图的遍历(深度优先遍历和广度优先遍历 )

合集下载

图的遍历算法

图的遍历算法

1图的遍历问题在实践中常常遇到这样的问题:给定n个点,从任一点出发对所有的点访问一次并且只访问一次。

如果用图中的顶点表示这些点,图中的边表示可能的连接,那么这个问题就可以表示成图的遍历问题,即从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

图的遍历操作和树的遍历操作功能相似,是图的一种基本操作,图的许多其它操作都是建立在遍历操作的基础上。

由于图结构本身的复杂性,所以图的遍历操作也比较复杂,主要表现在以下几个方面:(1) 在图结构中,没有一个确定的首结点,图中任意一个顶点都可以作为第一个被访问的结点。

(2) 在非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点,因此,还需要考虑如何选取下一个出发点以访问图中其余的连通分量。

(3) 在图结构中,如果有回路存在,那么一个顶点被访问后,有可能沿回路又回到该顶点。

⑷在图结构中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,存在如何选取下一个要访问的顶点的问题。

基于以上分析,图的遍历方法目前有深度优先搜索(DFS)和广度优先搜索(BFS)两种算法。

下面将介绍两种算法的实现思路,分析算法效率并编程实现。

1.1深度优先搜索算法深度优先搜索算法是树的先根遍历的推广,它的实现思想是:从图G的某个顶点V o出发,访问V o,然后选择一个与V o相邻且没被访问过的顶点V i访问,再从V i出发选择一个与V i相邻且未被访问的顶点V j进行访问,依次继续。

如果当前被访问过的顶点的所有邻接顶点都已被访问,贝U退回已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样的方法向前遍历,直到图中所有顶点都被访问。

其递归算法如下:Boolean visited[MAX_VERTEX_NUM]; // 访问标志数组Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数void DFSTraverse (Graph G Status(*Visit)(i nt v)){VisitF unc = Visit;for(v=0; vvG.vex num; ++v)visited[v] = FALSE; //访问标志数组初始化for(v=0; v<G .vex num; ++v)if(!visited[v])DFS(G v); //对尚未访问的顶点调用DFS}void DFS(Graph G int v){ //从第v个顶点出发递归地深度优先遍历图Gvisited[v]=TRUE; VisitFunc(v); // 访问第v 个顶点for(w=FirstAdjVex(G ,v); w>=0;w=NextAdjVex(G ,v,w))//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。

图的深度广度优先遍历操作代码

图的深度广度优先遍历操作代码

一、实验目的1.掌握图的各种存储结构,特别要熟练掌握邻接矩阵和邻接表存储结构;2.遍历是图各种应用的算法的基础,要熟练掌握图的深度优先遍历和宽度优先遍历算法,复习栈和队列的应用;3.掌握图的各种应用的算法:图的连通性、连通分量和最小生成树、拓扑排序、关键路径。

二、实验内容实验内容1**图的遍历[问题描述]许多涉及图上操作的算法都是以图的遍历为基础的。

写一个程序,演示在连通无向图上遍历全部顶点。

[基本要求]建立图的邻接表的存储结构,实现无向图的深度优先遍历和广度优先遍历。

以用户指定的顶点为起点,分别输出每种遍历下的顶点访问序列。

[实现提示]设图的顶点不超过30个,每个顶点用一个编号表示(如果一个图有N个顶点,则它们的编号分别为1,2,…,N)。

通过输入图的全部边输入一个图,每条边是两个顶点编号对,可以对边依附顶点编号的输入顺序作出限制(例如从小到大)。

[编程思路]首先图的创建,采用邻接表建立,逆向插入到单链表中,特别注意无向是对称插入结点,且要把输入的字符在顶点数组中定位(LocateVex(Graph G,char *name),以便后来的遍历操作,深度遍历算法采用递归调用,其中最主要的是NextAdjVex(Graph G, int v, int w);FirstAdjVex ()函数的书写,依次递归下去,广度遍历用队列的辅助。

[程序代码]头文件:#include<stdio.h>#include<stdlib.h>#define MAX_VERTEX_NUM 30#define MAX_QUEUE_NUMBER 30#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2#define TRUE 1#define FALSE 0typedef int Status;typedef int InfoType;typedef int Status;/* 定义弧的结构*/typedef struct ArcNode{int adjvex; /*该边所指向的顶点的位置*/ struct ArcNode *nextarc; /*指向下一条边的指针*/ InfoType info; /*该弧相关信息的指针*/}ArcNode;/*定义顶点的结构*/typedef struct VNode{char data[40]; /*顶点信息*/ArcNode *firstarc; /*指向第一条依附该顶点的弧的指针*/}VNode,AdjList[MAX_VERTEX_NUM];/*定义图的结构*/typedef struct {AdjList vertices;int vexnum,arcnum; /*图的当前顶点数和弧数*/int kind; /*图的类型标志*/}Graph;/*定义队列的结构*/typedef struct{int *elem;int front, rear;}Queue;/*功能选择*/void MenuSelect(int w);/*顶点定位*/int LocateVex(Graph G,char *name);/*创建无向图*/void CreateGraph(Graph &G);/*求第一个顶点*/int FirstAdjVex(Graph G, int v);/*求下一个顶点*/int NextAdjVex(Graph G, int v, int w);/*深度递归*/void DFS(Graph G, int v) ;/*深度遍历*/void DFSTravel(Graph G,int v);/*广度遍历*/void BFSTraverse(Graph G,char *name);/*初始化队列*/Status InitQueue(Queue &Q);/*判空*/Status EmptyQueue(Queue Q);/*进队*/Status EnQueue(Queue &Q, int e);/*出队*/Status DeQueue(Queue &Q, int &e);实现文件:#include <stdio.h>#include"malloc.h"#include "tuhead.h"#include "stdlib.h"#include "string.h"bool visited[MAX_VERTEX_NUM];/************************************************************ 顶点定位************************************************************/int LocateVex(Graph G,char *name){int i;for(i=1;i<=G.vexnum;i++) //从1号位置开始存储if(strcmp(name,G.vertices[i].data)==0) //相等则找到,返回位序return i;return -1;}/************************************************************ 创建无向图************************************************************/void CreateGraph(Graph &G){ArcNode *p;char name1[10],name2[10];int i,j,k;printf(" 请输入顶点数,按回车键结束:");scanf("%d",&G.vexnum);printf(" 请输入弧数,按回车键结束:");scanf("%d",&G.arcnum);printf(" 请依次输入顶点名(用空格分开且字符小于10),按回车键结束:\n");printf(" ");for(i=1;i<=G.vexnum;i++) //从1号位置开始存储{scanf("%s",G.vertices[i].data); //从一号位置开始初始化G.vertices[i].firstarc=NULL;}printf("\n\n\n\n");printf(" ………………………………………输入小提示………………………………………\n");printf(" &&&&1 为避免输入遗漏,最好从选择任意一点,输入所有相邻边\n");printf(" &&&&2 输入边时格式(用空格分开,即格式为顶点(空格)顶点(空格))\n");printf(" ………………………………………输入小提示………………………………………\n\n\n\n");for(k=0;k<G.arcnum;k++){printf("请输入相邻的两个顶点,按回车键结束:");scanf("%s%s",name1,name2);i=LocateVex(G,name1); //返回位序j=LocateVex(G,name2);p=(ArcNode *)malloc(sizeof(ArcNode)); //申请边节点p->adjvex=j; //插入到邻接表中,注意此处为逆向插入到单链表中p->nextarc=G.vertices[i].firstarc;G.vertices[i].firstarc=p;//无向图,注意是对称插入结点p=(ArcNode *)malloc(sizeof(ArcNode));p->adjvex=i;p->nextarc=G.vertices[j].firstarc;G.vertices[j].firstarc=p;}}/************************************************************ 求第一个顶点************************************************************/int FirstAdjVex(Graph G, int v){ArcNode *p;if(v>=1 && v<=G.vexnum){p=G.vertices[v].firstarc;if(p->nextarc==NULL)return 0;elsereturn (p->nextarc->adjvex); //返回第一个顶点字符}return -1;}/************************************************************ 求下一个顶点************************************************************/int NextAdjVex(Graph G, int v, int w){ //在图G中寻找第v个顶点的相对于w的下一个邻接顶点ArcNode *p;if(v>=1 && v<=G.vexnum && w>=1 && w<=G.vexnum){p=G.vertices[v].firstarc;while(p->adjvex!=w)p=p->nextarc; //在顶点v的弧链中找到顶点wif(p->nextarc!=NULL)return 0; //若已是最后一个顶点,返回0 elsereturn(p->nextarc->adjvex); //返回下一个邻接顶点的序号}return -1;}/************************************************************ 深度递归************************************************************/void DFS(Graph G, int v){int w;ArcNode *p;visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点p=G.vertices[v].firstarc; //p为依附顶点的第一条边while (p!=NULL){w=p->adjvex;if(visited[w]==0)DFS(G,w);p=p->nextarc; //下移指针}}/************************************************************ 深度遍历************************************************************/void DFSTravel(Graph G,int v){for(int i=1;i<=G.vexnum;i++)visited[i]=0;int w;ArcNode *p;visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点p=G.vertices[v].firstarc;while (p!=NULL){w=p->adjvex;if(visited[w]==0)DFS(G,w);p=p->nextarc;}}/************************************************************ 初始化队列************************************************************/Status InitQueue(Queue &Q){Q.elem = new int[MAX_QUEUE_NUMBER];Q.front = Q.rear = 0;return OK;}Status EmptyQueue(Queue Q){if(Q.front==Q.rear)return 0;elsereturn 1;}/*********************************************************** * 进队列* ***********************************************************/ Status EnQueue(Queue &Q, int e){if((Q.rear + 1)%MAX_QUEUE_NUMBER != Q.front)Q.elem[Q.rear ] = e;else ;Q.rear = (Q.rear + 1)%MAX_QUEUE_NUMBER;return OK;}/*********************************************************** * 出队列* ***********************************************************/ Status DeQueue(Queue &Q, int &e){if(Q.rear != Q.front)e = Q.elem[Q.front];else ;Q.front = (Q.front+1)%MAX_QUEUE_NUMBER;return OK;}/*********************************************************** * 广度遍历************************************************************/void BFSTraverse(Graph G,char *name){ArcNode *p;int v,w,u,k=0;Queue Q;int visited[20];for(v=1;v<=G.vexnum;v++) //初始化visited[v]=0;InitQueue(Q);for(v=LocateVex(G,name);k!=2;v=(v+1)%(G.vexnum-1)) //v为输入的字符转化的位序{if(v+1==LocateVex(G,name)) //从v开始走完图的所有顶点k++;if(visited[v]==0){visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点EnQueue(Q,v); // 进队while(EmptyQueue(Q)!=0){DeQueue(Q,u); //出队p=G.vertices[u].firstarc;while(p!=NULL){w=p->adjvex; //p边的下一个顶点if(visited[w]==0){printf("%s ",G.vertices[w].data);visited[w]=1;EnQueue(Q,w);}p=p->nextarc; //下移指针}}}}}主文件:#include <stdio.h>#include"malloc.h"#include "tuhead.h"#include "stdlib.h"#include "string.h"/************************************************************ 界面控制************************************************************/void main(){printf("\n################################# 图的遍历#################################\n");printf("\n $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n");printf("\n");printf(" 1 ------- 图的创建\n");printf(" 2 ------- 图的深度优先遍历\n");printf(" 3 ------- 图的广度优先遍历\n");printf(" 0 ------- 退出\n");printf("\n $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n");printf("\n");printf("请输入选择的操作代码(0-3)按回车键结束\n");MenuSelect(1);}/************************************************************ 功能选择************************************************************/void MenuSelect(int w){int select,done;int v;Graph G; char name[10];while (done) {printf("input the operating code : ");scanf("%d",&select);switch(select){case 1: printf("根据要求创建图:\n ");CreateGraph(G);break;case 2: printf("请输入深度优先遍历开始点的名:");scanf("%s",name);v=LocateVex(G,name); //将输入字符找到在顶点数组name对应的序号Vprintf("深度优先遍历:");DFSTravel(G,v);printf("\n");break;case 3: printf("请输入广度优先遍历开始点的名:");scanf("%s",name);printf("广度优先遍历:");BFSTraverse(G,name);printf("\n");break;case 0: done=0; break;default: printf(" ERROR\n");}printf("\n");}}[实验数据与结果]测试数据:实验结果。

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度深度优先算法和广度优先算法是在图论中常见的两种搜索算法,它们在解决各种问题时都有很重要的作用。

本文将以深入浅出的方式从时间复杂度的角度对这两种算法进行全面评估,并探讨它们在实际应用中的优劣势。

1. 深度优先算法的时间复杂度深度优先算法是一种用于遍历或搜索树或图的算法。

它从图中的某个顶点出发,沿着一条路径一直走到底,直到不能再前进为止,然后回溯到上一个节点,尝试走其他的路径,直到所有路径都被走过为止。

深度优先算法的时间复杂度与图的深度有关。

在最坏情况下,深度优先算法的时间复杂度为O(V+E),其中V表示顶点的数量,E表示边的数量。

2. 广度优先算法的时间复杂度广度优先算法也是一种用于遍历或搜索树或图的算法。

与深度优先算法不同的是,广度优先算法是从图的某个顶点出发,首先访问这个顶点的所有邻接节点,然后再依次访问这些节点的邻接节点,依次类推。

广度优先算法的时间复杂度与图中边的数量有关。

在最坏情况下,广度优先算法的时间复杂度为O(V+E)。

3. 深度优先算法与广度优先算法的比较从时间复杂度的角度来看,深度优先算法和广度优先算法在最坏情况下都是O(V+E),并没有明显的差异。

但从实际运行情况来看,深度优先算法和广度优先算法的性能差异是显而易见的。

在一般情况下,广度优先算法要比深度优先算法快,因为广度优先算法的搜索速度更快,且能够更快地找到最短路径。

4. 个人观点和理解在实际应用中,选择深度优先算法还是广度优先算法取决于具体的问题。

如果要找到两个节点之间的最短路径,那么广度优先算法是更好的选择;而如果要搜索整个图,那么深度优先算法可能是更好的选择。

要根据具体的问题来选择合适的算法。

5. 总结和回顾本文从时间复杂度的角度对深度优先算法和广度优先算法进行了全面评估,探讨了它们的优劣势和实际应用中的选择。

通过对两种算法的时间复杂度进行比较,可以更全面、深刻和灵活地理解深度优先算法和广度优先算法的特点和适用场景。

第15讲图的遍历

第15讲图的遍历

V6
V8
V8
V7
V5 深度优先生成树
V8 V1
V2
V3
V4 V5 V6 V7
V8 广度优先生成树
27
例A
B
CD E
F
GH
I
K
J
L
M
A
D
G
LCF
KI E
H M
JB
深度优先生成森林
28
二、图的连通性问题
▪1、生成树和生成森林
▪ 说明
G
▪ 一个图可以有许多棵不同的生成树
KI
▪ 所有生成树具有以下共同特点:
g.NextAdjVex(v, w))
{
if (g.GetTag(w) == UNVISITED)
{
g.SetTag(w, VISITED);
g.GetElem(w, e);
Visit(e);
q.InQueue(w);
}
}}}
24
一、图的遍历 两种遍历的比较
V0
V1 V4
V0
V1 V4
V3
V2 V5
16
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V1
V4
V5 V6
V7
V8
遍历序列: V1
17
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V2 V3
V4
V5 V6
V7
V8
遍历序列: V1 V2 V3
18
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2

第7章图的深度和广度优先搜索遍历算法

第7章图的深度和广度优先搜索遍历算法
7.3 图的遍历
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }

广度优先和深度优先的例子

广度优先和深度优先的例子

广度优先和深度优先的例子广度优先搜索(BFS)和深度优先搜索(DFS)是图遍历中常用的两种算法。

它们在解决许多问题时都能提供有效的解决方案。

本文将分别介绍广度优先搜索和深度优先搜索,并给出各自的应用例子。

一、广度优先搜索(BFS)广度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,逐层扩展,先访问起始节点的所有邻居节点,再依次访问其邻居节点的邻居节点,直到遍历完所有节点或找到目标节点。

例子1:迷宫问题假设有一个迷宫,迷宫中有多个房间,每个房间有四个相邻的房间:上、下、左、右。

现在我们需要找到从起始房间到目标房间的最短路径。

可以使用广度优先搜索算法来解决这个问题。

例子2:社交网络中的好友推荐在社交网络中,我们希望给用户推荐可能认识的新朋友。

可以使用广度优先搜索算法从用户的好友列表开始,逐层扩展,找到可能认识的新朋友。

例子3:网页爬虫网页爬虫是搜索引擎抓取网页的重要工具。

爬虫可以使用广度优先搜索算法从一个网页开始,逐层扩展,找到所有相关的网页并进行抓取。

例子4:图的最短路径在图中,我们希望找到两个节点之间的最短路径。

可以使用广度优先搜索算法从起始节点开始,逐层扩展,直到找到目标节点。

例子5:推荐系统在推荐系统中,我们希望给用户推荐可能感兴趣的物品。

可以使用广度优先搜索算法从用户喜欢的物品开始,逐层扩展,找到可能感兴趣的其他物品。

二、深度优先搜索(DFS)深度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,沿着一条路径一直走到底,直到不能再继续下去为止,然后回溯到上一个节点,继续探索其他路径。

例子1:二叉树的遍历在二叉树中,深度优先搜索算法可以用来实现前序遍历、中序遍历和后序遍历。

通过深度优先搜索算法,我们可以按照不同的遍历顺序找到二叉树中所有节点。

例子2:回溯算法回溯算法是一种通过深度优先搜索的方式,在问题的解空间中搜索所有可能的解的算法。

回溯算法常用于解决组合问题、排列问题和子集问题。

例子3:拓扑排序拓扑排序是一种对有向无环图(DAG)进行排序的算法。

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。

功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。

按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

它是许多图的算法的基础。

深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。

它们对无向图和有向图均适用。

注意:以下假定遍历过程中访问顶点的操作是简单地输出顶点。

2、布尔向量visited[0..n-1]的设置图中任一顶点都可能和其它顶点相邻接。

在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。

为了避免重复访问同一个顶点,必须记住每个已访问的顶点。

为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。

--------------------------深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。

在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。

若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。

若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

图的深度优先遍历类似于树的前序遍历。

采用的搜索方法的特点是尽可能先对纵深方向进行搜索。

这种搜索方法称为深度优先搜索(Depth-First Search)。

相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。

2、深度优先搜索的过程设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。

若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。

广度优先算法和深度优先算法

广度优先算法和深度优先算法

广度优先算法和深度优先算法
广度优先算法和深度优先算法是最常用的两种图遍历算法,它们都能
够遍历整个图的节点,但在具体应用场景中选择哪种算法需要根据实
际需求来判断。

广度优先算法(BFS)将当前节点的所有邻居节点都遍历一遍后再遍历下一层,可以确保找到最短路径。

具体实现方式是使用一个队列来存
储被访问过但还未被遍历过的节点,同一层的节点都在队列中,不同
层的节点通过队列的先进先出特性被访问。

BFS遍历图通常需要记录
每个节点是否被访问过,以防止重复遍历。

深度优先算法(DFS)是一种递归算法,从某一节点出发一直向下遍
历到底(即遍历到一个叶子节点),然后返回到上一层节点继续遍历,直到遍历完整个图。

DFS相较于BFS具有更好的空间复杂度,但不能
保证找到最短路径。

DFS遍历图时通常需要记录每个节点是否被访问过,并保证不重复访问。

广度优先算法和深度优先算法在选择上需要根据具体算法应用需求。

如果需要找到最短路径,则选择广度优先算法,如果需要搜索所有可
能路径,则选择深度优先算法。

例如,在迷宫的寻找最短路径场景中,BFS可以从迷宫入口出发,按照层级一层一层的向外扩展搜索,最终
一定能够找到终点,但会消耗较大的空间;而DFS则可以搜索所有可能的路径,但不能确保找到最短路径。

综上所述,广度优先算法和深度优先算法都各有优缺点,在选择上需要根据实际应用场景判断。

浅析深度优先和广度优先遍历实现过程、区别及使用场景

浅析深度优先和广度优先遍历实现过程、区别及使用场景

浅析深度优先和⼴度优先遍历实现过程、区别及使⽤场景⼀、什么是深度/⼴度优先遍历? 深度优先遍历简称DFS(Depth First Search),⼴度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种⽅式。

这两种遍历⽅式有什么不同呢?我们来举个栗⼦: 我们来到⼀个游乐场,游乐场⾥有11个景点。

我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?1、深度优先遍历 第⼀种是⼀头扎到底的玩法。

我们选择⼀条⽀路,尽可能不断地深⼊,如果遇到死路就往回退,回退过程中如果遇到没探索过的⽀路,就进⼊该⽀路继续深⼊。

在图中,我们⾸先选择景点1的这条路,继续深⼊到景点7、景点8,终于发现⾛不动了: 于是,我们退回到景点7,然后探索景点10,⼜⾛到了死胡同。

于是,退回到景点1,探索景点9: 按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、发现相邻的都玩过了,再回退到3,再接着玩6,终于玩遍了整个游乐场: 具体次序如下图,景点旁边的数字代表探索次序。

当然还可以有别的排法。

像这样先深⼊探索,⾛到头再回退寻找其他出路的遍历⽅式,就叫做深度优先遍历(DFS)。

这⽅式看起来很像⼆叉树的前序遍历。

没错,其实⼆叉树的前序、中序、后序遍历,本质上也可以认为是深度优先遍历。

2、⼴度优先遍历 除了像深度优先遍历这样⼀头扎到底的玩法以外,我们还有另⼀种玩法:⾸先把起点相邻的⼏个景点玩遍,然后去玩距离起点稍远⼀些(隔⼀层)的景点,然后再去玩距离起点更远⼀些(隔两层)的景点… 在图中,我们⾸先探索景点0的相邻景点1、2、3、4: 接着,我们探索与景点0相隔⼀层的景点7、9、5、6: 最后,我们探索与景点0相隔两层的景点8、10: 像这样⼀层⼀层由内⽽外的遍历⽅式,就叫做⼴度优先遍历(BFS)。

这⽅式看起来很像⼆叉树的层序遍历。

没错,其实⼆叉树的层序遍历,本质上也可以认为是⼴度优先遍历。

图的遍历算法程序

图的遍历算法程序
}
else{
visited[k]=true;
printf("%c ",G.vexs[k]); //访问第k个顶点
for(i=FirstVex(G,k);i>=0;i=NextVex(G,k,i))
if(!visited[i]) DFS(G,i); //对k的尚未访问的邻接顶点i递归调用DFS
#define MAX_VEX 20 //最大顶点个数
#define QUEUE_SIZE (MAX_VEX+1) //队列长度
using namespace std;
bool *visited; //访问标志数组
//图的邻接矩阵存储结构
typedef struct{
char *vexs; //顶点向量
if(i>=0 && i<G.vexnum && j>=0 && j<G.vexnum){ //i,j合理
for(int k=j+1;k<G.vexnum;k++)
if(G.arcs[i][k]!=INFINITY) return k;
}
return -1;
}
}
//主函数
void main(){
int i;
Graph G;
CreateUDN(G);
visited=(bool *)malloc(G.vexnum*sizeof(bool));
printf("\n广度优先遍历: ");
for(i=0;i<G.vexnum;i++)

图的遍历(深度优先遍历和广度优先遍历)

图的遍历(深度优先遍历和广度优先遍历)

遍历规则 从图中某结点v0出发,深度优先遍历(DFS: Depth First Search)图的规则为: 访问v0; 对v0的各个出点v01,v02,…,v0m,每次从它们中按一定方式(也可任选)选取一个未被访问过的结点,从该结点出发按深度优先遍历方式遍历。 然,因为我们没有规定对出点的遍历次序,所以,图的深度优先遍历结果一般不唯一。
20.2 深度优先遍历
例如,对图 20‑1给出的有向图与无向图,一些遍历结果(结点访问次序)为: 左图:从1出发:1,2,4,5;或1,5,2,4 从2出发:2,1,5,4;或2,4,1,5 右图:从a出发:a,b,c,d;或a,b,d,c; … …
A 如果不想让visited或top做为函数参数,也可以在函数中将其定义为static型量。但是,这样的程序是不可再入的,即函数再次被调用时,static型的量也不重新初始化,造成错误!
上面函数中的参数visited和top实质上是中间变量,只是为了避免在递归调用时重新初始化而放在参数表中,造成使用的不方便,为此,做个包装程序: long DFS1(int g[][CNST_NumNodes], long n, long v0, long *resu ) { char *visited; long top=0; visited = new char[n]; for (long i=0; i<n; i++) visited[i]=0; long num=DFS1( g, n, v0, visited, resu, top ); delete visited; return num; }
深度优先遍历非递归算法的一般性描述。
long DFS_NR(图g,结点v0)
单击此处可添加副标题

深度优先和广度优先算法

深度优先和广度优先算法

深度优先和广度优先算法深度优先和广度优先算法深度优先遍历和广度优先遍历是两种常用的图遍历算法。

它们的策略不同,各有优缺点,可以在不同的场景中使用。

一、深度优先遍历深度优先遍历(Depth First Search,DFS)是一种搜索算法,它从一个顶点开始遍历,尽可能深地搜索图中的每一个可能的路径,直到找到所有的路径。

该算法使用栈来实现。

1. 算法描述深度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 从v的未被访问的邻接顶点开始深度优先遍历,直到所有的邻接顶点都被访问过或不存在未访问的邻接顶点; - 如果图中还有未被访问的顶点,则从这些顶点中任选一个,重复步骤1。

2. 算法实现深度优先遍历算法可以使用递归或者栈来实现。

以下是使用栈实现深度优先遍历的示例代码:``` void DFS(Graph g, int v, bool[] visited) { visited[v] = true; printf("%d ", v);for (int w : g.adj(v)) { if(!visited[w]) { DFS(g, w,visited); } } } ```3. 算法分析深度优先遍历的时间复杂度为O(V+E),其中V是顶点数,E是边数。

由于该算法使用栈来实现,因此空间复杂度为O(V)。

二、广度优先遍历广度优先遍历(Breadth First Search,BFS)是一种搜索算法,它从一个顶点开始遍历,逐步扩展到它的邻接顶点,直到找到所有的路径。

该算法使用队列来实现。

1. 算法描述广度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 将v的所有未被访问的邻接顶点加入队列中; - 从队列头取出一个顶点w,并标记为已访问; - 将w的所有未被访问的邻接顶点加入队列中; - 如果队列不为空,则重复步骤3。

2. 算法实现广度优先遍历算法可以使用队列来实现。

图的遍历实验报告

图的遍历实验报告

实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。

2、熟练掌握图的存储结构。

3、熟练掌握图的两种遍历算法。

二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。

[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。

以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。

【测试数据】由学生依据软件工程的测试技术自己确定。

三、实验前的准备工作1、掌握图的相关概念。

2、掌握图的逻辑结构和存储结构。

3、掌握图的两种遍历算法的实现。

四、实验报告要求1、实验报告要按照实验报告格式规范书写。

2、实验上要写出多批测试数据的运行结果。

3、结合运行结果,对程序进行分析。

编程思路:深度优先算法:计算机程序的一种编制原理,就是在一个问题出现多种可以实现的方法和技术的时候,应该优先选择哪个更合适的,也是一种普遍的逻辑思想,此种思想在运算的过程中,用到计算机程序的一种递归的思想。

度优先搜索算法:又称广度优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。

Dijkstra单源最短路径算法和Prim 最小生成树算法都采用了和宽度优先搜索类似的思想。

其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。

换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。

以临接链表作为存储结构,结合其存储特点和上面两种算法思想,给出两种遍历步骤:(1)既然图中没有确定的开始顶点,那么可从图中任一顶点出发,不妨按编号的顺序,先从编号小的顶点开始。

(2)要遍历到图中所有顶点,只需多次调用从某一顶点出发遍历图的算法。

所以,下面只考虑从某一顶点出发遍历图的问题。

(3)为了在遍历过程中便于区分顶点是否已经被访问,设置一个访问标志数组visited[n],n为图中顶点的个数,其初值为0,当被访问过后,其值被置为1。

(4)这就是遍历次序的问题,图的遍历通常有深度优先遍历和广度优先遍历两种方式,这两种遍历次序对无向图和有向图都适用。

深度优先搜索和广度优先搜索

深度优先搜索和广度优先搜索

深度优先搜索和广度优先搜索深度优先搜索(DFS)和广度优先搜索(BFS)是图论中常用的两种搜索算法。

它们是解决许多与图相关的问题的重要工具。

本文将着重介绍深度优先搜索和广度优先搜索的原理、应用场景以及优缺点。

一、深度优先搜索(DFS)深度优先搜索是一种先序遍历二叉树的思想。

从图的一个顶点出发,递归地访问与该顶点相邻的顶点,直到无法再继续前进为止,然后回溯到前一个顶点,继续访问其未被访问的邻接顶点,直到遍历完整个图。

深度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 递归访问该顶点的邻接顶点,直到所有邻接顶点均被访问过。

深度优先搜索的应用场景较为广泛。

在寻找连通分量、解决迷宫问题、查找拓扑排序等问题中,深度优先搜索都能够发挥重要作用。

它的主要优点是容易实现,缺点是可能进入无限循环。

二、广度优先搜索(BFS)广度优先搜索是一种逐层访问的思想。

从图的一个顶点出发,先访问该顶点,然后依次访问与该顶点邻接且未被访问的顶点,直到遍历完整个图。

广度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 将该顶点的所有邻接顶点加入一个队列;4. 从队列中依次取出一个顶点,并访问该顶点的邻接顶点,标记为已访问;5. 重复步骤4,直到队列为空。

广度优先搜索的应用场景也非常广泛。

在求最短路径、社交网络分析、网络爬虫等方面都可以使用广度优先搜索算法。

它的主要优点是可以找到最短路径,缺点是需要使用队列数据结构。

三、DFS与BFS的比较深度优先搜索和广度优先搜索各自有着不同的优缺点,适用于不同的场景。

深度优先搜索的优点是在空间复杂度较低的情况下找到解,但可能陷入无限循环,搜索路径不一定是最短的。

广度优先搜索能找到最短路径,但需要保存所有搜索过的节点,空间复杂度较高。

需要根据实际问题选择合适的搜索算法,例如在求最短路径问题中,广度优先搜索更加合适;而在解决连通分量问题时,深度优先搜索更为适用。

图的遍历操作实验报告

图的遍历操作实验报告

图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

实验中使用的数据结构为邻接表来表示图。

三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。

它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。

(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。

它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。

四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。

例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。

数据结构与算法(13):深度优先搜索和广度优先搜索

数据结构与算法(13):深度优先搜索和广度优先搜索
因此访问顺序是:A => C => D => F => B => G => E
2.2.2 有向图的广广度优先搜索
下面面以“有向图”为例例,来对广广度优先搜索进行行行演示。还是以上面面的图G2为例例进行行行说明。
第1步:访问A。 第2步:访问B。 第3步:依次访问C,E,F。 在访问了了B之后,接下来访问B的出边的另一一个顶点,即C,E,F。前 面面已经说过,在本文文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访 问E,F。 第4步:依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一一个顶点。还是按 照C,E,F的顺序访问,C的已经全部访问过了了,那么就只剩下E,F;先访问E的邻接点D,再访 问F的邻接点G。
if(mVexs[i]==ch)
return i;
return -1;
}
/* * 读取一一个输入入字符
*/
private char readChar() {
char ch='0';
do {
try {
ch = (char)System.in.read();
} catch (IOException e) {
数据结构与算法(13):深度优先搜索和 广广度优先搜索
BFS和DFS是两种十十分重要的搜索算法,BFS适合查找最优解,DFS适合查找是否存在解(或者说 能找到任意一一个可行行行解)。用用这两种算法即可以解决大大部分树和图的问题。
一一、深度优先搜索(DFS)
1.1 介绍
图的深度优先搜索(Depth First Search),和树的先序遍历比比较类似。 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点V出发,首首先访问该顶点, 然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至至图中所有和V有路路径相通 的顶点都被访问到。若此时尚有其他顶点未被访问到,则另选一一个未被访问的顶点作起始点,重 复上述过程,直至至图中所有顶点都被访问到为止止。 显然,深度优先搜索是一一个递归的过程。

深度优先算法与广度优先算法

深度优先算法与广度优先算法

深度优先算法与⼴度优先算法深度优先搜索和⼴度优先搜索,都是图形搜索算法,它两相似,⼜却不同,在应⽤上也被⽤到不同的地⽅。

这⾥拿⼀起讨论,⽅便⽐较。

⼀、深度优先搜索深度优先搜索属于图算法的⼀种,是⼀个针对图和树的遍历算法,英⽂缩写为DFS即Depth First Search。

深度优先搜索是图论中的经典算法,利⽤深度优先搜索算法可以产⽣⽬标图的相应拓扑排序表,利⽤拓扑排序表可以⽅便的解决很多相关的图论问题,如最⼤路径问题等等。

⼀般⽤堆数据结构来辅助实现DFS算法。

其过程简要来说是对每⼀个可能的分⽀路径深⼊到不能再深⼊为⽌,⽽且每个节点只能访问⼀次。

基本步奏(1)对于下⾯的树⽽⾔,DFS⽅法⾸先从根节点1开始,其搜索节点顺序是1,2,3,4,5,6,7,8(假定左分枝和右分枝中优先选择左分枝)。

(2)从stack中访问栈顶的点;(3)找出与此点邻接的且尚未遍历的点,进⾏标记,然后放⼊stack中,依次进⾏;(4)如果此点没有尚未遍历的邻接点,则将此点从stack中弹出,再按照(3)依次进⾏;(5)直到遍历完整个树,stack⾥的元素都将弹出,最后栈为空,DFS遍历完成。

⼆、⼴度优先搜索⼴度优先搜索(也称宽度优先搜索,缩写BFS,以下采⽤⼴度来描述)是连通图的⼀种遍历算法这⼀算法也是很多重要的图的算法的原型。

Dijkstra单源最短路径算法和Prim最⼩⽣成树算法都采⽤了和宽度优先搜索类似的思想。

其别名⼜叫BFS,属于⼀种盲⽬搜寻法,⽬的是系统地展开并检查图中的所有节点,以找寻结果。

换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为⽌。

基本过程,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。

如果所有节点均被访问,则算法中⽌。

⼀般⽤队列数据结构来辅助实现BFS算法。

基本步奏(1)给出⼀连通图,如图,初始化全是⽩⾊(未访问);(2)搜索起点V1(灰⾊);(3)已搜索V1(⿊⾊),即将搜索V2,V3,V4(标灰);(4)对V2,V3,V4重复以上操作;(5)直到终点V7被染灰,终⽌;(6)最短路径为V1,V4,V7.作者:安然若知链接:https:///p/bff70b786bb6来源:简书简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

2017唐班数据结构-13_2图的遍历

2017唐班数据结构-13_2图的遍历
for ( i =1 ; i <= n ; i++ ) visited[i] = 0; CREATQuene Q; Q.insert(v); visited[v] = 1; BFS2[广度优先遍历] while(! Q.empty()) { /* 当队列不空时 */
v=Q.delete(); /* 出队 */ cout<<v; for ( p = Head[v]->adjacent ; p ; p = p->link ) .
图的连通性:非连通图中,从一个顶点出发,只能访 问它所在的连通分量上的所有顶点。用户指定下一个 出发点访问其它连通分量。
重复访问:访问完某个顶点后可能沿着某些边又回到 曾经访问过的顶点。避免重复,用标识数组visited[ ]。 初值为0,标识未访问。如果顶点 i 被访问,则置 visited[i]为1.
✓ 下推上: 显然 ✓ 上推下: 数学归纳法
应用1 求无向图的连通分支数
思想:每遍历一个连通分支,计数加1 遍历用深搜和广搜均可
应用2 判断图中是否有环
方法非常多;下面考虑用图的遍历求解
思想:深搜时,每个结点有两个状态,标记是 否被访问过(0未访问,1已访问过)。判环时, 多引入一个状态,标记结点正在访问中(-1正 在访问中)。如果一个结点正在访问中,又遍 历到该接点,那个存在环路。这种状况是由于 出现了反向边,即后代指向祖先的边。
如果使用邻接矩阵,则对于每一个被访问的顶 点,循环要检测矩阵中的 n 个元素,总的时间 代价为O(n2)。
定理5.1
DFS每次遍历一个连通分支 Vs = { v | v ∈ V 且 s ->E* v } Vs = { v | v ∈ V 且 visited[v] = 1 }

图的遍历(实验报告附C++源码)

图的遍历(实验报告附C++源码)

图的遍历一、问题背景若用有向网表示网页的链接网络,其中顶点表示某个网页,有向弧表示网页之间的链接关系。

试设计一个网络蜘蛛系统,分别以广度优先和深度优先的策略抓取网页。

二、需求分析1)首先输入顶点的数量,然后是各顶点对应的字母,再输入各条弧(权值都置为1);2)输出从首个顶点开始的广度优先遍历序列和深度先遍历序列;3)为了达到任意图的遍历(结点名称不一定是数字,可以是任意可见字符),可以自定义一个数组类型,保存该结点的名称和记录是否被访问;4)图使用相邻矩阵来实现;5)测试数据:输入输入顶点数和弧数:8 9输入8个顶点.输入顶点0:a输入顶点1:b输入顶点2:c输入顶点3:d输入顶点4:e输入顶点5:f输入顶点6:g输入顶点7:h输入9条弧.输入弧0:a b 1输入弧1:b d 1输入弧2:b e 1输入弧3:d h 1输入弧4:e h 1输入弧5:a c 1输入弧6:c f 1输入弧7:c g 1输入弧8:f g 1输出广度优先遍历: a b d h e c f g深度优先遍历: a b c d e f g h三、概要设计抽象数据类型为了遍历任意图,定义了如下数据类型,用于存储该结点的名称和记录是否被访问过。

class Node//基本抽象数据类型{public:char ch; //记录名称,如果将这里改成数组,结点名称可以是多个字符int flag;//记录结点是否被访问};class Graph //图类,此类中,封装了图的一些成员和一些必须的成员函数{private:int getSub(char); //获取某名称的下标Node* arrNode; //记录名称和是否访问的数组int numVertex,numEdge;//记录图的顶点数和边数int **matrix; //用一个二维数组记录两点间是否相连,1相连,0断开public:void setCh(char,int); //将数组的arrNode的每一个单元设置一个结点名称Graph(int);~Graph();int getNumVertex();//获得图的顶点数char first(char ch);//获得相邻结点char next(char ch1,char ch2);//获得隔着ch2,但与ch2相邻的结点void setEdge(char,char,int w=1);//设置两顶点的边和权重(权重默认为1)int getMark(char);//获取是否被访问的记录,已访问返回1,未访问返回0void setMark(char);//把已访问的结点,设置标记};算法的基本思想用一个自定义类型的数组,记录每个结点的信息(包括名称、是否被访问),且此数组作为图的成员变量之一;用一个类,对数组进行相应的操作,以便获得所需的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

while (栈S不空) { v = 栈S顶部元素; 求v的下个未访问过的出点i; 访问i; 为i置已访问标志; i进栈S; nNodes++; if (v已无未被访问过的出点) 出栈; }
return nNodes;
} 上面的伪码描述与具体的数据结构无关。下面的程序分别给 出了针对邻接矩阵与邻接表的算法模型。
long nNodes, i, v; long top; char *visited; long *s; visited = new char[n]; for (i=0; i<n; i++) visited[i]=0; s = new long[n+1]; top=0; nNodes=0; resu[nNodes++]=v0; //将访问到的结点依次存于resu[] visited[v0]=1; //为v0置已访问标志
if (g[v0][i]!=0) //若<v0, i>是边 if (!visited[i]) //若结点i未被访问过 nNodes = nNodes+DFS1(g, n, i, visited,resu); //从i起深度优先遍历图
} return nNodes;
}
上面函数中的参数visited和top实质上是中间变量,只是为
1.一般方法 下面考虑深度优先遍历的非递归实现的一般方法(存储
结构无关)。
图的深度优先遍历的非递归实现,仍然与二叉树的前序 遍历非递归实现相似。不同之处有:①二叉树每个结点至 多有两个可达邻接点(左右儿子),而图的可达邻接点数 目不定,因此,当结点重新出现在栈顶时,不能一定出栈, 而是要根据它的各出点是否都已被访问过来决定(是则出 栈);②对二叉树,沿可达邻接点搜索时不会发生回绕, 但对图,若不加特别控制,就有可能回绕。
{//深度优先遍历图(递归)。图g为邻接矩阵,结点编号为 0~n. 返回实际遍历到的结点数目
//visited是访问标志数组,调用本函数前,应为其分配空间 并初始化为全0(未访问)
//resu为一维数组,用于存放所遍历到的结点的编号,调 用本函数前,应为其分配空间
long nNodes, i; nNodes=1; resu[top++]=v0; //将访问到的结点依次存于resu[] visited[v0]=1; //为v0置已访问标志 for (i=0; i<n; i++) {//依次从v0的各个出点出发,深度优先遍历图
显然,因为我们没有规定对出点的遍历次序, 所以,图的深度优先遍历结果一般不唯一。
例如,对图 20-1给出的有向图与无向图,一些遍历 结果(结点访问次序)为:
左图:从1出发:1,2,4,5;或1,5,2,4 从2出发:2,1,5,4;或2,4,1,5
右图:从a出发:a,b,c,d;或a,b,d, c; … …
访问标志的设置有两种方法:
①在描述图结的记录中增设一个访问标志位。 这种方法的优点是,访问“访问标志”的方法与 访问结点的方法一致。如果访问标志需要与图结 构同生命期,则这种方法比较合适。但是,若访 问标志要重复使用,就必须先重新初始化访问标 志。如果图结点的存储不利于顺序访问,这往往 也是个遍历问题!
20、 图的遍历
从这节起,我们介绍图的一些重要操作的实现, 包括遍历、拓扑排序、关键路径等。另有一些重要 操作,如最短路径问题、最小生成树问题,由于主 要难点在于算法,所以我们安排在后面的算法设计 章节中介绍。
图的遍历与树的遍历一样具有十分重要的作用, 图的许多其他操作(算法)都与遍历相关。
20.1 概述
了避免在递归调用时重新初始化而放在参数表中,造成使
用的不方便,为此,做个A包装如程果序不: 想让visited或 top做为函数参数,也
long DFS1(int g[][CNST可_N以um在No函des数], l中ong将n,其lon定g v0,
long *resu )
义为static型量。但是,
1 a
2
5
b
d
4
3
c
图20- 1一个有向图(左)和无向图
(二)递归实现方法
1. 一般算法 下面考虑深度优先遍历的递归实现的一般方法(存储
结构无关)。
图的深度优先遍历与二叉树的前序遍历相似。不同之 处有:①二叉树每个结点至多有两个可达邻接点 (左右儿子),而图的可达邻接点数目不定;
②对二叉树,沿可达邻接点搜索时不会发生回绕, 但对图,若不加特别控制,就有可能回绕。
//v0为遍历的起点。返回实际遍历到的结点的数目。 //visited是访问标志数组,调用本函数前,应为其分配空间并初 始化为全0(未访问) //resu为一维数组,用于存放所遍历到的结点的编号,调用本函 数前,应为其分配空间
long nNodes, i;
TGraphEdgeAL<TEdgeElem> *p;
4
由于1点已访问过,跳过, 找到4,记标识,送输出,
5
Nodes[]
对应的邻接表
4有作为新的始点重复上 述过程
输出数组
resu
3.邻接表深度优先遍历的实现
template <class TElem, class TEdgeElem>long
DFS2(TGraphNodeAL<TElem, TEdgeElem> *nodes,long n,long v0, char *visited, long *resu,long &top) {//深度优先遍历用邻接表表示的图。nodes是邻接表的头数组,n 为结点个数(编号为0~n)。

nNodes = nNodes+DFS2(nodes, n, p->endNo, visited, resu,top);
p = p->next; //令p指向v0的下个出点
}
return nNodes;
} 与邻接矩阵的情况类似,也可以对该程序“包装”,以隐蔽visited 和top。
(三) 非递归实现方法
nNodes=1; 求出v0的第1个可达邻接点v; while (v存在)
{ if (v未被访问过) nNodes=nNodes+DFS(g,v); 求出v0的下个可达邻接点v;
}
return nNodes;
}
1
2
5
4
3
12345 1 01001 2 10010 3 00001 4 10000 5 00000
下面是图的深度优先遍历递归算法的一般性描述。 如果要另设一个数组作为访问标志,则该数组要在 递归过程(函数)之外初始化为“未访问”。
long DFS(图g,结点v0) { //图深度优先遍历递归算法。从结点v0出发,深度优
先遍历图g,返回访问到的结点总数 int nNodes; //寄存访问到的结点数目 访问v0; 为v0置已访问标志;
下面只考虑从一点出发遍历,因此有可能 会出现遍历不到的点。即那些初始点无路 径可达的点,是遍历不到的。
20.2 深度优先遍历
(一) 遍历规则
从图中某结点v0出发,深度优先遍历(DFS: Depth First Search)图的规则为:
·访问v0; ·对v0的各个出点v01,v02,…,v0m,每次从它 们中按一定方式(也可任选)选取一个未被访问过 的结点,从该结点出发按深度优先遍历方式遍历。
图的遍历的含意是,从图中某结点出发,按某既定方式 访问图中各个可访问到的结点,使每个可访问到的结点恰被 访问一次。
图的遍历方式有两种:深度优先与广度优先方式,分别 对应于树的先根遍历与层序遍历。
树中不存在回路,但图中可能有回路。因此,当沿回路 进行扫描时,一个结点可能被扫描到多次,可能导致死循环。 为了避免这种情形,在遍历中,应为每个结点设立一个访问 标志,每扫描到一个结点,要检查它的访问标志,若标志为 “未访问”,则按正常方式对其进行处理(如访问或转到它 的邻接点等),否则放过它,扫描下一个结点。
{
这样的程序是不可再
char *visited; long top=0; visited = new
入 char[n]调;
的,即函数再次 用 时 , static 型 的
被 量
for (long i=0; i<n; i++也) vi不site重d[i新]=0初; 始 化 , 造
long num=DFS1( g, n成, v错0, v误isi!ted, resu, top );
深度优先遍历非递归算法的一般性描述。
long DFS_NR(图g,结点v0) { //图深度优先遍历非递归算法。从结点v0出发,深度优 先遍历图g,返回访问到的结点总数
int nNodes; //寄存访问到的结点数目 访问v0; 为v0置已访问标志; v0进栈S; nNodes=1; 求出v0的第1个可达邻接点v;
top++; s[top]=v0; while (top!=0) { v=s[top]; for (i=0; i<n; i++) //寻找v的下个未访问的邻接点
if (g[v][i]!=0) //若<v, i>是边 if (!visited[i]) //若结点i未被访问过 { resu[nNodes++]=i; //将访问到的结点依次存于resu[] visited[i]=1; //为i置已访问标志 top++; s[top]=i; //i进栈 break; }
delete visited;
return num;
}
1
邻接表边
11Βιβλιοθήκη P 地址 起 终 权 信息 链
21
2
5
相关文档
最新文档