线性系统理论第一章(习题)

合集下载

线性系统分析_习题答案

线性系统分析_习题答案

专业课习题解析课程西安电子科技大学844信号与系统专业课习题解析课程第1讲第一章信号与系统(一)专业课习题解析课程第2讲第一章信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。

线性系统理论复习题纲

线性系统理论复习题纲

《线性系统理论基础》复习提纲第1章线性系统的状态空间描述1、基本概念状态(向量)状态空间状态轨迹状态空间模型(表示)状态方程、输出方程系统矩阵、控制矩阵、前馈矩阵、输出矩阵状态结构(方框)图线性系统时不变(定常)系统、时变系统连续时间系统、离散时间系统 状态线性变换矩阵的特征值、矩阵的特征向量 对角线标准型、约当标准型 模态标准型 正则型矩阵 范德蒙矩阵 传递函数矩阵2、知识要点%%知识点1:根据物理规律建立状态空间模型♦ 简单机械系统 ♦简单电气系统参考例题:例2.1.1,例2.1.2(P8)%%知识点2:微分方程模型转化为状态空间模型♦微分方程中不含输入导数项给定 ()(1)110n n n y a ya y a y bu --++++=&L ,选取状态向量12(1)n n x y x y x y -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦&M M , 则有状态方程: 1122011010010n n n x x x x u x a a a x b -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦&&M O M M M&L输出方程: []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x y M Λ21001 例2.1.3 (注意:方框图在没有要求时可以不画出) ♦微分方程中包含输入函数导数项,且m n <给定()(1)()(1)110110n n m m n m m ya y a y a yb u b u b u b u ----++++=++++&&L L ,m n <,将其转化为()(1)110()(1)110n n n m m m m y a y a y a y u y b yb y b y b y ----⎧++++=⎪⎨=++++⎪⎩&%%%%L &%%%%L ,选取状态向量12(1)n n x yx y x y-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦%&%M M %,则有状态方程 120110100101n n x x u x a a a -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦&&M O M M &L 输出方程 12011[,,,,0,,0]m n m n x x y b b b x --⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦L L 123M例2.1.4 ♦ 微分方程中包含输入函数导数项,且n m =若()(1)()(1)110110n n n n n n n ya y a y a yb u b u b u b u ----++++=++++&&L L ,让n y y b u =-%,则转化为如下微分方程的形式()(1)(1)(1)110111100()()()n n n n n n n n n y a y a y a y b a b u b a b u b a b u -----++++=-++-+-%%%%&L L 。

线性系统理论1数学基础

线性系统理论1数学基础
a2 u a1e1 a 2 e2 a n en e1 e2 en a n
T 1 T 2 T T n
我们称 a a a 为关于基 e1 , e2 , , en 的坐标。若 向量 e , e , , e 构成 R n 的另一组基,则有
1.6
广义Sylvester矩阵
AV BW VF 其中: A R W C
r n nn
(1.6.1)
nr
,BR
;V C
nn
,
; F 为n价的Jordan矩阵当取 .
定W 阵, 并令C BW , 则上式化为 常规的Sylvester矩阵方程 : AV VF C (1.6.2)
矩阵的Jordan标准型与该特征值 相关联的Jordan块的个数.
矩阵某特征值的代数重数:
矩阵的Jordan标准型与该特征值 相关所有的Jordan块的阶数之和.
命题1.5.1 设A R 构如上述.记
n n
,其Jordan矩阵的结
i =max pi1 pi2 piq ,i=1,2, ,l
v1 v 2 v n v 1 v P 2 v n
v Rn ,有
e , e , , e n 和基 e1 , e 2 , , e n 之间的坐标 我们称 P 为基 1 2
1.4有理分式矩阵及其互质分解
1.4.1 互质多项式矩阵
1.4.2 有理分式矩阵的互质分解
1.4.3 矩阵(sI A) B的右既约分解
1
W ( s ) ( sI A) B N ( s ) D ( s )的求取: 第一步:利用算法1.3.1求取幺模矩阵P ( s ) 和Q ( s )满足 : P ( s ) sI A B Q(s) 0 I 第二步 : 将幺模阵Q ( s )做如下分块 : Q11 ( s ) Q12 ( s ) Q( s) Q21 ( s ) Q22 ( s ) 其中, Q11 ( s ) R nr [ s ], Q21 ( s ) R r r [ s ]. 第三步 : 取 N ( s ) Q11 ( s ), D ( s ) Q21 ( s ) 则N ( s )与D ( s )满足右既约分解式 W ( s ) ( sI A) 1 B N ( s ) D 1 ( s )。

线性系统理论(第一章)

线性系统理论(第一章)

x1(k +1) 0.9696 0.0202 x1(k) x (k +1) = 0.0404 0.9898 x (k) , k = 0,1,2,L 2 2 7 x1(0) 10 x (0) = 7 2 9×10
016
向量方程的形式:
Y = g (x,u,t)
, t ≥ t0
008
第一章
Ø线性系统的状态空间描述为:
& = A (t ) x + B (t )u x t ≥ t0 y = C (t ) x + D (t )u
其中:
a11 (t ) L a1n (t ) A(t ) = M M an1 (t ) L ann (t )
线性系统。
017
第一章
& = A(t ) x + B (t )u x t ≥ t0 y = C (t ) x + D (t )u
D(t ) + B(t ) +
+ +
u

A(t )
C (t )
y
018
第一章
若向量函数中 f 为变量
( x,u,t)

g ( x, u , t ) 至少包含一个元
其中: ai 和 b j 为实常数,i = 0 ,1, L , n
j = 0 ,1, L , n − 1
003
第一章
假定初始条件为零,取拉氏变换。 复频率域描述,即传递函数。
bn −1 s + L + b1 s + b0 G (s) = n n −1 s + a n − 1 s + L + a1 s + a 0

线性系统理论课后答案

线性系统理论课后答案

6 XI 给定图P2.12)和<b)所示两个电路,试列写出其状态方S 和输出方程。

其中, 分别指定:⑹状态变组廿二叱•勺输入变M « = ef(r):输出支量尹=/(b)状态变宣组X 严气,输入变S“y(O;输出变量丿■“CP2 1解 本题A 于由物理系统養立状态令问描述的基本题,意在训练正磧和熟塚运用电 路定律列写岀电路的状态方程和输出方程•(1)列写P2・l(a)电路的状态方程和输山方程。

首先.考虎到电容C 和电感E 为给定 电路中仅有的两个储能元件•电容端电压弋和流经电感电流了构成此电路的线性无关极 人变*组,从而透取状态变*组州=%:和巧=i 符合定义要求。

基此,利用电路元件关 系式和回路基尔《夫定律,定出电路方程为C 虬r dr L —+= e再由上述电路方程导出状态变量陀和i 的导》项,可得到状态变査方程规范形式, 血C I •—=—(tU C d/ 1 心 1 d/L c L L表%=3山和dW/dn 并将上述方程组表为向量方程,就得到此电路的状态方程:继而.按约定输出y = A 可直接得到此电路的输出方程:(b)列写P2.i(b)电路的状态方程和«ta 方程•类似地.考虑到电容C ]和C2为给定电 路中仅有的两个储能元件,电容端电压乜和七构成此电路的线性无关极大变fi 组,选 取状态变量组二叱和可二叱2符合定义要求,基此,利用电路元件关系式和回路基尔 霍夫定定出电路方程为dur GRpM 叱+叱之71RZ,皿6再由上述电路方程导出状态变量叱和叱的导数项,可得到状态变量方程规范形式: % 1 I 1少GR q GR 5 C,Kdr 表M 也C| /曲和 MqI方程:继而,按约定输出y =坯,可由电路导出:尸叱=%+七 将其表为向*方程,就得萸i 此电路的皴出方程,八不叱~孫"6 +丽e并将上述方程组表为向量方程,就得封此电路的状态K2.6求出下列^输入输出描述的一个状态空同描述: (i) 施)二 2^2 十 18$+40u(s)『+ 6“ +11S+6 (ii) 型十妙⑴_u(j) (g + 3)2(zl)解本®属于由传递函数型输入输出描述导出狀态空间描述的基本fi 。

第一篇线性系统理论习题答案

第一篇线性系统理论习题答案
⎡ s +1 ⎢s2 + s +1 ⎢ −1 = [1 0 1]⎢ 2 ⎢s + s +1 ⎢ 0 ⎢ ⎣
9-7 设有三维状态方程
⎡0 ⎤ ⎢1 ⎥ ⎢ ⎥ ⎢ ⎣1 ⎥ ⎦
1 s + s +1 s 2 s + s +1
2
0
⎤ 0 ⎥ ⎥ ⎡0 ⎤ s 2 + 2 s 1⎥ = 3 0 ⎥ ⎢ ⎢ s −1 ⎥ ⎥ 1 ⎥ ⎢ ⎣1⎥ ⎦ s − 1⎥ ⎦
⎡ R M ⎤ ⎡ R −1 ∵⎢ ⎥×⎢ ⎣0 T ⎦ ⎣ 0
− R −1 MT −1 ⎤ ⎡ R −1 ⎥=⎢ T− ⎦ ⎣ 0
⎡R M ⎤ ∴⎢ ⎥ ⎣0 T ⎦
9-10 解
−1
⎡ R −1 =⎢ ⎣ 0
− R −1 MT −1 ⎤ ⎥ T −1 ⎦
−1
对可控标准形 A 和 b ,计算 ( sI − A) b
+
v2
& 2 = x1 + y = x1 − C 2 x
写成矩阵形式为
1 1 x2 + U R2 R2
图 9-1 RLC 网络
⎡ R1 − & x ⎡ 1 ⎤ ⎢ L1 ⎢x ⎥=⎢ ⎣ &2 ⎦ ⎢ 0 ⎢ ⎣
⎤ ⎡ 1 ⎤ 0 ⎥ x ⎡ ⎤ ⎢ L ⎥ ⎥ ⎢ 1 ⎥ + ⎢ 1 ⎥U − 1 ⎥ ⎣ x2 ⎦ ⎢ − 1 ⎥ ⎢ R2 C 2 ⎥ ⎦ ⎣ R2 C 2 ⎥ ⎦
x1 , x 2 有下列关系存在 x1 = x1 + x 2 x 2 = − x1 − 2 x 2
试求系统在 x 坐标中的状态方程。 解 ①
&1 = x & = x2 x &2 = & & = −2 x1 − 3 x 2 + u x x

《线性系统理论》作业参考答案

《线性系统理论》作业参考答案

x 11 e t x 21 , 21 0 , x
x11 ( t 0 ) 1 x 21 ( t 0 ) 0

x 12 e t x 22 , 22 0 , x
x12 ( t 0 ) 0 x 22 ( t 0 ) 1
解得
x12 e t e t 0 x11 1 , x 21 0 x 21 1 1 (t ) x 0 e
( sI A )
1
s ( s 1) 0 2 det( sI A ) s ( s 1) 0 adj ( sI A ) 1
s 1 ( s 1) 0
2
s ( s 1) 1 s ( s 1) 1 s 1 1
2
所以 e

可以看出, f ( i ) 是 f ( A ) 的一个特征值。
1-3 解:(1) 特征多项式为 1 ( ) ( 1 ) .
4
验证
A 1 I 0 , ( A 1 I ) 2 0 , ( A 1 I ) 3 0 , ( A 1 I ) 4 0
At
e t 1 1 L [( sI A ) ] 0 0
e 1 1 0
t
t t 1 e te t e 1 。 t e
1-5 证明:因为 D 1 存在,所以由 D R p p
A det C B IA det D 0 BD A I D C
c
k 0
k
A
k
设 x 是属于 i 的一个非零特征向量,故
A x i x
.
2 2 因此 A x A Ax A i x i Ax i i x i x .

中国科学技术大学自动化专业《线性系统理论和设计》习题1-6章习题答案

中国科学技术大学自动化专业《线性系统理论和设计》习题1-6章习题答案

1.7 证明:())()det(det )det(det )(det )det()det()(1111λλλλλλλA B A I T A I T T A I T AT T I B I AT T B B A ∆=-=⋅-⋅-=-=-=∆⇒=----相似,与设= 又因为特征值为特征方程()0λ∆=的根,故特征值也相同。

1.11 解:可以参照课本P18的例题1.12(1),3,2,1)3)(2)(1()(,300020104132111===⇒---=∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλλλλA A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==Λ∴⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⇒=--3211000105411050140010)(1113211Q A Q Q q q q q A I ,,由λ(4),2,1,1)2)(1)(1()(4344111432124==-==⇒-+-=∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--λλλλλλλA ,1241243111111()0,111122,()012,12,4822 2.P I A q q q u I A q q u λλλλλξλλη⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==--=⇒==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==-=⎡⎤⎢⎥⎢⎥==<=⎢⎥⎢⎥⎣⎦===对于,,由对于的特征值,其代数重数 由计算其对应的特征向量计算出一个特征向量,即几何重数个数小于代数重数,即标准型中存在一个对应的约当块,约当块的阶数即的指数可以利用[]4443434123414418 1.682,()001110111121,,44114412121181211212q I A q q q c q q Q q q q q Q A Q λλ-=-=⇒⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⋅-=∴==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥-⎢⎥∴Λ==⎢⎥⎢⎥⎣⎦的式计算的广义特征向量由取1.12 证明:12n 222112n n 1n-1n-112n 21n 121n 1221n n 1n-3n-3221n 21n-22n-2n-2221n n 1111(1110()()0()()(0()()λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ-⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤--⎢⎥--⎢⎥--⎢⎥==⎢⎥--⎢⎥⎢⎥--⎣⎦后一行减去前一行的倍)n-221n n 123n 2131n 1n-2n-2n-223n j i 1i j n)()111()()()()()λλλλλλλλλλλλλλλλλλ≤<≤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎡⎤⎢⎥⎢⎥=---=⎢⎥⎢⎥⎣⎦=-∏同理2.6 解:(d) 令24231211y x y x yx y x ====,,,,则状态空间方程为: u m m k m k m k mk ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=0010020100000200112211x xx y ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=010*******y y (e) 令yx y x ==21,,则状态空间方程为: u e e t t ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=-10102x x[]x y 01= 2.7 解:(c)非线性方程: ⎩⎨⎧==21221u-x xx x[]x y 01= (d) 设⎪⎩⎪⎨⎧+=⇒=+⋅++-=⇒=+⋅+ux sx x u)(x s u x x sx x s )x (u 333221122121112,则状态空间方程可为:u ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=310312x x[]x y 01= 另法:先求出传递函数2323s G(s)s s +=+-,按2.6(b )方法求解。

线性系统理论习题答案

线性系统理论习题答案

《线性系统理论》作业参考答案1-1 证明:由矩阵úúúúúúûùêêêêêêëé----=--121000001000010a a a a A n n nL M O M M M L L L则A 的特征多项式为nn n n n n n n n n n n n n n n n n na a a a a a a a a a a a a a a a a A I +++==+--++--=--++--=+--=--------+-----L L L M O MM ML LL L M O M M M L L L L M O MMM L L L112114322111321121)1()1(00001001)1()1(000010001000010001l l l l l l ll l l l l l l l l ll 若i l 是A 的特征值,则00001000010001)(1112121=úúúúúúûùêêêêêêëé+++=úúúúúúûùêêêêêêëéúúúúúúûùêêêêêêëé+--=-----n n i n i n i i i in n ni i i i i a a a a a a A I L M M L M O M M M L L L l l l l l l l l l u l 这表明[]Tn ii i121-l l l L 是i l 所对应的特征向量。

线性系统理论第一章(3)

线性系统理论第一章(3)
C(t )F(t, t0 ) 的 n 个列在 [t0 , t1 ] 上线性无关。 证明 充分性:假定 u = 0 ,将 y(t ) = C(t )F(t, t0 )x(t0 )
+ + u y
图 2—2 不可观测网络
定理 2—8 动态方程(2—1)在 t0 时刻可观测,必要且只要存在一个有限时刻 t1 > t0 ,使矩阵
V(t0 , t ) =
t
òt e A (t -t )C*Ce A(t -t )d t
0 0 0
*
是非奇异矩阵;
51
é C ù ê ú ê CA ú ê ú (4) rank ê ú=n ê ú ê ú ê CAn - 1 ú ëê ûú
此例说明, 由量测的信息, 经过一段时间的积累之后能够唯一地决定出系统的初始状态, 这表明输出对系统的初始状态具有判断能力。 当系统的初始状态确定之后, 在任何时刻的状 态均可由状态转移方程来确定。因此说这个系统的状态是可观测的。 存在一个有限时刻 t1 > t0 , 使得由输入 u[t ,t 定义 2—6 若对状态空间中任一非零初态 x(t0 ) ,
状态方程的解为
x1(t ) = x10 + (t - t0 )x 20 +
x 2 (t ) = x 20 +
òt
t
0
(t - t )u(t )d t
òt
t
0
u(t )d t
令 t1 > t0 ,并对 y(t ) 作加权处理,令
h(t1, t0 ) =
òt
t1
0
é 1 ê êt - t 0 êë
0ù é1ù ú ê ú y(t )dt 1 úú êê 0 úú ûë û

线性系统课后题答案

线性系统课后题答案

第一章 数学基础1、加法不变性:R(S)中存在零元0,使得对()()S R s f ∈∀,都有()()s f s f =+0成立。

乘法不变性:R(S)中存在单位元1,使得对()()S R s f ∈∀,都有()()()s f s f s f =⋅=⋅11成立。

2、反证法证明:(1)加法不变性的唯一性假设在域F 中,存在0和0’,0≠0’,..t s αααα=+=+'0,0,对F ∈∀α成立。

以α+0=α为例,取α=0’,则0’+0=0’ 因为0’为零元,所以0’+0=0 所以0’=0,与假设矛盾。

(2)乘法不变性的唯一性假设在域F 中,存在1和1’,'11≠,..t s αααααα=⋅=⋅=⋅=⋅'1'1,11,对F ∈∀α成立。

以ααα=⋅=⋅11为例,取'1=α,则有'1'111'1=⋅=⋅ '1为单位元1'111'1=⋅=⋅∴'11=∴ 与假设矛盾3、试用反例证明你对下列问题的回答域交换环 环 []R s 是是 是 n n R *是是 元素[]R s ∈的对角矩阵是是 是 []p R s 是 是 是[]n np R s *是是其中:()p R s 是元素为常态的实有理分式(当s →∞,()R s 有界);()n n p R s ⨯是元素属于()p R s 的n n ⨯矩阵证明:⑴[]R s 不是域。

如 ()1f +=s s ,显然()[]s R s f ∉-1。

(2)n nR* 不是交换环。

如⎥⎦⎤⎢⎣⎡=1010α,⎥⎦⎤⎢⎣⎡=0101β,显然22⨯∈R βα、。

但是βααβ≠。

(3)不是域。

如⎥⎦⎤⎢⎣⎡+=0001s α,1-α不存在。

(4)()p R s 不是域。

如∈+=1s 1α()p R s ,1-α=s+1.∞→∞→-1α时,s , 所以1-α∉()p R s 。

南航江驹线性系统理论习题

南航江驹线性系统理论习题
1-11 若系统的系统矩阵 S ( s ) 为
2s 1 s ( s 1) 2s 1 s ( s 1) 2
0 0 0 1 0 s 2 ( s 1) s( s 2) s S (s) 0 0 ( s 2) 1 0 0 1 0
1 0 x 0 0
0 1 1 0
0 0 5 0
0 0 0 0 x u, 0 1 6 1
y 1 0 0 1 x
将系统进行标准结构分解。 2-6 判断下列系统的输出可控性,输出函数可控性和输入函数可观测性
0 1 0 (1) A 0 0 1 , 3 2 1 0 1 0 (2) A 1 2 0 , 0 0 3 0 1 0 (3) A 1 2 0 , 0 0 3 0 1 0 (4) A 1 2 0 , 0 0 3
det e At ei t
i 1
n
1-14 若图 1-11 两个反馈链接的子系统,其传递函数阵分别为
1 s 1 G1 ( s ) 0
1 s 2 , s 1 s 2
1 s 3 G2 ( s ) 1 s 1
2-13 给定单变量线性定常系统
y 0 1 x
Ax bu , y cx x
已知 ( A, b) 为可控,问是否存在 C 使得 ( A, C ) 总是可观测。请加以论证,并举例说明 之。 2-14 已知系统的传递阵为
( s 3) 1 s 1 ( s 2)( s 1) (1) G ( s ) ( s 2) 1 s 1 ( s 3)( s 1)

线性系统理论习题集(郑大仲)

线性系统理论习题集(郑大仲)

第2章一、状态空间描述的建立1. (由系统机理建立状态空间描述) 如图电路,写出系统的状态方程和输出方程。

选择状态变量x =u c ,输入变量u = e (t ),输出变量y = u c 。

解:如图电路,写出系统的状态方程和输出方程。

选择状态变量x =u c ,输入变量u = e (t ),输出变量y = u c 。

解:11c c du e u R C ,x x u ,y xdt RC RC=+⋅=-+=2.(由输入输出描述建立状态空间描述)系统的传递函数如下,求系统的状态空间描述41265)(232+++++=s s s s s s G解:可控标准形, []x 115100x 6124100010x =⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎥⎦⎤⎢⎢⎣⎡---=y u ; ; 或可观标准形, []x 100115x 6101201400x =⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎥⎦⎤⎢⎢⎣⎡---=y u ; 3.例2.3 给定单输入单输出线性定常系统的输入输出描述为3324160720()16194640s s G s s s s ++=+++ 试求系统的状态空间表达式。

解:此例中3m n ==。

由长除法得3232324160720646161840()41619464016194640s s s s G s s s s s s s ++---==+++++++则系统的状态空间表达式为e(t)u c[][]112233123010000106401941611840616644x x x x u x x x y x u x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---+⎢⎥⎢⎥⎣⎦4.例2.2:已知二阶系统的微分方程22yy y T u u ξωω++=+ 试求系统的状态空间表达式。

解:可控规范形实现为:[]1112222010121c c c c c c xx x u y T x x x ωξω⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦; 则可观测规范形实现为:[]2111222100112o o o o o o x x x u y x x x T ωξω⎡⎤⎡⎤-⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ ;二、传递函数矩阵的计算1.系统的状态空间描述如下,求系统的传递函数矩阵G (s ),u 10x 5261x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--= ;x 0210⎥⎦⎤⎢⎣⎡=y 解:⎥⎦⎤⎢⎣⎡+-+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+--+⎥⎦⎤⎢⎣⎡=-=--1217611052610210)I ()(211s s s s s B A s C s G 。

线性系统理论课后-答案

线性系统理论课后-答案

给定图P2.1(町和(b)所示两个电路,试列写岀其状态方程和输出方程。

其中, 分別指定:⑹状态变II组廿二陀・输入变量“ = 输出变畳尸=f(b)状态变量组齐= u c2 >输入变量输出变量y =(a) O)图P21解本题属于由物理系统尊立状态令间描述的基本题.意在训练正确和熟练运用电路定律列写出电路的状态方程和输出方程。

W列写P2.1(a)电路的状态方程和输川方程。

首先.考虑到电容C和电感I为给定电路中仅有的两个储能元件,电容端电压弋和流经电感电流/构成此电路的线性无关极人变裁组.从而选取状态变量组召=陀和勺符合定义耍求o基此,利用电路元件关系式利回路基尔霍夫定律.定出电路方程为cS d/再由上述电路方程导出状态变量陀和i的导数项..可得到状态变屋方程规范形式,dx 1 & 1丁二一"V u c —匸t + ~e d/ L c L L表u c x<to c/d/和i = d//dn并将上述方程组表为向量方程,就得到此电路的状态方程:继而,按约定输出y =几可直接得到此电路的输出方程:”[0 1卄(b)列写P2.1(b)电路的状态方程和輸出方程。

类似地,考虔到电容C]和C?为给定电路中仅有的两个储能元件,电容端电压呵和叱构成此电路的线性无关极大妾量组,选取状态变量组刁二呵和帀二叱2符合定义要求丿基此,利用电路元件关系式和回路基尔霍夫定律,定出电路方程为du cC&才4匕+七=€++M Q =€再由上述电路方程导出状态变最叱和叱:的导数项,可得到状态变量方程规范形式:表%二血c/击和击,并将上述方程组表为向最方程,就得到此电路的状态方程:继而,按约定输出y讥,可由电路导出:尸%% +七将其表为向量方程,就得到此电路的输出方程!T 1]卜融2・6求岀下列各输入输出描述的一个状态空树描述:⑴笳)—2?十18$+如1 i(s) ?+6?+11J 4-6(ii) 叫 n龜)(g+3)2(zl)解本题属于由传递函数型输入输出描述导出状态空间描述的基本题。

线性系统理论第一章(1)

线性系统理论第一章(1)

ti
图 1—3 用脉冲函数近似输入 因为系统是初始松弛的线性系统,故输出
y = Hu »
å [H dD (t - ti )]u(ti )D
i
(1—7)
当 D 趋于零时,(1—7)式成为
y =
ò-¥ [H d(t - t )]u(t )d t
H d(t - t ) = g(t, t )

(1—8)
若对所有的 t , H d(t - t ) 为已知,则对于任何输入,输出可由(1—8)定义。 (1—9)
y(t ) =

ò-¥
G(t, t )u(t )d t
(1—11)
其中
é g11(t, t ) g12 (t, t ) g1p (t, t ) ù ê ú ê g (t, t ) g (t, t ) g (t, t ) ú ê 21 ú 22 2p G(t, t ) = ê ú ê ú ê ú ê g (t, t ) g (t, t ) g (t, t ) ú q2 qp êë q 1 úû
"t Î (-¥, +¥)
(1—12)
对于具有线性和因果性的松弛系统,根据 G(t, t ) 的定义, G(t, t ) 中的每一个元都是时刻 t 加 于系统的 d 函数输入所引起的输出,若系统具有因果性,则系统在加入输入之前的输出为 零,即
G(t, t ) = 0 "t < t, t Î (-¥, +¥)
§ 1— 1
系统的输入—输出描述
系统的输入—输出描述给出了系统输入与输出之间的关系。 在推导这一描述时, 系统内 部结构的信息是不知道的。唯一可接触的是系统的输入端与输出端。在这种情况下,可把系 统看作是如图 1—1 所示的一个“黑箱” 。显然,我们所能做的只是向该黑箱施加各种类型的 输入并测量与之相应的输出。然后,从这些输入—输出对中获悉有关系统的重要特性。 u “黑箱” y

【理论】北航线性系统理论完整版答案

【理论】北航线性系统理论完整版答案

【关键字】理论1-1 证明:由矩阵可知A的特征多项式为若是A的特征值,则所以是属于的特征向量。

1-7 解:由于,可知当时,,所以系统不具有因果性。

又由于,所以系统是时不变的。

1-8 解:容易验证该系统满足齐次性与可加性,所以此系统是线性的。

由于而,故,所以系统是时变的。

又因为而,故,所以系统具有因果性。

1-11 解:由题设可知,随变化的图如下所示。

随变化的图如下所示。

从上述两图及所描述的系统,分析如下:当,且即时,有;当时,;当时,有;当时,有;当时,有;综上所示,该松弛系统在上述输入而激励的输出为:1-15 解:由上述齐次方程,可得两线性无关的解向量为:,所以即其基本矩阵为;状态转移矩阵为:1-17 证明:由题设我们可知故,得证。

1-19 证明:由题设可知:由上式可推出又由及习题1-17的结论可推出由以上两个结论,我们可得到 所以得证。

即 得证。

1-20 解:设其等价变换为,则可知: 由于P 是非奇异矩阵,所以。

1-24 解:易知,其中为严格真有理函数矩阵,进行下列计算: ,则所以因此,可得一个实现如下: 其模拟图如下所示。

1-25 证明:由题设知同理可知若要使得两系统零状态等价,则要满足,即满足 ,得证。

2-2 解: a,由题设可知:[]315 1 7- 1 1 1-7- 1 1 1- 1 0 1 1- 10 0 1 B A AB B 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=rank rank ,所以系统可控; 30 2 2 8- 14- 8-1- 3- 2-4 4 2 1 2 1 1- 10 2=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡rank CA CA C rank ,所以系统可观。

b,[]x c c c y u x x 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=•由题设可知:[]30 1 0 1 1 0 1 0 1 1 01 A B 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==rank B rank rankB ,所以系统可控; (1)若0321===c c c ,则系统不可观;(2)若321c c c ,,中至少有一个不等于零,则3 2 CA CA C 321132113212≠⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c c c c c c c c c c c rank rank ,所以系统不可观; 总之,该系统不可观。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若 li 是 A 的特征值,试证 [1 li li 2 li n -1 ]T 是属于 li 的特征向量。 1—2 若 li 是 A 的一个特征值,试证 f (li ) 是矩阵函数 f (A) 的一个特征值。 1—3 试求下列矩阵的特征多项式和最小多项式
é l1 1 0 0 ù ê ú ê 0 l1 1 0 ú ê ú ê ú ê 0 0 l1 0 ú ê ú ê 0 0 0 l1 ú ë û é l1 1 0 0 ù ê ú ê 0 l1 0 0 ú ê ú ê ú ê 0 0 l1 0 ú ê ú ê 0 0 0 l1 ú ë û é l1 1 0 0 ù ê ú ê 0 l1 0 0 ú ê ú ê ú ê 0 0 l1 1 ú ê ú ê 0 0 0 l1 ú ë û
y =
t
ò0 g(t - t )u(t )d t
若脉冲响应 g 由图 1—12(a)给定。试问,由图 1—12(b)所示的输入而激励的输出为何? g(t) 1 1 (a) 图 1—12 脉冲响应和输入作用 1—12 试求图 1—13 所示系统的动态方程式(略)
29
u(t) 1 2 t 1 2 (b) t
n >m
试证,给定初始状态 x(m ) = x0 下,时刻 n 的状态为 x(n )=F(n, m )x(0) 。若 A 与 n 无关,则
F(n, m ) 为何?
1—27 证明 x(n + 1) = A(n )x(n ) + B(n )u(n ) 的解为
n -1
x(n ) = F(n, m )x(m ) +
1 ù ú s+3ú 5s + 1 úú s + 2 úû
的实现,并画出其模拟图。 1—25 设{ A , B , C , D }和{ A , B , C , D }是两个线性时不变系统,其维数不一定相同。证明当 且仅当
CAk B = CAk B
(k = 0,1,2 )
D=D
时,两系统零状态等价。 1—26 设 x(n+1) = A(n)x(n)定义: F(n, m ) = A(n - 1)A(n - 2) A(m ) F(m, m ) = I
= A(t )x 的状态转移矩阵,试证: 1—18 设 Φ ( t, t0 ) 为 x
t
det F ( t, t0 ) = exp ò tr[A(t )]d t
t0
= A(t )x ,方程 z = -A* (t )z 称为它的伴随方程。其中 A* (t ) 表示 A(t ) 的转置共 1—19 给定 x = A(t )x 和 z = -A* (t )z 的状态转移矩阵。试证: 轭。设 F ( t, t0 ) 和 F1 ( t, t0 ) 分别是 x
且:
1 ai = - tr (Ri -1A) i i = 1,2, 3 , n
= (costsint )x 的等价时不变动态方程 1—22 试求 x
= e -At Be At x ,其中 A 、 B 为常值为方阵,求状态转移矩阵。 1—23 若 x
1—24 求真有理函数阵
é2 + s ê s +1 G(s ) = êê ê 5 êë s + 1
L =m
å F(n, l + 1)B(l )u(l )
1—28 设有 n 维、线性、时不变动态方程
= Ax + Bu x y = Cx + Du
若输入
u(t ) = u(n ) nT £ t £ (n + 1)T
n = 0,1,2
这里 T > 0 为采样周期。试证,系统在离散瞬时 0,T , 2T , 上的行为由下列离散时间方程给 出:
éA Bù ú = det D ⋅ det(A - BD-1C) det êê ú êë C D úû
若 A 可逆,上式有何变化?并证明
é é a1 ù ù ê ê ú ú n ê êa ú ú 2 det êê In + êê úú [b1 b2 bn ] úú = 1 + å aibi ê ê ú ú i =1 ê êa ú ú ëê ëê n úû ûú
31
æ T At ö x(n + 1) = e At x(n ) + ç e dt ÷ Bu(n ) ÷ ç ÷ ç è ò0 ø y(n ) = Cx(n ) + Du(n )
1—29 设有理函数矩阵为
é ê ê G(s ) = ê ê ês ëê 1 2s + 1 ù ú s s(s + 1) ú ú 1 2s + 1 ú + 1 s(s + 1)2 úûú
1—16

é1 ê ê0 ê A=ê ê0 ê ê0 ë 1 ù ú 1 0 0 úú 0 1 -1 úú ú 0 0 1 ú û 0 1
试利用 L[e At ] = (sI - A)-1 ,求 e At 1—17 若 T-1 (t ) 存在且对所有 t 可微,试证 d -1 éd ù [T (t )] = -T-1 (t ) ê T(t ) ú T-1 (t ) dt dt ë û
其中 a 为固定常数。试问,试系统是否为线性的?是否为时不变的?是否具有因果性? 1—9 试证:若对于任何 u1, u2 ,有 H (u1 + u2 ) = Hu1 + Hu2 则对于任意有理数 a 和任何 u ,有 H a u= a Hu。 1—10 试证,对于固定的 a ,图 1—4 所定义的移位算子 Qa 是线性时不变系统。它的脉冲响 应和传递函数为何? 1—11 考虑由下式描述的松弛系统
若输入 u 有形式 e ,其中 l1 不是 A 的特征值,试证存在初始状态,使输出 y 立即有 e l1t 的形 式而不包含有任何瞬变过程。又当 l1 是传递函数的零点时,试证可选适当初始状态,使系 统在输入 el1t 作用下,输出恒为零。
l1t
32
30
D(s ) = det(sI - A) = s n + a1s n -1 + a2s n -2 + + an
是 A 的特征多项式。试证
R1 = A + a1I = AR 0 + a1I R2 = A2 + a1A + a2 I = AR1 + a2 I

Rn -1 = An -1 + a1An -2 + + an -1I = ARn -2 + an -1I
1—7
线性松弛系统的脉冲响应为 g(t, t ) = e -|t -t | ( 对所有的 t, t ) 设问系统是否具有因果
性?它是时不变的吗? 1—8 设一松弛系统,对于任何 u ,其输入和输出的关系为
ì ï u(t ) t £ a y(t ) = (Pau )(t ) = ï í ï 0 t>a ï î
1—4 给定
é1 1 0ù ê ú ê ú A = ê0 0 1ú ê ú ê0 0 1ú ë û
试求 A10 , A101, e At 。
28
1— 5 设
él 1 0 ù ê ú ê ú C = ê0 l 0ú ê ú ê0 0 lú ë û
试求能满足 e B = C 的矩阵 B 。并证明,对于任一非奇异矩阵 C ,均存在能满足 e B = C 的矩 阵B 。 1—6 若 D 可逆,证明


本章首先在松弛、线性、因果性、时不变性等概念和基础上,引出了线性系统的输入输出描述和状态变量描述,并在§1—4 中对这两种描述方法进行了比较。 在§1—3 中讨论了动态方程的解。解动态方程的关键所在是求出状态转移矩阵 F(t, t ) 。 对于时变的情况,计算 F(t, t ) 甚为困难。对于时不变的情况,因为 F(t, t ) = e A(t -t ) ,而对矩 阵指数,(1—48)式提供了一种计算途径。 §1—4 中对实现问题的讨论是初步的,实现问题的深入讨论只有在引入可控性和可观 测性等概念后才有可能。定理 1—9 的充分性的证明是构造性的,它通过(1—85)式给出了构 造真有理函数阵实现的一种方法。 本章作为学习后续各章的准备, 都是很基本的内容。 许多内容可以在有关的本科教材中 找到更加详细的说明。 为了使读者复习必要的数学预备知识, 在习题中选用一些数学练习题, 见习题 1—1 至习题 1—6。

1—1 设有矩阵
é 0 ê ê 0 A = êê ê ê -a ëê n 1 0

0 1

-an -1 -a n -2
ù ú ú ú 1 úú -a1 úú û 0 0
试证, A 的特征多项式为
D(l)=det(lI - A)=ln + a1ln -1 + a2ln -2 + + an -1l1 + an
1 ù éx é 0 1 ù é x1 ù úê ú a, êê úú = êê ú êx ú 0 t x 2 êë ûú ë 2 û ëê ûú
1 ù é -1 e 2t ù é x1 ù éx úê ú b, êê úú = êê ú x x 0 1 2 úû êë 2 úû ëê ûú ëê
1—13 试求图 1—14 所示的网络动态方程描述 y 电流 + __ __ V2 +
L1 R1
C2 R2
图 1—14 线性网络 1—14 试求图 1—15 所示网络的传递函数和动态方程描述。 你是否认为该传递函数是这个系 统的一种好的描述?(略)
1—15 试求下列齐次方程的基本矩阵和状态转移矩阵。
计算极点多项式和零点多项式。 1—30 若λ1 不是 A 的特征值,试证下列恒等式
(sI - A)-1(s - l1 )-1 = (l1I - A)-1 (s - l1 )-1 + (sI - A)-1 (A - l1I)-1
相关文档
最新文档