高分子液体的奇异流变性能
流变学大题
三:简答题1.聚合物液体在流动过程中的弹性行为。
①端末效应:在管子进口端粘性液体流动的摩擦和大分子的高弹形变产生压力降,管子出口端高弹形变的回复引起液流膨胀,这两种现象称为端末效应。
②不稳定流动:该现象有熔体破裂和“鲨鱼皮症〞。
在高应力或高剪切速率牛顿流动条件下,液体中的扰动难以抑制并易开展成不稳定流动,引起液流破坏,这种现象称为“熔体破裂〞。
“鲨鱼皮症〞的特点是在挤出物外表上形成很多细微的皱纹,类似鲨鱼皮。
这种现象的原因主要是熔体在管壁上滑移和熔体挤出管口时口模对挤出物产生的拉伸作用。
2.成型加工过程中,影响结晶的因素。
①冷却速度的影响。
随冷却速度上升,聚合物结晶时间下降,结晶度下降,到达最大结晶度的温度下降。
②熔融温度和熔融时间的影响。
在熔融温度高和熔融时间长,熔体冷却时晶核的生成主要为均相成核,成核时间长,结晶速度慢,结晶尺寸较大;如果熔融温度低和熔融时间低,异相成核,结晶速度快,尺寸小。
③应力作用的影响。
聚合物受到高应力作用,会加速结晶作用。
晶核生成时间下降,晶核的量上升,结晶的速度上升,结晶度随应力或应变的上升而上升,随压力的上升而上升,压力使熔体结晶上升,应力对晶体的构造和形态也有影响。
④低分子物:固体杂质和链构造的影响。
某些低分子物质和固体杂质等在一定条件下也能影响聚合物的结晶过程,能阻碍或促进聚合物的结晶。
聚合物分子量越高,结晶能力下降。
支化程度低,链构造简单和规整的易结晶。
3.成型加工过程中影响取向的因素。
①温度和应力的影响。
温度升高聚合物粘度下降,有利于取向;随着温度升高,大分子运动加剧,松弛时间缩短,有利于解取向。
温度对聚合物取向和解取向有矛盾作用,聚合物的有效取向决定于这两个过程的平衡条件。
等温拉伸过程能活的性能稳定的取向材料。
②拉伸比的影响。
在一定温度下被拉伸材料的取向程度随拉伸比升高。
③聚合物构造和低分子物的影响。
链构造简单,柔性大分子量低的聚合物容易取向,也容易解取向。
流变学
什么是流变学??流变学是物理学的一个分支,它主要研究材料在外力作用(应力、应变、温度、电场、磁场、辐射等)下的流动及其变形规律的科学。
弹性固体 (Elastic Solids)变形时遵从胡克定律-材料所受的应力与形变量成正比(σ=Eε)的固体,其应力与应变之间的响应为瞬时响应,称之为弹性固体。
理想流体(1)非粘性流体(帕斯卡流体)没有粘性的流体称之为非粘性流体,流动的时候没有阻力。
液体内部压力在任何方向上都相同。
(2)牛顿流体流动时符合牛顿流动定律-材料所受的剪切应力与剪切速率成正比的液体称之为牛顿流体。
高分子液体的奇异流变现象:1.高粘度与“剪切变稀”行为2.Weissenberg效应(爬杆效应)3.挤出胀大现象又称口型膨胀效应或Barus 效应。
不稳定流动和熔体破裂现象5无管虹吸,拉伸流动和可纺性6 各种次级流动7孔压误差和弯流压差9湍流减阻效应9 触变性和震凝性指在等温条件下,某些液体的流动粘度随外力作用时间的长短发生变化的性质。
粘度变小的称触变性,变大的称震凝性,或称反触变性。
粘流态下大分子流动的基本结构单元不是大分子整链,而是链段,分子整链的运动实际上是通过链段的相继运动实现的。
什么是软物质?从字面理解,软物质是指触摸起来感觉柔软的那类凝聚态物质。
严格些讲,软物质是指相对于弱的外界影响,比如施加给物质瞬间的或微弱的刺激,都能作出相当显著响应和变化的那类凝聚态物质。
非牛顿流体分类①宾汉流体:需要最小切应力。
如油漆、沥青。
③假塑性流体:切力变稀,大多数聚合物熔体。
③胀流性流体:切力变稠,胶乳、悬浮体系等。
表现粘度随时间变化④触变体:η随t而增加而减小;内部物理结构的破坏;胶冻,油漆、有炭黑的橡胶。
⑤震凝体:η随t而增加而增大;某种结构的形成。
幂律方程P38 (2-73)升高粘度,降温,加压,加配合剂碳黑,碳酸钙,粘流活化能粘流活化能为流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。
高分子材料的流变性能研究
高分子材料的流变性能研究高分子材料是一类由大量重复单元构成的大分子化合物,具有广泛的应用领域。
在实际应用中,高分子材料的流变性能研究对于了解其内在特性、优化工艺以及预测材料在不同工况下的表现至关重要。
本文将以高分子材料的流变性能研究为主题,探讨流变性能的定义、测试方法以及研究意义。
首先,我们来了解什么是高分子材料的流变性能。
流变学是研究物质在外力作用下变形和流动行为的学科。
高分子材料的流变性能即指其在外力作用下的变形和流动行为特性。
高分子材料的流变性能与其分子结构、链长、分子量分布、交联程度等因素密切相关,直接影响材料的物理力学性能和加工工艺。
在研究高分子材料的流变性能时,重要的一步是选择合适的测试方法。
目前常用的高分子材料流变性能测试方法包括旋转流变仪、拉伸流变仪、压缩流变仪等。
旋转流变仪主要用于测量高分子材料的剪切流变性能,通过在不同剪切速率下测量应力和应变的关系,以了解材料的粘弹性、塑性和黏弹性等特性。
拉伸流变仪则主要用于测量高分子材料的拉伸性能,通过施加不同的拉伸速率和应力,研究材料的应变和应力关系。
压缩流变仪则可在承受压力情况下,研究高分子材料的压缩变形特性。
通过上述测试方法,我们可以获得高分子材料的流变性能数据。
这些数据对于了解材料的变形行为、判断材料的应用性能以及指导材料的设计和制备具有重要意义。
从流变性能数据中,可以获得高分子材料的流变学参数,如剪切模量、拉伸模量、弹性模量、黏滞系数等。
这些参数反映了材料的力学性能、变形能力和变形时间。
通过分析这些参数值的变化趋势,可以评估材料的物理力学性能以及材料在不同应用条件下的性能稳定性。
高分子材料的流变性能研究具有广泛的应用领域,例如在工程塑料的开发中,了解材料在高温、高压下的流变行为,有助于判断材料在实际应用中的性能表现。
在医疗领域,研究生物材料的流变性能,可以为医疗器械的设计和材料选择提供依据。
在涂料和胶粘剂行业,通过研究材料的流变性能,可以优化涂料的施工性能和胶粘剂的黏附力。
高分子的流变特性
高分子物理
8 Polymer Rheology
高分子的流变特性
8.0 Introduction
前言
Rheology 流变学
当高聚物熔体和溶液(简称流体)在受外 力作用时,既表现粘性流动,又表现出弹 性形变,因此称为高聚物流体的流变性或 流变行为.
流变学是研究物质流动和变形的一门科学, 涉及自然界各种流动和变形过程。
弹性
粘性
8.1 Melt Flow
液体流动
Shear Flow and Viscosity
剪切流动与粘度
Shear stress
剪切应力
Shear strain
剪切应变
F
A
dx
dy
dx
A v+dv
F
F
v
dy
Shear rate d dv
切变速率
dt dy
Newton's law
取向观点的解释
在熔体流动过程中,高分子链沿流动方向取向,粘度反 比于取向度
低剪切区:分子链构象变化慢,分子链有足够时间进行松弛,高分 子链的构象实际上没有发生变化,因此粘度没有明显变化 第一 牛顿区
小分子液体的流动:分子向 “孔穴” 相继跃迁
small molecule hole
高分子熔体的流动:链段向 “孔穴” 相继跃迁 Reptation 蛇行
Flow curve
a
Kn
第一牛顿区
0零切粘度
第二牛顿区
无穷切粘度,极限粘度
假塑性区
流动曲线斜率n<1 随切变速率增加,ηa值变小 加工成型时,聚合物流体所经受的 切变速处于该范围内(100-103 s-1)
高分子溶液特点
高分子溶液特点
高分子溶液是指由高分子物质(聚合物)溶解在溶剂中形成的混合物。
它具有以下特点:
1. 高分子溶液的粘度较高:高分子溶液中的聚合物分子量较大,分子间的相互作用力较强,因此溶液的粘度较高。
这也是高分子溶液在实际应用中常被用作润滑剂、黏合剂等的原因之一。
2. 高分子溶液的流变性能复杂:高分子溶液的流变性能是指其在外力作用下的变形和流动行为。
由于聚合物分子的特殊结构和形态,高分子溶液的流变性能常常呈现出非牛顿流体的特点,即其流动性随剪切速率的改变而变化。
3. 高分子溶液的溶解度有限:由于溶剂与聚合物分子之间的相互作用力,高分子溶液的溶解度有限。
当聚合物分子量较大时,其在溶剂中的溶解度会进一步降低。
这也是高分子溶液在制备过程中需要控制溶解条件的重要原因之一。
4. 高分子溶液的稳定性较低:由于高分子溶液中的聚合物分子具有较大的分子量和较强的相互作用力,所以高分子溶液的稳定性较低。
在外界条件的变化下,高分子溶液容易发生相分离、凝胶化等现象,从而影响其性能和应用。
5. 高分子溶液的性能可调控性强:高分子溶液的性能可以通过改变聚合物分子量、溶液浓度、溶剂选择等方式进行调控。
这使得高分
子溶液能够应用于各种不同的领域,如涂料、纺织品、药物传递系统等。
总结起来,高分子溶液具有粘度高、流变性能复杂、溶解度有限、稳定性较低和性能可调控性强等特点。
这些特点使得高分子溶液在材料科学、化学工程、生物医学等领域具有广泛的应用前景。
流变学第一章
变形:是固体(晶体)材料的属性 ,而固体变形时, 表现出弹性行为,其产生的弹性形变在外力撤消时 能够恢复,且产生形变时贮存能量,形变恢复时还 原能量,材料具有弹性记忆效应。
牛顿流动定律——材料所受的剪切应力与剪切速率成正比。 流动过程总是一个时间过程,只有在一段有限时间内才能 观察到材料所受的应力与形变量成正比。
胡克定律——材料所受的应力与形变量成正比,其应力、应 变之间的响应为瞬时响应。一般固体变形时遵从胡克定律。
➢ 牛顿流体与胡克弹性体是两类性质被简化的抽象物体,实 际材料往往表现出远为复杂的力学性质如沥青、粘土、橡 胶、石油、蛋清、血浆、食品、化工原材料、泥石流、地 壳,尤其是形形色色高分子材料和制品,它们既能流动, 又能变形;既有粘性,又有弹性;变形中会发生粘性损耗, 流动时又有弹性记忆效应,粘、弹性结合,流、变性并存 对于这类材料,仅用牛顿流动定律或胡克弹性定律已无法 全面描述其复杂力学响应规律,必须发展一门新学科 流变
加工流变学的研究课题:
➢ 加工条件变化与材料流动性质(主要指粘性和弹性)及 产品力学性质之间的关系;材料流动性质与分子结构及组分 结构之间的关系。
➢ 异常的流变现象(如挤出胀大现象、熔体破裂、拉伸共振 等现象)发生的规律、原因及克服办法;
➢ 加工操作单元(如挤出、注射、纺丝、吹塑等)过程的流 变学分析;
高聚物流变学导论
高分子流体介质的结构性能和流变特性分析
高分子流体介质的结构性能和流变特性分析引言高分子材料是一类由大量高分子化合物构成的材料,具有特殊的化学结构和物理性质,广泛应用于工业、医疗、电子等领域。
高分子流体介质是高分子材料中的一种特殊形态,其特点是具有流动性。
本文将对高分子流体介质的结构性能和流变特性进行详细分析,以增进我们对这一材料的理解。
结构性能分析高分子流体介质的结构性能主要包括分子结构、分子量、分子取向等方面的特征。
下面将针对这些特征展开分析。
分子结构高分子流体介质的分子结构复杂多样,可以是线性链状、支化状、交联状等。
不同的分子结构决定了高分子流体介质的特殊性质。
线性链状的高分子流体介质具有较好的可流动性和溶解性,而交联状的高分子流体介质则具有较好的强度和稳定性。
分子量高分子流体介质的分子量直接影响其流变特性。
一般来说,分子量较大的高分子流体介质具有较高的粘度和黏弹性,而分子量较小的高分子流体介质则具有较低的粘度和流动性。
分子取向高分子流体介质中的分子取向也影响其性能。
分子在流体介质中可呈现各种取向状态,如无序排列、层状排列、螺旋排列等。
不同的取向方式决定了高分子流体介质的力学性能、流动特性和热学性质。
流变特性分析高分子流体介质的流变特性是指其在受力作用下表现出的变形和流动行为。
理解高分子流体介质的流变特性对于控制其加工过程和改善产品性能非常重要。
下面将对高分子流体介质的黏弹性、剪切变稀和流动失稳等流变特性进行分析。
黏弹性高分子流体介质的黏弹性指的是在剪切力作用下,其既具有黏性流动又具有弹性恢复的特性。
黏弹性是高分子流体介质独特的流变特性之一,也是其广泛应用于注塑、涂装等工艺中的基础。
剪切变稀高分子流体介质在受到剪切力作用下,其粘度随着剪切速率的增加而减小的现象称为剪切变稀。
剪切变稀现象在高分子流体介质中普遍存在,对于某些复杂工艺的控制和优化具有重要意义。
流动失稳高分子流体介质在某些流动条件下会发生流动失稳现象,即流动过程中会出现不稳定的变化。
高分子材料的流变性能与动力学行为研究
高分子材料的流变性能与动力学行为研究高分子材料是当代材料科学中的重要一环,其广泛应用于塑料、橡胶、纤维等多个领域。
了解高分子材料的流变性能以及其动力学行为,对于优化材料制备过程、提升材料性能具有重要意义。
本文将针对高分子材料的流变性能与动力学行为进行探讨。
一、高分子材料的流变性能研究方法1. 流变仪测量流变仪是研究高分子材料流变性能的重要工具,在实验室中得到广泛应用。
通过对高分子材料进行剪切或挤出等力学加载,流变仪可以实时监测和记录材料的变形过程。
从流变曲线中可以提取出粘弹性参数,如剪切模量、流变指数等,用于表征材料的形变特性。
2. 分子动力学模拟分子动力学模拟是一种基于物理力学原理,模拟高分子材料分子间相互作用和运动行为的计算方法。
通过分子动力学模拟,可以得到高分子材料的微观结构和动态特性,从而揭示材料在宏观层面上所表现出的流变性能。
二、高分子材料的流变性能研究结果与分析1. 高分子材料的流变行为在流变性能研究中,高分子材料常常表现出非线性和时变等特点。
例如,高分子材料的应力-应变曲线在低应变范围内呈现线性行为,但在较大应变下则会出现非线性变形。
此外,高分子材料还存在着时变性能,即随着加载时间的延长,材料的流变性能会发生变化。
2. 高分子材料的黏弹性行为高分子材料同时具有固体和液体的特性,呈现出黏弹性行为。
在小应变下,高分子材料表现出固体的弹性特性,而在大应变下,材料则表现出液体的流动行为。
这种固液相互转换导致了高分子材料的黏弹性,使其在应用中可以同时满足强度和变形需求。
3. 高分子材料的温度对流变性能的影响温度是影响高分子材料流变性能的重要因素之一。
随着温度的升高,高分子材料的粘度会降低,流动性能增加;而在低温下,材料可能会变得脆性。
因此,合理控制材料的温度可以调控其流变性能,提高其加工性能和应用性能。
三、高分子材料的动力学行为研究1. 高分子材料的分子间相互作用高分子材料的流变性能与其分子间的相互作用密切相关。
高分子材料流变学
高分子材料流变学高分子材料是一类大分子化合物,在工业、生活中广泛应用,如聚乙烯、聚氨酯、聚酰胺等。
高分子材料在流变学中具有独特的物理性质。
流变学是研究物质内部变形的学科,它揭示了物质在受力作用下的变形规律,包括粘弹性、塑性、弹性等性质。
高分子材料的流变学研究对于了解其本质、设计新材料以及控制加工过程具有重要意义。
高分子材料的流变学行为主要有以下几个特点:1. 高分子材料具有非牛顿性质。
牛顿性质是指流体的应力与应变率成比例。
高分子材料在流变学中的非牛顿性表现为其应力-应变率曲线不是一条直线,而是弯曲的曲线,即呈现出剪切黏度的变化。
2. 高分子材料具有黏弹性。
在受力加速度作用下,高分子材料既具有黏度,同时又具有弹性。
这种黏弹性特征表现为高分子材料在受力后能够保持一定时间的形状,而不会立即回复到原始形状。
3. 高分子材料具有稀溶液的行为。
高分子材料最为常见的形态是稀溶液。
由于高分子材料的分子量较大,其在溶液中的浓度很低。
此时,高分子材料能够表现出溶液的流变学性质。
4. 高分子材料的流变行为受温度、负荷历史和加速度作用等因素的影响较大。
当温度增大时,高分子材料的流变性质将发生变化。
不同的负荷历史将导致高分子材料的流变性质发生变化,这对高分子材料加工、使用过程中的性能具有显著影响。
在受到不同加速度作用的情况下,高分子材料的流变性质也将发生变化。
5. 高分子材料的流变学行为与形状和尺寸等参数有关。
高分子材料在流变学中的行为与其形状和尺寸等参数密切相关。
例如,高分子材料在不同形状或尺寸下的加工性能和使用性能存在差异。
因此,高分子材料的流变学研究对于设计新材料、控制加工过程和改善使用性能具有重要意义。
目前,流变学技术在高分子材料的研究、开发和应用中得到了广泛的应用。
例如,在高分子材料的合成、加工、改性等方面,流变学技术能够提供有用的表征和信息。
在高分子材料的应用领域,流变学技术能够帮助改进产品性能和生产效率。
高分子溶液中的流体流动特性
高分子溶液中的流体流动特性引言高分子溶液是指在溶剂中溶解的高分子物质,其具有特殊的流动特性。
高分子溶液的流动特性研究对于理解高分子溶液的性质以及应用于工业生产和科学研究中具有重要意义。
本文将介绍高分子溶液中的流体流动特性,并探讨其在不同条件下的变化规律。
高分子溶液的流动行为高分子溶液中的流动行为受到多种因素的影响,包括高分子的分子量、浓度、溶剂的性质以及温度等。
在高分子溶液中,高分子链的扩展和流动引起了流变性质的变化。
高分子链的扩展高分子溶液中的高分子链存在不同的构象,包括缠绕、拉直和伸展等。
当高分子链在流动中受到剪切力时,链的构象会发生改变,并导致高分子溶液的流动特性的变化。
流变曲线高分子溶液的流变曲线描述了溶液在外力作用下的应变和应力之间的关系。
常见的流变曲线包括剪切应力-剪切速率曲线和应力-应变曲线。
通过分析流变曲线可以获得高分子溶液的黏度、弹性模量和黏弹性等流动特性。
布洛赫方程和弗拉奇方程布洛赫方程和弗拉奇方程是描述高分子溶液流动行为的数学模型。
布洛赫方程适用于低剪切应力下的流动,其中考虑了高分子链的扩展和沙龙机制。
弗拉奇方程适用于高剪切应力下的流动,其中考虑了高分子链的断裂和再组合。
高分子溶液流动特性的影响因素高分子溶液的流动特性受到多种因素的影响,以下是几个常见的影响因素:高分子的分子量高分子的分子量是影响高分子溶液流动特性的重要因素之一。
一般来说,高分子的分子量越大,溶液的粘度越高,流动性变差。
这是因为高分子链的扩展和流动需要消耗更多的能量。
高分子的浓度高分子溶液中高分子的浓度也会影响流动特性。
当高分子浓度较低时,高分子链之间的相互作用较弱,溶液较为稀薄,流动性较好。
当高分子浓度较高时,高分子链之间的相互作用增强,溶液变得较为粘稠,流动性变差。
溶剂的性质溶剂的性质对高分子溶液的流动特性也有影响。
不同的溶剂对高分子链的溶解能力不同,这会影响高分子链的构象和流动行为。
例如,极性溶剂和非极性溶剂对高分子的影响不同。
流变学基础
图8 与流变时间相关的非牛顿流体的流变图
第二节 基本概念
引入:
变形 流动 应力~应变 应力~应变速率
定义应力、应 变、应变速率
注意:
实际材料发生的变形和受力情况是复杂的,要找 出其应力~应变之间的关系十分困难。因此,在流变学 中采用一些理想化的实验——简单实验。
简单实验
(Simple experiment)
高分子液体的奇异流变现象
其力学响应十分复杂,而且这些响应还与 体系内外诸多因素相关,主要的因素包括高分 子材料的结构、形态、组分;环境温度、压力 及外部作用力的性质(剪切力或拉伸力)、大小 及作用速率等。下面简单介绍几种著名的高分 子特征流变现象。
高粘度与“剪切变稀”行为
1、现象:例:牛顿液体(N):水、甘
图6无管虹吸效应
2、原因:与高分子液体的弹性行为有关,这种
液体的弹性性质使之容易产生拉伸流动,而且 拉伸液体的自由表面相当稳定。实验表明,高 分子浓溶液和熔体都具有这种性质,因而能够 产生稳定的连续拉伸形变,具有良好的纺丝和 成膜能力。
孔压误差和弯流压差
1、现象:测量流体内压力时,若压力
传感器端面安装得低于流道壁面,形成 凹槽,则测得的高分子液体的内压力将 低于压力传感器端面与流道壁面相平时 测得的压力,如图7中有Ph<P,这种压力 测量误差称孔压误差。
第一部分 流变学基础
第一章 流变学的基本概念
第一节高分子液体的奇异流变现象 第二节 基本概念 1 应变 2 应力 3 粘度与牛顿定律
第一章 流变学的基本概念
第一节 高分子液体的奇异流变现象
引入:高分子液体(熔体和溶液)在外力或 外力矩作用下,表现出既非胡克弹性体,又非 牛顿粘流体的奇异流变性质。它们既能流动, 又有形变,既表现出反常的粘性行为,又表现 出有趣的弹性行为。
高分子液体的流变性(2)
假
塑性(非牛顿性)越强;n与1之差,
反映了材料非线性性质 的强弱。
(2)同一种材料,在不同的剪切速率范围内,n 值也不是常数。 通常剪切速率越大,材料的非牛顿性越显著,n 值越小。
(3)所有影响材料非线性性质的因素也必对n 值有影响。如温
度下降、分子量增大、填料量增多等,都会使材料非线性性
质增强,从而使n 值下降。
3、关于“剪切变稀”行为的说明 大分子构象改变说
图6-5 大分子链在切应力作用下沿流动方向取向
低分子液体流动所产生的形变是完全不可逆的, 而高聚物在流动过程中所发生的形变中: 只有一部分(粘性流动)是不可逆的。
因为高聚物的流动并不是高分子链之间的简单的相对 滑移的结果,而是各个链段分段运动的总结果。在外 力作用下,高分子链顺外力场有所伸展,这就是说, 在高聚物进行粘性流动的同时,必然会伴随一定量的 高弹形变,这部分高弹形变显然是可逆的,外力消失 后,高分子链又要蜷曲起来,因而整个形变要恢复一 部分。
素
物料结构及成分的影响 (配方成分,如添料、软化剂等)
(一)实验条件和生产工艺条件的影响
1、温度和压力的影响
图6-6 PMMA的粘度与温度和压力的关系
总的规律:温度升高时,物料粘度下降; 压力升高时,物料粘度上升。
图6-7 不同温度下乙酸丁酸纤维素的粘度曲线
讨论
(1)温度是分子无规则热运动激烈程度的反映,温度升高,分子热运
;
R 为普适气体常数,
E
称粘流活化能,单位为J·mol-1或kcal·mol-1。
粘流活化能
定义:粘流活化能为流动过程中,流动单元(即链段) 用于克服位垒,由原位置跃迁到附近“空穴”所需的最 小能量。
粘流活化能是描述材料粘-温依赖性的物理量。既反映着 材料流动的难易程度,更重要的是反映了材料粘度变化的 温度敏感性。
【2017年整理】高分子熔体流动不稳定性及壁滑现象
第九章高分子熔体流动不稳定性及壁滑现象在前面讨论的高分子成型加工过程和流变测量中,都不加证明地假定高分子液体的流动,均为稳定的连续流动。
同时提出“管壁无滑移假定”。
正是在这些基本假定基础上,得到高分子液体在一些特定流场中的流动规律,了解并掌握了高分子液体基本的非线性粘弹性质。
然而在实际成型加工及流变测量中,物料流动状态受诸多因素影响,常常出现不稳定流动情形。
许多情况下,流场边界条件存在一个临界值。
一旦超越该临界值,就会发生从层流到湍流,从平整到波动,从管壁无滑移到有滑移的转变,破坏了事先假定的稳定流动条件。
研究这类熔体流动不稳定性及壁滑现象是从“否定”意义上讨论高分子的流变性质,具有重要意义。
该问题的工程学意义是,当工艺过程条件不合适,会造成制品外观、规格尺寸及材质均一性严重受损,直接影响产品的质量和产率,严重时甚至使生产无法进行。
高分子流动不稳定性主要表现为挤出过程中的熔体破裂现象、拉伸过程(纤维纺丝和薄膜拉伸成型)中的拉伸共振现象及辊筒加工过程中的物料断裂现象等。
熔体在管壁发生滑移与此类现象密切相关。
可以肯定地说,这些现象与高分子液体的非线性粘弹行为,尤其是弹性行为有关,是高分子液体弹性湍流的表现。
1.挤出成型过程中的熔体破裂行为1.1 两类熔体破裂现象熔体的挤出破裂行为:在挤出过程中,当熔体剪切速率γ 超过某一临γ 时,挤出物表面开始出现畸变的现象。
界剪切速率crit表现为:最初表面粗糙,而后随γ (或切应力)的增大,分别出现波浪型、鲨鱼皮型、竹节型、螺旋型畸变,直至无规破裂(见图1-6)。
从现象上分,挤出破裂行为可归为两类:一类称LDPE(低密度聚乙烯)型。
破裂特征是先呈现粗糙表面,当挤出γ 超过临界剪切速率γ 发生熔体破裂时,呈现无规破裂状。
属于此crit类的材料多为带支链或大侧基的聚合物,如聚苯乙烯、丁苯橡胶、支化的聚二甲基硅氧烷等。
一类称HDPE(高密度聚乙烯)型。
熔体破裂的特征是先呈现粗糙表面,而后随着γ 的提高逐步出现有规则畸变,如竹节状、螺旋型畸变等。
高分子材料的黏弹性与流变行为分析
高分子材料的黏弹性与流变行为分析高分子材料的黏弹性和流变行为是研究材料性能和应用的重要方面。
黏弹性是指材料在受力作用下既有黏性(固体的弹性和液体的粘性)又有弹性(恢复力)的特性。
而流变行为则是指材料在外界施加剪切应力下的变形特性。
本文将通过分析高分子材料的黏弹性和流变行为,探讨其对材料性能和应用的影响。
一、黏弹性的基本概念黏弹性是高分子材料独有的特性,是其与传统材料的重要区别之一。
黏弹性指材料在受力作用下,在一定的应力和应变条件下既具有固体的弹性特性,又具有液体的粘性特性。
黏弹性是由高分子链的内聚力和外聚力共同作用引起的。
高分子链的内聚力使得材料具有弹性,能够在受力后恢复原始形状;而外聚力则会导致材料的黏性,使材料随时间推移而发生流动。
黏弹性具有时间依赖性和应力依赖性,即材料的黏弹性特性会随着时间和应力的变化而变化。
二、黏弹性的测试和分析方法为了研究和评估高分子材料的黏弹性,常用的测试和分析方法包括动态力学分析(DMA)、旋转粘度测量、流变学等。
1. 动态力学分析(DMA)DMA是一种常用的测试黏弹性的方法,通过在一定频率范围内施加小振幅的力,测量材料的应力应变响应,以及通过应力松弛测试得到的弛豫模量和弛豫时间。
DMA可以提供材料的弹性模量、损耗模量、内摩擦角等重要参数,从而评估材料的黏弹性特性。
2. 旋转粘度测量旋转粘度测量是通过在材料中施加旋转剪切力,测量材料对流动的阻力来评估黏滞性能。
旋转粘度是描述材料黏滞特性的重要参数,可用于判断材料流动性能的好坏。
3. 流变学流变学是研究材料在剪切应力下的变形特性的学科,主要包括剪切应力-剪切速率曲线的测定、黏度与切变速率的关系等。
通过流变学的研究,可以分析材料的流变行为及其对黏弹性的影响。
三、高分子材料的黏弹性与应用高分子材料广泛应用于各个领域,其黏弹性特性对材料的性能和应用有着重要的影响。
1. 弹性体高分子材料的黏弹性使其成为理想的弹性体,可用于制造弹簧、悬挂系统等需要回弹力的产品。
流变学基础第一章流变学基本概念与定律
图8 与流变时间相关的非牛顿流体的流变图
第二节 基本概念
引入:
变形
应力~应变
流动
应力~应变速率
定义应力、应 变、应变速率
注意:
实际材料发生的变形和受力情况是复杂的,要找 出其应力~应变之间的关系十分困难。因此,在流变学 中采用一些理想化的实验——简单实验。
简单实验
(Simple experiment)
3、消除办法:当挤出温度升高,或挤出速度
下降,或体系中加人填料而导致高分子熔体弹 性形变减小时,挤出胀大现象明显减轻。
不稳定流动和熔体破裂现象
1、现象:挤出物表面粗糙。随着挤出速度的增
大,可能分别出现波浪形、鲨鱼皮形、竹节形、 螺旋形畸变,最后导致完全无规则的挤出物断裂, 称之为熔体破裂现象。
不稳定流动和熔体破裂现象
高分子液体的奇异流变现象
其力学响应十分复杂,而且这些响应还与体系内 外诸多因素相关,主要的因素包括高分子材料的 结构、形态、组分;环境温度、压力及外部作用 力的性质(剪切力或拉伸力)、大小及作用速率等。 下面简单介绍几种著名的高分子特征流变现象。
高粘度与“剪切;高
简单实验特点: 材料是均匀的,各向同性的,而材料被施加
的应力及发生的应变也是均匀和各向同性的。
简单实验: 各向同性的压缩与膨胀,拉伸和单向压缩,
简单剪切和简单剪切流动
1 应变(Strain)
1.1 各向同性的压缩和膨胀 1.2 拉伸和单向压缩 1.3 简单剪切和简单剪切流动
1.1 各向同性的压缩和膨胀
牛顿型流体不存在孔压误差,无论压力传感器 端面安装得与流道壁面是否相平,测得的压力 值相等。高分子液体有孔压误差现象。
图7孔压误差
2原因:在凹槽附近,流线发生弯曲,但法向应力
高分子流变学
♦假塑性流体:黏度随剪切速率的增加而降低的流体,粘度与剪切应力之间的关系服从幂律定律,其中,非牛顿指数n<1♦膨胀性流体:黏度随剪切速率的增加而升高的流体,粘度与剪切应力之间的关系服从幂律定律,其中非牛顿指数n>1♦宾汉流体:指当所受的剪切应力超过临界剪切应力后,才能变形的流动的流体,亦称塑性流体,其中剪切应力与剪切速率服从τ=τy+ηpγ♦牛顿流体:剪切应力与剪切速率之间呈线性关系,表达式为τ=μγ的流体♦剪切变稀:粘度随剪切速率升高而降低♦爬杆效应:当金属杆在盛有高分子流体的容器中旋转,熔体沿杆上爬的现象♦挤出胀大:聚合物熔体挤出圆形截面的毛细管时,挤出物的直径大于毛细管模直径♦熔体破裂:聚合物熔体在毛细管中流动时,当剪切速率较高时,聚合物表面出现不规则的现象,如竹节状,鲨鱼皮状♦无管虹吸:当插入聚合物溶液中的玻璃管,提离液面之上时,聚合物溶液继续沿玻璃管流出的现象♦第一法向应力差:高聚物熔体流动时,由于弹性行为,受剪切的作用时,产生法向应力差,其中满足关系式N1=τ11−τ22=φ1∗γ212(N1通常为正值)♦第二法向应力差:同上,关系式为N2=τ22−τ33=φ2∗γ212(N2通常为负值)♦本构方程:是一类联系应力张量和应变张量或应变速率张量之间的关系方程,而联系的系数通常是材料的常数。
♦剪切应力:单位面积上的剪切力,τ=FA♦剪切速率:流体以一定速度沿剪切力方向移动。
在黏性阻力和固定壁面阻力的作用力,使相邻液层之间出现速度差,γ=d vdy也可理解成一定间距的液层,在一定时间内的相对移动距离。
♦高分子流变学:研究高分子液体,主要是指高分子熔体干分子溶液在流动状态下的非线性粘弹性行为。
以及这种行为与材料结构及其他物理化学的关系。
♦挤出膨胀现象:高分子熔体被迫基础口模时,挤出物尺寸大于口模尺寸截面积形象黄也发生变化的现象♦常用的聚合物流变仪有:毛细管型流变仪、转子型流变仪、组合式转矩流变仪、振荡型流变仪、落球式黏度计、其他类型流变仪(拉伸流变仪、缝模流变仪和弯管流变仪等)♦流变测量的目的:1)物料的流变学表征2)2)工程的流变学研究和设计3)3)检验和指导流变本构方程理论的发展♦高聚物的粘性流动的特点:1)流动机理是链段相继跃迁2)流动粘度大,流动困难,而且粘度不是一个常数3)流动时有构象变化,产生“弹性记忆”效应♦影响挤出胀大效应的因素:链结构、配方、切变速率与温度稳定♦挤出的措施:1)加料口供料速度必须均匀2)减少螺槽深度h和减少机筒与螺杆突棱的间隙δ3)调节机头流通系4)适当降低挤出温度5)适当增加螺杆长度♦影响熔体挤出破裂行为因素:1)口模的形状和尺寸2)挤出成型过程的工艺条件3)挤出物料的性质。
高分子流体的流动与流变特性研究
高分子流体的流动与流变特性研究摘要高分子流体是一类具备特殊流动与流变特性的聚合物材料。
研究高分子流体的流动与流变特性对于深入了解其结构与性能关系、优化工艺条件以及开发新型高分子材料具有重要意义。
本文将探讨高分子流体的流动和流变特性,并介绍一些常用的实验方法和理论模型来研究高分子流体的流变行为。
同时,还将讨论高分子流体在不同温度、压力和剪切速率下的流动特性及其与流变特性的关系。
最后,本文将以一些典型的高分子流体作为案例,详细介绍其流动与流变特性的研究进展。
1. 引言高分子流体是由聚合物构成的流体体系,具有特殊的流动与流变特性。
在工程应用领域中,高分子流体的流动和流变行为对于确定其性能和优化工艺条件具有重要意义。
高分子流体的流变特性包括剪切应力-剪切速率关系、流变曲线、力学弛豫和周期性变形等。
研究高分子流体的流动与流变特性有助于深入了解高分子材料的微观结构与性能关系,为高分子材料的合成和应用提供理论指导。
2. 实验方法在研究高分子流体的流动与流变特性时,通常采用一系列实验方法来获取相关数据。
常见的实验方法包括流变仪测量、旋转黏度计测试、拉伸和压缩实验以及动态力学分析等。
这些方法可以提供高分子流体的流变曲线、应力-应变关系以及其他与流动特性相关的数据。
同时,还可以通过实验方法确定高分子流体的粘度、弹性模量、屈服应力和剪切变稀等重要参数。
3. 流动特性研究高分子流体的流动特性是指其在不同剪切速率下的流动行为。
在实验室中,常使用流变仪进行流动特性研究。
流变仪通过施加剪切力,在流体中产生剪切应力,从而使流体发生变形。
通过改变剪切速率、温度和压力等条件,可以研究高分子流体的流动规律和流变特性。
流动特性的研究可以帮助我们了解高分子流体的黏度、剪切变稀、剪切稠化等重要参数,为高分子材料的设计和应用提供指导。
4. 流变特性研究流变特性是指高分子流体在外加剪切力作用下的变形与应力之间的关系。
在研究高分子流体的流变特性时,常使用流变仪和动态力学分析仪进行实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这些现象都与高分子液体
的弹性行为有关,这种液 体的弹性性质使之容易产 生拉伸流动,而且拉伸液 体的自由表面相当稳定。 实验表明,高分子浓溶液 和熔体都具有这种性质, 因而能够产生稳定的连续 拉伸形变,具有良好的纺 丝和成膜能力。
各种次级流动
研究表明,高分子液体在均匀梯度下通过非圆形管道流动时, 往往在主要的纯轴向流动上,附加出现局部区域性的环流, 称为次级流动,或二级流动,在通过截面有变化的流道时, 有时也发生类似的现象,甚至更复杂的还有三次、四次流动 等。一般认为,牛顿型液体旋转时的次级流动是离心力造成 的,而高分子液体的次级流动方向往往与牛顿型液体相反, 是由粘弹力和惯性力综合形成的。这种反常的次级流动在流 道与模具设计中十分重要。
力的性质(剪切力或拉伸力)、大小及作用速
率等。下面介绍九种著名的高分子特征流变现 象。
高粘度与“剪切变稀”行为 Weissenberg效应 挤出胀大现象 不稳定流动和熔体破裂现象 无管虹吸,拉伸流动和可纺性 各种次级流动 孔压误差和弯流压差 湍流减阻效应 触变性和震凝性
高粘度与“剪切变稀”行为
孔压误差和弯流压差
测量流体内压力时,若压力传感器端面安装得低于流道壁面,形成凹 槽,则测得的高分子液体的内压力将低于压力传感器端面与流道壁面 相平时测得的压力,如图中有Ph< P,这种压力测量误差称孔压误差。 牛顿型流体不存在孔压误差,无论压力传感器端面安装得与流道壁面 是否相平,测得压力值相等。高分子液体有孔压误差现象,其产生原 因被认为在凹槽附近,流线发生弯曲,但法向应力差效应有使流线伸 直的作用,于是产生背向凹槽的力,使凹置的压力传感器测得的液体
与剪切变稀效应相对的是剪切变稠相应,
高分子即液体在流动过程变现出粘度随剪切速 率增大而升高的反常现象,如高浓度的聚氯乙 烯塑料溶胶。
Weissenberg效应
与牛顿流体不同,盛在容器中的高分子液体,当插入其中的圆棒旋 转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出 现沿棒向上爬的爬杆现象.这种现象称Weissenberg效应,又称包轴现 象.测量容器中A、B两点的压力,对牛顿型流体PA<PB,对高分子液体 有PA>PB。出现这种现象的原因被归结为高分子液体是一种具有弹性的液 体。在旋转流动时,具有弹性的大分子链会沿着圆周方向取向和出现拉 伸变形,从而产生一种朝向轴心的压力迫使液体沿棒爬升。在所有流线 弯曲的剪切流场中高分子流体元除了受到剪切应力外(变现为粘性), 还存在法向应力差效应(表现为弹性)。
牛顿流体不具有这种效应或只有很弱的口型变化效应, 而高分子流体的口型膨胀相当显著。其产生原因归结为高分 子熔体有弹性记忆能力所致。熔体在进入口模时,受到强烈 的拉伸和剪切形变,其中拉伸形变属于弹性形变,这些形变 在口模中只有部分得到松弛,剩余部分在挤出口模后发生弹 性回复,出现挤出胀大现象。
不稳定流动和熔体破裂现象
高分子液体的奇异流变现象
高分子液体(熔体和液体)在外力或外力矩 作用下,表现出既非胡克弹性体,又非牛顿粘流体 的奇异流变性质.他们即能流动,又有形变,既表 现出反常的粘性行为,又表现出有趣的弹性行为。 其力学响应十分复杂,而且这些响应还与体系外 诸多因素相关,主要的因素包括高分子材料的结
构、形态、组分;环境温度、压力及外部作用
对大多数高分子液体而言,即使温度不发生变化,粘度会随着剪 切速率(或剪切应力)的增大而下降,这种现象就是典型的剪切变稀 现象。
一对短管和一对长管中装有静止粘度相等的液体,一种为牛顿型 液体(记为N),如甘油的水溶液,一种为高分子溶液(记为P), 如聚丙烯酰胺的水溶液。每对管中液面的初始高度相同。打开底部的 阀门,令其从短管中流出时,由于两种液体粘度相等,可以看到两管 液体几乎同时流尽。而令其从长管中流出时,发现装有高分子液体的 管中液体流动速度逐渐变快,P管中的液体首先流尽,这是因为高分 子液体在重力作用下发生“剪切变稀”效应的缘故。
无管虹吸,拉伸流动和可纺性
对牛顿型流体,已知当虹吸管提高到离开液面时,虹吸现象 立即终止。而对高分子液体,如聚异丁烯的汽油溶液或聚醣 在水中的微凝胶体系,当虹吸管升离液面后,杯中的液体仍 能源源不断地从虹吸管流出,这种现象称无管虹吸效应。还 有一种无管侧吸效应,是将一杯高分子溶液侧向倾倒流出, 若使烧杯的位置部分回复,以至杯中平衡液面低于烧杯边缘, 但是高分子液体仍能继续沿壁爬行,继续维持流出烧杯,直 至杯中的液体全部流光为止。
内压力值小于平衡时测得的压力值。
湍流减阻效应
湍流减阻效应指在高速的管道湍流中,若 加入稍许的高分子物质,如聚氧化乙烯 (PEXO)、聚丙烯酰胺(PAAm)等,则管道阻 力将大为减小的现象,又称Toms效应。湍流 减阻的机理目前尚不清楚,但肯定与高分子 长链柔性分子的拉伸特性有关。具有弹性的 大分子链的取向改变管流内部的湍流结构, 使流动阻力大大减小。管流减阻在石油开采、 输运、抽水灌溉、循环水系统等工农业生产 中具有重要意义。
剪切変稀效应是高分子液体最典型的非牛
顿牛顿流动性质,对高分子材料加工制造具有 极为重要的实际意义。在高分子材料成型加工 时,随着成型工艺方法的变化及剪切应力或剪 切素的(转速或线速度)的不同,材料粘度往 往会发生1~3个数量级的大幅变化,是加工工 艺中需要十分关注的问题。千万不要将材料的 静止粘度与加工中的流动粘度混为一谈。
实验表明,高分子熔体从口模挤出时,当挤出速度(或应力) 过高,超过某一临界剪切速度γ c(或临界剪切应力σ c)就容 易出现弹性湍流,导致流动不稳定,挤出物表面粗糙。随着 挤出速度的增大,可能分别出现波浪形、鲨鱼皮形、竹节形、 螺旋形畸变,最后导致完全无规则的挤出物断裂,称之为熔 体破裂现象。虽然关于发生熔体破裂的机理目前尚无统一认 识,但各种假定都认为,这也是高分子熔体弹性行为的典型 表现。熔体破裂现象影响着高分子材料加工的质量和产率的 提高(受临界剪切速率γ c的影响)。
触变性和震凝性
触变性(thixotropic)和震凝性(rheopectic)是高分 子液体的一种时间依赖性,指在等温条件下, 某些液体的流动粘度随着外力作用时间的长短 发生变化的性质。粘度变小的称触变性,变大 的称震凝性,或称反触变性。一般来说,流体 粘度的变化同体系内的化学、物理结构的变化 相关,因此发生触变效应时,可以认为液体内 部有某种结构遭到破坏,或是认为在外力作用 下体系内某种结构的破坏速率大于其恢复速率。 而发生震凝效应时,应当有某种新结构形成。
利用包轴现象可以设计出 一种圆盘挤出机,熔融的 物料从加料口加入,在旋 转流动中沿轴爬升,而后 从轴心处的排料口排出。 这种机器结构简单,制造 方便,性能稳定,用作橡 胶加工螺杆挤出机的喂料 装置,可提高混合效果和 挤出稳定性。
挤出胀大现象
挤出胀大现象又称口型膨胀效应或Barus效应,是指高分子 熔形体状被也强发迫生挤变出化口的,现时象挤。出物尺寸dj大于口模尺寸D,截面
(a)触变性流体
(b)震凝性流体
谢谢Байду номын сангаас