干气密封的原理及使用分析

合集下载

干气密封的原理及使用分析

干气密封的原理及使用分析

干气密封的原理及使用分析一、引言干气密封是一种新型的无接触轴封,由它来密封旋转机器中的气体或液体介质。

与其它密封相比,干气密封具有泄漏量少,磨损小,寿命长,能耗低,操作简单可靠,维修量低,被密封的流体不受油污染等特点。

因此,在压缩机应用领域,干气密封正逐渐替代浮环密封、迷宫密封和油润滑机械密封。

干气密封使用的可靠性和经济性已经被许多工程应用实例所证实。

目前,干气密封主要用在离心式压缩机上,也还用在轴流式压缩机、齿轮传动压缩机和透平膨胀机上。

干气密封已经成为压缩机正常运转和操作可靠的重要元件,随着压缩机技术的发展,干气密封正逐步取代浮环密封、迷宫密封和油润滑密封。

本文针对德国博格曼公司的干气密封产品进行了研究,结合压缩机的工作特点,重点论述压缩机干气密封的原理、结构特点、密封材料、使用要求和制造等方面的内容。

二、干气密封工作原理分析干气密封和普通平衡型机械密封相似,也由静环和动环组成,其中:静环由弹簧加载,并靠O型圈辅助密封。

端面材料可采用碳化硅、氮化硅、硬质合金或石墨。

干气密封与液体普通平衡型机械密封的区别在于:干气密封动环端面开有气体槽,气体槽深度仅有几微米,端面间必须有洁净的气体,以保证在两个端面之间形成一个稳定的气膜使密封端面完全分离。

气膜厚度一般为几微米,这个稳定的气膜可以使密封端面间保持一定的密封间隙,间隙太大,密封效果变差;而间隙太小会使密封面发生接触,因干气密封的摩擦热不能散失,端面间无润滑接触将很快引起密封端面的变形,从而使密封失效。

气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。

动环密封面分为两个功能区(外区域和内区域)。

气体进入密封间隙的外区域有空气动压槽,这些槽压缩进来的气体。

为了获得必要的泵效应,动压槽必须被开在高压侧。

密封间隙内的压力增加将保证即使在轴向载荷较大的情况下也将形成一个不被破坏的稳定气膜。

干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定的气膜是由密封墙的节流效应和所开动压槽的泵效应得到的。

干气密封原理

干气密封原理

干气密封原理干气密封是一种常用的密封方式,它主要应用于高速旋转机械设备中,如离心压缩机、涡轮机、齿轮箱等。

干气密封的主要作用是防止介质(气体或液体)泄漏,同时减少摩擦损失,提高设备的运行效率。

下面将详细介绍干气密封的原理及其工作过程。

首先,干气密封的原理是利用气体的高速旋转产生的离心力和惯性力,将气体挤压到密封面上,形成一层气体膜,阻止介质泄漏。

同时,密封面上的气体膜也能减少密封面的摩擦,降低能量损失。

因此,干气密封的密封效果和摩擦损失都比较理想。

其次,干气密封的工作过程可以分为两个阶段,压缩气体和扩张气体。

在压缩气体阶段,气体被挤压到密封面上,形成高压区;在扩张气体阶段,气体从高压区向低压区扩张,形成气体膜。

通过这样的循环过程,干气密封能够持续地保持压力差,实现有效的密封效果。

此外,干气密封的工作性能还受到密封面材料、密封面形状、气体种类等因素的影响。

选择合适的密封面材料能够提高密封效果,减少摩擦损失;而优化密封面形状能够改善气体流动状态,增强密封性能。

同时,不同种类的气体对密封性能也有影响,需要根据实际工况选择合适的气体种类。

总的来说,干气密封原理是基于气体的高速旋转产生的离心力和惯性力,形成气体膜,实现有效的密封效果和减少摩擦损失。

在实际应用中,需要综合考虑密封面材料、密封面形状、气体种类等因素,进行合理的设计和选择,以达到最佳的密封性能和运行效率。

通过以上介绍,相信大家对干气密封的原理和工作过程有了更深入的了解。

在实际工程中,我们需要根据具体的设备和工况,合理选择干气密封,并进行优化设计,以确保设备的安全稳定运行。

希望本文能为大家提供一些参考,谢谢阅读!。

干气密封基本原理及投用步骤

干气密封基本原理及投用步骤

干气密封基本原理及投用步骤1、干气密封基本原理干气密封动静环表面平面度和光洁度很高,动环组件配合表面上有一系列的螺旋槽,随着转动,气体被内泵送到螺旋槽的根部,根部以外的一段无槽区称为密封坝。

密封坝对气体流动产生阻力作用,增加气体膜压力。

该密封坝的内侧还有一系列的反向螺旋槽,这些反向螺旋槽起着反向泵送、改善配合表面压力分布的作用,从而加大开启静环与动环组件的能力。

反向螺旋槽的内侧还有一段密封坝,对气体流动产生阻力作用,增加气体膜压力。

配合表面间的压力使静环表面与动环组件脱离,保持一个很小的间隙,一般为3微米左右。

当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。

2、干气密封投用步骤注意事项:a、不得在不投入使用干气密封的情况下,关上压缩机的出入口阀。

b、干气密封应依次投用一级密封气,二级密封气,后置隔离气。

c、严禁在不投用干气密封的情况下,启动压缩机润滑油泵。

d、必须确保排放火炬和放空的背压小于进入干气密封的密封气压力。

e、在开机后应当尽量避免在干气密封在高于3000转回以下长时间运转。

f、严禁在增压泵活塞杆漏气大于50kpa的情况下启动增压泵。

步骤:干活气密封系统加装后,在一级,二级,后置隔绝气入口法兰端口处接通洁净的仪表风或扰动氮气已连续吹起洗4~6小时以上,直至用细纱漂白布切合六个出口吹起洗5分钟以上,用眼仔细观察杜预灰尘、油污、水分等杂质为合格。

吹起洗整洁后停用所有阀门,处在待命状态。

打开系统所有常开取压阀,投用现场压力表、变送器、压力开关,液位计等并检查各管线,活接头连接情况。

关上扰动n气回去干气密封系统阀门,充份脱液后展开氮气转让,时间为四小时,并通过一级密封气和均衡管差压控制阀调节一级密封高低压端流量不低于117nm3/h(柴油不低于250nm3/h)二级密封高低压端的流量不高于2.9nm3/h(柴油不高于6.5nm3/h)排放量火炬流量7-11nm3/h,(柴油5-8nm3/h),并通过自力调节阀使阀后压力不高于0.185mp a(柴油0.1mpa)后置隔离气高低压端,流量不低于42.81nm3/h,(柴油15nm3/h),并通过自力调节阀使阀后压力不低于0.068mpa(柴油不低于0.01mpa)。

干气密封原理

干气密封原理

干气密封原理干气密封是一种常见的密封方式,它主要应用于高速旋转机械设备中,如离心压缩机、涡轮机等。

干气密封的主要作用是防止介质泄漏和外部空气进入设备内部,从而保证设备的正常运行和安全性。

下面我们将详细介绍干气密封的原理及其工作过程。

干气密封的原理主要包括惯性气体密封和辅助密封两种。

惯性气体密封是利用气体的惯性和离心力将气体挤压在密封面上,形成气体屏障,阻止介质泄漏。

而辅助密封则是通过外部供气系统,向密封面提供压力,增加密封面上气体的密度和压力,从而提高密封效果。

这两种原理的结合使用,能够有效地实现干气密封的功能。

干气密封的工作过程可以简单描述为,当设备开始运转时,密封面上的气体受到离心力的作用,形成高速旋转的气体屏障。

同时,辅助密封系统向密封面提供压力,使气体屏障更加稳定和密实。

当设备停止运转时,辅助密封系统也会停止供气,气体屏障逐渐消失。

这样,就能够有效地实现密封面的密封和解除密封。

干气密封的优点主要包括以下几点,首先,它能够有效地防止介质泄漏,保护设备和环境的安全;其次,干气密封不需要润滑剂,能够避免润滑剂对介质的污染;最后,干气密封具有较长的使用寿命和较低的维护成本,能够降低设备的运行成本。

然而,干气密封也存在一些缺点,例如对设备的加工精度要求较高,安装和维护较为复杂,需要专业技术人员进行操作和管理。

因此,在选择干气密封时,需要根据设备的具体情况和工作环境进行综合考虑。

总的来说,干气密封作为一种重要的密封方式,具有广泛的应用前景和发展空间。

随着科技的不断进步和创新,相信干气密封技术将会得到进一步的完善和提升,为各行各业的设备运行和安全提供更加可靠的保障。

干气密封的原理及应用场合

干气密封的原理及应用场合

干气密封的原理及应用场合1. 干气密封的定义和基本原理干气密封是一种利用清洁干燥的气体(通常是氮气)在机械轴和密封部件之间形成一个气体屏障,以防止液体或气体泄漏的密封方法。

它主要利用气体压力高于液体或气体的压力,将气体或液体压缩在轴封附近的密封腔内,从而有效地防止泄漏。

干气密封的基本原理是通过气膜将两侧介质隔离开来,从而实现密封效果。

当轴旋转时,密封腔内的气体被强制流动,形成一个气膜屏障,防止液体或气体渗入密封腔。

2. 干气密封的优点•高效性能:干气密封具有较高的密封效果,有效防止液体或气体泄漏,提高设备的工作效率。

•可靠性:由于密封性能稳定可靠,干气密封可保持长时间的使用寿命而不需要频繁维护。

•适应性强:干气密封适用于各种介质,包括化工、石油、医药等不同行业。

•安全性高:由于采用气体作为密封介质,避免了液体泄漏导致的安全隐患。

•环保性好:干气密封无需使用润滑油,减少了对环境的污染。

3. 干气密封的应用场合3.1 化工工业在化工工业中,往往需要处理一些有害、腐蚀性或粘稠的介质。

传统的液体密封在这种条件下容易受到损坏或泄漏,而干气密封可以有效地解决这些问题。

比如,干气密封常被用于泵、压缩机、反应釜等设备的密封,确保介质不泄漏,从而保护操作人员的安全和设备的正常运行。

3.2 石油行业在石油行业中,由于介质种类多样,常常需要在恶劣的工作环境中进行密封。

干气密封可以适应高温、高压、腐蚀等艰苦环境,确保设备的正常运行。

比如,干气密封常用于石油泵、油井采气设备、管线等油气密封系统中。

3.3 医药行业在医药行业中,要求设备的密封性能高、可靠性强,并且要求设备无泄漏和无污染。

干气密封具有符合医药行业要求的特点,被广泛应用于制药设备、灭菌系统、制冷设备等。

3.4 其他行业除了化工、石油和医药行业外,干气密封还广泛应用于其他领域。

例如,干气密封可用于食品加工设备、纸浆设备、电力行业的泄漏控制等。

4. 干气密封的发展趋势随着技术的不断发展,干气密封正朝着更高效、更可靠和更环保的方向发展。

压缩机干气密封

压缩机干气密封

压缩机干气密封一、压缩机干气密封的定义和作用压缩机干气密封是指在压缩机轴承处,使用气体代替传统的润滑油,实现轴承的润滑和密封。

其作用是防止润滑油泄漏,减少环境污染,提高设备可靠性和安全性。

二、压缩机干气密封的优点1.减少环境污染:压缩机干气密封不需要使用润滑油,可以有效降低环境污染。

2.提高设备可靠性:由于无需使用润滑油,可以避免因为润滑油泄漏引起的故障。

同时,压缩机干气密封具有较长的使用寿命和较小的维护量。

3.提高设备安全性:由于无需使用润滑油,可以避免因为润滑油泄漏引起的火灾等危险。

4.节约能源:由于无需使用润滑油,可以减少能源消耗。

三、压缩机干气密封的分类1.动态密封:动态密封是指在旋转轴上使用气体密封,通常采用活塞式密封或者旋转式密封。

2.静态密封:静态密封是指在不旋转的部件上使用气体密封,通常采用环形密封或者膜片式密封。

四、压缩机干气密封的工作原理压缩机干气密封的工作原理是利用气体的高速流动产生的离心力和摩擦力,将气体挤入轴承处形成一个气膜,从而实现润滑和密封。

五、压缩机干气密封的优化设计1.合理选择材料:选择高温耐磨材料可以提高干气密封的使用寿命和稳定性。

2.优化结构设计:通过优化结构设计,可以减少泄漏量和摩擦损失,提高干气密封的效率。

3.加强检测监控:通过加强检测监控,可以及时发现故障并进行维修保养,保证设备正常运行。

六、压缩机干气密封在工业生产中的应用压缩机干气密封广泛应用于石油化工、电力、钢铁、航空航天等行业,可以提高设备的可靠性和安全性,降低环境污染,节约能源。

七、压缩机干气密封的发展趋势随着环保意识的不断提高和技术的不断进步,压缩机干气密封将越来越广泛地应用于各个领域。

同时,未来的发展方向是进一步提高干气密封的效率和使用寿命,降低成本,实现智能化监控和维护。

干气密封工作原理

干气密封工作原理

干气密封工作原理一、引言干气密封是一种广泛应用于各种机械设备中的密封方式,它通过利用气体的特性来实现密封效果,具有结构简单、维护方便等优点。

本文将详细介绍干气密封的工作原理及其应用。

二、工作原理干气密封的工作原理基于气体的压力平衡原理和密封面的相对运动。

一般情况下,干气密封由静密封和动密封两部分组成。

1. 静密封部分静密封部分主要由密封面和密封环组成。

密封面通常采用硬质合金、陶瓷等材料制成,具有良好的耐磨性和耐腐蚀性。

密封环则负责与密封面接触,并通过压缩使其与密封面形成密封。

2. 动密封部分动密封部分主要由活塞、活塞环和密封环组成。

活塞和活塞环的运动可产生压力差,从而形成气体的流动。

密封环则负责承受气体的压力,并通过其自身的弹性使气体无法泄漏。

三、工作过程干气密封的工作过程可以分为压缩、密封和润滑三个阶段。

1. 压缩阶段当活塞运动时,活塞环与密封环之间形成一定的压力差,使气体被压缩。

同时,密封环的弹性使其与密封面紧密接触,形成初步的密封效果。

2. 密封阶段在密封阶段,由于活塞环的运动,压缩气体逐渐流向密封面,与密封面接触。

此时,密封面与密封环之间的压力差逐渐增大,从而形成更好的密封效果。

3. 润滑阶段在润滑阶段,密封面和密封环之间的润滑剂起到重要的作用。

润滑剂可减少密封面和密封环之间的摩擦,提高密封的效果。

四、应用领域干气密封广泛应用于各种机械设备中,特别是涉及高速旋转的轴承和密封件。

其主要应用领域包括但不限于以下几个方面:1. 压缩机在压缩机中,干气密封可有效防止压缩气体泄漏,提高压缩机的工作效率。

同时,干气密封还可减少摩擦磨损,延长设备的使用寿命。

2. 泵站在泵站中,干气密封可防止液体泄漏,保证泵站的正常运行。

与传统的液体密封相比,干气密封不会受到液体蒸发和结晶的影响,具有更好的稳定性和可靠性。

3. 机床在机床中,干气密封可防止切削液进入主轴轴承,保护轴承免受污染。

同时,干气密封还可减少主轴轴承的磨损,提高机床的加工精度和效率。

干气密封工作原理

干气密封工作原理

干气密封工作原理
干气密封是一种常用于机械设备的密封方式,它的工作原理主要是利用气体的压力差来实现对介质的密封。

干气密封的工作原理可分为以下几个部分:
1. 气体压力:在干气密封中,通常会利用高压气体来形成一个气体密封区域。

高压气体通过密封间隙进入密封区域,并且由于气体分子的碰撞,形成气体压力。

这种气体压力能够与外界介质形成良好的隔离,从而实现密封效果。

2. 密封间隙:干气密封中的密封间隙通常由一对摩擦表面之间的间隙形成。

这个间隙足够小,以至于气体分子无法通过间隙漏出或外界介质无法进入其中。

密封间隙通常由密封面的平衡结构保持,以确保间隙的稳定性。

3. 干气供给:为了保持密封的效果,干气密封需要持续地向密封间隙供给干燥的气体。

这种干气通常由外部气源供给,并通过压缩机或其他气流装置进行处理,以确保气体的干燥性和稳定性。

供给干燥的气体能够减少介质中的水分,从而避免气体在密封过程中的胀缩问题。

干气密封的工作原理实质是通过控制气体压力和密封间隙,以及供给干燥的气体,来实现对介质的有效密封。

它具有结构简单、维护方便、适用范围广等优点,在各种机械设备中得到广泛应用。

干气密封的原理

干气密封的原理

干气密封的原理干气密封是一种常用于旋转机械设备中的密封方式,其原理是利用气体的压力来实现密封作用。

在旋转机械设备中,由于转子的高速旋转和运动部件的摩擦,会产生大量的热量和摩擦力,如果不加以有效的密封,就会导致气体泄漏和能量损失,甚至会影响设备的正常运行。

因此,干气密封的应用就显得尤为重要。

干气密封的原理可以简单地概括为以下几点:1. 气体压力作用,干气密封的核心原理是利用气体的压力来实现密封作用。

在密封装置中,通过控制气体的流动和压力,使气体形成一定的压力差,从而阻止外界空气或液体的渗入,实现密封效果。

2. 动静环结构,干气密封通常由动环和静环两部分组成。

动环是安装在旋转轴上的密封件,静环则是安装在机壳内的密封件。

当旋转轴旋转时,动环和静环之间形成一定的间隙,通过控制气体的流动和压力来实现密封作用。

3. 摩擦降低,干气密封的原理还包括通过减少摩擦力来实现密封。

在密封装置中,通过控制气体的流动和压力,形成一层气膜,从而减少旋转部件和固定部件之间的摩擦力,减少能量损失。

4. 温度控制,干气密封的原理还包括通过控制气体的温度来实现密封。

在高速旋转的机械设备中,由于摩擦产生的热量会导致气体温度升高,影响密封效果。

因此,通过控制气体的温度,可以有效地实现密封作用。

总的来说,干气密封的原理是通过控制气体的流动、压力、温度等参数,利用气体的压力和摩擦降低来实现密封作用。

在实际应用中,干气密封不仅可以有效地阻止气体泄漏和能量损失,还可以减少设备的维护成本,提高设备的运行效率,具有广泛的应用前景。

以上就是干气密封的原理,希望能对大家有所帮助。

干气密封结构与原理

干气密封结构与原理
优化方向
优化密封面设计、选择合适的弹性 元件和摩擦材料,以提高开启力。
泄漏率
01
02
03
泄漏率
干气密封在工作过程中, 气体通过密封面的流量, 通常以气体流量或泄漏量 的形式表示。
影响因素
泄漏率受密封面粗糙度、 间隙大小、气体压力和温 度等因素影响。
优化方向
减小密封面粗糙度、减小 间隙大小、提高气体压力 和温度等措施,以降低泄 漏率。

低能耗
干气密封的运行能耗较低,能 够降低企业的生产成本。
长寿命
干气密封的使用寿命较长,减 少了维修和更换的频率,降低 了维护成本。
高可靠性
干气密封的可靠性较高,能够 保证设备的长期稳定运行,减
少意外停机事故的发生。
缺点
高成本
安装要求高
干气密封的结构复杂,制造成本较高,导 致其整体价格较高。
干气密封的安装精度要求较高,需要专业 人员进行安装和调试,以确保其正常工作 。
03
干气密封的工作原理
工作原理概述
干气密封是一种非接触式机械密封,通过在密封端面之间形成一层稳定的气膜来实 现密封。
与传统的接触式机械密封相比,干气密封具有较低的摩擦阻力、磨损小、寿命长等 优点。
干气密封适用于高速、高温、高压等苛刻的工况条件,广泛应用于石油、化工、制 药等领域。
静环与动环的相互作用
旋转环
旋转环是干气密封中的另一个关键组件,它与静止环形成一 对相互作用的密封面。旋转环通常由经过特殊处理的硬质材 料制成,如碳化钨或碳化硅。
旋转环的表面经过精密研磨和抛光,使其能够在高速旋转时 保持与静止环的紧密接触,从而实现非接触式密封。
弹簧
弹簧是干气密封中的一个重要组成部 分,它为静止环提供必要的预紧力, 确保静止环与旋转环之间的紧密接触 。

干气密封隔离气的作用

干气密封隔离气的作用

干气密封隔离气的作用一、引言干气密封是一种常用的密封方法,它通过使用干燥的气体隔离工作环境和外部环境,具有重要的作用。

本文将详细探讨干气密封隔离气的作用及其在工程中的应用。

二、干气密封的基本原理干气密封是通过使用气体的力学特性来实现密封的。

其基本原理如下:1.气体的压力:气体在容器内部产生压力,这种压力可以阻止外界的液体或气体进入容器内部,从而实现密封的作用。

2.气膜效应:当气体通过密封间隙时,由于速度的差异,会形成一个气膜,这个气膜可以阻挡外界的液体或气体进入密封间隙。

3.气体的稳定性:相比于液体,气体具有较低的黏度和表面张力,因此气体在密封过程中更容易形成稳定的密封效果。

三、干气密封的作用干气密封在工程中具有许多重要的作用,主要包括以下几个方面:1. 隔离液体和气体干气密封可以有效地将工作环境中的液体和气体与外界隔离开来。

在一些特殊的工作环境中,如高温、高湿等条件下,常规的液体密封无法满足要求。

而干气密封正是通过使用气体来隔离,可以在这些恶劣条件下实现可靠的密封效果。

2. 防止液体溢出和泄漏在一些工程设备中,如旋转机械、离心机等,液体的溢出和泄漏将会对设备性能和安全性产生严重的影响。

干气密封能够有效地防止液体的溢出和泄漏,从而保护设备的正常运行和操作人员的安全。

3. 减少摩擦和磨损干气密封可以在工程设备的各种活动部件之间形成一个气膜,减少部件之间的摩擦和磨损。

相比于液体密封,干气密封具有更低的摩擦系数,能够显著延长设备的使用寿命。

4. 防止腐蚀和污染在一些特殊的工作环境中,如化学工程、生物工程等,液体的腐蚀性和污染性将会对设备和产品质量产生严重的影响。

而干气密封可以有效地防止液体的腐蚀和污染,保护设备和产品的安全性和可靠性。

四、干气密封的应用干气密封广泛应用于各个领域的工程中,下面介绍几个常见的应用案例:1. 化工设备在化工设备中,由于工作环境的特殊性,常规的液体密封无法满足要求。

而干气密封则可以在高温、高湿等恶劣条件下实现可靠的密封效果,保护设备的安全和产品的质量。

干气密封介绍

干气密封介绍

3.(1)压缩机带中间梳齿串联式干气密封HXGS-YFAMA
串联式带中间梳齿干气密封是高速离心压缩机轴封中采用得最多的一种密封形式;适用于不允许工艺气泄漏到大气中的工况。该 结构型式的干气密封,第一级密封气为工艺气,第二级密封气为氮气。一级泄漏出的全部工艺气和通过中间梳齿泄漏的大部分氮气由 火炬线排出。二级密封泄漏出的气体为氮气,从放空管线排出。主密封承受全部工作压力负荷,二级密封作为保护密封在低压下运行。 主密封失效后,次密封可起到主密封的作用,保证机组安全。密封气为工艺介质气体,保证了工艺介质不受外来气体的污染。密封非 接触运行,具有很长的使用寿命(5年以上)及很低的功率消耗。
(2)压缩机串联干气密封HXGS-YFAA
串联干气密封适用于允许少量工艺气泄漏到大气的工况。串联式干气密封通常情况下采用2级结构,第I级密封 (主密封)承担全部或者大部分负荷,第II级密封作为备用密封承受很小的差压。通过主密封泄漏出的工艺气大部 分由火炬线排出,少量工艺气通过II级密封泄漏出,通过放空管线排空。当主密封失效时第II级密封起主密封的作 用,保证工艺介质不向大气泄漏。
图2 干气密封端面动压槽(螺旋槽)简图
干气密封力平衡示意图
正常条件下,作用在密封面上的闭 合力(弹簧力和介质力)等于开启力 (气膜反力),密封工作在设计工作间 隙。 当受到外部干扰,气膜厚度减小, 则气膜反力增加,开启力大于闭合力, 迫使密封工作间隙增大,恢复到正常值。 相反,若密封气膜厚度增大,则气 膜反力减小,闭合力大于开启力,密封 面合拢恢复到正常值。因此,只要在设 计范围内,当外部干扰消失以后,气膜 厚度就可以恢复到设计值。 可见,干气密封的密封面间形成的 气膜具有一定的气膜刚度,气膜刚度越 大,干气密封抗干扰能力越强。密封运 行越稳定可靠。干气密封的设计就是以 获得最大的气膜刚度为目标而进行的。

压缩机干气密封原理

压缩机干气密封原理

压缩机干气密封原理压缩机干气密封原理是指在压缩机工作过程中,通过适当的措施使压缩机的气缸与气缸盖之间形成密封,以防止气体泄漏和外界杂质进入气缸,保证压缩机正常工作。

干气密封的原理和方法有多种,下面将介绍几种常见的原理。

1.机械密封原理:机械密封是通过设置在活塞杆或曲柄轴上的密封装置,如密封圈、密封环等,来实现干气密封的。

它通过材料的弹性和变形性,将活塞杆或曲轴轴颈与气缸之间形成密封层,防止气体泄漏。

机械密封原理的优点是密封效果好、使用寿命长,但缺点是密封装置需要经常更换和维修,成本较高。

2.润滑油密封原理:润滑油密封是通过在气缸壁上涂覆一层润滑油,并在活塞上设置油环来实现的。

润滑油在活塞上形成一层保护薄膜,起到密封气体的作用。

润滑油密封的优点是结构简单、维护方便,但缺点是密封效果较差,容易出现气体泄漏的情况。

3.渗碳密封原理:渗碳密封是指在气缸和气缸盖的接触面上进行处理,使其表面产生渗碳层,从而提高密封效果。

渗碳层的特点是硬度高、耐磨损性好,能够有效地防止气体泄漏。

渗碳密封的优点是密封效果好、使用寿命长,但缺点是工艺复杂、成本较高。

4.气体密封原理:气体密封是通过在气缸和气缸盖之间设置特殊的密封结构,如O型密封圈、V型密封圈等,来实现干气密封的。

这种密封原理的优点是密封效果好、维护方便,但缺点是密封结构复杂,需要定期更换维修。

综上所述,压缩机干气密封原理主要包括机械密封原理、润滑油密封原理、渗碳密封原理和气体密封原理。

不同的压缩机根据其工作原理和工作条件的不同,选择适合的干气密封原理,以保证其正常运行和高效性能。

干气密封原理及使用课件

干气密封原理及使用课件
干气密封原理及使用课件
$number {01}
目录
• 干气密封原理介绍 • 干气密封系统的组成 • 干气密封的安装与调试 • 干气密封的维护与保养 • 干气密封的发展趋势与展望 • 实际应用案例分析
01
干气密封原理介绍
干气密封工作原理
干气密封工作原理主要是通过旋转轴的动环与静止环之间的 接触面形成流体动压效应,产生流体摩擦力,将旋转轴与静 止环紧紧地粘合在一起,从而实现密封效果。
多元化领域应用
从石油化工向制药、食品、电子 等领域拓展。
跨国合作与交流
加强国际合作与交流,共同推动 干气密封技术的发展和应用。
未来发展方向与挑战
绿色环保
研发低摩擦、低泄漏、低能耗的干气密封技术, 满足绿色环保要求。
高性能标准
制定更高性能的干气密封标准,提升密封性能和 可靠性。
技术人才培养
加强干气密封技术人才的培养和引进,为产业发 展提供人才保障。
轴套通常安装在轴上,用于保护轴 面并传递扭矩。
03
干气密封的安装与调试
安装步骤
准备工作
确保所有工具和材料齐全,检查 干气密封的型号和规格是否正确 。
安装密封圈
将密封圈放置在密封槽内,确保 密封圈没有扭曲或损坏。
清洁密封面
使用专用的清洗剂清洁密封面, 确保没有杂质和油渍。
安装密封盖
将密封盖与旋转轴或静态环连接 ,确保连接处没有泄漏。
05
干气密封的发展趋势与展望
技术创新与改进
材料优化
采用新型材料和涂层技术,提高 密封性能和使用寿命。
结构设计革新
改进密封端面和流体通道设计,降 低泄漏率,提高稳定性和可靠性。
智能监控与诊断
引入传感器和智能化技术,实时监 测密封性能并进行故障预警和诊断 。

离心压缩机干气密封原理与典型故障分析

离心压缩机干气密封原理与典型故障分析

离心压缩机干气密封原理与典型故障分析
1.摩擦环:它是由金属或陶瓷等材料制成的环形密封件,固定在离心压缩机座和密封腔之间的空隙中。

通过与旋转轴的摩擦产生密封力。

2.摩擦垫圈:是一种弹性密封件,位于摩擦环下方,将较大的摩擦力分散在垫圈的多个点上,减小单点的摩擦损失。

3.紧固件:用于固定和调整摩擦环和摩擦垫圈的位置,以保持良好的密封效果。

1.摩擦磨损:由于摩擦环和摩擦垫圈长时间的高速摩擦,容易发生磨损。

一旦磨损过大,会导致密封性能下降,工作气体会泄漏,影响压缩机的工作效率。

2.渗漏:受到工作条件和设备使用环境的影响,摩擦环和摩擦垫圈之间的摩擦力容易发生变化,导致密封处渗漏。

渗漏会导致能源的浪费和环境的污染。

3.摩擦噪音:由于运转时切削、击打和磨擦等因素的影响,摩擦环和摩擦垫圈之间会产生噪音,影响设备的正常运行和周围环境的安静。

4.泄露:由于机械损坏或装配不良等原因,摩擦环和摩擦垫圈之间会出现泄漏现象,导致工作气体泄漏,进而影响压缩机的性能和效率。

综上所述,离心压缩机干气密封是通过摩擦环和摩擦垫圈等部件进行密封,防止工作气体泄漏。

然而,在长时间的高速摩擦和不良工作条件的影响下,容易出现摩擦磨损、渗漏、摩擦噪音和泄漏等问题。

因此,定期对离心压缩机的干气密封进行检查和维护,是确保设备正常运行和效率的关键。

干气密封原理及使用

干气密封原理及使用

螺旋槽干气密封工作原理作者: 来源:天涯问答 发布时间:2009-11-12 13:27:12 浏览量:89次在正常运转条件下该密封的闭合力等于开启力,这是理想的设计工况,若受到外来干扰,间隙减小,则气体剪切率增大,螺旋槽开启间隙的效能增加,开启力大于闭合力,恢复到原间隙;若受到外扰间隙增大,则缝隙内膜下降,开启力小于闭合力,密封面合拢恢复到原间隙,只要在设计考虑的范围内,外扰消失后马上即可恢复到原来的位置。

这种阻止气膜间隙改变的自我恢复能力叫气膜刚度,因此,螺旋槽面密封对压力波动和外来机械干扰是很敏感的。

只要密封设计能产生最大的气膜刚度和很小的平衡间隙的最佳工况,螺旋槽面密封的运转时间间隙变化就不会很显著,因此,衡量干气密封稳定性的指标就是密封产生气膜刚度的大小,气膜刚度越大,表明密封的抗波动能力越强,密封运行就越稳定。

影响干气密封性能的主要参数干气密封的性能主要体现在密封运行的稳定性(或者说使用寿命)和密封泄漏量的矛盾上面,影响干气密封泄漏量的直接因素就是干气密封的气膜厚度,也就是干气密封运转时密封面间形成的工作间隙。

干气密封系统:(1)简介干气密封是一种气膜润滑的流体动、静压结合型非接触式机械密封,主要应用于天然气管线、炼油、石油化工、化工等行业的透平压缩机、透平膨胀机等旋转机械。

干气密封最早是由螺旋槽气体轴承转化而来的,和其他机械密封相比,其主要区别是在旋转环或静止环端面上(或者同时在这两个端面上)刻有浅槽,当密封运转时,在密封端面形成气膜,使之脱离接触,因而端面几乎无磨损。

其可靠性高,使用寿命长,密封气泄漏量小,功耗极低,工艺回路无油污染,工艺气也不污染润滑油系统。

(2)工艺流程及说明(a)氮气流程氮气从氮气罐引出经粗滤器与精滤器,过滤精度达到1u后分为四路。

两路前置密封气(缓冲气):一路经孔板进入高压端密封腔,另一路经孔板进入低压端密封腔。

进入前置密封腔体内氮气主要是防止机体内介质气污染密封端面,用孔板控制氮气消耗量。

离心压缩机干气密封原理与典型故障分析

离心压缩机干气密封原理与典型故障分析

离心压缩机干气密封原理与典型故障分析一、干气密封基本结构及工作原理1. 干气密封基本结构干气密封是一种气膜润滑的流体动、静压结合型非接触式机械密封。

如图1-1所示,包含有静环、动环组件(动环)、副密封O形圈、静密封、弹簧和弹簧座(腔体)等零部件。

干气密封的结构设计特点为在密封端面上开设动压浅槽,其转动形成的气膜厚和流槽槽深均属微米级,并采用润滑槽、径向密封坝和周向密封堰组成密封和承载部分。

可以说是开面密封和开槽轴承的结合。

干气密封动压槽有单旋向和双旋向,一般单旋向为螺旋槽,双旋向常见有T型槽、枞树槽和U型槽。

如图所示,单旋向螺旋槽干气密封不能反转,反转则产生负气膜反力,导致密封端面压紧,致密封损坏失效。

而双旋向枞树槽则无旋向要求,正反转都可以。

单向槽相对于双向槽,具有较大的流体动压能,产生更大的气膜反力和气膜刚度,产生更好的稳定性。

2. 干气密封工作原理如图,对于螺旋槽干气密封,其工作原理是靠流体静压力、弹簧力与流体动压力之间的平衡。

当密封气体注入密封装置时,使动、静环受到流体静压力的作用。

而流体的动压力只是在转动时才产生。

如图1-2所示,当动环随轴转动时,螺旋槽里的气体被剪切从外缘流向中心,产生动压力,而密封堰对气体的流出有抑制作用,使得气体流动受阻,气体压力升高,这一升高的压力将挠性安装的静环与配对动环分开,当气体压力与弹簧力恢复平衡后,维持一最小间隙,形成气膜,膜厚一般为3-5μm,使旋转环和静止环脱离接触,从而端面几乎无磨损,同时密封工艺气体。

3. 干气密封的类型干气密封基本结构类型有单端面密封、串联式密封、带中间迷宫串联式密封和双端面密封。

(1)单端面密封适用于没有危害、允使微量的工艺气泄漏到大气的工况。

如N2压缩机、CO2压缩机、空气压缩机等。

(2)串联式密封适用于允许少量工艺气泄漏到大气的工况。

一般采用两级串联布置方式,一级为主密封,二级为备用密封。

正常工况下,全部或大部分负荷由主密封承担,而二级备用密封不承受或承受小部分的负荷和压力降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1 压缩机干气密封示意图 干气密封和普通平衡型机械密封相似,也由静环和动环组成,其 中:静环由弹簧加载,并靠O型圈辅助密封。端面材料可采用碳化硅、 氮化硅、硬质合金或石墨。 干气密封与液体普通平衡型机械密封的区别在于:干气密封动环端 面开有气体槽,气体槽深度仅有几微米,端面间必须有洁净的气体,以 保证在两个端面之间形成一个稳定的气膜使密封端面完全分离。气膜厚 度一般为几微米,这个稳定的气膜可以使密封端面间保持一定的密封间 隙,间隙太大,密封效果变差;而间隙太小会使密封面发生接触,因干 气密封的摩擦热不能散失,端面间无润滑接触将很快引起密封端面的变 形,从而使密封失效。
止杂质从叶轮侧进入密封。
2.串联密封结构
如图5,串联结构是一种操作可靠性较高的干气密封结构。作为油 和气工业的标准结构,它是设计简单且仅需要一个相当简单的气体辅助 系统。典型应用是介质气体少量泄漏到大气中是容许的工况。
A—介质冲洗 C—火炬 D—分离气体 S—排气口 图5 串联结构(如:BURGMANN DGS) A—介质冲洗 B—缓冲气体 C—火炬 D—分离气体 S—排气口 图6 带中间迷宫的串联结构 (如:BURGMANN DGS) A—介质冲洗 B—缓冲气体 D—分离气体 S—排气口 图7 双端面密封结构(如:BURGMANN DGS) 在串联结构中,两个单封被前后放置形成两级密封。介质侧密 封(主密封)和大气侧密封(辅助密封)能够承受全部压力差。在一般的操 作中,介质侧的密封承受了全部压差。介质侧密封和大气侧密封之间的 泄漏可通过接口“C”引到火炬。大气侧密封所承受的压力与火炬压力相 同,因此介质泄漏到大气侧和到排气口的量几乎为零。此结构使用过程 中,当主密封失败时,辅助密封可作为安全密封,保证介质不会泄漏到 大气中。 3.带中间迷宫的串联密封结构 如果工艺介质不允许泄漏到大气中和缓冲气体不允许泄漏到工艺介 质中,此时串联结构的两级密封间可加迷宫密封。典型的应用是不允许 介质泄漏到大气中,如H2压缩机,H2S含量较高的天然气压缩机(酸 气),和乙烯、丙烯压缩机。 此种结构的密封工作时,工艺气体的压力通过介质侧密封被降低。 泄漏的工艺气体通过接口“C”排到火炬。大气侧密封通过接口“B”被缓冲 气体(氮气或空气)加压。缓冲气体的压力保证有连续的气流通过迷宫到
密封面采用硬对硬组对,为了在启动和停车时,增强偶然端面接触
的自润滑性,博格曼干气密封在采用硬对硬材料组对时,碳化硅表面喷
涂金刚砂-即DLC=diamond-like carbon。
2.辅助密封材料
辅助密封材料见表4。对于辅助密封最重要的特性是温度极限,挤
压特性和压力相关的气吸现象。在气吸的环境,密封腔的压力突然下降
气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现
气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。
动环密封面分为两个功能区(外区域和内区域)。气体进入密封间隙
的外区域有空气动压槽,这些槽压缩进来的气体。为了获得必要的泵效
应,动压槽必须被开在高压侧。密封间隙内的压力增加将保证即使在轴
间隙(μm) 无压的情况下启离速度*
(m/s) 静止时,启离压力*(MPa)
V形槽 单向
U形槽 双向
仅能短期的反向运 转
所有操作速度均可以
3~10
2~8
0.6
1.2
≥0.6
≥0.6
*注意:DGS在低于那些被采用的值以下操作仍能被保证,但是一个分
离层是必要的。
三、密封材料分析
1.端面材料
干气密封的操作极限与密封各个元件的许用载荷有关。温度和压力
向载荷较大的情况下也将形成一个不被破坏的稳定气膜。
干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定
的气膜是由密封墙的节流效应和所开动压槽)是平面,靠它的节流效应限制了泄漏量。
干气密封的弹簧力很小,主要目的是为了当密封不受压时确保密封面的
闭合。
选择干气密封时,决定性的判断是动环上所开动压槽的几何形状。
一、引言 干气密封是一种新型的无接触轴封,由它来密封旋转机器中的 气体或液体介质。与其它密封相比,干气密封具有泄漏量少,磨损小, 寿命长,能耗低,操作简单可靠,维修量低,被密封的流体不受油污染 等特点。因此,在压缩机应用领域,干气密封正逐渐替代浮环密封、迷 宫密封和油润滑机械密封。干气密封使用的可靠性和经济性已经被许多 工程应用实例所证实。 目前,干气密封主要用在离心式压缩机上,也还用在轴流式压缩 机、齿轮传动压缩机和透平膨胀机上。干气密封已经成为压缩机正常运 转和操作可靠的重要元件,随着压缩机技术的发展,干气密封正逐步取 代浮环密封、迷宫密封和油润滑密封。 本文针对德国博格曼公司的干气密封产品进行了研究,结合压缩机 的工作特点,重点论述压缩机干气密封的原理、结构特点、密封材料、 使用要求和制造等方面的内容。 二、干气密封工作原理分析 干气密封的一般设计形式是集装式,图1表示出了压缩机干气密 封的具体结构。
热膨胀系数(10-6/K) 4~5 4.8
4
2.1 0~20
碳化硅的弹性模量(420GPa)较高保证了压力和温度的影响下密封面和
辅助件的变形最小。因此,在所有操作期间,确保了密封间隙的稳定。
碳化硅优良的热传导性(导热系数为100~125W/m.K)保证必要的热量消
散,因此密封端面的温度分布也是均匀的。
五、设计与操作范围 1.压力 为了确定最大允许压力必须考虑与密封元件的挤压间隙和挤压特性 相关的密封端面的变形。所有间隙必须被计算来排除在操作压力和操作 温度下辅助密封元件的挤压。 每一个气体密封的间隙情况必须根据有效的操作温度检查。 2.温度 为了确定最大允许操作温度,不仅考虑被密封气体的使用温度也要 考虑密封间隙间的涡流和摩擦所产生的热。这些热与密封的速度、压 力、气体和密封设计结构有关。因此,在应用温度下,密封的每一个元 件都应被计算。 这些计算的温度应低于材料的特性温度,即密封元件的最大允许温 度。 3.端面速度 端面的最大滑移速度以端面材料允许作用的载荷为基础,计算的安 全系数至少为1.5,允许靠离心力来减少张力。它们在旋转试验中检 查。
析碳化硅做端面材料的优势最大。
表3 各种端面材料的物理特性
浸Sb石墨 WC(Ni) SiC烧结 Si3N4 韧性材料
密度(kg/dm3) 2~2.5 14.5 3.1 3.26 7~9
E-模量(GPa) 20~40 600 420 350 200~220
导热系数(W/m*K) 7~12 80 100~125 30 5~25
六、干气密封制造质量要求 压缩机密封和它们的缓冲气系统产品由质量部严格控制。重要
的材料和组件的试验被记录。这确保了密封及相应的缓冲气系统产品的 质量恒定和操作的可靠性。 1.标准检查计划 干气密封和缓冲气系统的标准试验和检查属于标准检查计划。附加 材料和组件试验也可以要求。 标准检查计划的要点为: .对于关键性零件符合EN 10204/3.1B标准的材料证明 .动环的速度试验(旋转试验) .动环的表面破裂试验 .静压和动压功能试验 .平衡符合平衡等级G2.5(标准)或G1.0。 2.旋转试验 在操作期间被加载的动环的抗拉应力因离心力而减少。金属材料制 造保证材料的抗拉强度,但碳化硅制造和其他非金属端面材料将仅采用 失效概率因子作为加载功能。 每一个动环的强度都要试验,因此,在旋转试验中,旋转试验需要 的速度为最大操作速度的1.225倍。试验压力为操作时压力的1.5倍。如 果碳化硅环经住此试验,它就能保证组件能长时间承受工作载荷。 3.功能试验 压缩机密封总是由制造商进行静压和动压功能试验。试验是在比最 高工况值高的情况下完成的。空气被用作试验介质。 4.使用寿命 无论是否特殊,压缩机密封的设计和材料选择经过计算来确保在连 续操作的情况下密封的寿命至少为50 000小时。在橡胶易老化的流程中 它是可行的。 使用60个月后建议进行下面的维护: 更换所有的橡胶件; 更换弹簧;
将导致O型圈气体侧爆炸减压,因此引起橡胶圈的变形。为了消除气吸
的损害,压力下降率应低于2MPa/min。
表4 辅助密封材料
O型圈 博格曼 DIN24960 材质 代码 代码
温度极限℃
硬度 (Sh)
应用
氢化晴 胶
HNBR
X4*
-40~+125(-54 ~+135)
75
乙烯
氟胶 V
V
-20~+200
75 空气、CO2、N2、
最大滑动速度数值根据用来计算的直径不同,每种制造也是不同 的。动环的内径或外径和静环的动态的或气动的直径全是可能的。 碳化硅动环外径的最大滑动速度可以达到200m/s。 4.一般操作范围 压缩机气体密封的基本形式应用范围如下: 公称直径 46~250mm 此直径指的是动环的内径(小于或大于此范围的公称直径也是可以 的)。 压力 2~10MPa(绝)(橡胶辅助密封) >10~25MPa(绝)(非橡胶辅助密封) 最大压力差与材料和公称直径有关。 温度 -20℃~+200℃(橡胶辅助密封) -55℃~+250℃(非橡胶辅助密封) 滑动速度 动环外径的最大速度Vg为200m/s。最大操作速度与滑动面的材料 有关。 允许的轴位移 轴向:DN46~118 标准为±1.0mm DN130~220 标准为±2.0mm DN230~250 标准为±3.0mm 特殊形式为:最大±4.0mm 径向: DN46~250 标准为±0.6mm
如图4,此结构可作为一种无泄漏结构选择,此结构有一个可把泄
漏引到一个适合的火炬或排气口接口。在这种情况下主要的泄漏与分离
气一起被输送到火炬或排气口。
A—介质冲洗 C—火炬 D—分离气体
图4 单端面密封结构
(如:BURGMANN DGS)
如果输送的气体介质含有杂质,介质必须被过滤后才能通过接
口“A”输送到密封腔。这样,过滤的介质从密封腔流向叶轮侧,从而阻
碳化硅Buka25 碳化硅表面喷涂金刚砂
相关文档
最新文档