH=∠HOB=∠BOD=∠DOK=15°,∠AOB=∠α=30°,将∠α=30°角三等分。

连接CK交OA线上G点,连接BG並延长交OC线上P点,连接AP交CK线上F点,连接BC交OH线上H1点,连接BF交OH线上b2点,连接GH1、Gb2、AH1、 AB、AC,ABGC为菱形,H1G=AH1=H1B,则∠H1BG=∠H1GB=1/2∠α=15°,∠H1Gb2=∠a1Ga2=∠a2Ga3=∠a3Ga4=1/3×1/2∠α=5°,证明省略,∠AOm=∠mON=∠NOB=1/3∠α=1/3∠AOB=∠a1Ga3=10°,即将30°角三等分。

该图和编号就是一本180例简易大小各不相等的角三等分尺规作图中的一张图和编号。

图号和页号是3-1-15 , 15。

应该注意的是如果∠α大于或等于60°时,必须将大于或等于60°的角缩小偶数倍的角小于60°后才能进行角三等分。

如果60°≤∠α<120°时,∠α缩小两倍,如果120°≤∠α<240°时,∠α缩小四倍。

值得注意的是角的所在区域相同,角的尺规作图方式也应相同。

∠α缩小偶数倍的角已被分成三等分的角扩大同样偶数倍后的角才是∠α被分成三等分的角,∠α是否需要缩小和缩小多少偶数倍可用圆的半径来确定。

一. 用尺规作图将60°角三等分(二)
以O点为圆心,以任意长为半径画弧,在弧上任取一点为A,连接OA ,在弧上作AB=OA,连接OB, ∠AOB=∠A1OA4=60°=∠α,∠α应该缩小两倍方可以进行角三等分。

作∠CO A=∠AOE=∠EOH=∠HOD=∠DOB=∠BOK=15°=1/4∠α,将∠AOB=∠α=60°角三等分。

连接CK交OE线上G点,连接DG並延长交OC线上P点,连接EP交CK 线上F点,连接CD交OH线上H1点,连接DF交OH线上b2点,连接GH1、Gb2、EH1、 ED、EC, CEDG为菱形,H1G=H1E=H1D, ∠H1DG=∠H1GD=1/4∠α=15°,则∠H1Gb2=∠a1Ga2=∠a2Ga3=∠a3Ga4=∠a4Ga6=1/3×1/2×1/2∠α=5°,证明省略,∠A1OA2=∠A2OA3=∠A3OA4=1/3∠A1OA4=1/3∠AOB=∠a1Ga6=1/3∠α=20°.即把∠α=60°角三等分。

该图和编号就是一本180例简易大小各不相等的角三等分尺规作图中的一张图和编号。

图号和页号是3-2-1 ,61。

一. 用尺规作图将120°角三等分(三)
用尺规作图将120°角三等分上次已作过了,这里就不重复了。

二. 用尺规作图将任意角三等分(一)
∠α为任意一个角,用尺规作图将∠α角三等分,以∠α角顶点O为圆心,以任意长为半径画弧交∠α两边分别是A点和B点,即∠α=∠AOB=∠A1OA4。

用半径OA来确定∠α是否需要缩小和应该缩小多少偶数倍,而120°<∠α<240°,∠α应该缩小四倍。

所以该角三等分尺规作图方式与120°角三等分尺规作图方式相同,只是角的大小之别。

作∠AOE=∠EOC=∠Com=∠moH=∠HON=∠NOD=∠DOK=∠KOB=1/8∠α=1/8∠AOB,将∠AOB=∠α角三等分。

连接EK交Om线上G点,连接NG並延长交OE线上P点,连接Pm交EK线上F点,连接NE交OH线上H1点,连接NF交OH线上b2点,连接GH1、Gb2、mH1、 mE、mN, mNGE为菱形,H1G=H1m=H1N,∠H1NG= ∠H1GN=1/8∠α,∠H1Gb2=∠a1Ga2=∠a2Ga3=∠a3Ga4=1/3×1/2×1/4∠α,证明省略,则∠A1OA2=∠A2OA3=∠A3OA4=∠a2Ga5=1/3∠AOB=1/3∠A1OA4 =1/3∠α,即将∠α角三等分。

该图和编号就是一本180例简易大小各不相等的角三等分尺规作图中的一张图和编号。

图号和页号是3-4-51 ,171。

二. 用尺规作图将任意角三等分(二)
∠α为任意一个角,用尺规作图将∠α角三等分,以∠α角顶点O为圆心,以任意长为半径画弧交∠α两边分别是A点和B点,即∠α=∠AOB=∠A1OA4。

用半径OA来确定∠α是否需要缩小和应该缩小多少偶数倍,而60°<∠α<120°,∠α应该缩小两倍。

所以该角三等分尺规作图方式与60°角三等分尺规作图方式相同,只是角的大小之别。

作∠CO A=∠AOE=∠EOH=∠HOD=∠DOB=∠BOK=1/4∠α,将∠AOB=∠α角三等分。

连接CK交OE线上G点,连接DG並延长交OC线上P点,连接EP 交CK线上F点,连接CD交OH线上H1点,连接DF交OH线上b2点,连接GH1、Gb2、EH1、 ED、EC, CEDG为菱形,H1G=H1E=H1D, ∠H1DG=∠H1GD=1/4∠α,则∠H1Gb2=∠a1Ga2=∠a2Ga3=∠a3Ga4=∠a4Ga6=1/3×1/2×1/2∠α,证明省略,∠A1OA2=∠A2OA3=∠A3OA4=1/3∠A1OA4=1/3∠AOB=∠a1Ga6=1/3∠α.即把∠α角三等分。

该图和编号就是一本180例简易大小各不相等的角三等分尺规作图中的一张图和编号。

图号和页号是3-2-27 ,87。

二.用尺规作图将任意角三等分(三)
∠α为任意一个角,用尺规作图将∠α角三等分,以∠α角顶点O为圆心,以任意长为半径画弧交∠α两边分别是A点和B点,即∠α=∠AOB,用半径OA来确定∠α是否需要缩小和应该缩小多少偶数倍,而∠α<60°,不需要缩小。

所以该角三等分尺规作图方式与30°角三等分尺规作图方式相同,只是角的大小之别。

作∠COE=∠EOA=∠AOH=∠HOB=∠BOD=∠DOK=1/2∠AOB=1/2∠α,将∠α=∠AOB角三等分。

连接CK交OA线上G点,连接BG並延长交OC线上P点,连接AP交CK线上F 点,连接BC交OH线上H1点,连接BF交OH线上b2点,连接GH1、Gb2、AH1、 AB、AC, ABGC为菱形,H1G=AH1=H1B,则∠H1BG=∠H1GB=1/2∠α=1/2∠AOB,∠H1Gb2=∠a1Ga2=∠a2Ga3=∠a3Ga4=1/3×1/2∠α,证明省略,∠AOm=∠mON=∠NOB=1/3∠α=1/3∠AOB=∠a1Ga3,即将∠α角三等分。

该图和编号就是一本180例简易大小各不相等的角三等分尺规作图中的一张图和编号。

图号和页号是3-1-24 , 24。

以上3个特殊角(含上次120°角)和3个任意角都被数学界判为角三等分无解,我不仅能把这六个角用尺规作图分成三等分,而且我用角三等分和剖析角三等分及解两种不同的解题方法已证明了用尺规作图可将一任意角三等分,並对大小各不相等的角进行角三等分和剖析角三等分及解尺规作图达4150多次,装订成册40本,验证了角三等分确实有解,角三等分无解的结论也阻碍了角的其他等分的解决,推翻这个错误结论势在必行,让角任意等分和任意正多边形都得到解决。

给中国人争气!希望广大读者亲自动手用不带刻度的直尺、圆规和铅笔按照上述尺规作图方式对30°角、60°角,120°角和任意画一个或多个角进行角三等分尺规作图,用尺规作图时一定要精确,只有精确的尺规作图才能获得理想的结果。

由于这里证明省略可用一般仪器来验证这些角三等分后是否正确?如果验证后被分成三等分的角确实是正确的话,请读者给我宣传一下角三等分确实有解,让角三等分无解的结论彻底破灭吧!让角三等分和剖析角三等分及解等角尺规等分法早日被数学界认可,为中国人争气!
2011 . 3. 10 . 和平
角三等分和剖析角三等分及解将陆续发表。

相关文档
最新文档