有机化学反应机理(整理版)62721
有机化学中的反应机理
有机化学中的反应机理一、有机化学反应机理概述有机化学反应机理是指化学反应过程中,反应物分子如何通过相互作用转化为产物分子的具体过程。
了解有机化学反应机理对于掌握有机化学的基本概念、预测化学反应的方向和产物以及设计合成路线具有重要意义。
二、有机化学反应类型1.加成反应:两个或多个分子结合成一个分子的反应。
2.消除反应:一个分子中的两个原子或基团离开分子,生成双键或三键的反应。
3.取代反应:一个原子或基团被另一个原子或基团替换的反应。
4.氧化还原反应:涉及电子转移的反应。
5.缩合反应:两个或多个分子结合成一个较大分子的反应。
6.水解反应:化合物与水反应,分解成两个或多个分子的反应。
三、有机化学反应机理的基本步骤1.进攻:反应物分子中的活性基团识别并接近目标分子。
2.结合:活性基团与目标分子形成中间产物。
3.重排:中间产物中的原子或基团重新排列,形成过渡态。
4.断裂:反应物分子中的化学键断裂。
5.生成:新的化学键形成,生成产物分子。
6.离去:反应过程中产生的不稳定基团或分子离开体系。
四、有机化学反应机理的研究方法1.实验观察:通过实验现象,推断反应机理。
2.结构分析:利用光谱、核磁共振等技术分析反应物和产物结构,推测反应过程。
3.计算化学:运用计算机模拟、量子化学计算等方法研究反应机理。
4.动力学分析:研究反应速率与反应物浓度之间的关系,推断反应机理。
五、有机化学反应机理的意义1.预测反应方向和产物:了解反应机理有助于预测化学反应的可能产物,为有机合成提供理论依据。
2.设计合成路线:通过分析反应机理,可以设计出更高效、更经济的有机合成路线。
3.优化反应条件:掌握反应机理有助于优化反应条件,提高反应产率和选择性。
4.指导工业生产:有机化学反应机理的研究成果可为相关行业的工艺改进和技术创新提供支持。
六、中学生发展相关的知识点1.认识有机化学反应类型及其特点。
2.了解有机化学反应机理的基本概念和步骤。
3.掌握有机化学反应机理的研究方法和意义。
有机化学反应机理(总结最好的)(共143张)
酸碱催化剂:通过提供质子或离子促进反应进行 金属催化剂:利用金属的活性中心加速反应 过渡金属络合物催化剂:通过金属与配体的协同作用促进电子转移 酶催化剂:高度专一性地加速生物体内的有机反应
温度:温度对有机化学反应的速 率和产物有影响有些反应需要在 特定的温度下进行。
浓度:反应物的浓度直接影响反 应速率和产物有些反应需要在特 定的浓度下进行。
有机化学反应 机理在可持续 发展中发挥着 重要作用如利 用太阳能、风 能等可再生能 源进行有机合
成。
随着科技的不 断进步有机化 学反应机理的 应用前景将更 加广阔为绿色 化学和可持续 发展提供更多
可能性。
有机化学反应机理在合成中的应用:通过了解反应机理可以预测反应结果 优化合成路径提高合成效率和产率。
有机化学反应机理在药物设计中的应用:通过研究药物分子的反应机理 可以预测药物与生物靶点的相互作用为新药研发提供理论支持。
有机化学反应机理在材料科学中的应用:通过了解有机化学反应机理可以 预测和调控材料性能为新材料的设计和制备提供思路。
特点:需要酸或碱的催化反应条 件温和常温常压下即可进行。
添加标题
添加标题
类型:包括E1、E2、E1cb和 E2cb四种类型。
添加标题
添加标题
应用:在有机合成中广泛应用是 制备烯烃的重要方法之一。
定义:由单体合成聚合物的反应
特点:反应过程中有聚合度增长 的变化生成高分子化合物
添加标题
添加标题
类型:加聚反应、缩聚反应等
电子转移:在有 机化学反应中电 子转移是反应的 重要步骤它决定 了反应的活性和 选择性。
键合变化:键合 变化是指反应过 程中化学键的形 成和断裂它决定 了反应的产物和 产率。
有机化学反应机理2025年知识点归纳
有机化学反应机理2025年知识点归纳有机化学反应机理是理解有机化学的关键,它能够帮助我们解释反应为何发生、如何发生以及产物的形成。
在 2025 年,有机化学反应机理的研究和教学又有了新的进展和重点。
以下是对一些重要知识点的归纳。
一、亲电加成反应机理亲电加成反应是烯烃和炔烃的重要反应类型。
以烯烃与溴的加成反应为例,反应首先是溴分子在极性条件下发生极化,产生带正电的溴离子(Br⁺)和带负电的溴离子(Br⁻)。
带正电的溴离子作为亲电试剂进攻烯烃的双键,形成一个环状的溴鎓离子中间体。
然后,带负电的溴离子从背面进攻溴鎓离子,得到加成产物。
理解亲电加成反应机理的关键在于认识到亲电试剂的进攻和中间体的形成。
在预测反应产物时,需要考虑反应的区域选择性和立体选择性。
例如,不对称烯烃与不对称亲电试剂的加成遵循马氏规则,即氢原子加到含氢较多的双键碳原子上。
二、亲核取代反应机理亲核取代反应分为 SN1 和 SN2 两种机理。
SN1 反应通常发生在三级卤代烃中,反应分两步进行。
第一步是卤代烃解离生成碳正离子中间体,这是反应的慢步骤,也是决定反应速率的步骤。
第二步是碳正离子与亲核试剂结合得到产物。
SN1 反应的特点是有碳正离子中间体生成,可能会发生重排,并且反应速率只与卤代烃的浓度有关,与亲核试剂的浓度无关。
SN2 反应则常见于一级卤代烃,反应是一步完成的协同过程。
亲核试剂从离去基团的背面进攻碳原子,同时离去基团离去,形成新的化学键。
SN2 反应的特点是反应速率与卤代烃和亲核试剂的浓度都有关,并且构型发生翻转。
三、消除反应机理消除反应主要包括 E1 和 E2 两种机理。
E1 反应类似于 SN1 反应,分两步进行。
首先是卤代烃解离生成碳正离子中间体,然后从β碳原子上脱去一个质子生成烯烃。
E1 反应的速率也只与卤代烃的浓度有关。
E2 反应是一步完成的协同过程,碱试剂进攻β氢原子,同时卤原子离去,形成双键。
E2 反应的速率与卤代烃和碱试剂的浓度都有关。
(完整word版)有机化学人名反应机理(比较完整)
1.Arbuzov 反应卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:一般认为是按 S N2 进行的分子内重排反应:2.Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
3.Baeyer----Villiger 反应过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:4.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变。
5.Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇。
α,β-不饱和羧酸酯还原得相应的饱和醇。
芳香酸酯也可进行本反应,但收率较低。
本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。
(完整版)有机化学反应机理
双分子反应一 步活化能较高
O
H+
CH3C-OH
+OH CH3C-OH HOC2H5
按加成--消除机理进行 反应,是酰氧键断裂
加成
OH CH3-C-OH
HO+ C2H5
质子转移
四面体正离子
OH CH3-C-O+ H2
OC2H5
-H2O 消除
+OH
-H+
CH3C-OC2H5
O CH3C-OC2H5
*2 碳正离子机理
OH
H+
(CH3)3C-OH
+OH R-C-OC(CH3)3
(CH3)3CO+ H2 -H2O (CH3)3C+
O=C-R
属于SN1机理
O -H+
R-C-OC(CH3)3
按SN1机理进
行反应,是烷
氧键断裂
* 3oROH按此反应机理进行酯化。 * 由于R3C+易与碱性较强的水结合,不易与羧酸结合,
故逆向反应比正向反应易进行。所以3oROH的酯化 反应产率很低。
1 自由基取代反应
有机化合物分子中的某个原子或基团被其 它原子或基团所置换的反应称为取代反应。若 取代反应是按共价键均裂的方式进行的,即是 由于分子经过均裂产生自由基而引发的,则称 其为自由基型取代反应。
自由基反应包括链引发、链转移、链终止三个
阶段。链引发阶段是产生自由基的阶段。由于键的 均裂需要能量,所以链引发阶段需要加热或光照。 链转移阶段是由一个自由基转变成另一个自由基的 阶段,犹如接力赛一样,自由基不断地传递下去, 像一环接一环的链,所以称之为链反应。链终止阶 段是消失自由基的阶段。自由基两两结合成键。所 有的自由基都消失了,自由基反应也就终止了。
有机化学基础知识点整理有机反应的机理与分类
有机化学基础知识点整理有机反应的机理与分类有机化学基础知识点整理:有机反应的机理与分类有机化学是研究有机化合物及其反应的分支学科,它是化学的一个重要分支,广泛应用于药物、材料科学、生物化学等领域。
了解有机化学的基础知识对于理解和应用有机反应具有重要意义。
本文将对有机反应的机理与分类进行整理。
一、机理有机反应的机理是指反应中各个步骤和转化的详细过程。
了解反应的机理可以帮助我们理解反应的条件、反应的速率以及产物的结构。
在有机化学中,常见的反应机理包括加成、消除、取代、重排和缩合等。
下面以几种常见的反应机理为例进行介绍。
1. 加成反应加成反应是指两个或多个分子中的原子或基团直接相互结合形成一个新的化合物。
加成反应可以分为电子亲受体与亲核试剂的加成反应和亲电试剂与亲核试剂的加成反应。
电子亲受体与亲核试剂的加成反应以醛、酮、酯等化合物为底物,亲核试剂一般为酸性氢原子、氢氧根离子等。
在反应中,亲核试剂通过正负电荷相吸引与电子亲受体发生加成反应,生成新的化合物。
亲电试剂与亲核试剂的加成反应以烯烃为亲电试剂,亲核试剂一般为负离子或亲电试剂上的阳离子。
在反应中,亲电试剂通过与亲核试剂发生反应,形成一个新的化合物。
2. 消除反应消除反应是指一个分子中的两个或多个原子或基团结合形成一个双键或三键,同时释放出一个小分子。
常见的消除反应有酸催化的脱水反应、碱催化的脱卤反应等。
3. 取代反应取代反应是指一个原子或基团被另一个原子或基团所替代的化学反应。
取代反应可以分为亲核取代反应和亲电取代反应。
亲核取代反应以亲核试剂替换掉底物中的一个原子或基团。
常见的亲核取代反应有亲核试剂与卤代烃的取代反应、酸性氢原子与卤代烃的取代反应等。
亲电取代反应以亲电试剂替换掉底物中的一个原子或基团。
常见的亲电取代反应有斯尼夫反应、氧化还原反应等。
4. 重排反应重排反应是指分子或离子内部的原子或基团重新排列生成一个或多个结构不同的化合物。
重排反应可以分为分子内重排和离子内重排。
(完美版)高中有机化学反应机理总结
(完美版)高中有机化学反应机理总结
简介
有机化学是化学的一个重要分支,涉及到有机物的结构、性质和反应等方面。
了解有机化学反应机理对深入理解有机化学的本质非常关键。
本文将总结高中有机化学反应的机理,帮助读者更好地理解这一领域。
反应机理的基本概念
- 反应中的化学键的形成和断裂
- 反应中的电子转移过程
- 亲核试剂和电子试剂的作用机制
常见的高中有机化学反应机理
1. 取代反应机理
- 亲电取代反应机理(电子亲和力大的亲电试剂与亲核试剂反应)
- 亲核取代反应机理(互相排斥的亲核试剂之间的竞争)
- 反应中的亲电和亲核中心的变化
2. 加成反应机理
- 亲电加成反应机理(亲电试剂与π电子体系结合)
- 亲核加成反应机理(亲核试剂与亲电试剂结合)
3. 酯化和醇化反应机理
- 酯化反应机理(酸与醇反应)
- 醇化反应机理(醛酮与醇反应)
4. 缩合反应机理
- 醛酮缩合反应机理(醛酮官能团之间的缩合反应)
- 酯缩合反应机理(醇和羧酸之间的缩合反应)
5. 脱水反应机理
- 脱水(即水的去除)
结论
通过理解高中有机化学反应的基本机理,我们可以更好地把握有机化学的核心思想和规律。
掌握这些机理有助于我们在实验中的实际操作和解释反应结果。
希望本文对读者理解有机化学反应机理有所帮助。
有机化学反应机理详解(共95个反应机理)
一、Arbuzow反应(重排)之阿布丰王创作亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次第为:R'I >R'Br >R'Cl.除卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应.当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团.本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即 R' = R),则 Arbuzow反应如下:这是制备烷基膦酸酯的经常使用方法.除亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热获得酸.反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,获得酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺.反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂.因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型坚持不变,说明反应属于分子内重排:分歧毛病称的酮氧化时,在重排步伐中,两个基团均可迁移,可是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,获得羧酸.反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边拔出一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂.这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高.四、Beckmann 重排肟在酸如硫酸、多聚磷酸以及能发生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应获得酰胺.迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例五、Birch还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物.反应机理首先是钠和液氨作用生成溶剂化点子,然后苯获得一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)暗示的是部份共振式.(Ⅰ)不稳定而被质子化,随即从乙醇中篡夺一个质子生成环己二烯自由基(Ⅱ).(Ⅱ)在取得一个溶剂化电子转酿成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,迅速再从乙醇中篡夺一个电子生成1,4-环己二烯.环己二烯负离子(Ⅲ)在共轭链的中间碳原子上质子化比末端碳原子上质子快,原因尚不清楚.反应实例取代的苯也能发生还原,而且通过获得单一的还原产物.例如六、Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇.α,β-不饱和羧酸酯还原得相应的饱和醇.芳香酸酯也可进行本反应,但收率较低.本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响.反应机理首先酯从金属钠获得一个电子还原为自由基负离子,然后从醇中篡夺一个质子转酿成自由基,再从钠得一个电子生成负离子,消除烷氧基成为醛,醛再经过相同的步伐还原成钠,再酸化获得相应的醇.反应实例醛酮也可以用本法还原,获得相应的醇:七、Bucherer 反应萘酚及其衍生物在亚硫酸或亚硫酸氢盐存在下和氨进行高温反应,可得萘胺衍生物,反应是可逆的.反应时如用一级胺或二级胺与萘酚反应则制得二级或三级萘胺.如有萘胺制萘酚,可将其加入到热的亚硫酸氢钠中,再加入碱,经煮沸除去氨而得.反应机理本反应的机理为加成消除过程,反应的第一步(无论从哪个方向开始)都是亚硫酸氢钠加成到环的双键上获得烯醇(Ⅱ)或烯胺(Ⅵ),它们再进行下一步互变异构为酮(Ⅲ)或亚胺(Ⅳ):反应实例八、苯基羟胺(N-羟基苯胺)和稀硫酸一起加热发生重排成对-氨基苯酚:在H2SO4-C2H5OH(或CH3OH)中重排生成对-乙氧基(或甲氧基)苯胺:其他芳基羟胺,它的环上的o-p位上未被取代者会起类似的重排.例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:反应机理反应实例九、Berthsen,A.Y 吖啶合成法二芳基胺类与羧酸在无水ZnCl2存在下加热起缩合作用,生成吖啶类化合物.反应机理反应机理不详反应实例十、Cannizzaro 反应凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物.此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步酿成树脂状物质.具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,获得无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应获得季戊四醇:反应机理醛首先和氢氧根负离子进行亲核加成获得负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上.反应实例十一、Chichibabin 反应杂环碱类,与碱金属的氨基物一起加热时发生胺化反应,获得相应的氨基衍生物,如吡啶与氨基钠反应生成2-氨基啶,如果α位已被占据,则得γ-氨基吡啶,但产率很低.本法是杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能发生本反应.喹啉、吡嗪、嘧啶、噻唑类化合物较为困难.氨基化试剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物:反应机理反应机理还不是很清楚,可能是吡啶与氨基首先加成,(Ⅰ),(Ⅰ)转移一个负离子给质子给予体(AH),发生一分子氢气和形成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的给予体,最后的产物是2-氨基吡啶的钠盐,用水分解获得2-氨基吡啶:反应实例吡啶类化合物不容易进行硝化,用硝基还原法制备氨基吡啶甚为困难.本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应.十二、Claisen 酯缩合反应含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇获得β-酮酸酯.如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合获得乙酰乙酸乙酯.二元羧酸酯的分子内酯缩合见Dieckmann缩合反应.反应机理乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的.但由于最后产物乙酰乙酸乙酯是一个比力强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动.所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不竭地反应,结果反应还是可以顺利完成.经常使用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、三苯甲基钠、二异丙氨基锂(LDA)和Grignard试剂等.反应实例如果酯的α-碳上只有一个氢原子,由于酸性太弱,用乙醇钠难于形成负离子,需要用较强的碱才华把酯酿成负离子.如异丁酸乙酯在三苯甲基钠作用下,可以进行缩合,而在乙醇钠作用下则不能发生反应:两种分歧的酯也能发生酯缩合,理论上可获得四种分歧的产物,称为混合酯缩合,在制备上没有太年夜意义.如果其中一个酯分子中既无α-氢原子,而且烷氧羰基又比力活泼时,则仅生成一种缩合产物.如苯甲酸酯、甲酸酯、草酸酯、碳酸酯等.与其它含α-氢原子的酯反应时,都只生成一种缩合产物.实际上这个反应不限于酯类自身的缩合,酯与含活泼亚甲基的化合物都可以发生这样的缩合反应,这个反应可以用下列通式暗示:十三、Claisen—Schmidt 反应一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水获得不饱和醛或酮:反应机理反应实例十四、Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚.当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要获得邻位产物,两个邻位均被取代基占据时,重排获得对位产物.对位、邻位均被占满时不发生此类重排反应.交叉反应实验证明:Claisen重排是分子内的重排.采纳g-碳14C 标识表记标帜的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移.两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连.反应机理Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响.从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移()到对位,然后经互变异构获得对位烯丙基酚.取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故.反应实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排.十五、Clemmensen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物.对酸不稳定而对碱稳定的化合物可用还原.反应机理本反应的反应机理较复杂,目前尚不很清楚.反应实例十六、Combes 喹啉合成法Combes合成法是合成喹啉的另一种方法,是用芳胺与1,3-二羰基化合物反应,首先获得高产率的β-氨基烯酮,然后在浓硫酸作用下,羰基氧质子化后的羰基碳原子向氨基邻位的苯环碳原子进行亲电进攻,关环后,再脱水获得喹啉.反应机理在氨基的间位有强的邻、对位定位基团存在时,关环反应容易发生;但当强邻、对位定位基团存在于氨基的对位时,则不容易发生关环反应.反应实例十七、Cope 消除反应叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二取代羟胺,产率很高.实际上只需将叔胺与氧化剂放在一起,不需分离出氧化叔胺即可继续进行反应,例如在干燥的二甲亚砜或四氢呋喃中这个反应可在室温进行.此反应条件温和、副反应少,反应过程中不发生重排,可用来制备许多烯烃.当氧化叔胺的一个烃基上二个β位有氢原子存在时,消除获得的烯烃是混合物,可是 Hofmann产物为主;如获得的烯烃有顺反异构时,一般以 E-型为主.例如:反应机理这个反应是E2顺式消除反应,反应过程中形成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要发生这样的环状结构,氨基和β-氢原子必需处于同一侧,而且在形成五员环过度态时,α,β-碳原子上的原子基团呈重叠型,这样的过度态需要较高的活化能,形成后也很不稳定,易于进行消除反应.反应实例十八、Cope 重排1,5-二烯类化合物受热时发生类似于 O-烯丙基重排为C-烯丙基的重排反应()反应称为Cope重排.这个反应30多年来引起人们的广泛注意.1,5-二烯在150—200℃独自加热短时间就容易发生重排,而且产率非常好.Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性.例如:内消旋-3,4-二甲基-1,5-己二烯重排后,获得的产物几乎全部是(Z, E)-2,6辛二烯:反应机理Cope重排是[3,3]s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,暗示为经过椅式环状过渡态:反应实例十九、Curtius 反应酰基叠氮化物在惰性溶剂中加热分解生成异氰酸酯:异氰酸酯水解则获得胺:反应机理反应实例二十、Crigee,R 反应1,2-二元醇类的氧化产物因所用的氧化剂的种类而分歧.用K2Cr2O7或KMnO4氧化时生成酸类.用特殊氧化剂四乙醋酸铅在CH3COOH或苯等不活泼有机溶剂中缓和氧化,生成二分子羰基化合物(醛或酮).氧化反应也可以在酸催化剂(三氯醋酸)存在下进行.本反应被广泛地应用于研究醇类结构及制备醛、酮类,产率很高.反应机理反应过程中先生成环酯中间产物,进一步C--C键裂开成醛或酮.酸催化的场所,反应历程可以用下式暗示:反应实例二十一、Dakin 反应酚醛或酚酮类用H2O2在NaOH存在下氧化时,可将分子中的-CHO基或CH3CO-基被-OH基所置换,生成相对应的酚类.本反应可利用以制备多远酚类.反应机理反应实例二十二、Elbs 反应羰基的邻位有甲基或亚甲基的二芳基酮,加热时发生环化脱氢作用,生成蒽的衍生物:由于这个反应通常是在回流温度或高达400-450 °C的温度范围内进行,不用催化剂和溶剂,直到反应物没有水放出为止,在这样的高温条件下,一部份原料和产物发生碳化,部份原料酮被释放出的水所裂解,烃基发生消除或降解以及分子重排等副反应,致使产率不高.反应机理本反应的机理尚不清楚.反应实例二十三、Edvhweiler-Clarke 反应在过量甲酸存在下,一级胺或二级胺与甲醛反应,获得甲基化后的三级胺:甲醛在这里作为一个甲基化试剂.反应机理反应实例二十四、将一元酚类或类似化合物用过硫酸钾在碱性溶液中氧化羟基引入在原有羟基的对位或邻位,生成二元酚类.分子中的醛基或双键等都不影响.产率约20~48%.过硫酸钾的水溶液在加热时放出氧:芳伯胺类如用本试剂氧化时,酿成硝基化合物.反应机理反应实例二十五、Favorskii 重排a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状a-卤代酮,则招致环缩小.如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较年夜的四员环.反应机理反应实例二十六、Friedel-Crafts 烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF等)存在下,发生芳环的烷基化反应.卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超越3个碳原子时,反应过程中易发生重排.反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,获得较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体s-络合物,然后失去一个质子获得发生亲电取代产物:反应实例二十七、Friedel-Crafts酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通经常使用无水三氯化铝)催化下发生酰基化反应,获得芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排.反应机理反应实例二十八、Fries 重排酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物.重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行.邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等.例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物.反应温度对邻、对位产物比例的影响比力年夜,一般来讲,较高温度(如室温)下重排有利于形成对位异构产物(动力学控制),较高温度下重排有利于形成邻位异构产物(热力学控制).反应机理反应实例二十九、Fischer,O-Hepp,E 重排N-亚硝基芳胺用盐酸或氢溴酸或其乙醇溶液处置时氨基氮上的亚硝基转移到芳核上去形成p-亚硝基芳胺(对位重排):通常发生对位重排,但在奈系化合物中如N-亚硝基-N-加基-2-奈胺则发生邻位重排成1-亚硝基化合物:反应机理在HCl存在下,N-亚硝基化合物首先解离成仲胺及NOCl然后进行亚硝基化:三十、Gabriel 合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转酿成邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性条件下水解获得一级胺和邻苯二甲酸,这是制备纯洁的一级胺的一种方法.有些情况下水解很困难,可以用肼解来取代:反应机理邻苯二甲酰亚胺盐和卤代烷的反应是亲核取代反应,取代反应产物的水解过程与酰胺的水解相似.反应实例三十一、Gattermann 反应重氮盐用新制的铜粉取代亚铜盐(见)作催化剂,与浓盐酸或氢溴酸发生置换反应获得氯代或溴代芳烃:本法优点是把持比力简单,反应可在较高温度下进行,缺点是其产率一般较低.反应机理见反应实例三十二、Gattermann-Koch 反应芳香烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存在下反应,生成芳香醛:反应实例三十三、Gomberg-Bachmann 反应芳香重氮盐在碱性条件下与其它芳香族化合物偶联生成联苯或联苯衍生物:反应机理反应实例三十四、Hantzsch 合成法两分子b-羰基酸酯和一分子醛及一分子氨发生缩合反应,获得二氢吡啶衍生物,再用氧化剂氧化获得吡啶衍生物.这是一个很普遍的反应,用于合成吡啶同系物.反应机理反应过程可能是一分子b-羰基酸酯和醛反应,另一分子b-羰基酸酯和氨反应生成b-氨基烯酸酯,所生成的这两个化合物再发生Micheal加成反应,然后失水关环生成二氢吡啶衍生物,它很溶液脱氢而芳构化,例如用亚硝酸或铁氰化钾氧化获得吡啶衍生物:反应实例三十五、Haworth 反应萘和丁二酸酐发生然后按标准的方法还原、关环、还原、脱氢获得多环芳香族化合物.见反应实例三十六、Hell-Volhard-Zelinski 反应羧酸在催化量的三卤化磷或红磷作用下,能与卤素发生a-卤代反应生成a-卤代酸:本反应也可以用酰卤作催化剂.反应机理反应实例三十七、Hinsberg 反应伯胺、仲胺分别与对甲苯磺酰氯作用生成相应的对甲苯磺酰胺沉淀,其中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反应.此反应可用于昆季叔胺的分离与鉴定.三十八、Hofmann 烷基化卤代烷与氨或胺发生烷基化反应,生成脂肪族胺类:由于生成的伯胺亲核性通常比氨强,能继续与卤代烃反应,因此本反应不成防止地发生仲胺、叔胺和季铵盐,最后获得的往往是多种产物的混合物.用年夜过量的氨可防止多取代反应的发生,从而可获得良好产率的伯胺.反应机理反应为典范的亲核取代反应(S N1或S N2)反应实例三十九、Hofmann 消除反应季铵碱在加热条件下(100--200°C)发生热分解,当季铵碱的四个烃基都是甲基时,热分解获得甲醇和三甲胺:如果季铵碱的四个烃基分歧,则热分解时总是获得含取代基最少的烯烃和叔胺:反应实例四十、Hofmann 重排(降解)酰胺用溴(或氯)在碱性条件下处置转酿成少一个碳原子的伯胺:反应机理反应实例四十一、Houben-Hoesch 反应酚或酚醚在氯化氢和氯化锌等Lewis酸的存在下,与腈作用,随后进行水解,获得酰基酚或酰基酚醚:反应机理反应机理较复杂,目前尚未完全说明反应实例。
最新有机化学反应机理(整理版)
1.A rndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例2.Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。
3.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例4.Birch还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。
反应机理首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。
有机化学反应机理(整理版).doc
1.Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例2.Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。
3.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例4.Birch还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。
反应机理首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。
有机化学反应机理(总结最好的)(共143张PPT)详解
实例:卤代烃双分子亲核取代反应的反应机理(SN2)
C6H13
H Br
C6H13 H HO CH3 Br HO
C6H13 H
HO - +
H3C
+ Br CH3
有两种分子参与了决定反应速度关键步骤的亲核取代反应 称为SN2 反应
构型保持和构型翻转
n-C6H13 H CH3
n-C6H13 H CH3
C
慢
N O O NO2
在芳香亲核取代反应中,吸电子基是一个 活化的邻对位定位基。
应用实例
O2N
OC2H5 + H2N NO2
-X
O OCH3
180 C
o
O2N
HN NO2
+ EtOH
HX
HO OCH3
-NO2
HNO2
SN1Ar反应机理
[C6H5N2]+ClF
HBF4
[C6H5N2] BF4
+
-
-N2
常用的催化剂有盐酸 、硫酸、苯磺酸等
CH3COOH + C2H5OH 投料 1 1 : : 1 10
H+
CH3COOC2H5 + H2O 产率 67% 97%
酯化反应是一个可逆的反应,为了使正反应有利, 通常采用的手段是: ①使原料之一过量; ②不断移走产物(例如除水;乙酸乙酯、乙酸、水 可形成三元恒沸物 bp 70.4℃)。
2 H 2SO4
— H 3O + HSO 4 + SO3
SO3H
稀 H2SO4 100 - 170oC
+ H2SO4
6 1,2-环氧化合物的开环反应
环氧乙烷类化合物的三元环结构使各原子的轨道不能正面充 分重叠,而是以弯曲键相互连结,由于这种关系,分子中存在一 种张力,极易与多种试剂反应,把环打开。酸催化开环反应时, 首先环氧化物的氧原子质子化,然后亲核试剂向C−O键的碳原子 的背后进攻取代基较多的环碳原子,发生SN2反应生成开环产物。 这是一个SN2反应,但具有SN1的性质,电子效应控制了产物,空 间因素不重要。碱性开环时,亲核试剂选择进攻取代基较少的环 碳原子,C−O键的断裂与亲核试剂和环碳原子之间键的形成几乎 同时进行,并生成产物。这是一个 SN2反应,空间效应控制了反 应。
有机反应机理知识点归纳
有机反应机理知识点归纳
有机反应机理是有机化学中非常重要的一部分,它描述了有机分子之间发生化学反应的详细过程。
下面是一些常见的有机反应机理知识点归纳:
1. 反应类型:
- 加成反应:两个单体结合形成一个新的化合物。
- 消去反应:一个大分子分解成两个或更多小分子。
- 变位反应:分子内原子或基团的位置重新排列。
- 取代反应:一个原子或基团被另一个原子或基团取代。
2. 反应机理的步骤:
- 初始步骤:包括反应物的活化和生成中间体。
- 中间体的转化:中间体经历一系列的转化步骤,最终形成产物。
- 生成产物:最终产物生成并结束反应。
3. 催化剂的作用:
- 催化剂可以加速反应速率,降低活化能。
- 酶是生物体内常见的催化剂。
4. 反应速率与反应底物浓度的关系:
- 当反应底物浓度增加时,反应速率也会增加。
- 反应速率与浓度之间的关系可以通过速率方程式表示。
5. 质子转移反应:
- 质子可以从一个分子转移到另一个分子,形成质子化和去质子化产物。
- 质子转移反应在有机化学中非常常见。
6. π电子的参与:
- π电子可以作为电子云,参与化学反应中的电子迁移。
以上是有机反应机理的一些常见知识点归纳,希望对您有所帮助。
有机化学反应机理
+ H2SO4
6 1,2-环氧化合物的开环反应
环氧乙烷类化合物的三元环结构使各原子的轨道不能正面充 分重叠,而是以弯曲键相互连结,由于这种关系,分子中存在一 种张力,极易与多种试剂反应,把环打开。酸催化开环反应时, 首先环氧化物的氧原子质子化,然后亲核试剂向C−O键的碳原子 的背后进攻取代基较多的环碳原子,发生SN2反应生成开环产物。 这是一个SN2反应,但具有SN1的性质,电子效应控制了产物,空 间因素不重要。碱性开环时,亲核试剂选择进攻取代基较少的环 碳原子,C−O键的断裂与亲核试剂和环碳原子之间键的形成几乎 同时进行,并生成产物。这是一个SN2反应,空间效应控制了反 应。
实例: 甲烷的氯化
卤化反应 分子中的原子或基团被卤原子取代的 反应称为卤化反应。若卤原子为氯原子, 则该卤化反应称为氯化反应。
CH4 + Cl2
hv
CH3Cl + HCl
反应机理
链引发 链增长
链终止
hv Cl2
CH4 + Cl
2Cl
CH3 + HCl
H= 7. 5kJ/mol Ea=16.7 kJ/mol
(五)重要有机反应的反应机理
反应机理是对一个反应过程的详细描述,在表述反 应机理时,必须指出电子的流向,并规定用箭头表示一 对电子的转移,用鱼钩箭头表示单电子的转移。
反应机理是根据很多实验事实总结后提出的,它有 一定的适用范围,能解释很多实验事实,并能预测反应 的发生。如果发现新的实验事实无法用原有的反应机理 来解释,就要提出新的反应机理。反应机理已成为有机 结构理论的一部分。
40oC
SO3H + H2O
+ H 2SO4 ( 浓 )
110oC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.A rndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
2.Baeyer----Villiger 反应过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。
3.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:例4.Birch还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。
首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。
(Ⅰ)不稳定而被质子化,随即从乙醇中夺取一个质子生成环己二烯自由基(Ⅱ)。
(Ⅱ)在取得一个溶剂化电子转变成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,迅速再从乙醇中夺取一个电子生成1,4-环己二烯。
环己二烯负离子(Ⅲ)在共轭链的中间碳原子上质子化比末端碳原子上质子快,原因尚不清楚。
取代的苯也能发生还原,并且通过得到单一的还原产物。
例如5.Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇。
α,β-不饱和羧酸酯还原得相应的饱和醇。
芳香酸酯也可进行本反应,但收率较低。
本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。
首先酯从金属钠获得一个电子还原为自由基负离子,然后从醇中夺取一个质子转变为自由基,再从钠得一个电子生成负离子,消除烷氧基成为醛,醛再经过相同的步骤还原成钠,再酸化得到相应的醇。
醛酮也可以用本法还原,得到相应的醇:6.Cannizzaro 反应凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。
此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。
具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应得到季戊四醇:醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。
7.Claisen 酯缩合反应含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到β-酮酸酯。
如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。
二元羧酸酯的分子内酯缩合见Dieckmann缩合反应。
乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。
但由于最后产物乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。
所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。
常用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、三苯甲基钠、二异丙氨基锂(LDA)和Grignard试剂等。
如果酯的α-碳上只有一个氢原子,由于酸性太弱,用乙醇钠难于形成负离子,需要用较强的碱才能把酯变为负离子。
如异丁酸乙酯在三苯甲基钠作用下,可以进行缩合,而在乙醇钠作用下则不能发生反应:两种不同的酯也能发生酯缩合,理论上可得到四种不同的产物,称为混合酯缩合,在制备上没有太大意义。
如果其中一个酯分子中既无α-氢原子,而且烷氧羰基又比较活泼时,则仅生成一种缩合产物。
如苯甲酸酯、甲酸酯、草酸酯、碳酸酯等。
与其它含α-氢原子的酯反应时,都只生成一种缩合产物。
实际上这个反应不限于酯类自身的缩合,酯与含活泼亚甲基的化合物都可以发生这样的缩合反应,这个反应可以用下列通式表示:8.Claisen—Schmidt 反应一个无α-氢原子的醛与一个带有α-氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到α,β-不饱和醛或酮:9.Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。
当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。
对位、邻位均被占满时不发生此类重排反应。
交叉反应实验证明:Claisen重排是分子内的重排。
采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。
两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。
Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。
从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。
取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。
Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。
10.Clemmensen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。
对酸不稳定而对碱稳定的化合物可用Wolff-Kishner-黄鸣龙反应还原。
11.Cope 消除反应叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二取代羟胺,产率很高。
实际上只需将叔胺与氧化剂放在一起,不需分离出氧化叔胺即可继续进行反应,例如在干燥的二甲亚砜或四氢呋喃中这个反应可在室温进行。
此反应条件温和、副反应少,反应过程中不发生重排,可用来制备许多烯烃。
当氧化叔胺的一个烃基上二个β位有氢原子存在时,消除得到的烯烃是混合物,但是Hofmann产物为主;如得到的烯烃有顺反异构时,一般以E-型为主。
例如:这个反应是E2顺式消除反应,反应过程中形成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要产生这样的环状结构,氨基和β-氢原子必须处于同一侧,并且在形成五员环过度态时,α,β-碳原子上的原子基团呈重叠型,这样的过度态需要较高的活化能,形成后也很不稳定,易于进行消除反应。
12.Cope 重排1,5-二烯类化合物受热时发生类似于 O-烯丙基重排为 C-烯丙基的重排反应(Claisen 重排)反应称为Cope重排。
这个反应30多年来引起人们的广泛注意。
1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。
Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。
例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是(Z, E)-2,6辛二烯:Cope重排是[3,3]s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表现为经过椅式环状过渡态:13.Friedel-Crafts 烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF等)存在下,发生芳环的烷基化反应。
卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超过3个碳原子时,反应过程中易发生重排。
首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,得到较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体s-络合物,然后失去一个质子得到发生亲电取代产物:14.Friedel-Crafts 酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通常用无水三氯化铝)催化下发生酰基化反应,得到芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排。
15.Gattermann-Koch 反应芳香烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存在下反应,生成芳香醛:16.Hell-Volhard-Zelinski 反应羧酸在催化量的三卤化磷或红磷作用下,能与卤素发生a-卤代反应生成a-卤代酸:本反应也可以用酰卤作催化剂。
17.Hinsberg 反应伯胺、仲胺分别与对甲苯磺酰氯作用生成相应的对甲苯磺酰胺沉淀,其中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反应。
此反应可用于伯仲叔胺的分离与鉴定。
18.Hofmann 烷基化卤代烷与氨或胺发生烷基化反应,生成脂肪族胺类:由于生成的伯胺亲核性通常比氨强,能继续与卤代烃反应,因此本反应不可避免地产生仲胺、叔胺和季铵盐,最后得到的往往是多种产物的混合物。
用大过量的氨可避免多取代反应的发生,从而可得到良好产率的伯胺。
反应为典型的亲核取代反应(S N1或S N2)19.Hofmann 消除反应季铵碱在加热条件下(100--200°C)发生热分解,当季铵碱的四个烃基都是甲基时,热分解得到甲醇和三甲胺:如果季铵碱的四个烃基不同,则热分解时总是得到含取代基最少的烯烃和叔胺:20.Hofmann 重排(降解)酰胺用溴(或氯)在碱性条件下处理转变为少一个碳原子的伯胺:21.Knoevenagel 反应含活泼亚甲基的化合物与醛或酮在弱碱性催化剂(氨、伯胺、仲胺、吡啶等有机碱)存在下缩合得到a,b-不饱和化合物。