《疲劳与断裂》PPT课件
合集下载
机械零件的疲劳强度与疲劳断裂ppt(共37页)
s
2s1 s0 s0
对于碳钢,σ≈0.1~0.2,对于合金钢,σ≈0.2~0.3。
§3-3影响机械零件疲劳强度的主要因素
一、应力集中:
有效应力集中系数 Ks1q(s1)
s —几何形状决定的理论系数 ( 图3-9) q—敏感系数 (图3-10) 铸铁:(q=0) 定性: 跟材料、形状有关
σB A B C
可用下式描述
srm N N = C (N C≤ N ≤ N D )
σrN σr
潘存云教授研制
D点以后的疲劳曲线呈 一水平线,代表着无限寿命
N=1/4
103 104 N
D N0≈107 N
区其方程为
s s rN r N ( N D )
由于ND很大,所以在作疲劳试验时,常规定一个
N=1/4 103 104 N
D N
N0≈107
式中, sr、N0及m的值由材料试验确定。 试验结果表明在CD区间内,试件经过相应次数的
边应力作用之后,总会发生疲劳破坏。而D点以后,如 果作用的变应力最大应力小于D点的应力(σmax<σr),
则无论循环多少次,材料都不会破坏。
CD区间——有限疲劳寿命阶段 D点之后——无限疲劳寿命阶段 高周疲劳
循环次数N0(称为循环基数),用N0及其相对应的疲劳
极限σr来近似代表ND和 σr∞。
于是有 srm N NsrmN0C
CD区间内循环次数N与疲 劳极限srN的关系为
srN
sr
m
N0 N
KNsr
N
sr s rN
m N0
σmax σB A B C
σ 潘存云教授研制 rN σr
二、极限应力图(σ m——σ a)
材料的疲劳损伤与断裂.完整版PPT资料
1970 1980
2000
疲劳的根本概念
疲劳的根本概念
What is fatigue ?
The process of progressive localized permanent structural change occurring in a material subjected to conditions which produce fluctuating stresses and strains at some point or points and which may culminate in crack or complete fracture after a sufficient number of fluctuations.
S
S
S
0
t0
t0
t0
t
三角波
正弦波
矩形波
梯形波
材料的疲劳性能
材料的疲劳性能
材料的疲 劳性能
材料的循环变形特性 - relationship
载荷寿命关系 -N curve -N curve
疲劳裂纹扩展特性 da/dN curve
材料的疲劳性能
拉伸应力-应变关系
σ-ε
S-e
σ ε
单调σ-ε曲线
单调拉伸和单调压缩曲线关于原点O对称;在 屈服极限A点以内是直线。
工程中的疲劳现象
Case 2: rotating shaft with overhung flywheel
Service conditions: Load W, constant Shaft rotates at 250 rev/min, 8hr/day, 300 days/yr
In a service life of 40 years the shaft accumulates 25060830040 =1.44109 cycles of bending moment, WL
疲劳与断裂5PPT课件
所幸的是,断裂力学的发展帮助我们避免了一些潜 在的危险。我们对材料如何破坏的理解、避免这类 破坏发生的能力,自二次世界大战以来已显著增加。 然而,还有许多要研究,已有的断裂力学知识也并 未总是在适当的时候得到应用。
7
5.2 裂纹尖端的应力强度因子
裂纹的 三种基 本受载 形式:
y
x
t
z
1型 t
y
x
作用(、a)越大,抗力(K1C )越低,越可能断裂。
K是低应力脆性断裂(线弹性断裂)发生与否 的控制参量,断裂判据可写为:
K= f (Wa ,L) pa K1c 16
断裂判据:
K= f (Wa ,L) pa K1c 或 KK1C
这是进行抗断设计的基本控制方程。
f是裂纹尺寸a和构件几何(如W)的函数,查手册; K1C是断裂韧性(材料抗断指标),由试验确定。
r, ij趋于零;但显然可知, 当q=0时,在x轴 上远离裂纹处,应有y=,且不受r的影响。故 此时应以其后的r0阶项为主项。
断裂力学关心的是裂纹尖端附近的应力场。
11
裂尖的应力强度因子K1: K1= p a
K反映了裂尖应力场的强弱;足标1表示是1型。
ij越大,K越大;裂纹尺寸a越大,K越大。 K的量纲为[应力][长度]1/2,常用MPa m。
内压 p ,则 ,临界裂纹尺寸 ac ;
若内压不变,容器直径 d , , ac , 抗断裂能力越差。
22
本章基本概念
低应力断裂:在静强度足够的情况下发生的断裂。
剩余强度: 受裂纹影响降低后的强度。 工程中最常见的、危害最大的是 I (张开)型裂纹。 用弹性力学方法可以得到裂纹尖端附近任一点 (r,q)处的正应力x、y和剪应力txy为:
7
5.2 裂纹尖端的应力强度因子
裂纹的 三种基 本受载 形式:
y
x
t
z
1型 t
y
x
作用(、a)越大,抗力(K1C )越低,越可能断裂。
K是低应力脆性断裂(线弹性断裂)发生与否 的控制参量,断裂判据可写为:
K= f (Wa ,L) pa K1c 16
断裂判据:
K= f (Wa ,L) pa K1c 或 KK1C
这是进行抗断设计的基本控制方程。
f是裂纹尺寸a和构件几何(如W)的函数,查手册; K1C是断裂韧性(材料抗断指标),由试验确定。
r, ij趋于零;但显然可知, 当q=0时,在x轴 上远离裂纹处,应有y=,且不受r的影响。故 此时应以其后的r0阶项为主项。
断裂力学关心的是裂纹尖端附近的应力场。
11
裂尖的应力强度因子K1: K1= p a
K反映了裂尖应力场的强弱;足标1表示是1型。
ij越大,K越大;裂纹尺寸a越大,K越大。 K的量纲为[应力][长度]1/2,常用MPa m。
内压 p ,则 ,临界裂纹尺寸 ac ;
若内压不变,容器直径 d , , ac , 抗断裂能力越差。
22
本章基本概念
低应力断裂:在静强度足够的情况下发生的断裂。
剩余强度: 受裂纹影响降低后的强度。 工程中最常见的、危害最大的是 I (张开)型裂纹。 用弹性力学方法可以得到裂纹尖端附近任一点 (r,q)处的正应力x、y和剪应力txy为:
疲劳与断裂-应变疲劳培训课件
采用各级应变水平由小到大再由大到小构成的程序块,由一根试 样反复试验直至响应应力达到稳定值,将这个稳定循环程序块得到的 许多滞回环顶点连接起来即可得到循环应力应变曲线。
Masing效应
在不同应力水平得到的滞回环通过坐标平移,使其最低点与原点 重合,如果滞回环最高点的连线与其上行线重合,则该材料具有 Masing效应。
6
2. 单调应力-应变曲线
s
A
均匀变形阶段,s-e曲线上任一点的应
变e,均可表示为:
e=ee+ep
s-ee关系用Hooke定理表达为:s=Eee
0 ep ee e
s-ep关系用Holomon关系表达为:s=K(ep)n
Remberg-Osgood 弹塑性应力-应变关系:
e=eeep=E s(K s)1n
疲劳与断裂-应变疲劳
尽管大部分工程结构和构件设计的名 义载荷是保持弹性的,应力集中也会在缺 口附近引起塑性应变。
应变--寿命法假定在应变控制下试验的光滑试件 可以模拟工程构件缺口根部的疲劳损伤。如果承 受相同的应力--应变历程,则缺口根部材料有与 光滑件相同的疲劳损伤(和疲劳寿命)。
2
问题:
循环载荷下,应变如何分析? 应变-寿命关系如何描述?
K为强度系数,应力量纲(MPa); n为应变硬化指数,无量纲。 n=0,理想塑性材料。
7
4.2 滞后(回)环和循环应力-应变响应
循环滞回环
Bauschinger效应
循环软/硬化行为 应变控制循环加载
循环软/硬化行为 应力控制循环加载
OFHC紫铜的循环硬化行为
其它材料的循环软/硬化行为
SA333 C–Mn钢
思路:
单调应力-应变 关系
Masing效应
在不同应力水平得到的滞回环通过坐标平移,使其最低点与原点 重合,如果滞回环最高点的连线与其上行线重合,则该材料具有 Masing效应。
6
2. 单调应力-应变曲线
s
A
均匀变形阶段,s-e曲线上任一点的应
变e,均可表示为:
e=ee+ep
s-ee关系用Hooke定理表达为:s=Eee
0 ep ee e
s-ep关系用Holomon关系表达为:s=K(ep)n
Remberg-Osgood 弹塑性应力-应变关系:
e=eeep=E s(K s)1n
疲劳与断裂-应变疲劳
尽管大部分工程结构和构件设计的名 义载荷是保持弹性的,应力集中也会在缺 口附近引起塑性应变。
应变--寿命法假定在应变控制下试验的光滑试件 可以模拟工程构件缺口根部的疲劳损伤。如果承 受相同的应力--应变历程,则缺口根部材料有与 光滑件相同的疲劳损伤(和疲劳寿命)。
2
问题:
循环载荷下,应变如何分析? 应变-寿命关系如何描述?
K为强度系数,应力量纲(MPa); n为应变硬化指数,无量纲。 n=0,理想塑性材料。
7
4.2 滞后(回)环和循环应力-应变响应
循环滞回环
Bauschinger效应
循环软/硬化行为 应变控制循环加载
循环软/硬化行为 应力控制循环加载
OFHC紫铜的循环硬化行为
其它材料的循环软/硬化行为
SA333 C–Mn钢
思路:
单调应力-应变 关系
疲劳与断裂讲课课件
材料因素
材料类型
不同材料的疲劳性能和断裂韧性各不相同,如金属、塑料、陶瓷 等。
材料微观结构
晶粒大小、相组成、微观缺陷等都会影响材料的疲劳性能和断裂韧 性。
材料成分
化学成分的差异也会影响材料的疲劳性能和断裂韧性,例如合金元 素对金属的疲劳性能有显著影响。
环境因素
温度
01
温度对材料的疲劳性能和断裂韧性有显著影响,有些材料在高
热处理和表面处理
对材料进行适当的热处理和表面处理,以提高其力学性能和抗疲 劳性能,进一步增强结构的耐久性。
质量检测
进行严格的质量检测,确保每个制造环节都符合设计要求和质量 标准,及时发现并处理潜在的问题。
使用阶段
定期检查和维护
建立定期检查和维护制度,对关键部位进行重点检查,及时发现 并修复疲劳裂纹和损伤,以延长结构的使用寿命。
总结词
汽车疲劳断裂事故分析
详细描述
汽车疲劳断裂事故通常是由于汽车零部件在承受重复载荷和热载荷时发生的。这个案例将分析汽车的 结构设计、材料选择以及断裂发生的过程,并讨论如何通过疲劳试验和无损检测来评估汽车的疲劳寿 命。此外,还会讨论汽车维护和检查的重要性,以及如何预防疲劳断裂的发生。
THANKS
感谢观看
载荷分析
准确分析结构所承受的载荷,以确定疲劳和断裂的关键区域,从而 进行针对性的优化设计。
优化设计
采用先进的计算和分析工具,对结构进行优化设计,以降低应力集中 和改善受力分布,从而减少疲劳和断裂的风险。
制造阶段
加工制造
确保制造过程中的精确性和一致性,以减小制造误差和残余应力 ,从而降低疲劳和断裂的可能性。
温下容易发生蠕变或热疲劳。
湿度
02
《疲劳断裂分析》课件
分析一起因桥梁疲劳断裂导致的事故,并总结教训。
2Hale Waihona Puke 案例二:飞机翼疲劳断裂事故
探讨飞机翼疲劳断裂事故的原因和改进措施。
总结
疲劳断裂的重要性
说明疲劳断裂对工程结构的重 要性和影响。
影响疲劳断裂的因素
列举影响疲劳断裂的常见因素 和变量。
预测与避免疲劳断裂
提供预测和避免疲劳断裂的一 些建议和方法。
《疲劳断裂分析》
本课程将介绍疲劳断裂的基本概念和理论,以及对材料和结构性能的影响。 你将学习疲劳断裂的形成机理、试验方法、预测与分析技术,以及如何防止 疲劳断裂发生。
疲劳断裂简介
什么是疲劳断裂
介绍疲劳断裂的定义和特点。
疲劳断裂对材料性能的影响
说明疲劳断裂对材料强度和可靠性的影响。
疲劳断裂形成机理
循环应力
循环应变
疲劳断裂曲线
解释循环应力如何导致疲劳断裂。 描述循环应变对疲劳断裂的作用。 阐述疲劳断裂曲线的特点和意义。
疲劳断裂试验
1 疲劳试验方法
介绍常用的疲劳试验方法 和标准。
2 疲劳试验数据与分析
讲解如何获取和分析疲劳 试验数据。
3 试验过程中需要注意
的问题
提醒试验中需要注意的关 键问题和技巧。
疲劳断裂的预测与分析
1
疲劳断裂寿命的评定
介绍常见的疲劳寿命评定方法和理论模型。
2
疲劳断裂的预测模型
讲解使用预测模型来预测疲劳断裂寿命。
3
疲劳断裂分析软件
推荐一些常用的疲劳断裂分析软件和工具。
防止疲劳断裂的方法
材料设计与选择 建立可靠的疲劳寿命预测模型 合理的结构设计
疲劳断裂事故案例分析
1
案例一:桥梁疲劳断裂事故
《疲劳与断裂》PPT课件
:
设计目标 初步设计
平衡方程
内强 强
变形几何条件
力 应
度 条
度 计
力件 算
应力应变关系
材料试验 极限应力 选取安全系数 许用应力
满 NO 修改 意 设计 ?
YES
结束
研究对象是无缺陷变形体,
研究目的是保证在最大载荷下有足够的强度。
精选课件ppt
4
有缺陷怎么办?
研究含缺陷材料的强度 --断裂
多次载荷作用下如何破坏?
静强度失效、断抗裂震失模效型和试疲验劳失效,是工程
中最(为破关坏注部的位基、本破失坏效形模式、。抗震能力)
精选课件ppt
16
疲劳与断裂
一. 概述
introduction
二. 应力疲劳 三. 疲劳应用统计学基础 四. 应变疲劳
Crack initiation
精选课件ppt
17
疲劳与断裂
五. 断裂失效与断裂控制设计 六. 表面裂纹 七. 弹塑性断裂力学简介
应力幅
Sa=(Smax-Smin)/2
应力变程 S=Smax-Smin
应力比或循环特性参数 R=Smin/Smax
精选课件ppt
22
定义:平均应力 Sm=(Smax+Smin)/2
(1)
应力幅
Sa=(Smax-Smin)/2
(2)
应力变程 S=Smax-Smin
(3)
应力比或循环特性参数 R=Smin/Smax
精选课件ppt
9
轴
叶轮
疲劳断裂破坏
精选课件ppt
10
转子轴
疲劳开裂
疲劳断裂破坏
精选课件ppt
11
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叶轮
疲劳断裂破坏
h
10
转子轴
疲劳开裂
疲劳断裂破坏
h
11
叶片击穿厂房
h
12
飞机整机结构强度实验
机翼破坏实验
h
13
飞机整机结构强度实验
机身破坏实验
h
14
上海 东方电视塔
高300m 球径45m
h
15
控制疲劳强度、断裂强度的是什么?
静强度失效、断抗裂震失模效型和试疲验劳失效,是工程
中最(为破关坏注部的位基、本破失坏效形模式式、。抗震能力)
强度判据:
( 作用 抗力 )
结构或构件的工作应力 材料的极限应力
ys b
延性材料 脆性材料
h
6
按静强度设计,满足[],为什么还发生破坏?
19世纪30-40年代,英国铁路车辆轮轴在轴肩处 (应力仅为0.4 ys )多次发生破坏;
1954年1月, 英国慧星(Comet)号喷气客机坠入地中 海(机身舱门拐角处开裂);
Smax、Smin、Sm 、Sa、S、R等量中, 只要已知二个,即可导出其余各量。
h
23
应力比R反映了载荷的循环特性。如
S R= -1
S R=0
S R=1
0
t
0
t
Smax=-Smin
Smin=0
对称循环
脉冲循环
0
t
Smax=Smin
静载
设计:用Smax,Smin ,直观; 试验:用Sm,Sa ,便于加载; 分析:用Sa,R,突出主要控制参量, 便于分类讨论。
变形几何条件
力 应
度 条
度 计
力件 算
应力应变关系
材料试验 极限应力 选取安全系数 许用应力
满 NO 修改 意 设计 ?
YES
结束
研究对象是无缺陷变形体, 研究目的是保证在最大载荷下有足够的强度。
h
4
有缺陷怎么办?
研究含缺陷材料的强度 --断裂
多次载荷作用下如何破坏?
研究多次使用载荷作用下的破坏 --疲劳
Crack propagation
h
18
第一章 概述 introduction
1.1 什么是疲劳? ASTM E206-72
The process of progressive localized permanent structural change occurring in a material subjected to conditions which produce fluctuating stresses and strains at some point or points and which may culminate in crack or complete fracture after a sufficient number of fluctuations.
受力如何? 如何运动?
理论力学、振动理论等, 研究对象为刚体; 基本方程是平衡方程、运动方程等。
如何变形?破坏?
材料力学、弹性力学、塑性力学等, 研究对象为变形体; 基本方程是平衡方程、物理方程、几何方程等。
h
3
控制设计:强度是最主要的控制指标。
强度设计的一般方法
:
设计目标 初步设计
平衡方程
内强 强
主要控制参量: Sa,重要影响参量:R 频率 (f=N/t) 和 波形的影响是较次要的。
h
16
疲劳与断裂
一. 概述
introduction
二. 应力疲劳 三. 疲劳应用统计学基础 四. 应变疲劳
Crack initiation
h
17
疲劳与断裂
五. 断裂失效与断裂控制设计 六. 表面裂纹 七. 弹塑性断裂力学简介
Fracture mechanics
八. 疲劳裂纹扩展 九. 裂纹闭合理论与高载迟滞效应 十. 疲劳寿命预测与抗疲劳设计
疲劳与断裂
Fatigue & Fracture
华中科技大学 疲劳与断裂课程组
h
返回主目录 1
回顾
工程力学(或者应用力学)是: 将力学原理应用实际工程系统的科学。
其目的是: 了解工程系统的性态 并为其设计提供合理的规则。
机械、结构等
受力如何? 如何运动? 如何变形?破坏? 如何控制设计?
h
性态
规则
2
S 变幅循环t 0 随机载荷 t
图1.1 疲劳载荷形式分类
h
21
循环应力 (cyclic stress)的描述:
恒幅循环应力是最简单的
S Smax
描述循环应力水平的基本量: 0
Smax, Smin
Smin
Sm Sa
Sa t
常用导出量:
平均应力 Sm=(Smax+Smin)/2
应力幅
Sa=(Smax-Smin)/2
在某点或某些点承受扰动应力,且在足够多的 循环扰动作用之后形成裂纹或完全断裂的材料中所 发生的局部永久结构变化的发展过程,称为疲劳。
h
19
疲劳是在某点或某些点承受扰动应力,且在 足够多的循环扰动作用之后形成裂纹或完全断裂的 材料中所发生的局部永久结构变化的发展过程。
纹,发展过程。
研究目的:预测寿命。
N=Ni+Np 裂纹萌生+ 扩展
h
20
1. 只有在扰动应力作用下,疲劳才会发生。
扰动应力,是指随时间变化的应力。 也可更一般地称为扰动载荷,
载荷可以是力、应力、应变、位移等。
要研究 载荷谱 的描述 与简化
S
S
Sm a x
S
0 恒幅循环 t 0
应力变程 S=Smax-Smin
应力比或循环特性参数 R=Smin/Smax
h
22
定义:平均应力 Sm=(Smax+Smin)/2
(1)
应力幅
Sa=(Smax-Smin)/2
(2)
应力变程 S=Smax-Smin
(3)
应力比或循环特性参数 R=Smin/Smax
(1)式二端除以Smax,有 Sm=[(1+R)/2]Smax (4) (2)式二端除以Smax,有 Sa=[(1-R)/2]Smax (5) (5)式除以(4)式,有 Sa=[(1-R)/(1+R)]Sm (6)
h
7
二次大战期间,400余艘全焊接舰船断裂。
1967年12月15日,美国西弗吉尼亚的 Point Pleasant桥倒塌, 46人死亡;
1980年3月27日,英国北海油田Kielland 号钻井 平台倾复;127人落水只救起 89人;
主要原因是由缺陷或裂纹导致的断裂。
h
8
大型汽轮机 转子
h
9
轴
缺陷从何而来?
材料固有或使用中萌生 , 扩展 --疲劳与断裂
h
5
结构/构件强度的控制参量是应力。
工作应力: 构件在可能受到的最大工作载荷作用下的应力。
( 由力学分析计算得到 )
极限应力: ys 、 b 材料可以承受的强度指标。 延性材料: ys ; 脆性材料: b
( 通过材料力学性能的实验得到 )