2007年全国硕士研究生入学统一考试数学二真题及答案

合集下载

2007年考研数学二真题

2007年考研数学二真题

x→0
x
(5) 曲线 y =1 + ln(1+ ex ) 渐近线的条数为( ) x
A. 0
B. 1
C. 2
D. 3
(6) 设函数 f (x) 在 (0, +∞) 上具有二阶导数,且 f ′′(x) > 0 ,= 令 un f= (n)(n 1, 2,) ,则
下列结论正确的是( )
A. 若 u1 > u2 ,则{un} 必收敛
C. 1 + x −1 D.1− cos x
1
(2)
函数
f (x) = (ex
+
e)
1
tan
x
在 [ −π

]
上的第一类间断点是
x
=
(
)
x(ex − e)
A. 0
B. 1
C. − π
D. π
2
2
(3) 如图,连续函数 y = f (x) 在区间[−3, −2],[2,3] 上的图形分别是直径为 1 的上、下半圆
B. 若 u1 > u2 ,则{un} 必发散
C. 若 u1 < u2 ,则{un} 必收敛
D. 若 u1 < u2 ,则{un} 必发散
(7) 二元函数 f (x, y) 在点 (0, 0) 处可微的一个充分条件是( )
A. lim [ f (x, y) − f (0, 0)] = 0 (x, y)→(0,0)
f y′(0,
y) −
f y′(0, 0)
= 0
π
1
∫ ∫ (8)
设函数 f (x, y) 连续,则二次积分
π dx
f (x, y)dy 等于(

2007数学考研真题二

2007数学考研真题二

2007年硕士研究生入学考试数学二试题及答案解析一、选择题:(本题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)当0x +→(A)1-(B)ln .(C)1.(D)1-.[B ]【分析】利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】当0x +→时,有1(1)~-=--1~;2111~.22x -=利用排除法知应选(B).(2)函数11()tan ()()xxe e xf x x e e +=-在[,]ππ-上的第一类间断点是x =(A)0.(B)1.(C)2π-.(D)2π.[A ]【分析】本题f (x )为初等函数,找出其无定义点即为间断点,再根据左右极限判断其类型。

【详解】f (x )在[,]ππ-上的无定义点,即间断点为x =0,1,.2π±又11110()tan tan lim lim 1(1)1()xxx x xx e e x x e exx e e e e --→→++=⋅=⋅-=---,11110()tan tan lim lim 111()x xx x xx e e x x e exx e e e e++→→++=⋅=⋅=--,可见x =0为第一类间断点,因此应选(A).(3)如图,连续函数y =f (x )在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的上、下半圆周,设0()().xF x f t dt =⎰则下列结论正确的是(A)3(3)(2)4F F =--.(B)5(3)(2)4F F =.(C))2(43)3(F F =-.(D))2(45)3(--=-F F .[C ]【分析】本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清楚相应积分与面积的关系。

2007考研数学二真题及答案

2007考研数学二真题及答案

2007考研数学二真题及答案一.选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1) 当0x +→等价的无穷小量是 (B )A. 1-1D.1-(2)函数11()tan ()()xxe e xf x x e e +=-在区间[],ππ-上的第一类间断点是x =(A)A. 0B. 1C. 2π-D. 2π (3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:(C ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(4)设函数f (x )在x=0处连续,下列命题错误的是 (C)A. 若0()limx f x x →存在,则(0)0f = B. 若0()()lim x f x f x x→+-存在, (0)0f =C. 若0()lim x f x x →存在, 则(0)0f '=D. 0()()lim x f x f x x→--存在, (0)0f =(5)曲线1ln(1),xy e x=++渐近线的条数为 (D ).A 0 .B 1 .C 2 .D 3(6)设函数()f x 在(0,)+∞上具有二阶导数,且"()0f x >, 令n u = ()1,2.......,,f n n = 则下列结论正确的是 (D)A.若12u u >,则{}n u 必收敛B. 若12u u >,则{}n u 必发散C. 若12u u <,则{}n u 必收敛D. 若12u u <,则{}n u 必发散 (7)二元函数(,)f x y 在点(0,0)处可微的一个充分条件是 (B ) A.()()()(),0,0lim,0,00x y f x y f →-=⎡⎤⎣⎦B. ()()0,00,0lim0x f x f x→-=,且()()00,0,0lim 0y f y f y →-= C.()(,0,0,00,0lim0x y f x f →-=D. ()0lim ',0'(0,0)0,x x x f x f →-=⎡⎤⎣⎦且()0lim ',0'(0,0)0,y y y f x f →⎡⎤-=⎣⎦(8)设函数(,)f x y 连续,则二次积分1sin 2(,)x dx f x y dy ππ⎰⎰等于 (B ).A10arcsin (,)y dy f x y dx ππ+⎰⎰ .B 10arcsin (,)y dy f x y dy ππ-⎰⎰.C 1arcsin 02(,)y dy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)y dy f x y dx ππ-⎰⎰(9)设向量组123,,ααα线形无关,则下列向量组线形相关的是: (A) (A ) ,,122331αααααα--- (B ) ,,122331αααααα+++ (C ) 1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(10)设矩阵A=211121112--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪⎪ ⎪⎝⎭,则A 于B , (B )(A) 合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D)既不合同,也不相似二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)30arctan sin limx x x x →-=16. (12)曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=1). (13)设函数123y x =+,则()0ny =23n -⋅.(14)二阶常系数非齐次线性微分方程2''4'32x y y y e -+=的通解y =_32122x x x C e C e e +-. (15)设(,)f u v 是二元可微函数,(,)y x z f x y=,则1222(,)(,)z z y y x x y x xy f f x y x x y y x y∂∂''-=-+∂∂.(16)设矩阵01000010********A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为_1______.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)设()f x 是区间0,4π⎡⎤⎢⎥⎣⎦上单调、可导函数,且满足()100cos sin ()sin cos f x x t t f t dt t dt t t --=+⎰⎰,其中1f-是f 的反函数,求()f x .【详解】: 设(),y f t =则1()t fy -=.则原式可化为:1(0)0cos sin '()sin cos xxf t tyf y dy tdt t t--=+⎰⎰ 等式两边同时求导得:cos sin '()sin cos x xxf x x x x-=+cos sin '()sin cos x xf x x x-=+(18)(本题满分11分) 设D是位于曲线y =- ()1,0a x >≤<+∞下方、x 轴上方的无界区域.(Ⅰ)求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (Ⅱ)当a 为何值时,()V a 最小?并求此最小值. 【详解】:22222()())(ln )xa a I V a y dx dx a πππ-+∞+∞===⎰⎰ 22412(ln )(2ln )2()()0(ln )a a a a II V a a π-'=⋅= 得ln (ln 1)0a a -=故ln 1a =即a e =是唯一驻点,也是最小值点,最小值2()V e e π= (19)求微分方程()2''''y x y y +=满足初始条件(1)'(1)1y y ==的特解.【详解】: 设dy p y dx '==,则dpy dx''=代入得:22()dp dx x p x x p p p dx dp p p++=⇒==+ 设x u p= 则()d pu u p dp =+du u p u p dp ⇒+=+1dudp ⇒=1u p c ⇒=+ 即21x p c p =+ 由于(1)1y '=故11110c c =+⇒=即2x p =32223dy p y x c dx ⇒==⇒=±+ 由21(1)13y c =⇒=或253c = 特解为322133y x =+或322533y x =-+(20)已知函数()f a 具有二阶导数,且'(0)f =1,函数()y y x =由方程11y y xe--=所确定.设(ln sin ),z f y x =-求x dzdx=,202x d zdx=.【详解】: 11y y xe--=两边对x 求导得11()0y y y e xe y --''-+⋅=得 111y y e y xe --'=- (当01)x y ==,故有11121x e y -='==-1(ln sin )(cos )(0)(111)0x x dz f y x y x f dxy=='''=--=⨯-=222221()(ln sin )(cos )(ln sin )(sin )x x d z y f y x y x f y x x dxy y=='''''=--+--+221(0)(111)(0)(10)1(1)11f f -'''=⨯-+⨯+=⨯-=- (21)(本题11分)设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==证明:存在(,)a b ξ∈,使得''''()()f g ξξ=.【详解】:证明:设(),()f x g x 在(,)a b 内某点(,)c a b ∈同时取得最大值,则()()f c g c =,此时的c 就是所求点()()f g ηηη=使得.若两个函数取得最大值的点不同则有设()max (),()max ()f c f x g d g x ==故有()()0,()()0f c g c g d f d ->-<,由介值定理,在(,)c d 内肯定存在()()f g ηηη=使得由罗尔定理在区间(,),(,)a b ηη内分别存在一点''1212,,()()f f ξξξξ使得==0在区间12(,)ξξ内再用罗尔定理,即''''(,)()()a b f g ξξξ∈=存在,使得.(22)(本题满分11分)设二元函数2.1.(,)12.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤【详解】:D 如图(1)所示,它关于x,y 轴对称,(,)f x y 对x,y 均为偶函数,得1(,)4(,)DD f x y d f x y d σσ=⎰⎰⎰⎰,其中1D 是D 的第一象限部分.由于被积函数分块表示,将1D 分成(如图(2)):11112D D D =U ,且(1)(2)1112:1,0,0 :12,0,0D x y x y D x y x y +≤≥≥≤+≤≥≥于是11212(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰.而111112200111(,)(1)3412xD f x y d dx x dy x x dx σ-==-=-=⎰⎰⎰⎰⎰121222cos sin 10cos sin 1(,)()D D f x y d d rdr rπθθθθσσθ++==⋅⎰⎰⎰⎰极坐标变换2200221122200021112001cos sin cos sin 2sin cos222(tan )222122(1)1tan 2tan22221)u td d d du du u u u dt dt t πππθθθθθθθθθθθ-===+-+===-+---+==-===⎰⎰⎰⎰⎰⎰ 所以11(,)1)12D f x y d σ=⎰⎰得1(,)4(1))12Df x y d σ=+⎰⎰(23)(本题满分11分)设线性方程组1231232123020(1)40x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321(2)x x x a ++=-有公共解,求a 的值及所有公共解. 【详解】:因为方程组(1)、(2)有公共解,即由方程组(1)、(2)组成的方程组1231232123123020(3)4021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩的解.即矩阵211100201401211aa a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭211100110001000340a a a ⎛⎫ ⎪- ⎪→⎪- ⎪ ⎪++⎝⎭方程组(3)有解的充要条件为 1,2a a ==.当1a =时,方程组(3)等价于方程组(1)即此时的公共解为方程组(1)的解.解方程组(1)的基础解系为(1,0,1)Tξ=-此时的公共解为:,1,2,x k k ξ==L当2a =时,方程组(3)的系数矩阵为111011101220011014400001111100⎛⎫⎛⎫⎪ ⎪⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭此时方程组(3)的解为1230,1,1x x x ===-,即公共解为:(0,1,1)Tk -(24)设3阶对称矩阵A 的特征向量值1231,2,2,λλλ===-1(1,1,1)Tα=-是A 的属于1λ的一个特征向量,记534B A A E =-+其中E 为3阶单位矩阵()I 验证1α是矩阵B 的特征向量,并求B 的全部特征值的特征向量; ()II 求矩阵B .【详解】:(Ⅰ)可以很容易验证111(1,2,3...)n nA n αλα==,于是 5353111111(4)(41)2B A A E ααλλαα=-+=-+=-于是1α是矩阵B 的特征向量.B 的特征值可以由A 的特征值以及B 与A 的关系得到,即 53()()4()1B A A λλλ=-+, 所以B 的全部特征值为-2,1,1.前面已经求得1α为B 的属于-2的特征值,而A 为实对称矩阵,于是根据B 与A 的关系可以知道B 也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B 的属于1的特征向量为123(,,)Tx x x ,所以有方程如下:1230x x x -+=于是求得B 的属于1的特征向量为23(1,0,1),(1,1,0)T Tαα=-=(Ⅱ)令矩阵[]123111,,101110P ααα-⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,则1(2,1,1)P BP diag -=-,所以1111333111112(2,1,1)101(2,1,1)333110121333B P diag P diag -⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=⋅-⋅=---⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦011101110-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦。

2007年全国硕士研究生入学统一考试数学二试题

2007年全国硕士研究生入学统一考试数学二试题

全国硕士研究生入学统一考试数学二试题一、选择题:110:小题,每小题4分,共40分,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)当0x +→等价的无穷小量是( )A.1-B1C.1D -(2)函数11()tan ()()xxe e xf x x e e +=-在[],ππ-上的第一类间断点是x =( ).A 0 .B 1 .C 2π-.D 2π (3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上的图形分别是直径为2的上、下半圆周.设0()(),xF x f t dt =⎰则下列结论正确的是( ).A (3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F = .D (3)F -5(2)4F =--(4)设函数()f x 在0x =连续,则下列命题错误的是( ).A 若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x →+-存在,则(0)0f =.C 若0()lim x f x x →存在,则(0)f '存在 .D 若0()()lim x f x f x x→--存在,则(0)f '存在(5)曲线1ln(1)xy e x=++渐近线的条数为( ).A 0 .B 1 .C 2 .D 3(6)设函数()f x 在(0,)+∞上具有二阶导数,且()0f x ''>,令()(1,2,)n u f n n ==L ,则下列结论正确的是( ).A 若12u u >,则{}n u 必收敛 .B 若12u u >,则{}n u 必发散.C 若12u u <,则{}n u 必收敛 .D 若12u u <,则{}n u 必发散(7) 二元函数(,)f x y 在点(0,0)处可微的一个充分条件是( ).A[](,)(0,0)lim(,)(0,0)0x y f x y f →-=.B []0(,0)(0,0)lim0x f x f x→-=且[]0(0,)(0,0)lim 0y f y f y→-=.C(,)(,)(0,0)lim0x y f x y f →-=.D []0lim (,0)(0,0)0x x x f x f →''-=且 0lim (0,)(0,0)0y y y f y f →''⎡⎤-=⎣⎦ (8)设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A 1arcsin (,)ydy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(9)设向量组123,,ααα线性无关,则下列向量组线性相关的是 ( ).A 12αα-2331,,αααα-- .B 21αα+2331,,αααα++ .C 1223312,2,2αααααα--- .D 1223312,2,2αααααα+++(10)设矩阵211121112A --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,100010000B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则A 与B ( ) .A 合同,且相似 .B 合同,但不相似.C 不合同,但相似 .D 既不合同,也不相似二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (11)30arctan sin lim_____x x xx →-=(12)曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=的点处的法线斜率为_____(13)设函数123y x =+,则()(0)_____n y = (14)二阶常系数非齐次线性微分方程2432xy y y e '''-+=的通解为_____y =(15)设(,)f u v 是二元可微函数,(,),y x z f x y =则z zxy x y∂∂-=∂∂_____ (16) 设矩阵01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭则3A 的秩为_____.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分)设()f x 是区间[0,]4π上的单调、可导函数,且满足()10cos sin ()sin cos f x xt tf t dt tdt t t--=+⎰⎰其中1f-是f 的反函数,求()f x .(18)(本题满分11分)设D是位于曲线2(1,0)xay a x -=>≤<+∞下方、x 轴上方的无界区域.(Ⅰ)求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (Ⅱ)当a 为何值时,()V a 最小?并求出最小值.(19)(本题满分10分)求微分方程2()y x y y ''''+=满足初始条件(1)(1)1y y '==的特解. (20)(本题满分11分)已知函数()f u 具有二阶导数,且(0)1f '=,函数()y y x =由方程11y y xe--=所确定.设(ln sin )z f y x =-,求2002,x x dz d zdxdx ==.(21)(本题满分11分)设函数()f x ,()g x 在[],a b 上连续,在(,)a b 内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:存在(,),a b ξ∈使得''()''().f g ξξ=(22)(本题满分11分)设二元函数2,1(,)12x x y f x y x y ⎧+≤⎪=<+≤计算二重积分(,)Df x y d σ⎰⎰,其中{}(,)2D x y x y =+≤(23)(本题满分11分)设线性方程组1231232123020(1)40x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩12321(2)x x x a ++=-与方程有公共解,求a 得值及所有公共解.(24)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)Tλλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B .。

2007年考研数二真题、标准答案及解析

2007年考研数二真题、标准答案及解析

2,0 , 0, 2 上图形分别是直径为
( )
2 的上、下半圆周,设 F ( x)

x
0
f (t )dt , 则下列结论正确的是:
3 A. . F (3) F ( 2) 4 3 C. F ( 3 ) F (2) 4
A. 若 lim
B. F ( 3 ) F ( 2 )
(8)设函数 f ( x, y ) 连续,则二次积分
2
dx
B.
1
sin x
f ( x, y )dy 等于

( )
A.
0
1
dy

arcsin y
f ( x, y )dx
0
1
dy
arcsin y
f ( x, y )dy
C.
0
1
dy
arcsin y
f ( x, y )dx
2 (19)求微分方程 y '' x y ' y ' 满足初始条件 y (1) y '(1) 1 的特解.


y 1 ( 20 ) 已 知 函 数 f ( a ) 具 有 二 阶 导 数 , 且 f '(0) = 1 , 函 数 y y ( x ) 由 方 程 y xe 1 所 确 定 . 设


二.填空题:11-16 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上
(11) lim
arctan x sin x ____. x 0 x3
x cos t cos 2 t (12) 曲线 上对应于 t 的点处的法线斜率为_____ 4 y 1 sin t

(整理)年数学二真题.

(整理)年数学二真题.

2007年考研数学二真题一.选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1) 当0x +→( )A. 1-B.lnC. 1D.1-(2)函数11()tan ()()xxe e xf x x e e +=-在区间[],ππ-上的第一类间断点是x =( )A. 0B. 1C. 2π-D. 2π (3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是: ( ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =-- (4)设函数f (x )在x=0处连续,下列命题错误的是 ( )A. 若0()limx f x x →存在,则(0)0f = B. 若0()()lim x f x f x x→+-存在, (0)0f =C. 若0()lim x f x x →存在, 则(0)0f '=D. 0()()l i m x f x f x x→--存在, (0)0f =(5)曲线1ln(1),xy e x=++渐近线的条数为 ( ).A 0 .B 1 .C 2 .D 3(6)设函数()f x 在(0,)+∞上具有二阶导数,且"()0f x >, 令n u = ()1,2.......,,f n n = 则下列结论正确的是 ( )A.若12u u >,则{}n u 必收敛B. 若12u u >,则{}n u 必发散C. 若12u u <,则{}n u 必收敛D. 若12u u <,则{}n u 必发散 (7)二元函数(,)f x y 在点(0,0)处可微的一个充分条件是 ( ) A.()()()(),0,0lim,0,00x y f x y f →-=⎡⎤⎣⎦B. ()(),00,0lim0x f x f x→-=,且()()00,0,0lim0y f y f y →-=C.()(,0,0,00,0lim0x y f x f →-=D. ()0lim ',0'(0,0)0,x x x f x f →-=⎡⎤⎣⎦且()0lim ',0'(0,0)0,y y y f x f →⎡⎤-=⎣⎦ (8)设函数(,)f x y 连续,则二次积分1sin 2(,)x dx f x y dy ππ⎰⎰等于 ( ).A10arcsin (,)y dy f x y dx ππ+⎰⎰ .B 10arcsin (,)y dy f x y dy ππ-⎰⎰.C 1arcsin 02(,)y dy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)y dy f x y dx ππ-⎰⎰(9)设向量组123,,ααα线形无关,则下列向量组线形相关的是: ( ) (A ) ,,122331αααααα--- (B ) ,,122331αααααα+++ (C ) 1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(10)设矩阵A=211121112--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪⎪ ⎪⎝⎭,则A 于B , ( )(A) 合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D)既不合同,也不相似二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)30arctan sin limx x xx→-=____. (12)曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=的点处的法线斜率为_____ (13)设函数123y x =+,则()0ny =_____.(14)二阶常系数非齐次线性微分方程2''4'32x y y y e -+=的通解y =_____. (15)设(,)f u v 是二元可微函数,(,)y x z f x y =,则_____z zx yx y∂∂-=∂∂.(16)设矩阵01000010********A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为______.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)设()f x 是区间0,4π⎡⎤⎢⎥⎣⎦上单调、可导函数,且满足()100cos sin ()sin cos f x x t t f t dt t dt t t --=+⎰⎰,其中1f-是f 的反函数,求()f x .(18)(本题满分11分) 设D是位于曲线y =- ()1,0a x >≤<+∞下方、x 轴上方的无界区域.(Ⅰ)求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (Ⅱ)当a 为何值时,()V a 最小?并求此最小值.(19)求微分方程()2''''y x y y +=满足初始条件(1)'(1)1y y ==的特解. (20)已知函数()f a 具有二阶导数,且'(0)f =1,函数()y y x =由方程11y y xe--=所确定.设(ln sin ),z f y x =-求x dzdx=,202x d z dx=.(21)(本题11分) 设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==证明:存在(,)a b ξ∈,使得''''()()f g ξξ=.(22)(本题满分11分)设二元函数2.1.(,)12.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(23)(本题满分11分)设线性方程组1231232123020(1)40x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321(2)x x x a ++=-有公共解,求a 的值及所有公共解(24)设3阶对称矩阵A 的特征向量值1231,2,2,λλλ===-1(1,1,1)Tα=-是A 的属于1λ的一个特征向量,记534B A A E =-+其中E 为3阶单位矩阵()I 验证1α是矩阵B 的特征向量,并求B 的全部特征值的特征向量; ()II 求矩阵B .2007年考研数学二真题解析一.选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(2) 当0x +→(B )A. 1-B.lnC. 1D.1-(2)函数11()tan ()()xxe e xf x x e e +=-在区间[],ππ-上的第一类间断点是x =(A)A. 0B. 1C. 2π-D. 2π (3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:(C ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =-- (4)设函数f (x )在x=0处连续,下列命题错误的是 (C)A. 若0()limx f x x →存在,则(0)0f = B. 若0()()lim x f x f x x→+-存在, (0)0f =C. 若0()lim x f x x →存在, 则(0)0f '=D. 0()()lim x f x f x x→--存在, (0)0f =(5)曲线1ln(1),xy e x=++渐近线的条数为 (D ).A 0 .B 1 .C 2 .D 3(6)设函数()f x 在(0,)+∞上具有二阶导数,且"()0f x >, 令n u = ()1,2.......,,f n n = 则下列结论正确的是 (D)A.若12u u >,则{}n u 必收敛B. 若12u u >,则{}n u 必发散C. 若12u u <,则{}n u 必收敛D. 若12u u <,则{}n u 必发散 (7)二元函数(,)f x y 在点(0,0)处可微的一个充分条件是 (B ) A.()()()(),0,0lim,0,00x y f x y f →-=⎡⎤⎣⎦B. ()(),00,0lim0x f x f x→-=,且()()00,0,0lim0y f y f y →-=C.()(,0,0,00,0lim0x y f x f →-=D. ()0lim ',0'(0,0)0,x x x f x f →-=⎡⎤⎣⎦且()0lim ',0'(0,0)0,y y y f x f →⎡⎤-=⎣⎦ (8)设函数(,)f x y 连续,则二次积分1sin 2(,)x dx f x y dy ππ⎰⎰等于 (B ).A10arcsin (,)y dy f x y dx ππ+⎰⎰ .B 10arcsin (,)y dy f x y dy ππ-⎰⎰.C 1arcsin 02(,)y dy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)y dy f x y dx ππ-⎰⎰(9)设向量组123,,ααα线形无关,则下列向量组线形相关的是: (A) (A ) ,,122331αααααα--- (B ) ,,122331αααααα+++ (C ) 1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(10)设矩阵A=211121112--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪⎪ ⎪⎝⎭,则A 于B , (B )(A) 合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D)既不合同,也不相似二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)30arctan sin limx x x x →-=16.(12)曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=1). (13)设函数123y x =+,则()0ny =23n -⋅.(14)二阶常系数非齐次线性微分方程2''4'32x y y y e -+=的通解y =_32122x x x C e C e e +-. (15)设(,)f u v 是二元可微函数,(,)y x z f x y=,则1222(,)(,)z z y y x x y x xy f f x y x x y y x y∂∂''-=-+∂∂.(16)设矩阵01000010********A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为_1______.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)设()f x 是区间0,4π⎡⎤⎢⎥⎣⎦上单调、可导函数,且满足()100cos sin ()sin cos f x x t t f t dt t dt t t --=+⎰⎰,其中1f-是f 的反函数,求()f x .【详解】: 设(),y f t =则1()t fy -=.则原式可化为:1(0)0cos sin '()sin cos xxf t tyf y dy tdt t t--=+⎰⎰ 等式两边同时求导得:cos sin '()sin cos x xxf x x x x-=+c o s s i n'()s i n c o sx x f x x x -=+ (18)(本题满分11分) 设D是位于曲线y =- ()1,0a x >≤<+∞下方、x 轴上方的无界区域.(Ⅰ)求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (Ⅱ)当a 为何值时,()V a 最小?并求此最小值. 【详解】:22222()())(ln )xa a I V a y dx dx a πππ-+∞+∞===⎰⎰ 22412(ln )(2ln )2()()0(ln )a a a a II V a a π-'=⋅= 得ln (ln 1)0a a -=故ln 1a =即a e =是唯一驻点,也是最小值点,最小值2()V e e π= (19)求微分方程()2''''y x y y +=满足初始条件(1)'(1)1y y ==的特解.【详解】: 设dy p y dx '==,则dpy dx''=代入得:22()dp dx x p x x p p p dx dp p p++=⇒==+ 设x u p= 则()d pu u p dp =+du u p u p dp ⇒+=+1dudp ⇒=1u p c ⇒=+ 即21x p c p =+ 由于(1)1y '=故11110c c =+⇒=即2x p =32223dy p y x c dx ⇒==⇒=±+ 由21(1)13y c =⇒=或253c = 特解为322133y x =+或322533y x =-+(20)已知函数()f a 具有二阶导数,且'(0)f =1,函数()y y x =由方程11y y xe--=所确定.设(ln sin ),z f y x =-求x dzdx=,202x d zdx=.【详解】: 11y y xe--=两边对x 求导得11()0y y y e xe y --''-+⋅=得 111y y e y xe --'=- (当01)x y ==,故有11121x e y -='==-1(ln sin )(cos )(0)(111)0x x dz f y x y x f dxy=='''=--=⨯-=222221()(ln sin )(cos )(ln sin )(sin )x x d z y f y x y x f y x x dx y y=='''''=--+--+221(0)(111)(0)(10)1(1)11f f -'''=⨯-+⨯+=⨯-=- (21)(本题11分)设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==证明:存在(,)a b ξ∈,使得''''()()f g ξξ=.【详解】:证明:设(),()f x g x 在(,)a b 内某点(,)c a b ∈同时取得最大值,则()()f c g c =,此时的c 就是所求点()()f g ηηη=使得.若两个函数取得最大值的点不同则有设()max (),()max ()f c f x g d g x ==故有()()0,()()0f c g c g d f d ->-<,由介值定理,在(,)c d 内肯定存在()()f g ηηη=使得由罗尔定理在区间(,),(,)a b ηη内分别存在一点''1212,,()()f f ξξξξ使得==0在区间12(,)ξξ内再用罗尔定理,即''''(,)()()a b f g ξξξ∈=存在,使得.(22)(本题满分11分)设二元函数2.1.(,)12.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤【详解】:D 如图(1)所示,它关于x,y 轴对称,(,)f x y 对x,y 均为偶函数,得1(,)4(,)DD f x y d f x y d σσ=⎰⎰⎰⎰,其中1D 是D 的第一象限部分.由于被积函数分块表示,将1D 分成(如图(2)):11112D D D =,且(1)(2)1112:1,0,0 :12,0,0D x y x y D x y x y +≤≥≥≤+≤≥≥于是11212(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰.而111112200111(,)(1)3412xD f x y d dx x dy x x dx σ-==-=-=⎰⎰⎰⎰⎰121222cos sin 10cos sin 1(,)()D D f x y d d rdr rπθθθθσσθ++==⋅⎰⎰⎰⎰极坐标变换2200221122200021112001cos sin cos sin 2sin cos222(tan )222122(1)1tan 2tan22221)u td d d du du u u u dt dt t πππθθθθθθθθθθθ-===+-+===-+---+==-===⎰⎰⎰⎰⎰⎰ 所以11(,)1)12D f x y d σ=⎰⎰得1(,)4(1))12Df x y d σ=+⎰⎰(23)(本题满分11分)设线性方程组1231232123020(1)40x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321(2)x x x a ++=-有公共解,求a 的值及所有公共解. 【详解】:因为方程组(1)、(2)有公共解,即由方程组(1)、(2)组成的方程组1231232123123020(3)4021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩的解.即矩阵211100201401211aa a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭211100110001000340a a a ⎛⎫ ⎪- ⎪→⎪- ⎪ ⎪++⎝⎭方程组(3)有解的充要条件为 1,2a a ==.当1a =时,方程组(3)等价于方程组(1)即此时的公共解为方程组(1)的解.解方程组(1)的基础解系为(1,0,1)Tξ=-此时的公共解为:,1,2,x k k ξ==当2a =时,方程组(3)的系数矩阵为111011101220011014400001111100⎛⎫⎛⎫⎪ ⎪⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭此时方程组(3)的解为1230,1,1x x x ===-,即公共解为:(0,1,1)Tk -(24)设3阶对称矩阵A 的特征向量值1231,2,2,λλλ===-1(1,1,1)Tα=-是A 的属于1λ的一个特征向量,记534B A A E =-+其中E 为3阶单位矩阵()I 验证1α是矩阵B 的特征向量,并求B 的全部特征值的特征向量; ()II 求矩阵B .【详解】:(Ⅰ)可以很容易验证111(1,2,3...)n nA n αλα==,于是5353111111(4)(41)2B A A E ααλλαα=-+=-+=- 于是1α是矩阵B 的特征向量.B 的特征值可以由A 的特征值以及B 与A 的关系得到,即 53()()4()1B A A λλλ=-+,所以B 的全部特征值为-2,1,1.前面已经求得1α为B 的属于-2的特征值,而A 为实对称矩阵,于是根据B 与A 的关系可以知道B 也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B 的属于1的特征向量为123(,,)Tx x x ,所以有方程如下:1230x x x -+=于是求得B 的属于1的特征向量为23(1,0,1),(1,1,0)T Tαα=-=(Ⅱ)令矩阵[]123111,,101110P ααα-⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,则1(2,1,1)P BP diag -=-,所以1111333111112(2,1,1)101(2,1,1)333110121333B P d i a g P d i a g -⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=⋅-⋅=---⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦011101110-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦。

2007—数二真题、标准答案及解析

2007—数二真题、标准答案及解析

2007年考研数学二真题一.选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1) 当0x +→( )A. 1-B.lnC. 1D.1-(2)函数11()tan ()()xxe e xf x x e e +=-在区间[],ππ-上的第一类间断点是x =( )A. 0B. 1C. 2π-D.2π (3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:( ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(4)设函数f (x )在x=0处连续,下列命题错误的是 ( )A. 若0()limx f x x →存在,则(0)0f = B. 若0()()lim x f x f x x→+-存在, (0)0f =C. 若0()lim x f x x →存在, 则(0)0f '=D. 0()()lim x f x f x x→--存在, (0)0f =(5)曲线1ln(1),xy e x=++渐近线的条数为 ( ).A 0 .B 1 .C 2 .D 3(6)设函数()f x 在(0,)+∞上具有二阶导数,且"()0f x >, 令n u = ()1,2.......,,f n n = 则下列结论正确的是 ( )A.若12u u >,则{}n u 必收敛B. 若12u u >,则{}n u 必发散C. 若12u u <,则{}n u 必收敛D. 若12u u <,则{}n u 必发散 (7)二元函数(,)f x y 在点(0,0)处可微的一个充分条件是 ( ) A.()()()(),0,0lim,0,00x y f x y f →-=⎡⎤⎣⎦B. ()()0,00,0lim0x f x f x →-=,且()()00,0,0lim 0y f y f y→-=C.()(,0,0,00,0lim0x y f x f →-=D. ()0lim ',0'(0,0)0,x x x f x f →-=⎡⎤⎣⎦且()0lim ',0'(0,0)0,y y y f x f →⎡⎤-=⎣⎦ (8)设函数(,)f x y 连续,则二次积分1sin 2(,)x dx f x y dy ππ⎰⎰等于 ( ).A10arcsin (,)y dy f x y dx ππ+⎰⎰ .B 10arcsin (,)y dy f x y dy ππ-⎰⎰.C 1arcsin 02(,)y dy f x y dx ππ+⎰⎰.D 1arcsin 02(,)y dy f x y dx ππ-⎰⎰(9)设向量组123,,ααα线形无关,则下列向量组线形相关的是: ( ) (A ),,122331αααααα--- (B ) ,,122331αααααα+++(C ) 1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(10)设矩阵A=211121112--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪⎪ ⎪⎝⎭,则A 于B , ( )(A) 合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D)既不合同,也不相似二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)30arctan sin limx x xx→-=____. (12)曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=的点处的法线斜率为_____(13)设函数123y x =+,则()0ny =_____.(14)二阶常系数非齐次线性微分方程2''4'32x y y y e -+=的通解y =_____.(15)设(,)f u v 是二元可微函数,(,)y x z f x y =,则_____z zx y x y∂∂-=∂∂.(16)设矩阵0100001000010000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则3A 的秩为______. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)设()f x 是区间0,4π⎡⎤⎢⎥⎣⎦上单调、可导函数,且满足()100cos sin ()sin cos f x x t t f t dt t dt t t --=+⎰⎰,其中1f -是f 的反函数,求()f x . (18)(本题满分11分) 设D是位于曲线y =- ()1,0a x >≤<+∞下方、x 轴上方的无界区域.(Ⅰ)求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (Ⅱ)当a 为何值时,()V a 最小?并求此最小值.(19)求微分方程()2''''y x y y +=满足初始条件(1)'(1)1y y ==的特解.(20)已知函数()f a 具有二阶导数,且'(0)f =1,函数()y y x =由方程11y y xe --=所确定.设(ln sin ),z f y x =-求0x dzdx=,202x d z dx =.(21)(本题11分) 设函数(),()f xg x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f ag a f b g b ==证明:存在(,)a b ξ∈,使得''''()()f g ξξ=. (22)(本题满分11分)设二元函数2.1.(,)12.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(23)(本题满分11分)设线性方程组1231232123020(1)40x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321(2)x x x a ++=-有公共解,求a 的值及所有公共解(24)设3阶对称矩阵A 的特征向量值1231,2,2,λλλ===-1(1,1,1)T α=-是A 的属于1λ的一个特征向量,记534B A A E =-+其中E 为3阶单位矩阵()I 验证1α是矩阵B 的特征向量,并求B 的全部特征值的特征向量; ()II 求矩阵B .2007年考研数学二真题解析一.选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(2) 当0x +→(B )A. 1-B.lnC. 1D.1-(2)函数11()tan ()()xxe e xf x x e e +=-在区间[],ππ-上的第一类间断点是x =(A)A. 0B. 1C. 2π-D.2π (3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:(C ) .A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(4)设函数f (x )在x=0处连续,下列命题错误的是 (C)A. 若0()limx f x x →存在,则(0)0f = B. 若0()()lim x f x f x x→+-存在, (0)0f =C. 若0()lim x f x x →存在, 则(0)0f '=D. 0()()lim x f x f x x→--存在, (0)0f =(5)曲线1ln(1),xy e x=++渐近线的条数为 (D ).A 0 .B 1 .C 2 .D 3(6)设函数()f x 在(0,)+∞上具有二阶导数,且"()0f x >, 令n u = ()1,2.......,,f n n = 则下列结论正确的是 (D)A.若12u u >,则{}n u 必收敛B. 若12u u >,则{}n u 必发散C. 若12u u <,则{}n u 必收敛D. 若12u u <,则{}n u 必发散 (7)二元函数(,)f x y 在点(0,0)处可微的一个充分条件是 (B ) A.()()()(),0,0lim,0,00x y f x y f →-=⎡⎤⎣⎦B. ()()0,00,0lim0x f x f x →-=,且()()00,0,0lim 0y f y f y→-=C.()(,0,0,00,0lim0x y f x f →-=D. ()0lim ',0'(0,0)0,x x x f x f →-=⎡⎤⎣⎦且()0lim ',0'(0,0)0,y y y f x f →⎡⎤-=⎣⎦ (8)设函数(,)f x y 连续,则二次积分1sin 2(,)x dx f x y dy ππ⎰⎰等于 (B ).A10arcsin (,)y dy f x y dx ππ+⎰⎰ .B 10arcsin (,)y dy f x y dy ππ-⎰⎰.C 1arcsin 02(,)y dy f x y dx ππ+⎰⎰.D 1arcsin 02(,)y dy f x y dx ππ-⎰⎰(9)设向量组123,,ααα线形无关,则下列向量组线形相关的是: (A) (A ),,122331αααααα--- (B ) ,,122331αααααα+++(C ) 1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(10)设矩阵A=211121112--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪⎪ ⎪⎝⎭,则A 于B , (B )(A) 合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D)既不合同,也不相似二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)30arctan sin limx x x x →-=16.(12)曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=1).(13)设函数123y x =+,则()0ny =23n -⋅.(14)二阶常系数非齐次线性微分方程2''4'32x y y y e -+=的通解y =_32122x x x C e C e e +-.(15)设(,)f u v 是二元可微函数,(,)y x z f x y =,则1222(,)(,)z z y y x x y xx y f f x y x x y y x y∂∂''-=-+∂∂.(16)设矩阵0100001000010000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则3A 的秩为_1______.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)设()f x 是区间0,4π⎡⎤⎢⎥⎣⎦上单调、可导函数,且满足()100cos sin ()sin cos f x x t t f t dt t dt t t --=+⎰⎰,其中1f -是f 的反函数,求()f x . 【详解】:设(),y f t =则1()t f y -=.则原式可化为:1(0)0cos sin '()sin cos xxf t t yf y dy tdt t t--=+⎰⎰ 等式两边同时求导得:cos sin '()sin cos x xxf x x x x-=+c o s s i n '()s i n c o sx x f x x x -=+ (18)(本题满分11分) 设D是位于曲线y =- ()1,0a x >≤<+∞下方、x 轴上方的无界区域.(Ⅰ)求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (Ⅱ)当a 为何值时,()V a 最小?并求此最小值. 【详解】:22222()())(ln )xa a I V a y dx dx a πππ-+∞+∞===⎰⎰ 22412(ln )(2ln )2()()0(ln )a a a a II V a a π-'=⋅= 得ln (ln 1)0a a -=故ln 1a =即a e =是唯一驻点,也是最小值点,最小值2()V e eπ=(19)求微分方程()2''''y x y y +=满足初始条件(1)'(1)1y y ==的特解.【详解】: 设dy p y dx '==,则dpy dx''=代入得: 22()dp dx x p x x p p p dx dp p p++=⇒==+设x u p= 则()d pu u p dp =+du u p u p dp ⇒+=+1dudp ⇒=1u p c ⇒=+即21x p c p =+ 由于(1)1y '= 故11110c c =+⇒=即2x p =32223dy p y x c dx ⇒==⇒=±+ 由21(1)13y c =⇒=或253c = 特解为322133y x =+或322533y x =-+(20)已知函数()f a 具有二阶导数,且'(0)f =1,函数()y y x =由方程11y y xe --=所确定.设(ln sin ),z f y x =-求0x dzdx=,202x d zdx =.【详解】:11y y xe --=两边对x 求导得11()0y y y e xe y --''-+⋅=得 111y y e y xe --'=- (当01)x y ==,故有11121x e y -='==-1(ln sin )(cos )(0)(111)0x x dz f y x y x f dxy=='''=--=⨯-=222221()(ln sin )(cos )(ln sin )(sin )x x d z y f y x y x f y x x dx y y=='''''=--+--+221(0)(111)(0)(10)1(1)11f f -'''=⨯-+⨯+=⨯-=- (21)(本题11分)设函数(),()f xg x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f ag a f b g b ==证明:存在(,)a b ξ∈,使得''''()()f g ξξ=. 【详解】:证明:设(),()f x g x 在(,)a b 内某点(,)c a b ∈同时取得最大值,则()()f c g c =,此时的c 就是所求点()()f g ηηη=使得.若两个函数取得最大值的点不同则有设()max (),()max ()f c f x g d g x ==故有()()0,()()0f c g c g d f d ->-<,由介值定理,在(,)c d 内肯定存在()()f g ηηη=使得由罗尔定理在区间(,),(,)a b ηη内分别存在一点''1212,,()()f f ξξξξ使得==0在区间12(,)ξξ内再用罗尔定理,即''''(,)()()a b f g ξξξ∈=存在,使得. (22)(本题满分11分)设二元函数2.1.(,)12.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤【详解】:D 如图(1)所示,它关于x,y 轴对称,(,)f x y 对x,y 均为偶函数,得1(,)4(,)DD f x y d f x y d σσ=⎰⎰⎰⎰,其中1D 是D 的第一象限部分.由于被积函数分块表示,将1D 分成(如图(2)):11112D D D = ,且1112:1,0,0 :12,0,0D x y x y D x y x y +≤≥≥≤+≤≥≥于是11212(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰.而111112200111(,)(1)3412xD f x y d dx x dy x x dx σ-==-=-=⎰⎰⎰⎰⎰(1)(2)121222cos sin 10cos sin 1(,)()D D f x y d d rdr rπθθθθσσθ++==⋅⎰⎰⎰⎰极坐标变换220221122200021112001cos sin cos sin 2sin cos222(tan )222122(1)1tan 2tan22221)u td d d du du u u u dt dtt πππθθθθθθθθθθθ-===+-+===-+---+==+-===⎰⎰⎰⎰⎰⎰ 所以11(,)1)12D f x y d σ=+⎰⎰得1(,)4(1))12Df x y d σ=⎰⎰(23)(本题满分11分)设线性方程组1231232123020(1)40x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321(2)x x x a ++=-有公共解,求a 的值及所有公共解. 【详解】:因为方程组(1)、(2)有公共解,即由方程组(1)、(2)组成的方程组1231232123123020(3)4021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩的解.即矩阵211100201401211a a a ⎛⎫ ⎪⎪ ⎪ ⎪ ⎪-⎝⎭211100110001000340a a a ⎛⎫ ⎪- ⎪→ ⎪- ⎪ ⎪++⎝⎭方程组(3)有解的充要条件为1,2a a ==.当1a =时,方程组(3)等价于方程组(1)即此时的公共解为方程组(1)的解.解方程组(1)的基础解系为(1,0,1)Tξ=-此时的公共解为:,1,2,x k k ξ== 当2a =时,方程组(3)的系数矩阵为11101110122001101440000111110000⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭此时方程组(3)的解为1230,1,1x x x ===-,即公共解为:(0,1,1)T k -(24)设3阶对称矩阵A 的特征向量值1231,2,2,λλλ===-1(1,1,1)T α=-是A 的属于1λ的一个特征向量,记534B A A E =-+其中E 为3阶单位矩阵()I 验证1α是矩阵B 的特征向量,并求B 的全部特征值的特征向量; ()II 求矩阵B .【详解】:(Ⅰ)可以很容易验证111(1,2,3...)n n A n αλα==,于是5353111111(4)(41)2B A A E ααλλαα=-+=-+=- 于是1α是矩阵B 的特征向量.B 的特征值可以由A 的特征值以及B 与A 的关系得到,即53()()4()1B A A λλλ=-+,所以B 的全部特征值为-2,1,1.前面已经求得1α为B 的属于-2的特征值,而A 为实对称矩阵,于是根据B 与A 的关系可以知道B 也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B 的属于1的特征向量为123(,,)T x x x ,所以有方程如下:1230x x x -+=于是求得B 的属于1的特征向量为23(1,0,1),(1,1,0)TTαα=-=(Ⅱ)令矩阵[]123111,,101110P ααα-⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,则1(2,1,1)P BP diag -=-,所以1111333111112(2,1,1)101(2,1,1)333110121333B P d i a g P d i a g -⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=⋅-⋅=---⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦011101110-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦。

2007考研数二真题及解析

2007考研数二真题及解析

2007年全国硕士研究生入学统一考试数学二试题一、选择题:110 小题,每小题4分,共40分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上. (1) 当0x +→时,与x 等价的无穷小量是( )A .1x e - 1.l n 1xB x+- .11C x +- .1c o s D x -(2)函数11()tan ()()xxe e xf x x e e +=-在[],ππ-上的第一类间断点是x =( ).A 0 .B 1 .C 2π-.D 2π(3) 如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上的图形分别是直径为2的上、下半圆周.设0()(),xF x f t dt =⎰则下列结论正确的是( ).A (3)F 3(2)4F =-- .B (3)F 5(2)4F =.C (3)F - 3(2)4F = .D (3)F -5(2)4F =--(4) 设函数()f x 在0x =连续,则下列命题错误的是( ).A 若0()lim x f x x →存在,则(0)0f = .B 若0()()lim x f x f x x →+-存在,则(0)0f =.C 若0()lim x f x x →存在,则(0)f '存在 .D 若0()()lim x f x f x x →--存在,则(0)f '存在(5) 曲线1ln(1)xy e x=++渐近线的条数为( ).A 0 .B 1 .C 2 .D 3(6) 设函数()f x 在(0,)+∞上具有二阶导数,且()0f x ''>,令()(1,2,)n u f n n == ,则下列结论正确的是( ).A 若12u u >,则{}n u 必收敛 .B 若12u u >,则{}n u 必发散.C 若12u u <,则{}n u 必收敛 .D 若12u u <,则{}n u 必发散(7) 二元函数(,)f x y 在点(0,0)处可微的一个充分条件是( )32-1O1 -2 -3yx.A[](,)(0,0)lim(,)(0,0)0x y f x y f →-=.B []0(,0)(0,0)lim0x f x f x→-=且[]0(0,)(0,0)lim 0y f y f y→-=.C[]22(,)(0,0)(,)(0,0)lim0x y f x y f x y→-=+.D []0lim (,0)(0,0)0x x x f x f →''-=且 0lim (0,)(0,0)0y y y f y f →''⎡⎤-=⎣⎦ (8) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A 10arcsin (,)ydy f x y dx ππ+⎰⎰ .B 1arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(9) 设向量组123,,ααα线性无关,则下列向量组线性相关的是 ( ).A 12αα-2331,,αααα-- .B 21αα+2331,,αααα++ .C 1223312,2,2αααααα--- .D 122332,2,2αααααα+++ (10) 设矩阵211121112A --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,100010000B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A 与B ( ) .A 合同,且相似 .B 合同,但不相似 .C 不合同,但相似 .D 既不合同,也不相似二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(11) 30arctan sin lim_________x x xx →-=(12) 曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=的点处的法线斜率为_____(13) 设函数123y x =+,则()(0)___________n y =(14) 二阶常系数非齐次线性微分方程2432x y y y e '''-+=的通解为_____y =(15) 设(,)f u v 是二元可微函数,(,),y x z f x y =则z zxy x y∂∂-=∂∂_____ (16) 设矩阵01000010,00010000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭则3A 的秩为_____.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)设()f x 是区间[0,]4π上的单调、可导函数,且满足()10cos sin ()sin cos f x xt tf t dt tdt t t--=+⎰⎰其中1f-是f 的反函数,求()f x .(18)设D 是位于曲线2(1,0)x ay xa a x -=>≤<+∞下方、x 轴上方的无界区域.(I) 求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (II) 当a 为何值时,()V a 最小?并求出最小值.(19)求微分方程2()y x y y ''''+=满足初始条件(1)(1)1y y '==的特解.(20)已知函数()f u 具有二阶导数,且(0)1f '=,函数()y y x =由方程11y y xe --=所确定.设(ln sin )z f y x =-,求2002,x x dzd zdxdx ==.(21)设函数()f x ,()g x 在[],a b 上连续,在(,)a b 内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:存在(,),a b ξ∈使得''()''().f g ξξ=(22)设二元函数 222,1(,)1,12x x y f x y x y x y⎧+≤⎪=⎨<+≤⎪+⎩计算二重积分(,)Df x y d σ⎰⎰,其中{}(,)2D x y x y =+≤(23)设线性方程组1231232123020(1)40x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程 12321(2)x x x a ++=-有公共解,求a 得值及所有公共解.(24)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)T λλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(I)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量;(II) 求矩阵B .2007年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】B 【详解】方法1:排除法:由几个常见的等价无穷小,当0x →时,11;11;2xe x x x -+- 2221cos 2sin 2(),222x xx x -==当0x +→时,此时0x →,所以11();11;2xe x x x --+- 211cos (),2x x - 可以排除A 、C 、D ,所以选(B). 方法2: 1ln1x x +=-1ln 1x x x x -++=-ln[1]1x xx++-当0x +→时,11x -→,01x xx+→-,又因为0x →时,()ln 1x x + ,所以()ln[1]~~1~11x x x xx x x x x x x++++=+--,选(B).方法3:()0001111ln()ln()()1111lim limlim 12x x x x x x x x x x x xxx+++'''→→→+⎡⎤+-+⎢⎥-+--⎣⎦=洛()()()()()2001111211221lim lim 1112x x x x x x x x x x x x xx++→→-++-⋅+-+-==+- 设()()()2211111x x xA B x xx x+-=++-+-,则()()11422A x B x x x x x -++=+- 对应系数相等得:2,1A x B = =,所以 原式()()()022121lim lim 1111x x x x xx x x x x++→→+-⎡⎤==+⎢⎥+-+-⎣⎦021lim lim 0111x x x x x++→→=+=++-1=,选(B). (2)【答案】( A)【详解】首先找出()f x 的所有不连续点,然后考虑()f x 在间断点处的极限.()f x 的不连续点为0、1、2π±,第一类间断点包括可去间断点及跳跃间断点.逐个考虑各个选项即可.对A : 111111101()tan (1)lim ()lim lim lim 1,()(1)xxx x x x x xxxe e x e e e ef x x e e e ee e ++++-→→→→-+++====---11101110000lim ()tan lim ()lim lim 1.()lim x x x x x x x x x x x e e e e x e e e f x e x e e e e e e -----→→→→→⎛⎫+⎪++⎝⎭=====--⎛⎫--- ⎪⎝⎭()f x 在0x =存在左右极限,但()()0lim lim x x f x f x +-→→≠,所以0x =是()f x 的第一类间断点,选(A);同样,可验证其余选项是第二类间断点,()1lim x f x →=∞,()2lim x f x π→=∞,()2lim x f x π→-=∞. (3)【答案】C【详解】由题给条件知,()f x 为x 的奇函数,则()()f x f x -=-,由0()(),xF x f t d t =⎰ 知()()()()()()()()xx xF x f t dt t u f u d u f u f u f u du F x --==- -- -=- =⎰⎰⎰令因为,故()F x 为x 的偶函数,所以(3)(3)F F -=.而2(2)()F f t dt =⎰表示半径1R =的半圆的面积,所以22(2)()22R F f t dt ππ===⎰,32302(3)()()()F f t dt f t dt f t dt ==+⎰⎰⎰,其中32()f t dt ⎰表示半径12r =的半圆的面积的负值,所以22321()2228r f t dt πππ⎛⎫=-=-⋅=- ⎪⎝⎭⎰所以 232333(3)()()(2)288424F f t dt f t dt F ππππ=+=-==⋅=⎰⎰所以 3(3)(3)(2)4F F F -==,选择C (4)【答案】( D) 【详解】方法1:论证法,证明..A B C 都正确,从而只有.D 不正确.由0()limx f x x→存在及()f x 在0x =处连续,所以0(0)lim ()x f f x →=0000()()()lim()lim lim 0lim x x x x f x f x f x x x x x x→→→→==⋅=⋅0=,所以(A)正确;由选项(A)知,(0)0f =,所以00()(0)()lim lim 0x x f x f f x x x→→-=-存在,根据导数定义,0()(0)'(0)lim 0x f x f f x →-=-存在,所以(C)也正确;由()f x 在0x =处连续,所以()f x -在0x =处连续,从而[]0lim ()()lim ()lim ()(0)(0)2(0)x x x f x f x f x f x f f f →→→+-=+-=+=所以0000()()()()()()2(0)lim lim lim 0lim 0x x x x f x f x f x f x f x f x f x x x x x →→→→+-+-+-⎡⎤=⋅=⋅=⋅=⎢⎥⎣⎦即有(0)0f =.所以(B)正确,故此题选择(D).方法2:举例法,举例说明(D)不正确. 例如取()f x x =,有00()()limlim 00x x x x f x f x x x→→----==-存在而 ()()0000lim lim 100x x f x f x x x --→→---==---,()()0000lim lim 100x x f x f x x x +-→→--==--, 左右极限存在但不相等,所以()f x x =在0x =的导数'(0)f 不存在. (D)不正确,选(D).(5)【答案】D【详解】因为001lim lim ln(1)x x x y e x →→⎛⎫=++⎪⎝⎭001lim lim ln(1)x x x e x →→=++=∞,所以0x =是一条铅直渐近线;因为1lim lim ln(1)x x x y e x →-∞→-∞⎛⎫=++⎪⎝⎭--1lim lim ln(1)000x x x e x →∞→∞=++=+=, 所以0y =是沿x →-∞方向的一条水平渐近线;令 21l n (1)1l n (1)l i m l i m l i m x x x x x e y e x a x x x x →+∞→+∞→+∞++⎛⎫+===+ ⎪⎝⎭21ln(1)lim lim x x x e x x →+∞→+∞+=+10lim 11xx x e e →+∞+ +=洛必达法则 令 ()1l i m l i m l n (1)x x x b y a x e x x →+∞→+∞⎛⎫=-⋅=++- ⎪⎝⎭()1lim lim ln(1)x x x e x x →+∞→+∞=++-()ln 0lim ln(1)ln x x x x x e e e →+∞= ++- 1lim ln()xx x e e→+∞+=lim ln(1)ln10x x e -→+∞=+==所以y x =是曲线的斜渐近线,所以共有3条,选择(D)。

2007—数二真题、标准答案及解析

2007—数二真题、标准答案及解析

在区间上图形分别是直径为2的上、下半圆周,设则下列结论正确的
是:(C)
.
(4)设函数f(x)在x=0处连续,下列命题错误的是 (C)
A. 若存在,则 B. 若存在,
C. 若存在, 则 D. 存在,
(5)曲线渐近线的条数为
(D)
0
12
3
(6)设函数在上具有二阶导数,且,
令=
则下列结论正确的是
(D)
A.若,则必收敛 B. 若,则必发散
则原式可化为: 等式两边同时求导得:
(18)(本题满分11分) 设D是位于曲线 下方、轴上方的无界区域. (Ⅰ)求区域D绕轴旋转一周所成旋转体的体积; (Ⅱ)当为何值时,最小?并求此最小值. 【详解】:
得 故 即是唯一驻点,也是最小值点,最小值 (19)求微分方程满足初始条件的特解. 【详解】: 设,则代入得:
C. 若,则必收敛 D. 若,则必发散
(7)二元函数在点(0,0)处可微的一个充分条件是 ( )
A.
B. ,且
C.
D. 且
(8)设函数连续,则二次积分等于 ( )
(9)设向量组线形无关,则下列向量组线形相关的是: ( )
(A) (B)
(C) (D)
(10)设矩阵A=,B=,则A于B,
()
(A) 合同,且相似
C. 若,则必收敛 D. 若,则必发散
(7)二元函数在点(0,0)处可微的一个充分条件是 (c)
A.
B. ,且
C.
D. 且
(8)设函数连续,则二次积分等于 (B)
(9)设向量组线形无关,则下列向量组线形相关的是: (A)
(A) (B)
(C) (D)
(10)设矩阵A=,B=,则A于B,

2007年全国硕士研究生入学统一考试数学二试题解析

2007年全国硕士研究生入学统一考试数学二试题解析
lim f ( x) f ( x) lim f ( x) lim f ( x) f (0) f (0) 2 f (0)
x 0 x 0 x 0
f ( x) f ( x) f ( x) f ( x) f ( x) f ( x) 所以 2 f (0) lim x lim lim x 0 lim 0 x 0 x 0 x 0 x x x x 0
1 ex lim ln( x ) lim ln(e x 1) ln1 0 x x e
所以 y x 是曲线的斜渐近线,所以共有 3 条,选择(D) (6)【答案】( D) 【详解】 un f (n) ,由拉格朗日中值定理,有
un1 un f (n 1) f (n) f '(n )(n 1 n) f '(n ),(n 1, 2,L ) ,
f x lim f x ,所以 x 0 是 f ( x ) 的第一类间断点, f ( x ) 在 x 0 存在左右极限,但 lim
x 0 x 0
选(A); 同样,可验证其余选项是第二类间断点, lim f x , lim f x , lim f x .
0 0 2 2
3
2
3
3
1 的半圆的面积的负值, 2
-2-
所以 f (t )dt
2
3
r2
2

2
1
2
2 2 8
3

所以 所以
F (3) f (t )dt f (t )dt
0 2

2


8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年全国硕士研究生入学统一考试数学二试题一、 选择题:110小题,每小题4分,共40分,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1) 当0x +→)A.1-B1C.1D -【答案】(B)【考点】等价无穷小 【难易度】★★【详解】解析:方法1:排斥法:由几个常见的等价无穷小,当0x +→0→,所以11();11;2x x x --+-211(),2x x -可以排除A 、C 、D ,所以选(B ).方法2:==ln 1⎛+ ⎝ 当0x +→时,11→0→,又因为0x →时,()ln 1xx +,所以)ln 1~~1~x ⎛⎫= ⎝B ).(2) 函数11()tan ()()xxe e xf x x e e +=-在[],ππ-上的第一类间断点是x =( ).A 0 .B 1 .C 2π-.D 2π 【答案】( A)【考点】第一类间断点 【难易度】★★【详解】解析:首先找出()f x 的所有不连续点,然后考虑()f x 在间断点处的极限.()f x 的不连续点为0、1、2π±,第一类间断点包括可去间断点及跳跃间断点。

逐个考虑各个选项即可,对.A11111110111101110000()tan (1)lim ()lim lim lim 1,()(1)lim ()tan lim ()lim lim 1.()lim xxx x x x x xxxx x x x x x x x x x x e e x e e e e f x x e e e ee ee e e e x e e ef x e x e e e e e e ++++------→→→→-→→→→→+++====---⎛⎫+⎪++⎝⎭=====--⎛⎫--- ⎪⎝⎭()f x 在0x =存在左右极限,但()()0lim lim x x f x f x +-→→≠,所以0x =是()f x 的第一类间断点,选(A );同样,可以验证其余选项是第二类间断点,()1lim x f x →=∞,()2lim x f x π→=∞,()2lim x f x π→-=∞.(3) 如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上的图形分别是直径为2的上、下半圆周.设()(),xF x f t dt =⎰则下列结论正确的是( ).A (3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F = .D (3)F -5(2)4F =--【答案】( C)【考点】定积分的概念、定积分的基本性质,积分上限的函数及其导数 【难易度】★★★【详解】解析:由题给条件知,()f x 为x 的奇函数,则()()f x f x -=-,由()(),xF x f t dt =⎰知()()()()()()()()xx xF x f t dt t u f u d u f u f u f u du F x --= =- -- -=- =⎰⎰⎰,故()F x 为x 的偶函数,所以(3)(3).F F -=而20(2)()F f t dt =⎰表示半径1R =的半圆的面积,所以22(2)()22R F f t dt ππ===⎰,32302(3)()()()F f t dt f t dt f t dt ==+⎰⎰⎰,其中32()f t dt ⎰表示半径12r =的半圆的面积的负值,所以22321()2228r f t dt πππ⎛⎫=-=-⋅=- ⎪⎝⎭⎰所以3232333(3)()()()(2)288424F f t dt f t dt f t dt F ππππ==+=-==⋅=⎰⎰⎰ 所以3(3)(3)(2)4F F F -==,选择( C)(4) 设函数()f x 在0x =连续,则下列命题错误的是( ).A 若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x →+-存在,则(0)0f =.C 若0()lim x f x x →存在,则(0)f '存在 .D 若0()()lim x f x f x x→--存在,则(0)f '存在【答案】( D)【考点】极限的四则运算,函数连续的概念,导数的概念 【难易度】★★【详解】解析:方法1:论证法,证明..A B C 都正确,从而只有.D 不正确。

由0()limx f x x→存在及()f x 在0x =处连续,所以0(0)lim ()x f f x →=0000()()()lim()lim lim 0lim x x x x f x f x f x x x x x x→→→→==⋅=⋅0=,所以(A )正确; 由选项(A )知,(0)0f =,所以00()(0)()lim lim0x x f x f f x x x→→-=-存在,根据导数定义,0()(0)'(0)limx f x f f x →-=-存在,所以(C )也正确; 由()f x 在0x =处连续,所以()f x -在0x =处连续,从而[]0lim ()()lim ()lim ()(0)(0)2(0)x x x f x f x f x f x f f f →→→+-=+-=+=0000()()()()()()2(0)lim lim lim 0lim 0x x x x f x f x f x f x f x f x f x x x x x →→→→+-+-+-⎡⎤=⋅=⋅=⋅=⎢⎥⎣⎦,即有(0)0f =.所以(B )正确,故此题选择(D ).方法2:举例法,举例说明(D )不正确,例如取()f x x =,有00()()lim lim 00x x x x f x f x x x→→----==-存在 而()()0000lim lim 100x x f x f x x x --→→---==---,()()0000lim lim 100x x f x f x x x +-→→--==--,左右极限存在但不相等,所以()f x x =在0x =的导数()0f '不存在. (D )不正确,选(D ).(5) 曲线1ln(1)x y e x=++渐近线的条数为( ) .A 0 .B 1 .C 2 .D 3【答案】( D)【考点】函数图形的渐近线 【难易度】★★★【详解】解析:001lim lim ln(1)x x x y e x →→⎛⎫=++⎪⎝⎭=∞,所以0x =是一条铅直渐近线;1lim lim ln(1)x x x y e x →-∞→-∞⎛⎫=++ ⎪⎝⎭1lim lim ln(1)000x x x e x →-∞→-∞=++=+=,所以0y =是沿x →-∞方向的一条水平渐近线;令21ln(1)1ln(1)lim lim lim x x x x x e y e x a x x x x →+∞→+∞→+∞++⎛⎫+===+ ⎪⎝⎭21ln(1)lim lim x x x e x x →+∞→+∞+=+ln(1)0lim x x e x →+∞+=+1lim 11xx x e e →+∞+ =洛必达法则令()1lim lim ln(1)x x x b y a x e x x →+∞→+∞⎛⎫=-⋅=++- ⎪⎝⎭()()1limlim ln(1)0lim ln(1)x x x x x e x e x x →+∞→+∞→+∞=++-=++- ()1ln lim ln(1)ln lim ln()xxxxx x x e x e e e e→+∞→+∞+ = +-=lim ln(1)ln10x x e -→+∞=+==所以y ax b x =+=是曲线的斜渐近线,所以共有3条,选择(D )(6) 设函数()f x 在(0,)+∞上具有二阶导数,且()0f x ''>,令()(1,2,)n u f n n ==,则下列结论正确的是( ).A 若12u u >,则{}n u 必收敛 .B 若12u u >,则{}n u 必发散.C 若12u u <,则{}n u 必收敛 .D 若12u u <,则{}n u 必发散【答案】( D)【考点】数列极限的定义,函数单调性的判别,拉格朗日中值定理 【难易度】★★★【详解】解析:()n u f n =,由拉格朗日中值定理,有1n n (1)()'()(1)'(),(1,2,)n n u u f n f n f n n f n ξξ+-=+-=+-==,其中n 1n n ξ<<+,12n .ξξξ<<<<由()0,f x ''>知()f x '严格单调增,故12n ()()().f f f ξξξ'''<<<<若12u u <,则121'()0,f u u ξ=->所以12n 0'()'()'().f f f ξξξ<<<<<1111k 1111()()().nnn k k k k u u u u u f u nf ξξ++==''=+-=+>+∑∑而1()f ξ'是一个确定的正数.于是推知1lim ,n n u +→∞=+∞故{}n u 发散.选(D )(7) 二元函数(,)f x y 在点(0,0)处可微的一个充分条件是( ).A[](,)(0,0)lim(,)(0,0)0x y f x y f →-=.B []0(,0)(0,0)lim0x f x f x→-=且[]0(0,)(0,0)lim 0y f y f y→-=.C(,)(,)(0,0)lim0x y f x y f →-=.D []0lim (,0)(0,0)0x x x f x f →''-=且 0lim (0,)(0,0)0y y y f y f →''⎡⎤-=⎣⎦ 【答案】( C)【考点】全微分存在的充分条件 【难易度】★★★【详解】解析:方法一: 按可微性定义,f (x ,y )在(0,0)可微⇔ ))0,0(),(()()0,0(),(22→++++=y x y x o By Ax f y x f,0)0,0(),(lim23)0.0(),(=+---⇔→yx ByAx f y x f y x 其中A ,B 是与x ,y 无关的常数.题中的(C )即A =B =0的情形.因此由(C )⇒f (x ,y )在(0,0)可微.因此选(C ).方法二: 由(A )⇒f (x ,y )在(0,0)连续\⇒f (x ,y )在(0,0)可微.由(B )⇒(x ,y )在(0,0)可偏导且0)0,0(,0)0,0(=∂∂=∂∂yf x f ,但\⇒f (x ,y )在(0,0)可微.由(D )⇒),(y x f x '在(0,0)沿x 轴连续(即)0,(x f x '在x =0连续),),(y x f y '在 (0,0)沿y 轴连续(即),0(y f y '在y =0连续),但\⇒f (x ,y )在(0,0)可微. 因此选(C ).(8) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A 1arcsin (,)ydy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰【答案】( B)【考点】交换累次积分的次序与坐标系的转换 【难易度】★★【详解】解析:画出该二次积分所对应的积分区域D ,:2sin 1x D x y ππ⎧≤≤⎪⎨⎪≤≤⎩交换为先x 后y ,则积分区域可化为:arcsin 01y x y ππ-≤≤⎧⎨≤≤⎩所以11sin 0sin 2(,)(,)xarc ydx f x y dy dy f x y dx ππππ-=⎰⎰⎰⎰, 所以选择(B).(9) 设向量组123,,ααα线性无关,则下列向量组线性相关的是 ( ).A 12αα-2331,,αααα-- .B 21αα+2331,,αααα++ .C 1223312,2,2αααααα--- .D 1223312,2,2αααααα+++【答案】(A)【考点】向量组线性相关的判别法【难易度】★★★【详解】解析:方法1:根据线性相关的定义,若存在不全为零的数123,,k k k ,使得1122330k k k ααα++=成立,则称123,,ααα线性相关.因 1223310αααααα-+-+-=, 故122331αααααα---,,线性相关,所以选择(A ). 方法2:排除法因 [][][]1223311231232101,,,,110,,,011C αααααααααααα⎡⎤⎢⎥+++==⎢⎥⎢⎥⎣⎦ 其中2101110011C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 2101110011C =11101111(1)20111111111011+-⨯-+-=-=⨯-⨯-行行()()20=≠.故2C 是可逆矩阵,由可逆矩阵可以表示为若干个初等矩阵的乘积, 2C 右乘[]123,,ααα时,等于作若干次初等变换,初等变换不改变矩阵的秩,故有122331123(,,)(,,)3r r ααααααααα+++==故122331,,αααααα+++线性无关,排除(B ).因 [][][]12233112312331022,2,2,,210,,,021C αααααααααααα-⎡⎤⎢⎥---=-=⎢⎥⎢⎥-⎣⎦其中3102210021C -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,3102210021C -=--111021410141112421021+--⨯-=-=⨯--⨯---行2+2行()()()≠=-70.故3C 是可逆矩阵,故有122331123(2,2,2)(,,)3r r ααααααααα---==故1223312,2,2αααααα---线性无关,排除(C ).因[][][]12233112312341022,2,2,,210,,,021C αααααααααααα⎡⎤⎢⎥+++==⎢⎥⎢⎥⎣⎦ 其中4102210021C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 4102210021C =11102141(2)20141112421021+-⨯-+-=-=⨯-⨯-行行()()90.=≠故4C 是可逆矩阵,故有122331123(2,2,2)(,,)3r r ααααααααα+++==故1223312,2,2αααααα+++线性无关,排除(D ). 综上知应选(A ).(10) 设矩阵211121112A --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,100010000B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则A 与B ( ) .A 合同,且相似 .B 合同,但不相似.C 不合同,但相似 .D 既不合同,也不相似【答案】(B )【考点】相似矩阵的概念,矩阵合同的判定 【难易度】★★ 【详解】解析:211121112E A λλλλ--=--112312112λλλλλ--、列分别加到列 111121112λλλλ--提出1111103112λλλ⨯---行()+2行11111033λλλ⨯---行()+3行113103λλλ+-=--()()230λλ=-=则的A 特征值为3,3,0;B 是对角阵,对角元素即是其特征值,则B 的特征值为1,1,0.,A B 的特征值不相同,由相似矩阵的特征值相同知,A B 与不相似.由,A B 的特征值可知,,A B 的正惯性指数都是2,又秩都等于2可知负惯性指数也相同,则由实对称矩阵合同的充要条件是有相同的正惯性指数和相同的负惯性指数,知A 与B合同,应选(B ).二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (11)30arctan sin lim_________x x xx→-= 【答案】16-【考点】洛必达法则,泰勒公式 【难易度】★★【详解】解析:方法一:由洛必达法则,()()2232220001cos 11cos arctan sin 01lim lim lim 0331x x x x x x x x x x x x x →→→--+-+ =+ ()2232001sin 2cos 002sin (1)cos 2cos 2sin lim lim 06120636x x x x x x x x x x x x xx x x →→+-++-+ ++ 22222200004sin (1)cos 2cos 4sin (1)cos 2cos lim lim lim lim 636636636636x x x x x x x x x x x x x x x x x x →→→→++-+==+-++++ 1210666=+-=-方法二:泰勒公式展开()()()333333333000111+++arctan sin 1636lim lim =lim =6x x x x x o x x x o x x o x x x x x x →→→⎡⎤⎡⎤----⎢⎥⎢⎥-⎣⎦⎣⎦=-(12)曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=的点处的法线斜率为_____【答案】1+【考点】平面曲线的法线 【难易度】★★【详解】解析:dy dx =()()21sin cos cos t dy dt dx dtt t '+='+cos sin 2sin cos t t t t=-- 把4t π=代入,4dy dx t π=cos4sin 2sin cos 4442222ππππ====--=所以法线斜率为1(13)设函数123y x =+,则()(0)___________n y = 【答案】1(1)2!3n n n n +-【考点】高阶导数 【难易度】★★ 【详解】解析:()112323y x x -==++,()()()111111'(1)232(1)1!223y x x x ----'=-⋅+⋅=-⋅⋅⋅+,()()321222''(1)(2)223(1)2!223,,y x x ---=-⋅-⋅⋅+=-⋅⋅+由数学归纳法可知()1()(1)2!23,n n nnyn x --=-+把0x =代入得:()1(1)2!(0)3n n n n n y +-= (14)二阶常系数非齐次线性微分方程2432xy y y e'''-+=的通解为_____y =【答案】32122x x xC e C e e +-【考点】自由项为指数函数的二阶常系数非齐次线性微分方程 【难易度】★★【详解】解析:这是二阶常系数非齐次线性微分方程,且函数()f x 是()xm P x e λ型(其中()2,2m P x λ= =).与所给方程对应的齐次方程为430y y y '''-+=,它的特征方程为2430,r r -+=则()()310r r --=,得特征根121,3,r r ==对应齐次方程的通解1231212r xr xx xY C e C e C e C e =+=+由于这里2λ=不是特征方程的根,所以应设该非齐次方程的一个特解为*2,x y Ae =()*22x y Ae '=,()*24x y Ae ''=,代入原方程:222244232x x x x Ae Ae Ae e -⋅+=,即222x x Ae e -=,则2A =-,所以*22.x y e =-故得原方程的通解为32122x x xy C e C e e =+-.(15)设(,)f u v 是二元可微函数,(,),y x z f x y =则z zxy x y∂∂-=∂∂_____ 【答案】''122()y x f f x y-+ 【考点】多元复合函数一阶偏导数的求法【难易度】★★【详解】解析:121221''''x y y z y x f f f f x x x x y ⎛⎫⎛⎫∂∂ ⎪⎪∂⎛⎫⎝⎭⎝⎭=⋅+⋅=⋅-+⋅ ⎪∂∂∂⎝⎭,12'x y y z x f f y y y ⎛⎫⎛⎫∂∂ ⎪⎪∂⎝⎭⎝⎭'=⋅+⋅=∂∂∂1221''x f f x y ⎛⎫⋅+⋅- ⎪⎝⎭把z x ∂∂,zy∂∂代入z z x y x y ∂∂-∂∂,则: 12122211''''z z y x x y x f f y f f x y x y x y ⎡⎤⎡⎤⎛⎫∂∂⎛⎫-=⋅⋅-+⋅-⋅+⋅-⎢⎥ ⎪ ⎪⎢⎥∂∂⎝⎭⎣⎦⎝⎭⎣⎦ 1212''''y x y x f f f f x y x y ⎛⎫=-⋅+⋅-⋅+⋅ ⎪⎝⎭''122()y x f f x y =-+(16) 设矩阵01000010,00010000A ⎛⎫⎪ ⎪= ⎪⎪⎝⎭则3A 的秩为_____.【答案】1【考点】矩阵的秩 【难易度】★★ 【详解】解析:2010001000010*********001000100010000000000000000A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭32001001000001000100100000000000010000000000000000A A A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⋅==⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由阶梯矩阵的行秩等于列秩,其值等于阶梯形矩阵的非零行的行数,知()3 1.r A =三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分)设()f x 是区间[0,]4π上的单调、可导函数,且满足()1cos sin ()sin cos f x xt tf t dt tdt t t--=+⎰⎰其中1f-是f 的反函数,求()f x .【考点】积分上限的函数及其导数,不定积分的换元积分法 【难易度】★★【详解】解析:方程()100cos sin ()sin cos f x xt tf t dt tdt t t--=+⎰⎰两边对x 求导, 得 1cos sin [()]()sin cos x xf f x f x xx x--'=+ 即 cos sin ()sin cos x xxf x x x x-'=+当0x ≠时,对上式两边同时除以x 得,cos sin ()sin cos x xf x x x-'=+,所以cos sin (sin cos )()sin cos sin cos x x d x x f x dx x x x x-+==++⎰⎰()ln sin cos f x x x C =++在已知等式中令0x =得(0)10()0,f f t dt -=⎰因()f x 是[0,]4π上得单调、可导函数,1()f t -的值域为[0,]4π,它是单调非负的,故必有(0)0f =,从而两边对上式取0x +→极限0lim ()(0)0x f x f C +→===于是()ln sin cos ,[0,]4f x x x x π=+∈因为故 ()ln(sin cos ),[0,]4f x x x x π=+∈.(18)(本题满分11分)设D是位于曲线2(1,0)x ay a x -=>≤<+∞下方、x 轴上方的无界区域.(Ⅰ)求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (Ⅱ)当a 为何值时,()V a 最小?并求出最小值. 【考点】旋转体的体积,函数的最大值与最小值 【难易度】★★★ 【详解】解析:(Ⅰ)()0xaV a xa dx π-∞=⎰0ln xa axd a a π-∞⎛⎫=-⎪⎝⎭⎰ 00[]ln ln x x a a a a xa a dx a a ππ+∞--∞=-+⎰2ln a a π⎛⎫= ⎪⎝⎭ (Ⅱ)()2[]ln a V a a π⎛⎫''= ⎪⎝⎭22412ln 2ln ln a a a a a aπ-⋅⋅=⋅32ln 2ln a a a aπ-=⋅()3ln 12ln a a a π-⎛⎫= ⎪⎝⎭令()0V a '=,得ln 1a =,从而a e = 当1a e <<时,()0V a '<,()V a 单调减少; 当a e >时,()0V a '>,()V a 单调增加, 所以a e =时V 最小,最小体积为()2min V a e π=(19)(本题满分11分)求微分方程2()y x y y ''''+=满足初始条件(1)(1)1y y '==的特解.【考点】y"=f(x,y ′)型的可降阶高阶微分方程【难易度】★★★【详解】解析:令y p '=,则y p '''=,原方程化为2()p x p p '+=,两边同时除以p p '得,1x p p p +='将dp p dx'=带入上式 即为dx xp dp p-= 按一阶线性方程求导公式, 得 111ln ()()dpdpdpp C p p p x epedp C e pedp --+⎰⎰⎰=+=⎰⎰[]()p dp C p p C =+=+⎰带入初始条件得0C =,于是 2p x =由(1)1y '=知p =dydx=解得32123y x C =+,带入初始条件得113C =所以特解为322133y x =+.(20)(本题满分10分)已知函数()f u 具有二阶导数,且(0)1f '=,函数()y y x =由方程11y y xe--=所确定.设(ln sin )z f y x =-,求2002,x x dz d z dxdx ==.【考点】多元隐函数的求导法 【难易度】★★★【详解】解析:由方程11y y xe--= (0)1y ⇒=,求导得110(0)1y y y exe y y --'''--=⇒=.再求导得 .2)0(0)e (e211="⇒=''-'-"--y y x y y y y现由 (ln sin )z f y x =- ⇒.00)0(|d d )cos 1)(sin (ln d d 0=⨯'=⇒-'-'==f xz x y y x y f x z x 又 ),sin 11)(sin (ln )cos 1)(sin (ln d d 22222x y yy y x y f x y y x y f x z +"+'--'+-'-"=⇒ .1)21)(0(0)0(|d d 022=+-'+⨯"==f f xzx(21)(本题满分11分)设函数()f x ,()g x 在[],a b 上连续,在(,)a b 内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:存在(,),a b ξ∈使得''()''().f g ξξ=【考点】零点定理、罗尔定理 【难易度】★★★★【详解】解析:命()()()x f x g x ϕ=-,由题设(),()f x g x 存在相等的最大值,设1(,)x a b ∈,2(,)x a b ∈使12[.][.]()max ()()max ()a b a b f x f x g x g x ===于是 111222()()()0,()()()0x f x g x x f x g x ϕϕ=-≥=-≤若1()0x ϕ=,则取1(,)x a b η=∈有()0ϕη=. 若2()0x ϕ=,则取2(,)x a b η=∈有()0ϕη=.若12()0,()0x x ϕϕ><,则由连续函数介值定理知,存在12(,)x x η∈使()0ϕη=.不论以上哪种情况,总存在(,),a b η∈使()0ϕη=。

相关文档
最新文档