最新大学物理(简谐振动篇)

合集下载

大学物理 简谐振动

大学物理 简谐振动
:角频率
x A cos( t )
k — 系统属性 m
2
等 价 判 别 式
运动方程
A、 :积分常数 — 初始条件

a. x — 平衡位置 量度
b. k、 — 固有性质 与初始条件无关 c. A、 — 初始条件 与固有性质无关
x A cos( t )
dx v A sin(t ) dt vm
A
v
a
v t 图
T
π A cos( t ) 2
a A 2 cos(t )
2
o
A
a t图
T
A 2
A cos(t π ) A 2
o
t
二.简谐运动的运动学描述
1.振幅 A
2.周期与频率 最大位移 A xmax 表征能量
x A cos( t ) A cos[ (t T ) ] A cos( t 2 )
A

Ax
o
v A sin t
A 2
0.26m s
1
(负号表示速度沿 Ox 轴负方向)
(3)如果物体在 x 0.05 m 处时速度不等于零, 1 而是具有向右的初速度 v0 0.30m s ,求其运动方程 . 解 A'
0 ,由旋转矢量图可知 ' π 4 π x A cos(t ) 0.0707 cos( 6.0t )
o
A
x
0 x A cos(t ) 0.05 cos 6.0t m
由旋转矢量图可知
A (2)求物体从初位置运动到第一次经过 处时的 2 速度;

x A cos(t ) A cos(t )

大学物理(简谐振动篇)ppt课件

大学物理(简谐振动篇)ppt课件
通过图表展示实验结果,如位移-时间 图、速度-时间图等,以便更直观地分 析振动特性。
波动方程验证性实验设计思路分享
实验目的通过观察Βιβλιοθήκη 测量波动现象,验证波动方程的正确性。
实验原理
利用波动方程描述波的传播规律,通过实验数据验证理论预测。
波动方程验证性实验设计思路分享
实验设计思路
选择合适的波动源和测量仪器,如振动台、激光 干涉仪等。
01
实验步骤
02
搭建实验装置,包括弹簧、振子、测量仪器等。
调整实验参数,如弹簧劲度系数、振子质量等,以获得不同条
03
件下的振动数据。
弹簧振子实验设计思路分享
使用测量仪器记录振动的位移、速度 、加速度等数据。
对实验数据进行处理和分析,提取简 谐振动的基本特征。
单摆实验数据处理技巧指导
实验目的
通过观察和测量单摆的运动,研究简谐振动的基本规律。
波动传播速度
波动在介质中传播的速度称为波动传播速度。对于简谐振动 形成的机械波而言,波动传播速度与介质的性质有关,如弹 性模量、密度等。同时,波动传播速度还与振动的频率有关 ,频率越高则波动传播速度越快。
02
简谐振动的动力学特征
回复力与加速度关系
回复力定义
指向平衡位置的力,大小与位移成正比,方 向始终指向平衡位置。
1 研究非线性振动现象
通过设计和实施非线性振动实验,探索非线性振动的基 本规律和特性,如混沌现象、分岔行为等。
2 探究复杂系统中的振动传播
研究复杂网络中振动传播的动力学行为,揭示网络结构 对振动传播的影响机制。
3 开发新型振动传感器件
结合微纳加工技术和振动理论,设计并制作具有高灵敏 度、高分辨率的振动传感器件,应用于精密测量和工程 领域。

大学物理简谐振动

大学物理简谐振动
tan A1 sin 1 A2 sin 2 A1 cos1 A2 cos2
A2
A
A2 sin 2
2 -1
2
O
1 A1 x2
A1 sin 1
x2 x
x1x1
x2
x
A1 cos1 A2 cos2
合振动振幅:A A12 A22 2A1A2 cos(2 1)
1. 两个分振动的相位相同(同相)
5 (或 3 )
4
4
第六章
机械波
mechanical wave
6.1 机械波的产生、传播和描述 波动: 振动在空间中的传播过程.
机械波: 机械振动在弹性介质中的传播过程. 波动
电磁波: 交变电磁场在空间中的传播过程. 6.1.1 机械波的产生
当弹性介质中的一部分发生振动时,由于介质各个 部分之间的弹性力作用,振动就由近及远地传播出去. (1) 机械波实质上是介质中大量质点参与的集体振动;
20 0.47
(2) 30为何值时, x1+x3 的振幅为最大; 30为何值时, x2+x3的振幅为最小.
x1 0.05cos10t 3 4
x2 0.06cos10t 4
x3 0.07 cos10t 30
30
10
0 时,x1+x3 振幅最大:30
10
3
4
30 20 时,x2+x3 振幅最小:30 20
t 时刻点 P 的振动状态
P点在
t
时刻的位移
y P ,t
yO ,t x
u
A c os [ (t
x) u
0 ]
波函数 (波方程)
y( x, t )
A cos[ (t

大学物理简谐运动课件

大学物理简谐运动课件

05
简谐运动的应用领域
物理学领域的应用
振动与波动实验
01
简谐运动是振动的基本形式之一,在物理学实验中常被用来研
究振动和波动现象,如共振、干涉和衍射等。
弦的振动
02
弦的振动是一种常见的简谐运动,在研究弦乐器的发声机制、
弦振动方程等方面有重要应用。
电磁波的发射与接收
03
在无线电通信和雷达技术中,信号的发射和接收都涉及到电磁
详细描述
简谐运动的位移公式为x=A*sin(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公式用于描述简 谐运动物体在任意时刻的位置变化。
简谐运动的速率公式
总结词
描述简谐运动物体速度大小的公式
详细描述
简谐运动的速率公式为v=A*ω*cos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公 式用于描述简谐运动物体在任意时刻的速度大小。
简谐运动的加速度公式
总结词
描述简谐运动物体加速度大小的公式
详细描述
简谐运动的加速度公式为a=A*ω^2*sin(ωt+φ),其中A为振幅, ω为角频率,t为时间,φ为初相角。 该公式用于描述简谐运动物体在任意 时刻的加速度大小。
简谐运动的能量定理
总结词
描述简谐运动物体能量变化的定理
详细描述
简谐运动的能量定理指出,一个做简谐运动的物体,其振动能量E与振幅A的平方成正 比,即E=1/2*k*A^2,其中k为弹簧的劲度系数。该定理用于描述简谐运动物体能量的
受迫振动与共振
受迫振动的定义
受迫振动是指振动物体受到周期性外力作用下的振动,其振动频率与外力频率相同或相近 。
共振的原理

大学物理 第9章 简谐振动

大学物理 第9章 简谐振动
9.1 简谐振动的定义
9.2 简谐振动的规律 9.3 简谐振动的合成
9.1 简谐振动的定义
9.1.1 弹簧振子的振动
9.1.2 简谐振动的定义
9.1.3 单摆的运动规律
9.1.4 LC振荡回路中电容器 上电量的变化规律
振动是与人类生活和科学技术密切相关的一种 基本运动形式。
广义的振动 一物理量在某一定值附近周期性变化的现象称振动。
下面我们重点对合振动的振幅进行讨论
A A1 A2 2 A1 A2 cos( 2 1 )
2 2
t 2 t 1 2 1
讨论:两种特殊情况
(1) 21=2k (k=0,1,2,…) 两分振动同相
A A1 A 2
o

考虑方向 F mg 简谐振动!
mg
0
F ma mg
t 0

l
又 a
l d
2
dv dt
l
d
2
dt
2
T
F
O

dt
2
g

d 2 g 0 2 l dt
d (v l ) dt

mg
g l
2 T 2
2
x

A x A y cos t
2 2

(2)相位差 y x ,轨迹方程为
x Ax y Ay 0
x
2 2

y
2 2
2
xy Ax Ay
cos(
Ax
Ay
y
x ) sin (
2
y

大学物理简谐振动知识点及试题带答案

大学物理简谐振动知识点及试题带答案

简谐振动一、基本要求1、掌握简谐振动的定义,描述简谐振动的各物理量及其相互关系,会根据定义来判断一各物体的运动是不是简谐振动。

2、掌握简谐振动的旋转矢量表示法。

3、掌握简谐振动的基本特征,能根据一定的初始条件写出简谐振动的运动方程。

4、掌握同方向频率的两个简谐振动的合成,了解相互垂直同频率的简谐振动的合成。

二、主要内容1、简谐振动的表达式(运动方程) cos()x A t ωϕ=+三个特征量:振幅A ,决定与振动的能量;角频率ω,决定于振动系统的固有属性; 初相位ϕ,决定于振动系统初始时刻的状态。

简谐运动可以用旋转矢量来表示。

2、振动的相位:()t ωϕ+两个振动的相差:同相2k ϕπ∆=,反相(21)k ϕπ∆=+3、简谐振动的运动微粉方程:2220d x x dtω+=4、简谐振动的实例弹簧振子:220,2d x k x T dt m π+==单摆小角度振动:220,2d g T dt l θθ+==LC振荡:2210,2d q q T dt LCπ+== 5、简谐振动的能量:222111()222k P dx E E E m kx kA dt =+=+= 6、两个简谐振动的能量(1)同方向同频率的简谐振动的合成合振动是简谐振动,合振动的振幅和初相位由下式决定A =11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+(2)相互垂直的两个同频率的简谐振动的合成合运动的轨迹一般为椭圆,其具体形状决定于两个分振动的相差和振幅。

当2k ϕπ∆=或(21)k π+时,合运动的轨迹为直线,这时质点在做简谐振动。

三、习题与解答1、两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为)cos(1ϕω+=t A x 。

某时刻当第一个质点正在平衡位置向负方向运动时,第二个质点正在最大位移处。

则第二个质点的振动方程为:( B )(A ))2cos(2πϕω++=t A x (B ))2cos(2πϕω-+=t A x(C ))23cos(2πϕω-+=t A x (D ))cos(2πϕω++=t A x 2、一物体做简谐振动,振幅为A ,在起始时刻质点的位移为2A-且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为:( D )3、一质点作简谐振动,振动方程)cos(ϕω+=t A x ,当时间 t =T/4 时,质点的速度为:( C )(A ) ϕωsin A - (B) ϕωsin A (C )ϕωcos A - (D )ϕωcos A4、一质点作谐振动,周期为T ,当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( A )(A )T /6(B )T /12 (C)T /4 (D )T /85、有两个沿x 轴做简谐运动的质点,其频率、振幅皆相同,当第一个质点自平衡位置向负方向运动时,第二个质点在处(A 为振幅)也向负方向运动,则两者的相位差(12ϕϕ-)为:( C )2Ax -=(A )2π (B )32π (C )6π (D )65π6、质量为10×10-3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3x t ππ=+(SI)的规律做谐振动,求:(1)振动的周期、振幅、初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t 2=5 s 与t 1=1 s 两个时刻的位相差. 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==ma F mJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t7、一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表出.如果t =0时质点的状态分别是:(1)x 0=-A ;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过x =处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos ϕωϕA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππϕ+==t T A x)232cos(232πππϕ+==t T A x)32cos(33πππϕ+==t T A x)452cos(454πππϕ+==t T A x8、一质量为10×10-3 kg 的物体做谐振动,振幅为24 cm ,周期为4.0 s ,当t =0时位移为+24 cm.求:(1)t =0.5 s 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x =12 cm 处所需的最短时间; (3)在x =12 cm 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=ϕA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=ϕ,t t =时 3,0,20πϕ=<+=t v A x 故且 ∴ s 322/3==∆=ππωϕt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E9、有一轻弹簧,下面悬挂质量为1.0 g 的物体时,伸长为4.9 cm.用这个弹簧和一个质量为8.0 g 的小球构成弹簧振子,将小球由平衡位置向下拉开1.0 cm 后,给予向上的初速度v 0=5.0 cm·s -1,求振动周期和振动表达式. 解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又 s 26.12,51082.03===⨯==-ωπωT m k 即 m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωϕ==⨯⨯⨯=-=--即x v ∴ m )455cos(1022π+⨯=-t x10、图为两个谐振动的x -t 曲线,试分别写出其谐振动方程.题10图解:由题10图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题10图(b)∵0=t 时,35,0,2000πϕ=∴>=v A x 01=t 时,35,0,2000πϕ=∴>=v A x又 ππωϕ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+=11、有两个同方向、同频率的简谐振动,其合成振动的振幅为0.20 m ,位相与第一振动的位相差为6π,已知第一振动的振幅为0.173 m ,求第二个振动的振幅以及第一、第二两振动的位相差.解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A ∴ m 1.02=A 设角θ为O AA 1,则θcos 22122212A A A A A -+=即 01.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ 即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π.12、试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1)125cos(3),375cos(3);3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩(2)125cos(3),345cos(3).3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩解: (1)∵ ,233712πππϕϕϕ=-=-=∆ ∴合振幅 cm 1021=+=A A A (2)∵ ,334πππϕ=-=∆∴合振幅 0=A13、一质点同时参与两个在同一直线上的简谐振动,振动方程为120.4cos(2),650.3cos(2).6x t m x t m ππ⎧=+⎪⎪⎨⎪=-⎪⎩试分别用旋转矢量法和振动合成法求合振动的振幅和初相,并写出谐振动方程. 解:∵ πππϕ=--=∆)65(6 ∴ m 1.021=-=A A A 合3365cos 3.06cos 4.065sin3.06sin4.0cos cos sin sin tan 22122211=+-⨯=++=ππππϕϕϕϕφA A A A ∴ 6πϕ=其振动方程为m )62cos(1.0π+=t x14、若简谐运动方程为0.10cos(200.25)()x t m ππ=+,求:(1)振幅、频率、角频率、周期和初相;(2)2t s =时的位移、速度和加速度。

大学物理简谐运动-振幅-周期和频率-相位讲义省公开课获奖课件市赛课比赛一等奖课件

大学物理简谐运动-振幅-周期和频率-相位讲义省公开课获奖课件市赛课比赛一等奖课件

第五版
3 弹簧振子旳运动分析
F
m
Noo
x
x
Image F kx ma
得 d2 x 2 x
dt 2
令 2 k
m 即 a 2 x
具有加速度 a 与位移旳大小x成正比,而方
向相反特征旳振动称为简谐运动
第九章 振 动
8
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
解方程
d2 x 2 x
第九章 振 动
2
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
提琴弦线旳振动

琴码

5 26 3

第九章 振 动
3
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
2 简谐振动
简谐运动 最简朴、最基本旳振动
简谐运动
合成 分解
复杂振动
谐振子 作简谐运动旳物体
第九章 振 动
4
物理学
9-1 简谐运动 振幅 周期和频率 相位
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
一 简谐运动
1 机械振动
a 定义:物体或物体旳某一部分在一定位置
附近来回往复旳运动 b 实例:
平衡位置
心脏旳跳动,
钟摆,乐器, 地震等
c 周期和非周期振动
第九章 振 动
1
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
口琴旳发音机理
? ? 1 2 3 4 5 6 7 76 5 4 32 1
A
xt图
Tt
T 2
第九章 振 动
12

大学物理-简谐振动-

大学物理-简谐振动-

FX mg F mg kl kx
其中 m g kl 故 Fx kx 因此该物体作简谐运动 振幅
A
x
2 0
x0 0 A cos

2 v0 2
0.1m
初相位

2 k / m g / l
可知其运动学方程为
角速度
10 rad / s
3 ) 2
运动学方程
简谐运动的 速度
dx v A sin(t ) dt
简谐运动的 加速度
d 2x a 2 A 2 cos(t ) dt
简谐运动方程中的物理量在简谐运动中没有直观的表现, 比如说角速度,所以我们通过圆周运动来直观地研究简谐 运动中的物理量。
圆周运动半径 r—简谐运动振 幅A
难点
• 简谐振动的运动学方 程
动量定理中有很多运动状态相 似的运动。钟摆是最常见的简 谐运动的例子。
右图中可以清晰看出 钟摆的摆动规律
简谐运动的动力学特征
F kx
简谐运动的运动学方程
x A cos(t )
将简谐运动位置的质点运动位 置x放于关于时间t的直角坐标 系中,可以看出简谐振动过程 中质点的运动规律是一个COS 三角函数。
3 2
x 0.1 cos(10t
问题1
• 运动学方程公式中的角速 度如何理解?
问题2
• 知道了运动学方程,如何 求速度和加速度?
运动学方程 特征物理量
速度
加速度
圆周运动角度 —简谐振动相位 t

例 一轻弹簧竖直悬挂,弹簧下端系一个质量为 m 1.0kg 的物体,平衡时可使弹 簧伸长 l 9.8 102 m。今使物体在平衡位置获得方向向下的初速度 v0 1m / s,此 后物体将在竖直方向运动。(1)试证物体作简谐运动,并写出运动方程;(2)求物体 的速度和加速度及其最大值;(3)求最大回复力。 解:(1) 选取竖直向下为正向,在任意位置x处所受合力为

大学物理(简谐振动篇)

大学物理(简谐振动篇)

cost0≤1
x ≤A ——振动的强弱
3. T ——周期
振动状态重复一次所需要的时间,描述振动的快慢.
A c o s [( t T ) 0 ] A c o s (t 0 )
T2π
T 2π
1 ——振动的频率
T 物体在单位时间内发生完全振动的次数
第11章 机械振动
10
2π ——角频率(圆频率).
推论: 若振动系统除受弹性力外,还受一恒力作 用,则系统的振动规律不变,只是改变了平衡位置, 而坐标原点取在新的平衡位置上。
km
m
k
k
k
m
m
T 2 m
k
第11章 机械振动
20
2. 旋转矢量法
用匀速圆周运动 几何地描述 简谐振动
规定 A A
t=t时刻 A
以角速度 逆时针转
端点在x轴上的投影式
x(t)A co t s0 ()
二者2x关系0 ?
——振动方程
第11章 机械振动
8
说明 (1) 上述方程对于非机械振动也成立。
例 电磁震荡电路
q
dq
q C
L
di dt
d2q dt2
1q LC
0
C i dt L
(2) 从运动学方程 xA cost0
A A co sisn tt 00 2
a A 2co st 0
m2 k
k m
T 2 2 m
k
1 1 k T 2 m
• T ω ν 的大小由谐振动系统本身性质决定,反映了系统 的固有特性
——固有圆频率、固有周期和固有频率
4. (t 0)—— t 时刻的相位(位相)
(1) 数学上,相位是一个角度,

2024大学物理力学第八章机械振动

2024大学物理力学第八章机械振动

动contents •简谐振动•阻尼振动与受迫振动•振动的合成与分解•振动在介质中的传播•多自由度系统的振动•非线性振动与混沌目录01简谐振动简谐振动的定义与特点定义简谐振动是最基本、最简单的振动形式,指物体在跟偏离平衡位置的位移成正比,并且总是指向平衡位置的回复力的作用下的振动。

特点简谐振动的物体所受的回复力F与物体偏离平衡位置的位移x成正比,且方向始终指向平衡位置;振动过程中,系统的机械能守恒。

动力学方程根据牛顿第二定律,简谐振动的动力学方程可以表示为F=-kx,其中F为回复力,k为比例系数,x为物体偏离平衡位置的位移。

运动学方程简谐振动的运动学方程可以表示为x=Acos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相。

势能与动能在简谐振动过程中,系统的势能Ep和动能Ek都在不断变化,但它们的总和保持不变,即机械能守恒。

能量转换在振动过程中,势能和动能之间不断相互转换。

当物体向平衡位置运动时,势能减小、动能增加;当物体远离平衡位置时,势能增加、动能减小。

同方向同频率简谐振动的合成当两个同方向、同频率的简谐振动同时作用于同一物体时,它们的合振动仍然是一个简谐振动,其振幅等于两个分振动振幅的矢量和,其初相等于两个分振动初相的差。

同方向不同频率简谐振动的合成当两个同方向、不同频率的简谐振动同时作用于同一物体时,它们的合振动一般不再是简谐振动,而是比较复杂的周期性振动。

在某些特定条件下(如两个分振动的频率成简单整数比),合振动可能会呈现出一定的规律性。

相互垂直的简谐振动的合成当两个相互垂直的简谐振动同时作用于同一物体时,它们的合振动轨迹一般是一条复杂的曲线。

在某些特定条件下(如两个分振动的频率相同、相位差为90度),合振动轨迹可能会呈现出一定的规律性,如圆形、椭圆形等。

02阻尼振动与受迫振动阻尼振动的定义与分类定义阻尼振动是指振动系统在振动过程中,由于系统内部摩擦或外部介质阻力的存在,使振动幅度逐渐减小,能量逐渐耗散的振动。

大学物理(一)_ 简谐振动_41运动方程及特征量_

大学物理(一)_   简谐振动_41运动方程及特征量_

弹簧振子周期
T = 2π m
k
单摆周期
T = 2π l
g
表示一个质点一秒内振动的次数
2π T 表示一个质点2π 秒内振动的次数
简谐振动方程
y = A co s(ω t + ϕ )
三、特征量
1 振幅 A = ym ax
2 周期、频率、角频率
y
A o
−A
y−t 图
T
t
T
2
y = A c o s (ω t + ϕ ) = A cos[ ω ( t + T ) + ϕ ]
压,电磁场中电场强度和磁场强度
合成 3.最简单、最基本的振动是简谐振动
简谐振动 分解 复杂振动
§4-1 简谐振动的运动方程及特征量
一、简谐振动的定义
切向合力:在振动方向上所受合力
F t = − ky
Ft
=
mat
=
d2y m
dt 2
=
−ky
at
=
d 2y dt 2
=

k m
y
k =ω2
m
d 2y dt 2
= 2π
l (周期)
g
周期由系统本身性质决定
微振动是谐振动
二、简谐振动的振动表达式
解方程
d2 y dt2
+
ω
2y
=
0
简谐振动的微分方程
解得 y = A c o s ( ω t + ϕ )
简谐振动方程
积分常数,根据初始条件确定
运动速度 加速度
v
=
a
dy = − Aω sin (ω t + ϕ )

大学物理简谐振动

大学物理简谐振动

大学物理简谐振动在大学物理的广袤知识海洋中,简谐振动是一个极其重要的概念。

它不仅在物理学的理论体系中占据着关键的地位,而且在实际生活和众多科学技术领域都有着广泛而深刻的应用。

简谐振动,简单来说,是一种理想化的周期性运动。

想象一下一个小球在光滑水平面上连接着一个弹簧,当小球被拉离平衡位置然后松手,它就会在弹簧的作用下做往复运动,这种运动就是简谐振动。

我们先来看看简谐振动的数学描述。

它可以用一个正弦或余弦函数来表示,形如 x =A sin(ωt +φ) ,其中 x 是位移,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。

振幅 A 决定了振动的最大位移,也就是振动的“幅度”;角频率ω 则反映了振动的快慢;初相位φ 则决定了振动的起始位置。

再深入理解一下简谐振动的特点。

首先,它的加速度与位移成正比,且方向总是指向平衡位置。

这意味着,当物体偏离平衡位置越远,它受到的回复力就越大,加速度也就越大,从而促使它更快地返回平衡位置。

其次,简谐振动的能量是守恒的。

在振动过程中,动能和势能相互转化,但总能量始终保持不变。

那么,简谐振动在实际生活中有哪些例子呢?最常见的莫过于钟摆的运动。

钟摆通过重力和绳子的拉力作用,在一定角度范围内做简谐振动,从而实现准确计时。

此外,乐器中的弦振动也是简谐振动的一种表现。

比如吉他弦,当被拨动时,弦在固定的两个端点之间做简谐振动,产生特定频率的声音。

在工程技术领域,简谐振动也有着重要的应用。

例如,汽车的减震系统就利用了简谐振动的原理。

当汽车行驶在不平坦的路面上时,减震器通过弹簧和阻尼器的作用,使车身的振动尽可能接近简谐振动,从而减少颠簸,提高乘坐的舒适性和稳定性。

对于学习大学物理的同学们来说,理解和掌握简谐振动有着重要的意义。

它是进一步学习波动、光学等知识的基础。

通过研究简谐振动,我们能够培养对物理现象的观察、分析和解决问题的能力。

在解决简谐振动相关的问题时,通常需要运用牛顿第二定律、能量守恒定律等物理定律,并结合数学工具进行计算和分析。

大学物理111简谐振动课件

大学物理111简谐振动课件

1. 平衡位置 2. 建立坐标 3.受力分析
弹性力 f kx
4.牛顿运动方程
kx
ma
m
d2 dt
x
2
令 k 2 整理得
m
d 2 x 2 x 0 简谐振动动力学方程
dt 2
解微分方程可得
x A cos(t 0 )
简谐振动运动学方程
二、简谐振动的三个特征量
1.振幅 物体离开平衡位置的最大位移的绝对值 A, 由初始条件决定,描述振动的空间范围。
2.周期 振动状态重复一次所需要的时间,描述振 动的快慢.
Acos[(t T ) 0] Acos(t 0)
T 2π T 2π
1
T
物体在单位时间内发生完全振动的次
数,称振动的频率.
2π 称圆频率(角频率).
k T 2 m 1 k
m
k
2 m
反映了系统的固有特性,分别称为谐振子系统 的固有圆频率、固有周期和固有频率.
圆频率 k 由系统决定,与初始条件无关
m
振幅 反映振动的强弱,由初始条件决定.

x Acos t 0 v A sin t 0
x0 Acos0
t=0时 v0 A sin0 可得
A
x02
v02
2
初相位 0 已知初始振动状态,用旋转矢量确定
x0<0 v0<0
x0=0 v0<0
x0>0 v0<0
例6 某简谐振动的振动曲线如图,写出振动方程。 x(cm)
O
t(s)
-1
1
-2
解: 设振动方程为 x A cos(t 0 )
则由振动曲线: A=2 cm
xA

简谐振动教案_大学物理

简谐振动教案_大学物理

课时:2课时教学目标:1. 理解简谐振动的定义、特点及其产生的原因。

2. 掌握简谐振动的运动规律,能够运用简谐振动方程解决实际问题。

3. 了解简谐振动的能量特征及其守恒规律。

4. 培养学生分析问题和解决问题的能力,提高学生的科学素养。

教学重点:1. 简谐振动的定义和特点。

2. 简谐振动的运动规律及其方程。

3. 简谐振动的能量特征及其守恒规律。

教学难点:1. 简谐振动的运动方程的推导。

2. 简谐振动的能量特征及其守恒规律的应用。

教学过程:第一课时一、导入1. 回顾机械振动的基本概念,引导学生思考简谐振动的特点。

2. 介绍简谐振动的产生原因,如弹簧振子、单摆等。

二、新课讲授1. 简谐振动的定义:物体在某一位置附近来回做往复运动,称为机械振动。

在所有的振动中,最简单、最基本的振动是简谐振动。

2. 简谐振动的特点:(1)等幅振动:振幅不变;(2)周期振动:振动周期固定;(3)线性恢复力:回复力与位移成正比,方向相反。

三、例题分析1. 以弹簧振子为例,推导简谐振动的运动方程。

2. 分析简谐振动的能量特征及其守恒规律。

四、课堂小结1. 简谐振动的定义、特点及其产生的原因。

2. 简谐振动的运动规律及其方程。

3. 简谐振动的能量特征及其守恒规律。

第二课时一、复习导入1. 复习上节课所学内容,检查学生对简谐振动的理解程度。

2. 引导学生思考简谐振动在实际生活中的应用。

二、新课讲授1. 简谐振动在实际生活中的应用:(1)弹簧振子:质量块在弹簧的弹力作用下做简谐振动;(2)单摆:摆球在重力作用下做简谐振动;(3)振动电路:电路中的电容器和电感器在交流电作用下做简谐振动。

2. 简谐振动的合成:(1)同方向同频率谐振动的合成;(2)不同方向同频率谐振动的合成。

三、例题分析1. 分析同方向同频率谐振动的合成。

2. 分析不同方向同频率谐振动的合成。

四、课堂小结1. 简谐振动在实际生活中的应用。

2. 简谐振动的合成。

五、作业布置1. 完成课后习题,巩固所学知识。

大学物理基础知识简单谐振动与波动

大学物理基础知识简单谐振动与波动

大学物理基础知识简单谐振动与波动大学物理基础知识简单谐振动与波动简单谐振动是物理学中一种重要的运动形式。

它在自然界和人类生活中都有广泛的应用,例如钟摆的摆动、弹簧的振动、电路中的交流电等等。

本文将介绍简单谐振动的基本概念和特点,并探讨与之相关的波动现象。

一、简单谐振动的基本概念简单谐振动是指一个物体在一个恢复力作用下以最简单的方式进行周期性振动的运动形式。

它具有以下几个基本特点:1. 平衡位置:简单谐振动系统的平衡位置是指物体在没有外力作用时的位置,也是物体往复振动的中心位置。

2. 振幅:简单谐振动的振幅是指物体从平衡位置往一个方向偏离的最大距离,用A表示。

3. 周期:简单谐振动的周期是指物体完成一次完整振动所需的时间,用T表示。

4. 频率:简单谐振动的频率是指单位时间内发生的完整振动次数,用f表示。

它与周期的倒数成正比,即f=1/T。

二、简单谐振动的数学描述简单谐振动可以通过一个简单的数学模型进行描述。

对于一个质点的简单谐振动,其位移随时间t的变化可以由以下公式表示:x = Acos(ωt + φ)其中,x是质点距离平衡位置的位移,A是振幅,ω是角频率,t是时间,φ是初相位。

角频率ω和频率f之间的关系可以通过以下公式计算:ω = 2πf初相位φ可以用初始条件来确定,例如质点的初始位移和初始速度。

简单谐振动的物体在振动过程中会出现一系列重复的运动状态,这些状态被称为振动的相位。

相位可以通过质点的位置和速度来描述,常用的相位有零相位、正相位和负相位。

三、简谐振动的能量变化简谐振动系统的能量在振动过程中会发生变化。

振动系统的总能量包括势能和动能两部分。

势能由于弹性势能而产生,它与物体的位移平方成正比。

动能由于物体的速度而产生,它与物体的速度平方成正比。

在简谐振动中,势能和动能之和保持不变,总能量恒定。

当物体位于极端位置时,动能达到最大值,而势能为零;当物体通过平衡位置时,势能达到最大值,而动能为零。

大学物理系列之简谐振动PPT课件

大学物理系列之简谐振动PPT课件

同号时为加速 异号时为减速
O
X
A
A
第33页/共66页
振动质点位移、速度与特征点 (t=0时对应的φ)
v
xv x
x0>0时Φ在1,4象限 v0>0时Φ在3,4象限
x
v
x
第34页/共66页
x
x
xv x
例1. 一物体沿 x 轴作简谐振动,A= 12cm, T = 2s
x 当t = 0时, 0= 6cm, 且向x正方向运动。
t 时刻与x轴的夹角
( t﹢ )
相位
A
A
第32页/共66页
11
旋转矢量端续点 上M 作匀速圆周运动
其 速率
A
振子的运动速度(与 X 轴同向为正)
A
t
旋转矢量端点 M 的加速度为
法向加速度,其大小为
A

t
A
X O
振子的运动加速度(与 X 轴同向为正)
A
t
任一时刻的 和 值,
其正负号仅表示方向。
• 任意位置
Fmsgin
悬线的张力和重力的合力沿悬线的垂直方向指向平衡位置。
第16页/共66页
Fmsgin
当θ很小时 sinθ ≈ θ ( θ < 5 °)
恢复力 Fmg
符合简谐振动的动力学定义
由牛顿第二定律
mat mg
d2
ml
mg
dt2
令 2 g l
d2 2 0
dt2
T 2 2
l g
单摆运动学方程: mcots()
弹簧振子 t= 0 时
m = 5×10 -3 kg
例三 k = 2×10 -4 N·m -1

最新-大学物理机械振动 精品

最新-大学物理机械振动 精品

大学物理机械振动篇一:大学物理——机械振动第十章机械振动基本要求1.掌握简谐振动的基本概念和描述简谐振动的特征量的意义及相互关系。

2.掌握和熟练应用旋转矢量法分析与解决有关简谐振动的问题。

3.掌握简谐振动的动力学与运动学特征,从而判定一个运动是否为简谐振动。

4.理解简谐振动的能量特征,并能进行有关的计算。

5.理解两个同振动方向、同频率的简谐振动的合成。

6.了解同振动方向不同频率的简谐振动的合成和相互垂直的两个振动的合成。

7.了解频谱分析、阻尼振动与受迫振动。

8.了解混沌的概念和电磁振荡。

10-1简谐振动一.弹簧振子????1.弹性力:2.运动学特征:22特征方程:2???0式中?2?其解:?(???)二.描述谐振动的物理量1.2.振幅:角频率:??3.频率:???2?2?4.5.6.三.周期:??相位:???初相位:?谐振动中的速度和加速度????(???)?(?????2)??22???2(???)?(?????)四.决定?,,?的因素1.?决定于振动系统,与振动方式无关;2.,?决定于初始条件:022公式法?分析法:0?2?,??(?0?0)0?????00??1,?2{?0(1,2象限)?0(3,4象限)0???????六.谐振动的能量?12122??1212?(???)22222?2?(???)?121212?(???)222???2??22?1?012?(???) ?22214?22?142?例1.已知?0时0?例2.已知?0时0?0,0?0,求?思考:1.地球,,已知,中间开一遂道;小球,从离表面处掉入隧道,问,小球是否作谐振动?2.复摆问题(,,已知)?222,0?0,求????03.弹簧串、并联串联:1?11?12并联:?1?210-2谐振动的旋转矢量表示法一、幅矢量法12作轴,为平衡位置;?在轴上的投影点作谐振动:?(???)3??以角速度?旋转一周,正好来回一次:2?0?二、参考圆法12三、相位差1同频率、同方向的两谐振动的相位差就是它们的初相差,即:????2??12超前与落后例1一物体沿轴作简谐振动,振幅?12,周期?2,?0时,位移为6且向正方向运动,求:1)初位相及振动方程;2)?05时,物体的位置、速度和加速度;3)0??6处,向轴负方向运动时,物体的速度和加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m2 k
k m
T 2 2 m
k
1 1 k T 2 m
• T ω ν 的大小由谐振动系统本身性质决定,反映了系统 的固有特性
——固有圆频率、固有周期和固有频率
4. (t 0)—— t 时刻的相位(位相)
(1) 数学上,相位是一个角度,
物理上,相位是描写振动状态的一个参量。
第11章 机械振动
11
O
t
大 , 称 x2 比 x1 超前 (
- A2
或 x1 比 x2 落后 )。
-A1
第11章 机械振动
15
2. 同相和反相
2k
两振动步调相同
(2k1)
两振动步调相反
x
A1
A2
o
- A2
-A1
x
A1
A2
o
- A2
-A1
x1
同相
x2
T
t
x1 反相
T
t
x2
第11章 机械振动
16
三、 谐振动的描述
振动三要素:振幅、周期和相位
简谐振动是最简单、最基本的振动.
合成
简谐运动
分解
复杂振动
振动的理论建立在简谐振动的基础上。
第11章 机械振动
7
一、简谐振动的特征
简谐振动的定义
1 用动力学方程定义
d2x k x m dt2
k m kx
x
0x
d2x k 2dt用2 运动m学x方程0定义
x A2coskt0 或 xAsin m t0
阻尼自由振动 无阻尼自由振动
无阻尼自由非谐振动 无阻尼自由谐振动 (简谐振动)
5
第十一章 机械振动
§11-1 简谐振动
* §11-2 阻尼振动 受迫振动 共振
§11-3 同方向的简谐振动的合成 * §11-4 相互垂直的简谐振动的合成
6
§11-1 简谐振动
物体离开平衡位置的位移按余弦函数(或正弦函数)的规 律随时间变化,这样的振动称为简谐振动,简称谐振动。
大学物理(简谐振动篇)
Attendance Homework
要求
蔡冬梅
dm_cai@ 15234068874 办公室:逸夫楼901
第四篇 振动和波动
振动与波无所不在
振动与波是横跨物理学各分支学科的 最基本的运动形式。
尽管在各学科里振动与波的具体内容不同, 但在形式上却有很大的相似性。
cost 0≤1
x ≤A ——振动的强弱
3. T ——周期
振动状态重复一次所需要的时间,描述振动的快慢.
A c o s [( t T ) 0 ] A c o s (t 0 )
T 2π
T 2π
1 ——振动的频率
T 物体在单位时间内发生完全振动的次数
第11章 机械振动
10
2π ——角频率(圆频率).
当t=0时, x0 1cm, 0 0 , 试写出振动方程。
解 取平衡位置为坐标原点
简谐振动的表达式: xAcos(t0)
由初始条件: x0 1cm, 0 0
x0
Acos0
,cos0
x0 A
1 2
0
3
0Asin00
sin0
0, 0
- 3
振动方程: x 2cos( k t )
m3
第11章 机械振动
21
第11章 机械振动
14
2.对不同一简谐运动 利用相位差可比较两个振动的步调是否一致
x1A 1cos(t10)
x2A 2cos(t20)
同方向、同频率振动
(t2 0 ) (t1 0 )20 10 (初相差)
1. 超前和落后
x
若 = 2- 1> 0 , 则
A1 A2
x2 x1
x2 比 x1 早 达到正最
x
A
= 2
O
-A
t
(2) 用相位描述振动状态更能深刻反映物体运动的周期性。
(3) 0 ——初相,(取决于时间零点的选择)
t 0 0
xAcos(t0)A
A sin (t 0)0 A
O
t
0
2
t
0
3
2
x0
x0
A
A
Ax
第11章 机械振动
12
比较a、b两点: 位移相同,速度 不同,相位 不同 . 比较a、c两点: 位移相同,速度 相同,相位 不同 .
第十一章 机械振动
什么是振动?
一个物理量(如位置、电量、电流、电压、温度……) 在某一确定值附近随时间作周期性的变化,则该物理量的 运动形式称为振动。
机械振动 :位移x 随时间t 的往复变化 电磁振动:电场、磁场等电磁量随t的往复变化
微观振动:如晶格点阵上原子的振动
振动分类
振动
受迫振动 自由振动
共振
xx xx
d2x dt 2
k m
x
0
xAcos(t0)
第11章 机械振动
kkx(x x0) mg
19
推论: 若振动系统除受弹性力外,还受一恒力作 用,则系统的振动规律不变,只是改变了平衡位置, 而坐标原点取在新的平衡位置上。
km
18
例 一轻弹簧(k),下端挂一重物m,用手拉物向下至x处, 然后无初速度释放。试写出振动方程。
解 原点取在原长 建立坐标 O`x 如图,
分析小球受力, 可得:
mg kx m d2x
dt2
d2x dt 2
k m
x
g
(不是谐振动)
O'
x 0o
原点取在平衡位置 建立 ox轴
mgk(xx0)mddt22x
a A 2cost0 A 2cost0
等幅性
周期性 x(t)x(tT)
物体所受的力与位移成正比而反向
第11章 机械振动
9
二、 振动参量
xAcost0
1. x ——位移 广义上,指振动的物理量
2. A ——振幅 最大位移,恒为正,表征系统的能量
物体离开平衡位置的最大位移的绝对值 A,由初始条件 决定,描述振动的空间范围。
x
ab
c
t
O
T
结论:用相位描述物体振动,能反映出时间上的周期性,
而(x,v)则不能。
第11章 机械振动
13
相位差
1.对于同一简谐运动
对于简谐运动 t1时刻相位
xAcos(t0)
t1 0
t2时刻相位
t2 0
相位差 (t20 ) (t10 )
相位差可以给出两运动状态间变化所需的时间
t t t
d2x dt2
二者28
说明 (1) 上述方程对于非机械振动也成立。
例 电磁震荡电路
q C
L
di dt
d2q dt2
1q LC
0
q
C
i
dq dt
L
(2) 从运动学方程 xAcost0
A A co sisn tt 00 2
(3) 简谐振动的特点
1. 解析法 xAcost0
ω由振动系统本身决定
弹簧振子:
k m
单摆:
g l
A, 0 由初始条件决定(t=0)
x(t)Acos(ωt0)
x0 Acos0
vωAsin(ωt0)
v0ωAsin0
A
x0 2
v
2 0
2
0
tg1( v0
x0
)
第11章 机械振动
17
例 一弹簧振子(m,k),已知 k m, A 2 cm,
相关文档
最新文档