八年级上册数学-三角形课件
合集下载
人教版数学八年级上册1.3直角三角形全等的判定教学课件
![人教版数学八年级上册1.3直角三角形全等的判定教学课件](https://img.taocdn.com/s3/m/71998b0d3d1ec5da50e2524de518964bcf84d2be.png)
【例3】如图,已知AD,AF分别是两个钝角△ABC和 △ABE的高,如果AD=AF,AC=AE. 求证:BC=BE.
证明:∵AD,AF分别是两个钝 角△ABC和△ABE的高,且AD =AF,AC=AE, ∴Rt△ADC≌Rt△AFE(HL). ∴CD=EF. ∵AD=AF,AB=AB, ∴Rt△ABD≌Rt△ABF(HL). ∴BD=BF. ∴BD-CD=BF-EF.即BC=BE.
D
F
作图探究
如图,线段a、c(a<c),直角α。求作: Rt△ABC,使∠C=∠α,BC=a,AB=c。
a
c α
思考:通过上面的探究,你能得出什么结论?
知识要点
“斜边、直角边”判定方法 文字语言:
“SSA”可以判定两个直角 三角形全等,但是“边边” 指的是斜边和一直角边, 而“角”指的是直角.
斜边和一条直角边对应相等的两个直角三角形全等
∠BFG=∠DEG ∠BGF=∠DGE
D
Rt△GBF≌Rt△GDE(AAS).
FG=EG BD平分EF
变式训练2
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.想想:BD
平分EF吗?
AB=CD, AF=CE.
Rt△ABF≌Rt△CDE(HL).
C
BF=DE
∠BFG=∠DEG ∠BGF=∠DGE
则 CH的长为( A )
A.1 B.2 C.3
D.4
3.如图,△ABC中,AB=AC,AD是高,
则△ADB与△ADC 全等 (填“全等”或
“不全等”),根据 HL (用简写法).
┑
4.如图,在△ABC中,已知BD⊥AC,CE ⊥AB,
BD=CE.求证:△EBC≌△DCB.
数学沪科版八年级(上册)14.1全等三角形(共32张PPT)
![数学沪科版八年级(上册)14.1全等三角形(共32张PPT)](https://img.taocdn.com/s3/m/f99cde71ec630b1c59eef8c75fbfc77da2699785.png)
(全等三角形对应边相等).
5.如图,△ABC≌△AED,AB是△ABC的最大边,AE是 △AED的最大边, ∠BAC 与∠ EAD是对应角,且 ∠BAC=25°,∠B= 35°,AB=3cm,BC=1cm,求出∠E, ∠ ADE的度数和线段DE,AE 的长度.
解:∵ △ABC≌△AED,(已知)
A
∠A=∠F,∠B=∠D,∠C=∠E(全等三角形对应角相等)
例2 如图,已知△ABC≌△DCB,AB=3,DB=4, ∠A=60°. (1)写出△ABC和△DCB的对应边和对应角; (2)求AC,DC的长及∠D的度数. 解:(1)AB与DC,AC与DB,
BC与CB是对应边; ∠A与∠D,∠ABC与∠DCB, ∠ACB与∠DBC是对应角;
A
B
3.如图,已知△ABC≌△BAD 边 请指出图中的对应边和对应角. 边
AB= BA AC= BD
D
A
边 BC= AD
角 ∠BAC= ∠ABD
B
C
角 ∠ABC= ∠BAD
角 ∠C= ∠D
归纳 有公共边的,公共边一定是对应边.
变式:
D E
B
如图:平移后△ABC≌△ EFD, 若AB=6,AE=2.你能说出AF的 F 长吗?说说你的理由.
∴ ∠E=∠N. ∴ EF∥NM.
当堂练习
1.如图,△ABC≌△BAD,如果AB=5cm, BD=
4cm,AD=6cm,那么BC的长是 ( A )
A.6cm B.5cm C.4cm D.无法确定
2.在上题中,∠CAB的对应角是 ( B )
A.∠DAB B.∠DBA C.∠DBC D.∠CAD
C
D
O
∠A= ∠A ∠B= ∠E ∠ACB= ∠ADE
人教版数学八年级上册13.等边三角形(30度角直角三角形的性质)课件
![人教版数学八年级上册13.等边三角形(30度角直角三角形的性质)课件](https://img.taocdn.com/s3/m/a87ed72d00f69e3143323968011ca300a6c3f684.png)
角形的性质的简单应 П 用.
了解等边三角形与30°角互相转化的
事实,培养我们用发展变化的思想看
Ш
问题的价值观。
学习重难点:含30°角的直角三角形的性 质定理的发现与证明.
自 学指 导
阅读课本80-81页,思考下列问题:
A.直角三角形的角之间都有什么数量关系? B.用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角
问题E: 得出300 角所对的直角边与斜边之间的数量关系, 说明理由.
合 作探 究
我们可以用两个同样大小的三角尺(含30 °和60 °的角)拼接 起来验证
A
B
C
D
合 作探 究
A
A
30°
数学化
B
C
D
B
C
D
合 作探 究
可得:
A
△ABD是等边三角形
∵ AC ⊥BD
∴
BC=CD=
1 2
BD
∵ BD=AB
我们每个人都有一双隐形的翅膀, 只要你愿意, 只要肯努力, 只要不放弃, 你一定能张开翅膀在知识的天空 中自由翱翔!
构建快乐课堂 塑造美丽
目标解读
学习环节
快乐晋级
知 识回 顾
1、等边三角形的性质 2、等边三角形的判定
回 顾反 馈
1、等边三角形三边 相___等___ ,三个角都等于 6_0__°__.
4)直角三角形的斜边是30°角所对直角边的2倍.√
快 乐晋 级
深思熟虑,我来我行! 3、在Rt△ABC中,若∠C=90°,∠A=30°,B
AB=4,则BC=___2___;
C
A
4、如图所示,已知△ABC中,∠ACB=900,
CD⊥AB于D, ∠A=300,且AB=8cm,
了解等边三角形与30°角互相转化的
事实,培养我们用发展变化的思想看
Ш
问题的价值观。
学习重难点:含30°角的直角三角形的性 质定理的发现与证明.
自 学指 导
阅读课本80-81页,思考下列问题:
A.直角三角形的角之间都有什么数量关系? B.用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角
问题E: 得出300 角所对的直角边与斜边之间的数量关系, 说明理由.
合 作探 究
我们可以用两个同样大小的三角尺(含30 °和60 °的角)拼接 起来验证
A
B
C
D
合 作探 究
A
A
30°
数学化
B
C
D
B
C
D
合 作探 究
可得:
A
△ABD是等边三角形
∵ AC ⊥BD
∴
BC=CD=
1 2
BD
∵ BD=AB
我们每个人都有一双隐形的翅膀, 只要你愿意, 只要肯努力, 只要不放弃, 你一定能张开翅膀在知识的天空 中自由翱翔!
构建快乐课堂 塑造美丽
目标解读
学习环节
快乐晋级
知 识回 顾
1、等边三角形的性质 2、等边三角形的判定
回 顾反 馈
1、等边三角形三边 相___等___ ,三个角都等于 6_0__°__.
4)直角三角形的斜边是30°角所对直角边的2倍.√
快 乐晋 级
深思熟虑,我来我行! 3、在Rt△ABC中,若∠C=90°,∠A=30°,B
AB=4,则BC=___2___;
C
A
4、如图所示,已知△ABC中,∠ACB=900,
CD⊥AB于D, ∠A=300,且AB=8cm,
沪科版数学八年级上册14.1全等三角形课件(共19张PPT)
![沪科版数学八年级上册14.1全等三角形课件(共19张PPT)](https://img.taocdn.com/s3/m/fb54216f5b8102d276a20029bd64783e09127dde.png)
如图,按同一底版印制的两枚邮票,它们的形状相同、大小一样。
全等形定义:能够完全重合的两个图形,叫做全等形.
全等形性质:如果两个图形全等,它们的形状相同,大小相等.
1.与下左图所示图形全等的是 .
①、④
2.下列说法:①用一张底片冲洗出来的2张1寸相片是全等的; ②所有正三角形是全等形; ③面积相等的图形一定是全等形.其中正确的是 .
两个三角形全等是通过什么方法验证的?
平移
解:对应边是:__________________________________
对应角是:__________________________________
AC与DF,AB与DE,BC与EF
∠A与∠D,∠B与∠E,∠C与∠F
A
C
B
如图△AOC≌△BOD
1.对应边是:________________________
2.∠AOC的对应角是________
∠A的对应角是________
OC与OD,AC与BD
∠BOD
∠B
O
D
小结:有对顶角的,对顶角也是对应角.
想一想: 有什么办法判断两个三角形全等?用数学式子表示两个三角形全等,并指出对应角、对应边.
旋转
A
B
C
D
A
A
B
B
D
C
如图△ABD≌△ABC
大角对大角,小角对小角
公共角一定是对应角
对顶角一定是对应角
同学们再见!
授课老师:
时间:2024年9月1日
第十四章 全等三角形
14.1 全等三角形
学习目标
学习重难点
重点
难点
1.了解全等形,明确全等三角形的概念.2.掌握全等三角形的性质,识别全等三角形的对应边和对应角.
全等形定义:能够完全重合的两个图形,叫做全等形.
全等形性质:如果两个图形全等,它们的形状相同,大小相等.
1.与下左图所示图形全等的是 .
①、④
2.下列说法:①用一张底片冲洗出来的2张1寸相片是全等的; ②所有正三角形是全等形; ③面积相等的图形一定是全等形.其中正确的是 .
两个三角形全等是通过什么方法验证的?
平移
解:对应边是:__________________________________
对应角是:__________________________________
AC与DF,AB与DE,BC与EF
∠A与∠D,∠B与∠E,∠C与∠F
A
C
B
如图△AOC≌△BOD
1.对应边是:________________________
2.∠AOC的对应角是________
∠A的对应角是________
OC与OD,AC与BD
∠BOD
∠B
O
D
小结:有对顶角的,对顶角也是对应角.
想一想: 有什么办法判断两个三角形全等?用数学式子表示两个三角形全等,并指出对应角、对应边.
旋转
A
B
C
D
A
A
B
B
D
C
如图△ABD≌△ABC
大角对大角,小角对小角
公共角一定是对应角
对顶角一定是对应角
同学们再见!
授课老师:
时间:2024年9月1日
第十四章 全等三角形
14.1 全等三角形
学习目标
学习重难点
重点
难点
1.了解全等形,明确全等三角形的概念.2.掌握全等三角形的性质,识别全等三角形的对应边和对应角.
人教版数学八年级上册三角形的内角ppt-课件
![人教版数学八年级上册三角形的内角ppt-课件](https://img.taocdn.com/s3/m/bdbd075ca7c30c22590102020740be1e650eccaf.png)
三角形有几个内角?它的内 角和是多少?
你是怎么知道的?
做一做
请同学们拿出学具中的三角形纸片, 想一想可以用那些方法来说明三角
形的内角和是180 °? A
C B
a
1 B
b
A 2
e1 A
2
C
C
B
A 从刚才拼角的过程你
1
受到什么启发?
B
C
三角形的内角和等于1800.
证法1:过A作EF∥BA,
∴∠B=∠2
∴ ∠ACD =180 ° -30 ° -90 °=6 0 °
在△BCD中 ∠CBD = 45 ° ∠D =90 °
∴ ∠BCD = 180 °- 90°-45 °=45 °
∴ ∠ACB = ∠ACD - ∠BCD = 6 0 °- 45 °
2. 如图,一种滑翔伞是左右
对称的四边形ABCD,其中 B ∠A=150°,∠B=∠D=40°, 求∠C的度数。
则∠ B=∠ C=___7_0 °
(4)在△ABC中, ∠A+ ∠ B =80°, ∠ C=2 ∠A,
则∠A=_5_0__°__, ∠ B=_3__0__°, ∠ C=__1_0_0 °
(5)在△ABC中, ∠A :∠B:∠C=2:3:4, 求∠A, ∠ B ,∠ C 设∠A =2x度, ∠B=3x度,∠C=4x度
∴∠C+∠B+∠BAC=180° B
C
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAC+∠C=180°
(两直线平行,同旁内角互补)
E
A 即∠ EAB+∠BAC+∠C=180°
∴∠B+∠C+∠BAC=180°
你是怎么知道的?
做一做
请同学们拿出学具中的三角形纸片, 想一想可以用那些方法来说明三角
形的内角和是180 °? A
C B
a
1 B
b
A 2
e1 A
2
C
C
B
A 从刚才拼角的过程你
1
受到什么启发?
B
C
三角形的内角和等于1800.
证法1:过A作EF∥BA,
∴∠B=∠2
∴ ∠ACD =180 ° -30 ° -90 °=6 0 °
在△BCD中 ∠CBD = 45 ° ∠D =90 °
∴ ∠BCD = 180 °- 90°-45 °=45 °
∴ ∠ACB = ∠ACD - ∠BCD = 6 0 °- 45 °
2. 如图,一种滑翔伞是左右
对称的四边形ABCD,其中 B ∠A=150°,∠B=∠D=40°, 求∠C的度数。
则∠ B=∠ C=___7_0 °
(4)在△ABC中, ∠A+ ∠ B =80°, ∠ C=2 ∠A,
则∠A=_5_0__°__, ∠ B=_3__0__°, ∠ C=__1_0_0 °
(5)在△ABC中, ∠A :∠B:∠C=2:3:4, 求∠A, ∠ B ,∠ C 设∠A =2x度, ∠B=3x度,∠C=4x度
∴∠C+∠B+∠BAC=180° B
C
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAC+∠C=180°
(两直线平行,同旁内角互补)
E
A 即∠ EAB+∠BAC+∠C=180°
∴∠B+∠C+∠BAC=180°
人教版八年级上册数学第十一章三角形全章课件
![人教版八年级上册数学第十一章三角形全章课件](https://img.taocdn.com/s3/m/cfe826f1cf2f0066f5335a8102d276a201296042.png)
B
D
A DC
C
锐角三角形的三条高
每人画一个锐角三角形. (1) 你能画出这个三角形的三条高吗? (2) 这三条高之间有怎样的位置关系?
将你的结果与同伴进行交流.
锐角三角形的三条高是
B
在三角形的内部还是外部?
A
F
OE
C D
锐角三角形的三条高交于同一点. 锐角三角形的三条高都在三角形的内部.
直角三角形的三条高
(2)它们所在的直线交于一点吗? D
将你的结果与同伴进行交流.
钝角三角形的三条高不相交于 一点. 钝角三角形的三条高所在直线 交于一点.
O
F
B
C
E
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高.
三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,
哪些是错误的. A
①AD是△ABE的角平分线( × )
②BE是△ ABD边AD上的中线( × ) ③BE是△ ABC边AC上的中线( × ) F
12 E G
④CH是△ ACD边AD上的高( √ ) B
H
D
C
三角形的高、中线与角平分线都是线段.
3.(滨州中考)若某三角形的两边长分别为3和4,则下列
长度的线段能作为其第三边的是(
)
A.1
B.5
C.7
D.9
【解析】选B.设第三边为x,则1<x<7.
4.若△ABC的三边为a,b,c,则化简︱a+b-c︱+︱ba-c︱的结果是( ). A. 2a-2b B.2a+2b+2c C. 2a D. 2a-2c
八年级数学上册《直角三角形的性质》课件
![八年级数学上册《直角三角形的性质》课件](https://img.taocdn.com/s3/m/0ae0c044854769eae009581b6bd97f192279bf2d.png)
测量角度
通过测量直角三角形中的两个锐角,可以计算出 第三个角的大小,从而解决一些测量问题。
建筑设计中直角三角形应用
建筑设计
01
在建筑设计中,直角三角形常被用于计算建筑物的角度、高度
和距离等参数,以确保建筑物的稳定性和美观性。
结构工程
02
在结构工程中,直角三角形可以帮助工程师计算结构的支撑力
、承载力和稳定性等关键参数。
AA相似条件在直角三角形中应用
AA相似条件:如果两个三角形 中有两个角分别相等,则这两 个三角形相似。
在直角三角形中,由于一个角 是90度,因此只需要再证明一 个角相等即可判定两个直角三 角形相似。
常见的证明方法包括利用余角 相等、利用平行线的性质等。
利用三边比例关系判断相似
三边比例关系:如果两个三角形的三边长度成比例,则这两个三角形相似。
在直角三角形中,可以利用勾股定理和已知边长求出未知边长,进而判断三边是否 成比例。
需要注意的是,由于直角三角形的特殊性,有时候只需要证明两边成比例即可判定 相似。
实例分析与解题技巧
实例分析
通过具体题目分析,展示如何利 用AA相似条件和三边比例关系判 断直角三角形相似。
解题技巧
总结在解题过程中需要注意的问 题和技巧,如正确运用勾股定理 、灵活运用相似条件等。
勾股定理及其逆定理
勾股定理
勾股数
在直角三角形中,直角边的平方和等 于斜边的平方,即a² + b² = c²,其 中a、b为直角边,c为斜边。
满足勾股定理的三个正整数,称为勾 股数。例如,3、4、5是一组勾股数 ,因为3² + 4² = 5²。
勾股定理的逆定理
如果三角形的三边长a、b、c满足a² + b² = c²,那么这个三角形是直角三 角形,其中c为最长边。
通过测量直角三角形中的两个锐角,可以计算出 第三个角的大小,从而解决一些测量问题。
建筑设计中直角三角形应用
建筑设计
01
在建筑设计中,直角三角形常被用于计算建筑物的角度、高度
和距离等参数,以确保建筑物的稳定性和美观性。
结构工程
02
在结构工程中,直角三角形可以帮助工程师计算结构的支撑力
、承载力和稳定性等关键参数。
AA相似条件在直角三角形中应用
AA相似条件:如果两个三角形 中有两个角分别相等,则这两 个三角形相似。
在直角三角形中,由于一个角 是90度,因此只需要再证明一 个角相等即可判定两个直角三 角形相似。
常见的证明方法包括利用余角 相等、利用平行线的性质等。
利用三边比例关系判断相似
三边比例关系:如果两个三角形的三边长度成比例,则这两个三角形相似。
在直角三角形中,可以利用勾股定理和已知边长求出未知边长,进而判断三边是否 成比例。
需要注意的是,由于直角三角形的特殊性,有时候只需要证明两边成比例即可判定 相似。
实例分析与解题技巧
实例分析
通过具体题目分析,展示如何利 用AA相似条件和三边比例关系判 断直角三角形相似。
解题技巧
总结在解题过程中需要注意的问 题和技巧,如正确运用勾股定理 、灵活运用相似条件等。
勾股定理及其逆定理
勾股定理
勾股数
在直角三角形中,直角边的平方和等 于斜边的平方,即a² + b² = c²,其 中a、b为直角边,c为斜边。
满足勾股定理的三个正整数,称为勾 股数。例如,3、4、5是一组勾股数 ,因为3² + 4² = 5²。
勾股定理的逆定理
如果三角形的三边长a、b、c满足a² + b² = c²,那么这个三角形是直角三 角形,其中c为最长边。
12.1 全等三角形 课件 人教版八年级数学上册(22张PPT)
![12.1 全等三角形 课件 人教版八年级数学上册(22张PPT)](https://img.taocdn.com/s3/m/dd681489cf2f0066f5335a8102d276a2002960ea.png)
新课讲授
探究:请同学们把课前准备好的三角尺按在纸片上, 划下图形,照图形裁下来的纸片和三角尺的形状、 大小完全一样吗?把三角尺和裁得的纸片放在一起 能够完全重合吗?
归纳总结
全等形的定义: 能够完全重合的两个图形称为全等形. 全等形的性质: 形状相同,大小相等.
练一练 下面哪些图形是全等形?
看大小、形状 是否完全相同
课堂小结
定义
能够完全重合的两个三角形叫做全等三角形
全
对应边相等
等 三
基本性质
对应角相等
角
长对长,短对短,中对中
形
对应边 公共边一般是对应边
对应元素 确定方法
对应角
大角对大角,小角对小角 公共角一般是对应角 对顶角一般是对应角
作业布置
1.完成课本P33页1-4题; 2.复习整理本节课知识框架,预习全等三角 形的判定并尝试整理思维导图; 3.探究性作业:利用全等形设计美丽的图案, 比比看谁的设计最好。
“全等”用符号“≌”表示,读作“全等于”.
A
D
B
C
E
F
△ABC≌△DEF
注意:记两个三角形全等时,通常把表示对应顶点
的字母写在对应的位置上.
全等三角形的性质
A
D
B
C
E
F
∵△ABC≌△DEF,
∴ AB = DE,AC = DF,BC = EF (全等三角形的对应边 相等),
∠A =∠D,∠B =∠E,∠C =∠F(全等三角形对应角相等).
牛刀小试
如图,△ABC 与△ADC 全等,请用数学符号表示出
这两个三角形全等,并写出相等的边和角. D 解:△ABC≌△ADC.
A
人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件
![人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件](https://img.taocdn.com/s3/m/69a06fab7d1cfad6195f312b3169a4517723e5f7.png)
形旳外角中必有两个角是钝角;
D、锐角三角形中两锐角旳和必然不不小于
60O;
随堂检测
• 1.一种三角形旳三边长是整数,周1 长为5,则最
小边为
;
• 2三.木角形工具师有稳傅定做性 完门框后,为预防变形,通常在 角上钉一斜条,根据3是60
•
90O
;
• 3.小明绕五边形各边走一圈,他共转了 度
。
(1)、(2)、(4)
可表达为:五边形ABCDE 或五边形AEDCB
B
内角
E
外角
C
对角线:连接多边形不相邻旳两个 顶点旳线段。
1
D
对角线
10、多边形旳分类
请分别画出下列两个图形各边所在旳直线,你能得到什么结论?
D
E
A
G C
B
(1)
H F
(2)
如图(1)这么,画出多边形旳任何一条边所在旳直线,整个多边形都在这 条直线旳同一侧,那么这个多边形就是凸多边形。本节我们只讨论凸多边形。
那么(C )
A、只有一种截法 B、只有两种截法 C、有三种截法 D、有四种截法
3、等腰三角形旳腰长为a,底为X,则X旳取值范围是( A )
A、0<X<2a B、0<X<a C、0<X<a/2 D、0<X≤2a
随堂检测
4、一种正多边形每一种内角都是120o,这个多边形是( C )
A、正四边形
B、正五边形
随堂检测
101试卷库 三角形旳复习 随堂测试
同学们要仔细答题哦!
随堂检测
1、三角形三个内角旳度数分别是(x+y)o, (x-y)o,xo,且x>y>0,则该三角形有一种
内角为 ( C )
八年级数学上册教学课件《含30°角的直角三角形的性质》
![八年级数学上册教学课件《含30°角的直角三角形的性质》](https://img.taocdn.com/s3/m/24b2fc51bb1aa8114431b90d6c85ec3a87c28b94.png)
证明:∵∠B+∠A=180°- ∠C=90°, ∠B=2∠A,
∴∠B=60°,∠A=30°. ∴ AB=2BC.
随堂演练
1. Rt△ABC中,CD是斜边AB上的高,∠B=30°, AD=2cm,则AB的长度是( C ) A.2cm B.4 cm C.8 cm D.16cm 2.等腰三角形一腰上的高与腰长之比为1∶2,则 等腰三角形的顶角为( D )
(2)能运用30°角的直角三角形的性质 解决相关问题.
推进新课
知识点1 直角三角形的性质
探究
将两个全等的含30°角的直 角三角尺摆放在一起.你能借助这 个图形,找到Rt △ABC 的直角边 BC 与斜边AB 之间的数量关系吗?
猜想 在直角三角形中,如果一个锐角等 于30°,那么它所对的直角边等于斜边的一半.
A.30° B.60° C.150° D.30°或150°
3. 在Rt△ABC中,∠A=90°,∠ABC=2∠C, BD是∠ABC的平分线.求证:DC = 2AD.
证明:∵∠A = 90°,∠ABC = 2∠C,
∴∠C = 30°,∠ABC = 60°.
又BD是∠ABC的平分线,
∴∠ABD=∠CBD=
∵ ∠ACB=90°,∠A =30°,
∴ ∠B =60°.
在△BCE 中,
E
∵ ∠BCE=60°,∠B =60°,
∴ △BCE 是等边三角形.
∴ BC =BE =CE.
B
C
在△ACE 中,
A
∵ ∠A=30°,∠ACE =30°,
∴ △AEC是等腰三角形.
∴ CE =AE.
∴ BC =BE =CE =AE.
A
符号语言:
∵ 在Rt△ABC 中,
∴∠B=60°,∠A=30°. ∴ AB=2BC.
随堂演练
1. Rt△ABC中,CD是斜边AB上的高,∠B=30°, AD=2cm,则AB的长度是( C ) A.2cm B.4 cm C.8 cm D.16cm 2.等腰三角形一腰上的高与腰长之比为1∶2,则 等腰三角形的顶角为( D )
(2)能运用30°角的直角三角形的性质 解决相关问题.
推进新课
知识点1 直角三角形的性质
探究
将两个全等的含30°角的直 角三角尺摆放在一起.你能借助这 个图形,找到Rt △ABC 的直角边 BC 与斜边AB 之间的数量关系吗?
猜想 在直角三角形中,如果一个锐角等 于30°,那么它所对的直角边等于斜边的一半.
A.30° B.60° C.150° D.30°或150°
3. 在Rt△ABC中,∠A=90°,∠ABC=2∠C, BD是∠ABC的平分线.求证:DC = 2AD.
证明:∵∠A = 90°,∠ABC = 2∠C,
∴∠C = 30°,∠ABC = 60°.
又BD是∠ABC的平分线,
∴∠ABD=∠CBD=
∵ ∠ACB=90°,∠A =30°,
∴ ∠B =60°.
在△BCE 中,
E
∵ ∠BCE=60°,∠B =60°,
∴ △BCE 是等边三角形.
∴ BC =BE =CE.
B
C
在△ACE 中,
A
∵ ∠A=30°,∠ACE =30°,
∴ △AEC是等腰三角形.
∴ CE =AE.
∴ BC =BE =CE =AE.
A
符号语言:
∵ 在Rt△ABC 中,
2.6.1 直角三角形的性质(课件)八年级数学上册(浙教版)
![2.6.1 直角三角形的性质(课件)八年级数学上册(浙教版)](https://img.taocdn.com/s3/m/0ae1a27a5627a5e9856a561252d380eb629423a3.png)
(三角形三个内角的和等于180°)
∠C=90°(已知)
∴∠A+∠B=180°-∠C=90°
则∠A+∠B=90°
C
B
合作学习
有一个角是直角的三角形叫做直角三角形
表示:“Rt△” 直角三角形可以记为Rt△ABC
直角三角形的性质定理:
直角三角形的两个锐角互余
在Rt△ABC中,∠C=90°
则∠A+∠B=__________
∴BC= AB
C
B
例题讲解
例2:如图,∠C=∠D=90°,AD,BC相交于点E.∠CAE与∠DBE有什么关系? 为什么?
解:在Rt△ACE中,
C
D
∠CAE=90°- ∠AEC
E
在Rt△BDE中,
∠DBE=90°- ∠BED
∵∠AEC= ∠BED
∴∠CAE= ∠DBE
A
B
例题讲解
例3:右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于
90°
A
直
角
边
C
斜边
直角边
B
巩固练习
已知直角三角形两个锐角的度数之比为3:2,求这两个锐角的度数。
解:∵三角形内角和是180°,直角三角形中有一个角是90°
∴直角三角形的两个锐角度数的和是90°,
又3+2=5,
∴这两个锐角分别为:90°× =54°;
90°× =36°,
答:这个三角形两个锐角的度数分别是 54°,36°.
浙教版 八上
直角三角形的性质
目录
01 直角三角形
02 直角三角形锐角互余
03 斜中线性质
∠C=90°(已知)
∴∠A+∠B=180°-∠C=90°
则∠A+∠B=90°
C
B
合作学习
有一个角是直角的三角形叫做直角三角形
表示:“Rt△” 直角三角形可以记为Rt△ABC
直角三角形的性质定理:
直角三角形的两个锐角互余
在Rt△ABC中,∠C=90°
则∠A+∠B=__________
∴BC= AB
C
B
例题讲解
例2:如图,∠C=∠D=90°,AD,BC相交于点E.∠CAE与∠DBE有什么关系? 为什么?
解:在Rt△ACE中,
C
D
∠CAE=90°- ∠AEC
E
在Rt△BDE中,
∠DBE=90°- ∠BED
∵∠AEC= ∠BED
∴∠CAE= ∠DBE
A
B
例题讲解
例3:右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于
90°
A
直
角
边
C
斜边
直角边
B
巩固练习
已知直角三角形两个锐角的度数之比为3:2,求这两个锐角的度数。
解:∵三角形内角和是180°,直角三角形中有一个角是90°
∴直角三角形的两个锐角度数的和是90°,
又3+2=5,
∴这两个锐角分别为:90°× =54°;
90°× =36°,
答:这个三角形两个锐角的度数分别是 54°,36°.
浙教版 八上
直角三角形的性质
目录
01 直角三角形
02 直角三角形锐角互余
03 斜中线性质
认识三角形(共27张PPT)数学八年级上册
![认识三角形(共27张PPT)数学八年级上册](https://img.taocdn.com/s3/m/3326ffdbe43a580216fc700abb68a98271feacc7.png)
三角形的中线
等底同高的两个三角形面积相等
【议一议】
(1)在纸上画出一个锐角三角形,并画出它的三条中线,它们有怎样的位置关系?与同伴进行交流.
锐角三角形的三条中线交于一点.
钝角三角形和直角三角形的三条中线也交于一点.
(2)钝角三角形和直角三角形的三条中线也有同样的位置关系吗?折一折,画一画,并与同伴进行交流.
1
2
三角形的角平分线
P7做一做第1题
结论:任意三角形的三条角平分线交于同一点.
ቤተ መጻሕፍቲ ባይዱ
三角形的角平分线
【议一议】
在纸上画出一个三角形,并画出它的三条角平分线,它们有怎样的位置关系?与同伴进行交流.
议一议:三角形的角平分线与角的平分线有什么区别和联系?
A
B
F
E
O
C
A
B
E
三角形的角平分线是线段,而角的平分线是一条射线;它们的联系是都是平分角。
课本P9作业讲评
1. 如图,AD,CE分别是△ABC的中线和角平分线,则:
DC BC ∠ECB ∠ACB.
2.如图,在△ABC中,∠ACB=90°,CD是斜边上的高线,CE是△ABC的角平分线,且∠CEB=105°.求∠ECB,∠ECD的大小.
3.如图,AD是△ABC的中线,DE⊥AC,DF⊥AB,E,F 分别是垂足.已知AB=2AC,求DE与DF的长度之比.
1.1 认识三角形
第2课时 三角形的三线
智慧课堂精品课件
知识与技能: 1.了解三角形的角平分线、中线、高线的概念. 2.会利用量角器、刻度尺画三角形的角平分线、中线和高线. 3.会利用三角形的角平分线、中线和高线的概念,解决有关角度、 面积计算等问题.过程与方法:经历三个概念的生成过程,体验锐角、直角、钝角三角 形的高线的位置差异.情感态度与价值观:感受分类讨论的数学思想
等底同高的两个三角形面积相等
【议一议】
(1)在纸上画出一个锐角三角形,并画出它的三条中线,它们有怎样的位置关系?与同伴进行交流.
锐角三角形的三条中线交于一点.
钝角三角形和直角三角形的三条中线也交于一点.
(2)钝角三角形和直角三角形的三条中线也有同样的位置关系吗?折一折,画一画,并与同伴进行交流.
1
2
三角形的角平分线
P7做一做第1题
结论:任意三角形的三条角平分线交于同一点.
ቤተ መጻሕፍቲ ባይዱ
三角形的角平分线
【议一议】
在纸上画出一个三角形,并画出它的三条角平分线,它们有怎样的位置关系?与同伴进行交流.
议一议:三角形的角平分线与角的平分线有什么区别和联系?
A
B
F
E
O
C
A
B
E
三角形的角平分线是线段,而角的平分线是一条射线;它们的联系是都是平分角。
课本P9作业讲评
1. 如图,AD,CE分别是△ABC的中线和角平分线,则:
DC BC ∠ECB ∠ACB.
2.如图,在△ABC中,∠ACB=90°,CD是斜边上的高线,CE是△ABC的角平分线,且∠CEB=105°.求∠ECB,∠ECD的大小.
3.如图,AD是△ABC的中线,DE⊥AC,DF⊥AB,E,F 分别是垂足.已知AB=2AC,求DE与DF的长度之比.
1.1 认识三角形
第2课时 三角形的三线
智慧课堂精品课件
知识与技能: 1.了解三角形的角平分线、中线、高线的概念. 2.会利用量角器、刻度尺画三角形的角平分线、中线和高线. 3.会利用三角形的角平分线、中线和高线的概念,解决有关角度、 面积计算等问题.过程与方法:经历三个概念的生成过程,体验锐角、直角、钝角三角 形的高线的位置差异.情感态度与价值观:感受分类讨论的数学思想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
只要满足较小的两条线段之和大于第三条线段,便可构 成三角形;若不满足,则不能构成三角形.
判断下面给出的各组线段中, 哪些能够围成三角形?
( 1 ) 12 厘米、 11 厘米、 7 厘米;
ห้องสมุดไป่ตู้
判断下面给出的各组线段中, 哪些能够围成三角形?
(2)9厘米、9厘米、15厘米;
判断下面给出的各组线段中, 哪些能够围成三角形?
学知识说几句话.
.B
.
为什么经常有行人斜 穿马路而不走人行横 道?
人 行 横 道
.A
c
练一练 下列长度的各组线段能否组成一个三角形,并说明理由? (1)15cm、10cm、7cm (2) 4cm、5cm、10cm (3) 3cm、8cm、5cm (4) 4cm、5cm、6cm 思 考:判断三条线段能否组成三角形,是否一定要检验 三条线段中任何两条的和都大于第三条?根据你 刚才解题经验,有没有更简便的判断方法?
第二章 三角形
• 2.1三角形
不在同一条直线上 首尾顺次连结 由三条不在同一条直线上的线段首尾顺次连结 组成的平面图形,称为三角形.
三角形表示: 三角形用符号“△”表 示,如图的三角形ABC就 A
可以表示成:△ABC
读作“三角形ABC”。
B
C
围成三角形的每条线段叫做三角形的边。 每两条线段的交点叫做三角形的顶点。 三角形的三个内角分别可以表示为∠A, ∠B, ∠C 。 顶点A 角
今天我的收获颇丰哦 自我小测及作业
第七章
三角形
§7.1与三角形有关的线段
第七章
三角形
§7.1与三角形有关的线段
钝角三角形
2.在上面的三角形中,有等腰三角形吗?
思考:如图的三角形中,有一只小虫要从 点B出发沿三角形的边爬到点C,它有几条 路线可以选择?各条路线的长一样吗? A
B
AB+BC>AC;AB+AC > BC;
C
AC+BC > AB 三角形的三边关系:三角形的任
意两边之和大于第三边
议一议
例2 观察下图,联想实际,结合所学的数
边c 角 顶点B 边b 角
顶点C
边a
练习:请同学们找出图中的三角形,并用符 号表示出来,任意找出其中一个三角形说出 其顶点、边、角,并指出AD是哪些三角形的 边。 A
E
B
C D
三角形按角分类:
直角三角形 锐角三角形
钝角三角形
顶角
腰
腰
两腰相等 两底角相等
底角
底边
底角
等腰三角形
边 边
边
三条边相等
学习小结
通过本节课的学习,能 说说你取得了哪些成果吗? 你还有什么困惑吗?
三角形:由不在同一条直线上的三条线段首尾顺次 相接所组成的图形叫做三角形。 不等边三角形 底和腰不等的三角形 按边分 等腰三角形 等边三角形 三角形 锐角三角形 按角分 直角三角形 钝角三角形 三角形的三边关系:三角形的任意两边之和大于第三边
判断下面给出的各组线段中, 哪些能够围成三角形?
(7)9厘米、9厘米、9厘米。
判断下面给出的各组线段中, 哪些能够围成三角形?
( 8 ) 10 厘米、 10 厘米、 5 厘米。
试一试:
1、已知两条线段的长分别是3cm、
5cm ,要想拼成一个三角形,且第 三条线段a的长为奇数,问第三条线 段a应取多少长?
a=3cm,5cm,7cm.
练习
(1)任何三条线段都能组成一个三角形 (×) (2)因为a+b>c,所以a、b、c三边可以构成三角形( × ) (3) 以长为3cm、5cm、7cm、10cm的四条线段中的 三条线段为边,可构成_____ 2 个三角形. (4)已知等腰三角形的两边长分别为8cm,3cm, 则这三角形的周长为 ( B ) (A) 14cm (C) 14cm或19cm (B)19cm (D) 不确定
等边三角形
角
三只角相等
角
角
等边三角形
角 边 角 边
等边三角形
边
三条边相等 三个角相等
角
思考:等边三角形 是等腰三角形吗?
按边分: 三角形
等腰三角形 不等边三角形
等边三角形
1.观察下面的三角形,请把它们的标号填入 相应的椭圆框内:
(1) (2) (3) (4)
(5)
(6)
(7)
锐角三角形
直角三角形
(3)5厘米、5厘米、12厘米;
判断下面给出的各组线段中, 哪些能够围成三角形?
(4)9厘米、12厘米、15厘米;
判断下面给出的各组线段中, 哪些能够围成三角形?
( 5 )15厘米、15 厘米、 15 厘米;
判断下面给出的各组线段中, 哪些能够围成三角形?
( 6 ) 18 厘米、 10 厘米、 6 厘米;