西北大学2015年考研数学分析真题解答
2015年考研数学一真题及答案解析
2015年考研数学一真题及答案解析22015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为( ) (A) 0 (B) 1 (C) 2(D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).3(2)设211()23=+-xxy ex e 是二阶常系数非齐次线性微分方程'''++=xy ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c(B) 3,2,1===-a b c (C) 3,2,1=-==a b c(D)3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212xe 、13xe -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32xy y y ce '''-+=,再将特解xy xe =代入得1c =-.故选45y x=,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰( )(A) ()13sin 2142sin 2cos ,sin d f r r rdrπθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰(C) ()13sin 2142sin 2cos ,sin d f r r drπθπθθθθ⎰⎰(D) ()34cos ,sin d f r r drππθθθ⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分【解析】先画出D 的图形,6所以(,)Df x y dxdy =⎰⎰sin 23142sin 2(cos ,sin )d f r r rdrπθπθθθθ⎰⎰,故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D),a d ∈Ω∈Ω【答案】D 【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,7由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =。
2015考研数一真题答案及详细解析
(8) D
解 因为X,Y不相关,所以Cov(X,Y) =E(XY) =EX• EY=O, 即E(XY)=EX• EY, 则E[X(X +Y — 2)] =E(X2 + XY-2X) =E(X2 ) +E(XY) — 2EX
=[DX+ (EX) 2 ] +EX• EY-2EX=5.
二、填空题
(9)
——
(6) A 解
�m� Q =P[�
�1�)
又因为 所以
_J, pTAP{ 1
(1
QT A Q
。 一。 ff[� �ff ( 1
_
0
\0
01
O\ 勹 0
PTAP[�!
rn
!
�l�J
_ \0 0
。1
·) 0 10
\ 、
0 1
2
2
_J[ rJ[ 三J[ 1
王子
)[
J
玄�l子 �
-1
故应选A.
(7) C
解 对于A,B选项:
P{XY — Y<O}=P{(X —l)Y<O}
=P{X — 1 <O,Y> O}+P{X -1 > O,Y<O}
=P{X — 1 <O} P{Y> O}+P{X —1 > O} P{Y<O}
=- 1 X- 1 +- 1 X- 1 =-1 2 2 2 2 2·
三、解答题
+ + (15)解
由于ln(l +x) =x
(2 ) A
解
由题设条件知,Y1 = — e幻 , Y2 = —— ex 是已知二阶常系数非齐次线性微分方程所对应
2015考研数学一真题解析:二阶常系数非齐次微分方程解的结
二阶常系数非齐次微分方程是考研数学重要考点,命题形式包括二阶常系数非齐次 微分方程求通解、解得结构定理及已知通解求微分方程,2015 考研数学考查了本知识 点,题目和解析如下:
1 1 y e 2 x ( x )e x x 2 3 是二阶常系数非齐次线性微分方程 y ay by ce 的一 设
二阶常系数非齐次线性微分方程解的结构与通解此知识点方法和公式固定, 大家只需按解得 结构原理和求通解公式按部就班解答就可以了,下面文都考研数学老师帮大家复习一下此知识 点。 1.二阶常系数非齐次微分方程定义—形如 y py qy f ( x) (其中 p, q 为常数)的方程。 2.通解的结构— y py qy f ( x) 的通解为 y py qy 0 的通解与其本身一个特解之和。 3.特解求法: 情形一:
f ( x) e x Pm ( x)
设方程的特解结构为: y e Q ( x) ①当 不是特征根时, ②当 是特征单根时, ③当 是特征重根时, 情形二:
x
Q( x) Qm ( x)
; ; .
Q( x) xQm ( x)
Q( x) x 2Qm ( x)
f ( x) e x [ PL ( x) cos x Rn ( x) sin x] y x k e x [ Rm ( x) cos x S m ( x) sin x]
1 2x 1 e 为二阶常系数齐次微分方程 y ay by 0 的解,所以 2 2,1 为特征方程 r ar b 0 的根,从而 a (1 2) 3 , b 1 2 2 ,从而原方程变为
2015真题及解析
2015年全国硕士研究生入学统一考试数学(三)试题解析一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中 ,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸..指定位置上.⑴设:■是数列,下列命题中不正确的是 ()(A) 若 lim x n: -a,则 lim X=lim X=n _i :n L :n _ac(B)若 lim x 2n二lim X 2n 1 二 a ,贝U lim X n二 an ;:n t: n _sc (C) 若 lim x n= 二a ,则lim X 3n =lim X 3nan ;:n L :n _sc1(D) 若 lim X 3n =limX3n 1=a ,则 lim x n= an _$ : n :【答案】(D)【解析】答案为D,本题考查数列极限与子列极限的关系•数列Xn —• a n 、:::= 对任意的子列:Xn k "匀有Xn k —• a k —• ■■' ;■,所以A 、B 、C 正确;D 错(D 选项缺少X 3n 2的敛散性),故选D(2)设函数f X 在-::,V 内连续,其2阶导函数「X 的图形如 右图所示则曲线y = f X 的拐点个数为()(A) 0(B) 1(C) 2(D) 3【答案】(C)【解析】根据拐点的必要条件,拐点可能是「(x)不存在的点或f (X ^Q 的点处产生.所以y = f (x)有三个点可能是拐点,根据拐点的定义,即凹凸性改变的点;二阶导函数 「(X)符号发生改变的点即为拐点•所以从图可知,拐点个数为2,故选 C.(3)设D・;[X , y x 2• y 2咗2x,x 2• y 2乞2yf ,函数f X,y 在D 上连续,则f x,y dxdy =()D2cos2sin •二(A)/dA 。
f r cos’r si" rdr 亠!2dj f r cos’r sin^ rdr42sin 2cos T 1(B) 04犷 0 f rcosdrsin^ rdr 亠 引二。
2015考研数学一真题与解析
2015年考研数学一真题一、选择题 1—8小题.每小题4分,共32分.1.设函数()f x 在(,)-∞+∞上连续,其二阶导数()f x ''的图形如右图所示,则曲线()y f x =在(,)-∞+∞的拐点个数为(A )0 (B )1 (C )2 (D )3【详解】对于连续函数的曲线而言,拐点处的二阶导数等于零或者不存在.从图上可以看出有两个二阶导数等于零的点,以及一个二阶导数不存在的点0x =.但对于这三个点,左边的二阶导数等于零的点的两侧二阶导数都是正的,所以对应的点不是拐点.而另外两个点的两侧二阶导数是异号的,对应的点才是拐点,所以应该选(C ) 2.设21123()x x y e x e =+-是二阶常系数非齐次线性微分方程x y ay by ce '''++=的一个特解,则 (A )321,,a b c =-==- (B )321,,a b c ===- (C )321,,a b c =-== (D )321,,a b c ===【详解】线性微分方程的特征方程为20r ar b ++=,由特解可知12r =一定是特征方程的一个实根.如果21r =不是特征方程的实根,则对应于()x f x ce =的特解的形式应该为()xQ x e ,其中()Q x 应该是一个零次多项式,即常数,与条件不符,所以21r =也是特征方程的另外一个实根,这样由韦达定理可得213212(),a b =-+=-=⨯=,同时*x y xe =是原来方程的一个解,代入可得1c =-应该选(A )3.若级数1nn a∞=∑条件收敛,则33,x x ==依次为级数11()n n n na x ∞=-∑的(A)收敛点,收敛点 (B)收敛点,发散点 (C)发散点,收敛点 (D)发散点,发散点【详解】注意条件级数1nn a∞=∑条件收敛等价于幂级数1n nn ax ∞=∑在1x =处条件收敛,也就是这个幂级数的收敛为1,即11lim n n naa +→∞=,所以11()n n n na x ∞=-∑的收敛半径111lim()nn n na R n a →∞+==+,绝对收敛域为02(,),显然33,x x ==依次为收敛点、发散点,应该选(B )4.设D 是第一象限中由曲线2141,xy xy ==与直线3,y x y x ==所围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰( )(A)1321422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰(B)231422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰(C)1321422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰(D)231422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰【详解】积分区域如图所示,化成极坐标方程:221212122sin cos sin sin xy r r r θθθθ=⇒=⇒=⇒=22141412222sin cos sin sin xy r r r θθθθ=⇒=⇒=⇒=也就是D :432sin sin r ππθθθ⎧<<⎪⎪⎨<<22所以(,)D f x y dxdy =⎰⎰231422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰,所以应该选(B ).5.设矩阵2211111214,A a b d a d ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若集合{}12,Ω=,则线性方程组Ax b =有无穷多解的充分必要条件是(A ),a d ∉Ω∉Ω (B ),a d ∉Ω∈Ω (C ),a d ∈Ω∉Ω (D ),a d ∈Ω∈Ω 【详解】对线性方程组的增广矩阵进行初等行变换:22221111111111111201110111140311001212(,)()()()()B A b ad a d a d a d a d a a d d ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭方程组无穷解的充分必要条件是3()(,)r A r A b =<,也就是120120()(),()()a a d d --=--=同时成立,当然应该选(D ).6.设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232y y y +-,其中()123,,P e e e =,若()132,,Q e e e =-,则123(,,)f x x x 在x Qy =下的标准形为(A )2221232y y y -+ (B )2221232y y y +- (C )2221232y y y -- (D ) 2221232y y y ++【详解】()()132123100100001001010010,,,,Q e e e e e e P ⎛⎫⎛⎫ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,100001010TT Q P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭211T T T Tf x Ax y PAPy y y ⎛⎫⎪=== ⎪ ⎪-⎝⎭所以100100100210020010010011001101001001010101TT Q AQ P AP ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎪ ⎪=-=-=- ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选择(A ).7.若,A B 为任意两个随机事件,则( )(A )()()()P AB P A P B ≤ (B )()()()P AB P A P B ≥(C )2()()()P A P B P AB +≤(D )2()()()P A P B P AB +≥【详解】()(),()(),P A P AB P B P AB ≥≥所以2()()()P A P B P AB +≤故选择(C ).8.设随机变量,X Y 不相关,且213,,EX EY DX ===,则2(())E X X Y +-=( )(A )3- (B )3 (C ) 5- (D )5【详解】222225(())()()()E X X Y E X E XY EX DX EX EXEY EX +-=+-=++-= 故应该选择(D ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.20ln(cos )limx x x →=【详解】200122ln(cos )tan limlim x x x x x x →→-==-. 10.221sin cos x x dx x ππ-⎛⎫+= ⎪+⎝⎭⎰ . 【详解】只要注意1sin cos xx+为奇函数,在对称区间上积分为零,所以22202214sin .cos x x dx xdx x ππππ-⎛⎫+== ⎪+⎝⎭⎰⎰11.若函数(,)z z x y =是由方程2cos ze xyz x x +++=确定,则01(,)|dz = . 【详解】设2(,,)cos zF x y z e xyz x x =+++-,则1(,,)sin ,(,,),(,,)z x y z F x y z yz x F x y z xz F x y z e xy '''=+-==+且当01,x y ==时,0z =,所以010101001010010010(,)(,)(,,)(,,)|,|,(,,)(,,)y x z z F F z zx y F F ''∂∂=-=-=-=∂∂''也就得到01(,)|dz =.dx -12.设Ω是由平面1x y z ++=和三个坐标面围成的空间区域,则23()dxdydz x y z Ω++=⎰⎰⎰ .【详解】注意在积分区域内,三个变量,,x y z 具有轮换对称性,也就是dxdydz dxdydz dxdydz x y z ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰11212366314()dxdydz dxdydz ()zD x y z z zdz dxdy z z dz ΩΩ++===-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 13.n 阶行列式2002120200220012-=- .【详解】按照第一行展开,得1111212122()()n n n n n D D D +---=+--=+,有1222()n n D D -+=+ 由于1226,D D ==,得11122222()n n n D D -+=+-=-.14.设二维随机变量(,)X Y 服从正态分布10110(,;,;)N ,则{}0P XY Y -<= .【详解】由于相关系数等于零,所以X ,Y 都服从正态分布,1101~(,),~(,)X N Y N ,且相互独立. 则101~(,)X N -.{}{}{}{}1111101001001022222(),,P XY Y P Y X P Y X P Y X -<=-<=<->+>-<=⨯+⨯= 三、解答题15.(本题满分10分)设函数1()ln()sin f x x a x bx x =+++,3()g x kx =在0x →时为等价无穷小,求常数,,a b k 的取值.【详解】当0x →时,把函数1()ln()sin f x x a x bx x =+++展开到三阶的马克劳林公式,得233332331236123()(())(())()()()()x x f x x a x o x bx x x o x a aa xb x x o x =+-+++-+=++-+++ 由于当0x →时,(),()f x g x 是等价无穷小,则有10023a ab a k ⎧⎪+=⎪⎪-+=⎨⎪⎪=⎪⎩,解得,11123,,.a b k =-=-=-16.(本题满分10分)设函数)(x f y =在定义域I 上的导数大于零,若对任意的0x I ∈,曲线)(x f y =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且02()f =,求()f x 的表达式. 【详解】)(x f y =在点00(,())x f x 处的切线方程为000()()()y f x x x f x '=-+ 令0y =,得000()()f x x x f x =-'曲线)(x f y =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积为00000142()()(()()f x S f x x x f x =--='整理,得218y y '=,解方程,得118C x y =-,由于02()f =,得12C =所求曲线方程为84.y x=- 17.(本题满分10分)设函数(,)f x y x y xy =++,曲线223:C x y xy ++=,求(,)f x y 在曲线C 上的最大方向导数. 【详解】显然11,f f y x x y∂∂=+=+∂∂. (,)f x y x y xy =++在(,)x y 处的梯度()11,,f f gradf y x x y ⎛⎫∂∂==++ ⎪∂∂⎝⎭(,)f x y 在(,)x y处的最大方向导数的方向就是梯度方向,最大值为梯度的模gradf =所以此题转化为求函数2211(,)()()F x y x y =+++在条件223:C x y xy ++=下的条件极值.用拉格朗日乘子法求解如下:令2222113(,,)()()()L x y x y x y xy λλ=++++++-解方程组22212021203()()x y F x x y F y y x x y xy λλλλ⎧'=+++=⎪⎪'=+++=⎨⎪++=⎪⎩,得几个可能的极值点()11112112,,(,),(,),(,)----,进行比较,可得,在点21,x y ==-或12,x y =-=3.= 18.(本题满分10分)(1)设函数(),()u x v x 都可导,利用导数定义证明(()())()()()()u x v x u x v x u x v x '''=+; (2)设函数12(),(),,()n u x u x u x 都可导,12()()()()n f x u x u x u x =,写出()f x 的求导公式.【详解】(1)证明:设)()(x v x u y =)()()()(x v x u x x v x x u y -++=∆∆∆()()()()()()()()u x x v x x u x v x x u x v x x u x v x =+∆+∆-+∆++∆-v x u x x uv ∆∆∆)()(++=xux u x x v x u x y ∆∆∆∆∆∆∆)()(++= 由导数的定义和可导与连续的关系00'limlim[()()]'()()()'()x x y u uy v x x u x u x v x u x v x x x x∆→∆→∆∆∆==+∆+=+∆∆∆(2)12()()()()n f x u x u x u x =1121212()()()()()()()()()()()n n nf x u x u x u x u x u x u x u x u x u x u x ''''=+++ 19.(本题满分10分)已知曲线L的方程为z z x⎧=⎪⎨=⎪⎩,起点为0()A,终点为00(,)B ,计算曲线积分2222()()()Ly z dx z x y dy x y dz ++-+++⎰.【详解】曲线L的参数方程为cos ,cos x ty t z t =⎧⎪=⎨⎪=⎩起点0()A 对应2t π=,终点为00(,)B 对应2t π=-.22222222()()()cos )(cos )))(cos )cos Ly z dx z x y dy x y dzt t d t t d t t d tππ-++-+++=+++-⎰⎰2202sin .tdt π==20.(本题满分11分)设向量组123,,ααα为向量空间3R 的一组基,113223332221,,()k k βααβαβαα=+==++.(1)证明:向量组123,,βββ为向量空间3R 的一组基;(2)当k 为何值时,存在非零向量ξ,使得ξ在基123,,ααα和基123,,βββ下的坐标相同,并求出所有的非零向量.ξ【详解】(1)()123123201020201(,,),,k k βββααα⎛⎫⎪= ⎪ ⎪+⎝⎭, 因为201212024021201kk kk ==≠++,且123,,ααα显然线性无关,所以123,,βββ是线性无关的,当然是向量空间3R 的一组基.(2)设非零向量ξ在两组基下的坐标都是123(,,)x x x ,则由条件112233112233x x x x x x αααβββ++=++可整理得:1132231320()()x k x x k ααααα++++=,所以条件转化为线性方程组()1321320,,k k x ααααα++=存在非零解.从而系数行列式应该等于零,也就是12312310110101001002020(,,)(,,k k k k αααααα⎛⎫⎪== ⎪ ⎪⎝⎭由于123,,ααα显然线性无关,所以10110020kk=,也就是0k =.此时方程组化为()112121312230,,()x x x x x x ααααα⎛⎫ ⎪=++= ⎪ ⎪⎝⎭,由于12,αα线性无关,所以13200x x x +=⎧⎨=⎩,通解为1230x C x x C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭,其中C 为任意常数.所以满足条件的0C C ξ⎛⎫⎪= ⎪ ⎪-⎝⎭其中C 为任意不为零的常数.21.(本题满分11分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭相似于矩阵12000031B b -⎛⎫⎪= ⎪ ⎪⎝⎭.(1)求,a b 的值;(2)求可逆矩阵P ,使1P AP -为对角矩阵.【详解】(1)因为两个矩阵相似,所以有trA trB =,A B =.也就是324235a b a a b b +=+=⎧⎧⇒⎨⎨-==⎩⎩. (2)由212005015031()()E B λλλλλλ--=-=--=--,得A ,B 的特征值都为12315,λλλ===解方程组()E A x -=,得矩阵A 的属于特征值121λλ==的线性无关的特征向量为12231001.ξξ-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;解方程组50()E A x -=得矩阵A 的属于特征值35λ=的线性无关的特征向量为3111ξ-⎛⎫⎪= ⎪ ⎪⎝⎭令()123231101011,,P ξξξ--⎛⎫ ⎪== ⎪ ⎪⎝⎭,则1100010005.P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭22.(本题满分11分)设随机变量X 的概率密度为22000ln ,(),x x f x x -⎧>=⎨≤⎩对X 进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y 为次数.求Y 的分布函数;(1) 求Y 的概率分布; (2) 求数学期望.EY【详解】(1)X 进行独立重复的观测,得到观测值大于3的概率为313228()ln x P X dx +∞->==⎰显然Y 的可能取值为234,,,且2211117171234888648()(),,,,k k k P Y k C k k ---⎛⎫⎛⎫==⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2)设22322221111()()(),()n n n n n n x S x n n xx x x x x ∞∞∞-===''''⎛⎫⎛⎫''=-====< ⎪ ⎪--⎝⎭⎝⎭∑∑∑2221717116648648()()()k k n E Y kP Y k k k S -∞∞==⎛⎫⎛⎫===-== ⎪⎪⎝⎭⎝⎭∑∑ 23.(本题满分11分) 设总体X 的概率密度为1110,(;),x f x θθθ⎧≤≤⎪=-⎨⎪⎩其他其中θ为未知参数,12,,,n X X X 是来自总体的简单样本.(1)求参数θ的矩估计量;(2)求参数θ的最大似然估计量. 【详解】(1)总体的数学期望为111112()()E X xdx θθθ==+-⎰ 令()E X X =,解得参数θ的矩估计量:21ˆX θ=-. (2)似然函数为12121110,,,,()(,,,;),n nn x x x L x x x θθθ⎧≤≤⎪-=⎨⎪⎩其他显然()L θ是关于θ的单调递增函数,为了使似然函数达到最大,只要使θ尽可能大就可以,所以参数θ的最大似然估计量为12ˆmin(,,,).n x x x θ=。
2015年考研数学试题详解及评分参考
2sin 2q
故选 (B) .
æ1 1 1 ö
æ1 ö
(5) 设矩阵 A = çççè11
2 4
a a2
÷ ÷÷ø
,
b
=
ç ç çè
d d
2
÷ ÷ ÷ø
,若集合
W
=
{1,
2} ,则线性方程组
Ax
=
b
有无穷
多解的充分必要条件为
(A) a Ï W, d Ï W (B) a Ï W, d Î W (C) a Î W, d Ï W (D) a Î W, d Î W
【答】 应填 -dx .
【解】 令 F (x, y, z) = ez + xyz + x + cos x - 2 ,有
Fx¢(x, y, z) = yz +1- sin x, Fy¢ = xz, Fz¢(x, y, z) = ez + xy
又当 x = 0, y = 1 时,有 ez = 1 ,即 z = 0 .
【答】 应选 (D) .
【解】 因 Ax = b 有无穷多解的充分必要条件为 r( A) = r( A, b) < 3 ,而
æ1 1 1 1 ö æ1 1
1
1ö
(A,b) = çç1 2 a
d
÷ ÷
®
ç ç
0
1
a -1
d -1
÷ ÷
çè1 4 a2 d 2 ÷ø çè 0 0 (a -1)(a - 2) (d -1)(d - 2) ÷ø ,
【解法二】 因在正交变换为 x = P y 下,有 f = xT Ax = yT (PT AP) y = 2 y12 + y22 - y32 .
2015数学一真题及答案详细解析
3x 围成的平
f x, y dxdy
D
(A)
3 4
3
4
d sin12 f r cos , r sin rdr
2sin 2
1
(B)
d
3
1 sin 2 1 2sin 2
1 sin 2 1 2sin 2
f r cos , r sin rdr
0
(B)
1
(C)
2
(D)
3
(2)设 y
1 2x 1 e ( x )e x 是二阶常系数非齐次线性微分方程 2 3
y ay by ce x 的一个特解,则
( ) (A) a 3, b 2, c 1 (B) a 3, b 2, c 1 (C) a 3, b 2, c 1 (D) a 3, b 2, c 1
0
(B)
1
(C)
2
(D)
3
【答案】 (C) 【解析】拐点出现在二阶导数等于 0,或二阶导数不存在的点,并且在这点的左右两侧二阶 导函数异号。因此,由 f ( x ) 的图形可得,曲线 y f ( x) 存在两个拐点.故选(C). (2)设 y
1 2x 1 e ( x )e x 是二阶常系数非齐次线性微分方程 y ay by ce x 2 3
的一个特解,则 ( ) (A) a 3, b 2, c 1 (B) a 3, b 2, c 1 (C) a 3, b 2, c 1 (D) a 3, b 2, c 1 【答案】 (A) 【分析】 此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系 数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数 值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法. 【解析】由题意可知, e2 x 、 e x 为二阶常系数齐次微分方程 y ay by 0 的解,所 以 2,1
2015年考研数学真题答案(数一 )
2015年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、设函数()f x 在∞∞(-,+)连续,其2阶导函数()f x ''的图形如下图所示,则曲线()y f x =的拐点个数为()(A )0 (B )1 (C )2 (D )3 【答案】(C)【考点】拐点的定义 【难易度】★★【详解】拐点出现在二阶导数等于0,或二阶导数不存在的点上,并且在这点的左右两侧二阶导数异号,因此,由()f x ''的图形可知,曲线()y f x =存在两个拐点,故选(C).2、设21123x x y e x e ⎛⎫=+- ⎪⎝⎭是二阶常系数非齐次线性微分方程x y ay by ce "+'+=的一个特解,则()(A )3,1, 1.a b c =-=-=- (B )3,2, 1.a b c ===- (C )3,2, 1.a b c =-== (D )3,2, 1.a b c === 【答案】(A)【考点】常系数非齐次线性微分方程的解法 【难易度】★★ 【详解】211,23x xe e -为齐次方程的解,所以2、1为特征方程2+0a b λλ+=的根,从而()123,122,a b =-+=-=⨯=再将特解x y xe =代入方程32x y y y ce "-'+=得: 1.c =-3、若级数1n n a ∞=∑条件收敛,则x =3x =依次为幂级数()11nn n na x ∞=-∑的:(A )收敛点,收敛点 (B )收敛点,发散点 (C )发散点,收敛点 (D )发散点,发散点 【答案】(B)【考点】级数的敛散性 【难易度】★★★ 【详解】因为1n n a ∞=∑条件收敛,故2x =为幂级数()11nn n a x ∞=-∑的条件收敛点,进而得()11nn n a x ∞=-∑的收敛半径为1,收敛区间为()0,2,又由于幂级数逐项求导不改变收敛区间,故()11n n n na x ∞=-∑的收敛区间仍为()0,2,因而x =3x =依次为幂级数()11nn n na x ∞=-∑的收敛点、发散点.4、设D 是第一象限中曲线21,41xy xy ==与直线,y x y ==围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰(A )12sin 2142sin 2(cos ,sin )d f r r rdr πθπθθθθ⎰⎰(B )24(cos ,sin )d f r r rdr ππθθθ⎰(C )13sin 2142sin 2(cos ,sin )d f r r dr πθπθθθθ⎰⎰(D )34(cos ,sin )d f r r dr ππθθθ⎰【答案】(D)【考点】二重积分的极坐标变换 【难易度】★★★【详解】由y x =得,4πθ=;由y =得,3πθ=由21xy =得,22cos sin 1,r r θθ==由41xy =得,24cos sin 1,r r θθ==所以34(,)(cos ,sin )Df x y dxdy d f r r rdr ππθθθ=⎰⎰⎰5、设矩阵21111214A a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{1,2}Ω=,则线性方程组Ax b =有无穷多个解的充分必要条件为(A ),a d ∉Ω∉Ω (B ),a d ∉Ω∈Ω (C ),a d ∈Ω∉Ω (D ),a d ∈Ω∈Ω 【答案】(D)【考点】非齐次线性方程组的解法 【难易度】★★【详解】[]()()()()2211111111,12011114001212A b a d a d a d a a d d ⎡⎤⎡⎤⎢⎥⎢⎥=−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦Ax b =有无穷多解()(,)3R A R A b ⇔=< 1a ⇔=或2a =且1d =或2d =6、设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232y y y +-,其中123(,,)P e e e =,若132(,,)Q e e e =-,则123(,,)f x x x 在正交变换x Qy =下的标准形为(A )2221232y y y -+ (B )2221232y y y +- (C )2221232y y y -- (D )2221232y y y ++ 【答案】(A) 【考点】二次型 【难易度】★★【详解】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-且:200010001T P AP ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦100200001,()010010001T T T Q P PC Q AQ C P AP C ⎡⎤⎡⎤⎢⎥⎢⎥====-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦所以222123()2T T T f x Ax y Q AA y y y y ===-+,故选(A)7、若,A B 为任意两个随机事件,则(A )()()()P AB P A P B ≤ (B )()()()P AB P A P B ≥(C )()()()2P A P B P AB +≤(D )()()()2P A P B P AB +≥【答案】(C)【考点】【难易度】★★【详解】)()(),()(AB P B P AB P A P ≥≥Θ)(2)()(AB P B P A P ≥+∴ ()()()2P A P B P AB +∴≤故选(C )8、设随机变量X,Y 不相关,且2,1,3,EX EY DX ===则()2E X X Y +-=⎡⎤⎣⎦ (A )-3 (B )3 (C )-5 (D )5 【答案】(D) 【考点】【难易度】★★★ 【详解】()()()()()()()()()22222225E X X Y E X XY X E X E XY E X D X EX E X E Y E X ⎡⎤+-=+-=+-⎡⎤⎣⎦⎣⎦=++-=二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、20ln cos limx xx →=【答案】12-【考点】极限的计算【难易度】★★【详解】2222200001ln cos ln(1cos 1)cos 112lim lim lim lim 2x x x x x x x x x x x x →→→→-+--====- 10、2-2sin ()1cos xx dx xππ+=+⎰【答案】24π【考点】积分的计算 【难易度】★★【详解】2220-2sin ()21cos 4x x dx xdx xππππ+==+⎰⎰ 11、若函数(,)z z x y =由方程+cos 2ze xyz x x ++=确定,则(0,1)dz =.【答案】【考点】隐函数求导 【难易度】★★【详解】令(,,)cos 2zF x y z e xyz x x =+++-,则1sin x F yz x '=+-,y F xz '=,z F xy '=,又当0,1x y ==时,0z =,所以(0,1)1x z F z x F '∂=-=-'∂,(0,1)0y z F zy F '∂=-='∂,因而(0,1)dz dx =-12、设Ω是由平面1x y z ++=与三个坐标平面所围成的空间区域,则(23)x y z dxdydz Ω++⎰⎰⎰=【答案】14【考点】三重积分的计算 【难易度】★★★【详解】由轮换对称性,得x +2y +3z ()dx dydz Wòòò=6zdx dydz Wòòò=6zdz 01òdx dy D zòò其中D z 为平面z =z 截空间区域W 所得的截面,其面积为121-z ()2.所以 x +2y +3z ()dx dydz Wòòò=6z dx dydz Wòòò=6z ×121-z ()2dz =01ò3z 3-2z 2+z ()dz =01ò1413、n 阶行列式2002-1202002200-12LL M M O M M LL=【答案】122n +- 【考点】行列式的计算 【难易度】★★★【详解】按第一行展开得=2n +1-214、设二维随机变量(,)X Y 服从正态分布(1,0,1,1,0)N ,则(0)P XY Y -<=.【答案】12【考点】【难易度】★★【详解】(,)~(1,0,1,1,0)X Y N Q ,~(1,1),~(0,1),X N Y N ∴且,X Y 独立1~(0,1)X N ∴-,}{}{0(1)0P XY Y P X Y -<=-<}{}{10,0100P X Y P X Y =-<>+-><,1111122222=⨯+⨯=三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. 15、(本题满分10分)设函数()ln(1)sin f x x a x bx x =+++⋅,3()g x kx =,若()f x 与()g x 在0x →是等价无穷小,求a ,b ,k 值。
2015年考研数一真题及答案解析(完整版)
2015年考研数学(一)试题解析一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c 【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13xe -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解xy xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则 3=x 与3=x 依次为幂级数1(1)∞=-∑nnn na x 的 ()(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质. 【解析】因为1nn a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而3x =与3x =依次为幂级数1(1)nnn na x ∞=-∑的收敛点,发散点.故选(B ).(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,3y x =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin2142sin2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()1sin23142sin2cos ,sin d f r r rdr πθπθθθθ⎰⎰(C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()1sin23142sin2cos ,sin d f r r dr πθπθθθθ⎰⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰1sin23142sin2(cos ,sin )d f r r rdr πθπθθθθ⎰⎰,故选(B )xyo(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D )(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y (B) 2221232+-y y y (C) 2221232--y y y (D) 2221232++y y y 【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得:100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫ ⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A ) (7) 若A,B 为任意两个随机事件,则 ( ) (A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B (C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()()()2P A P B P AB P A P B +≤⋅≤,选(C) .(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5 【答案】(D)【解析】22[(2)](2)()()2()E X X Y E X XY X E X E XY E X +-=+-=+- 2()()()()2()D X E X E X E Y E X =++⋅-23221225=++⨯-⨯=,选(D) .二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln cos lim_________.x xx →= 【答案】12-【分析】此题考查0型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换.【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===- 方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====-(10)22sin ()d ________.1cos x x x x ππ-+=+⎰【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简.【解析】22202sin 2.1cos 4x x dx xdx xππππ-⎛⎫+== ⎪+⎝⎭⎰⎰(11)若函数(,)=z z x y 由方程cos 2+++=x e xyz x x 确定,则(0,1)d ________.z =【答案】dx -【分析】此题考查隐函数求导.【解析】令(,,)cos 2z F x y z e xyz x x =+++-,则(,,)1sin ,,(,,)z x y z F x y z yz x F xz F x y z e xy '''=+-==+又当0,1x y ==时1ze =,即0z =.所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F z z xF yF ''∂∂=-=-=-=''∂∂,因而(0,1).dzdx =-(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算. 【解析】由轮换对称性,得1(23)66zD x y z dxdydz zdxdydz zdz dxdy ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以 112320011(23)66(1)3(2).24x y z dxdydz zdxdydz z z dz z z z dz ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰(13) n 阶行列式20021202___________.00220012-=-【答案】122n +-【解析】按第一行展开得1111200212022(1)2(1)220220012n n n n n D D D +----==+--=+-221222(22)2222222n n n n D D ---=++=++=+++ 122n +=- (14)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<>11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分) 设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()f x 与()g x 在0→x 是等价无穷小,求,,a b k 的值.【答案】,,.a b k =-=-=-11123【解析】法一:原式()3ln 1sin lim1x x a x bx xkx→+++=()()2333330236lim 1x x x x x a x o x bx x o x kx →⎛⎫⎛⎫+-+++-+ ⎪ ⎪⎝⎭⎝⎭==()()234331236lim1x a a b a x b x x x o x kx→⎛⎫++-+-+ ⎪⎝⎭== 即10,0,123a a a b k +=-== 111,,23a b k ∴=-=-=-法二:()3ln 1sin lim1x x a x bx xkx→+++= 201sin cos 1lim 13x ab x bx x x kx→++++== 因为分子的极限为0,则1a =-()212cos sin 1lim16x b x bx x x kx→--+-+==,分子的极限为0,12b =-()022sin sin cos 13lim 16x b x b x bx xx k→----+==,13k =- 111,,23a b k ∴=-=-=-(16)(本题满分10分) 设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()0,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=- 令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程,即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+; 即()84f x x =-+.(17)(本题满分10分) 已知函数(),=++fx y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数.【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++,模为()()2211y x +++,此题目转化为对函数()()()22,11g x y y x =+++在约束条件22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M ----. ()()()()12348,0,9,9d M d M d M d M ====所以最大值为93=. (18)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()() (II )设函数()()()12n u x ,u x ,,u x 可导,n f x u x u x u x = 12()()()(),写出()f x 的求导公式.【解析】(I )0()()()()[()()]lim h u x h v x h u x v x u x v x h→++-'=0()()()()()()()()lim h u x h v x h u x h v x u x h v x u x v x h→++-+++-=00()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++ ()()()()u x v x u x v x ''=+ (II )由题意得12()[()()()]n f x u x u x u x ''=121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++ (19)(本题满分 10 分)已知曲线L 的方程为222,,z x y z x ⎧=--⎪⎨=⎪⎩起点为()0,2,0A ,终点为()0,2,0-B ,计算曲线积分()()2222d d ()d LI y z x zx y y x y z =++-+++⎰.【答案】2π2【解析】由题意假设参数方程cos 2sin cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-π22π2[(2sin cos )sin 2sin cos (1sin )sin ]d θθθθθθθθ--++++⎰π222π22sin sin cos (1sin )sin d θθθθθθ-=-+++⎰π220222sin d π2θθ==⎰ (20) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.【答案】 【解析】(I)证明:()()()()12313213123,,2+2,2,+1201,,020201k k k k βββαααααααα=+⎛⎫⎪= ⎪ ⎪+⎝⎭201212024021201kk kk ==≠++ 故123,,βββ为3R 的一个基. (II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=()()()()()()()11312223133113223132+22++10+2+0k k k k k k k k k k ααααααααααααα-+-+-=++=有非零解即13213+2,,+0k k ααααα=即101010020k k=,得k=0 11223121300,0k k k k k k ααα++=∴=+=11131,0k k k ξαα=-≠(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫ ⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵..【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++0231201330012031--=⇒--=-A B b a 14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b (II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫⎪∴= ⎪ ⎪⎝⎭P AP(22) (本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.x x f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),N Ge k n p -(,) (注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(), 12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑,2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑, 所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--, 从而7168E Y S ==()().(23) (本题满分 11 分)设总体X 的概率密度为:x f x θθθ⎧≤≤⎪=-⎨⎪⎩1,1,(,)10,其他. 其中θ为未知参数,12n x ,x ,,x 为来自该总体的简单随机样本.(I)求θ的矩估计量. (II)求θ的最大似然估计量. 【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得 1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),nni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而dln d 1L nθθθ=-(),关于θ单调增加, 所以 12min nX X X θ={,,,} 为θ的最大似然估计量.文档内容由经济学金融硕士考研金程考研网 整理发布。
2015年考研数学(一)真题及答案详解
2015年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()f x ''的图形如图所示,则曲线()y f x =的拐点的个数为 ( )(A) 0. (B) 1. (C) 2. (D) 3.【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设211e ()e 23x x y x =+-是二阶常系数非齐次线性微分方程e x y ay by c '''++=的一个特解,则 ( )(A) 3,2, 1.a b c =-==- (B) 3,2, 1.a b c ===- (C) 3,2, 1.a b c =-== (D) 3,2, 1.a b c === 【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,21e 2x、1e 3x -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32e x y y y c '''-+=,再将特解e xy x =代入得1c =-.故选(A )(3) 若级数1nn a∞=∑条件收敛,则 =x 3=x 依次为幂级数1(1)nnn na x ∞=-∑的 ( )(A) 收敛点,收敛点. (B) 收敛点,发散点.(C) 发散点,收敛点. (D) 发散点,发散点. 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质. 【解析】因为1n n a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而x =3x =依次为幂级数1(1)nnn na x ∞=-∑的收敛点,发散点.故选(B ).(4) 设D 是第一象限由曲线21,41xy xy ==与直线,y x y ==围成的平面区域,函数(,)f x y 在D 上连续,则(,)d d Df x y x y =⎰⎰ ( )(A)π13sin 2π142sin 2d (cos ,sin )d .f r r r r θθθθθ⎰⎰(B)π3π4d (cos ,sin )d .f r r r r θθθ⎰(C)π13sin 2π142sin 2d (cos ,sin )d .f r r r θθθθθ⎰⎰(D)π3π4d (cos ,sin )d .f r r r θθθ⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以π3π4(,)d d d (cos ,sin )d .Df x y x y f r r r r θθθ=⎰⎰⎰,故选(B )(5) 设矩阵22111112,.14a d a d ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A b =若集合{}12,,Ω=则线性方程组=Ax b 有无穷多解的充分必要条件为 ( )x(A) a ,d .∉Ω∉Ω (B) a ,d .∉Ω∈Ω (C) a ,d .∈Ω∉Ω (D) a ,d .∈Ω∈Ω 【答案】(D)【解析】()()()()()221111111112011114001212,a d a d ,ad a a d d ⎡⎤⎡⎤⎢⎥⎢⎥=→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A b由()()r r 3,,=<A A b 故1a =或2a =,同时1d =或2d =.故选(D )(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232.y y y -+ (B) 2221232.y y y +- (C) 2221232.y y y -- (D) 2221232.y y y ++【答案】(A)【解析】由=x Py ,故()T T T 2221232f y y y .===+-x Ax y P AP y且T 200010001.⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦P AP由已知可得:100001010⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦Q P PC,故有()T T T 200010001,⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦Q AQ C P AP C所以()T T T 2221232f y y y .===-+x Ax y Q AQ y .选(A )(7) 若A,B 为任意两个随机事件,则 ( ) (A) ()()().P AB P A P B ≤ (B) ()()().P AB P A P B ≥ (C) ()()().2P A P B P AB ≤ (D) ()()().2P A P B P AB ≥【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5 【答案】(D) 【解析】()()()()()()()()()()222222223221225E X X Y E X XY X E X E XY E X D X E X E X E Y E X .⎡⎤+-=+-=+-⎣⎦=++⋅-=++⨯-⨯=选(D) . 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln cos lim_________.x xx →= 【答案】12-【分析】此题考查0型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换.【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===- 方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====- (10)π2π2sin ()d ________.1cos x x x x-+=+⎰【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简. 【解析】ππ222π02sin πd 2d 1cos 4x x x x x .x -⎛⎫+== ⎪+⎝⎭⎰⎰ (11)若函数(,)=z z x y 由方程e cos 2x xyz x x +++=确定,则(0,1)d ________.z =【答案】d x -【分析】此题考查隐函数求导.【解析】令e cos 2z F(x,y,z )xyz x x =+++-,则1sin e z x y z F (x,y,z )yz x,F xz,F (x,y,z )xy.'''=+-==+又当0,1x y ==时1ze =,即0z =.所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F z z xF yF ''∂∂=-=-=-=''∂∂,因而()d d x,y zx.=-(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则()23d d d x y z x y z __________.Ω++=⎰⎰⎰【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算. 【解析】由轮换对称性,得123d d d 6d d d 6d d d zD (x y z )x y z z x y z z z x y,ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以 ()()11232001123d d d 6d d d 61d 32d 24(x y z )x y z z x y z z z z z z z z .ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰(13)n 阶行列式2002122___________.0022012-=-【答案】122n +-【解析】按第一行展开得()()111122122120021202212122002212222222222222n n n n n n n n n n D D D (D )D .+------+-==+--=+-=++=++=+++=-(14)设二维随机变量()x,y 服从正态分布()10;110N ,,,,则{}0P XY Y ______.-<= 【答案】12【解析】由题设知,()()1101X ~N ,,Y ~N ,,而且X ,Y 相互独立,从而{}(){}{}{}{}{}{}{}01010010010101111122222P XY Y P X Y P X ,Y P X ,Y P X P Y P X P Y .-<=-<=-><+-<>=><+<>=⨯+⨯= 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)设函数()()()3ln 1sin f x x a x bx x,g x kx ,=+++=若()f x 与()g x 在0→x 是等价无穷小,求,,a b k 的值.【答案】,,.a b k =-=-=-11123【解析】法一:由等价无穷小的定义得()()()()()302333330234330ln 1sin 1lim236lim 1236lim x x x x a x bx xkx x x x x a x o x bx x o x kx a a b a x b x x x o x .kx→→→+++=⎛⎫⎛⎫+-+++-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫++-+-+ ⎪⎝⎭=则1110,0,11,,.2323a a ab a b k k +=-==⇒=-=-=- 法二:由等价无穷小的定义得()()320ln 1sin 1lim1sin cos 1lim 3x x x a x bx xkx ab x bx x x kx→→+++=++++=洛必法达则 因为分子的极限为0,则1a =-,继续使用洛必达法则得()212cos sin 1lim16x b x bx x x ,kx→--+-+=分子的极限为0,12b =-,再次使用洛必达法则得 ()322sin sin cos 111lim1633x b x b x bx xx k .kk →----+=-=⇒=- 故111,,.23a b k =-=-=- (16)(本题满分10分)设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()0,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.【答案】()84f x x=-. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=- 令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程,即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+;即()84f x x =-+.(17)(本题满分10分)已知函数()f x,y x y xy =++,曲线C :223x y xy ++=,求()f x,y 在曲线C 上的最大方向导数.【答案】3【解析】因为()f x,y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()11x y f x,y y,f x,y x ''=+=+,故(){}11f x,y y,x =++grad此题目转化为对函数(),g x y =在约束条件22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-,得方程组()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩, 解得()()()()12341,1,1,1,2,1,1,2M M M M ----.()()()()12348,0,9,9d M d M d M d M====3=. (18)(本题满分 10 分)()I 设函数()()u x ,v x 可导,利用导数定义证明()()()()()();u x v x u x v x u x v x '''⎡⎤=+⎣⎦()II 设函数12()()()n u x ,u x ,,u x 可导,12()()()n f (x )u x u x u x =,写出()f x 的求导公式.【解析】()I()()()()()()()()()()()()()()()()()()000lim limlim lim h h h h u(x h )v(x h )u x v x u x v x hu x h v x h u x h v x u x h v x u x v x hv x h v x u x h u x u x h v x h h→→→→++-'⎡⎤=⎣⎦++-+++-=+-+-=++()()()()u x v x u x v x .''=+()II 由题意得()[]()()()()()()()()()12121212()()()n n n n f x u x u x u x u x u x u x u x u x u x u x u x u x .''='''=+++(19)(本题满分 10 分)已知曲线L的方程为z z x,⎧=⎪⎨=⎪⎩起点为()00A,终点为()00B ,,计算曲线积分()()()2222d d d LI y z x zx y y x y z =++-+++⎰.π【解析】由题意假设参数方程cos cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:.22θ→-)()()π22π2π222π2π220cos sin 2sin cos 1sin sin d sin cos 1sin sin d sin d I .θθθθθθθθθθθθθθθθ--⎡⎤=-++++⎣⎦=+++==⎰⎰(20) (本题满11分)设向量组123,,ααα内3R 的一个基,()11322313=2+2=2=++1k ,,k .βααβαβαα()I 证明向量组123,,βββ为3R 的一个基;()II 当k 为何值时,存在非0向量ξ在基123,,ααα与基123,,βββ下的坐标相同,并求所有的ξ.【答案】【解析】()I 证明:()()()()123132131232+22+121020201,,k ,,k ,,,kk =+⎡⎤⎢⎥=⎢⎥⎢⎥+⎣⎦βββαααααααα2012102024021201.kk kk ==≠++故123,,βββ为3R 的一个基.()II 由题意知112233112233k k k k k k ,,=++=++≠0ξβββαααξ整理得()()()()()()()()()()111222333113122231331132231301232+22++1+2+i k k k ,k ,i ,,k k k k k k k k k k -+-+-=≠=⇒-+-+-=⇒++=000βαβαβαααααααααααααα有非零解.则13213+2+0k ,,k ,=ααααα即1010100020k .kk=⇒= 则11223121300k k k k ,k k ,++=⇒=+=0ααα故111310k k ,k .=-≠ξαα(21) (本题满分11 分)设矩阵02313312a -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦A 相似于矩阵12000031b -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B =. ()I 求,a b 的值;()II 求可逆矩阵P ,使1-P AP 为对角矩阵..【解析】()I ()()tr tr 311~a b ,⇒=⇒+=++A B A B0231201330012031b,a --=⇒--=-A B 则有14235a b ,a ,a b ,b .-=-=⎧⎧⇒⎨⎨-==⎩⎩ ()II 思路一:由()I 知023133.124-⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦A由于矩阵A 相似于矩阵B ,所以()()215,λλλλ-=-=--E A E B故A 的特征值为1231, 5.λλλ===当121λλ==时,由方程组()-=0E A x ,得线性无关的特征向量T T 12(2,1,0);(3,0,1),==-ξξ当35λ=时,由方程组(5)-=0E A x ,得线性无关的特征向量T 3(1,1,1).=--ξ令123231(,,)101,011--⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦P ξξξ则 111.5-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P APP 为所求可逆矩阵.思路二:023100123133010123124001123---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=+--=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦A E C,[]12311231123.1231---⎡⎤⎡⎤⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦CC 的特征值1230,4λλλ===0λ=时(0)-=0E C x 的基础解系为T T 12(2,1,0);(3,0,1),==-ξξ 5λ=时(4)-=0E C x 的基础解系为T 3(1,1,1).=--ξA 的特征值1:1,1,5.A C λλ=+令123231(,,)101,011--⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦P ξξξ则 111.5-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P APP 为所求可逆矩阵.(22) (本题满分11 分)设随机变量X 的概率密度为()2ln2000x ,x ,f x ,x .-⎧>=⎨≤⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY【解析】(I) 记p 为观测值大于3的概率,则()3132ln2d 8x p P X x .+∞-=>==⎰从而Y 的概率分布为{}()()2221117112388n n n P Y n C p p p n ,n ,,---⎛⎫⎛⎫==-=-= ⎪ ⎪⎝⎭⎝⎭(II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),N Ge k n p -(,)(注:Ge 表示几何分布)所以()()()()11221618E Y E M N E M E N .p p p =+=+=+===法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记()()212111n n S x n n x,x ∞-==⋅--<<∑,则()()()()()()()()()()()()()2113222122132222223132221121112111n n n n n n n n n n nn n n S x n n xn x x ,x xS x n n xx n n x xS x ,x x S x n n x xn n xx S x .x ∞∞∞--===∞∞--==∞∞-=='''⎛⎫⎛⎫=⋅-=⋅== ⎪ ⎪-⎝⎭⎝⎭=⋅-=⋅-==-=⋅-=⋅-==-∑∑∑∑∑∑∑ 所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--, 从而()7168E Y S .⎛⎫==⎪⎝⎭(23) (本题满分 11 分)设总体X 的概率密度为:()1110,x ,f x,,θθθ⎧≤≤⎪=-⎨⎪⎩其他. 其中θ为未知参数,12n x ,x ,,x 为来自该总体的简单随机样本.(I)求θ的矩估计量. (II)求θ的最大似然估计量. 【解析】(I)()()111;d d 12E X xf x x x x ,θθθθ+∞-∞+==⋅=-⎰⎰ 令()E X X =,即12X θ+=,解得21X ,θ=-为θ的矩估计量,其中11ni i X X n ==∑. (II) 依题得似然函数()()111;10nni i i ,x ,L f x ,.θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他 当1i x θ≤≤时,()11111nni L ,θθθ=⎛⎫== ⎪--⎝⎭∏则()()ln ln 1L n θθ=--.从而()()dln d 1L nL θθθθ=⇒-关于θ单调增加,所以{}12min n X ,X ,,X θ=为θ的最大似然估计量.。
2015-数一真题、标准答案及解析
2015 考研数学一答案一、选择题(1)设函数 f (x ) 在(-∞,+∞)连续,其 2 阶导函数 f ''(x ) 的图形如下图所示,则曲线y = f (x ) 的拐点个数为()(A )0(B )1 (C) 2 ( D) 3【答案】C【解析】拐点为f "(x)正负发生变化的点(2)设y = 1 e 2 x + ⎛ x - 1 ⎫e x 是二阶常系数非齐次线性微分方程y " + ay ' + by = ce x 的一个特解2 ⎝3 ⎪⎭则:(A)a = -3,b = -1, c = -1. (B)a = 3,b = 2, c = -1. (C)a = -3,b = 2, c = 1. (D)a = 3,b = 2, c = 1.【答案】(A )【解析】1 e2 x , - 1 e x为齐次方程的解,所以2、1为特征方程λ2 +a λ + b = 0的根, 2 3从而a = -(1+ 2) = -3,b = 1⨯ 2 = 2, 再将特解y = xe x 代入方程y "- 3y ' + 2 y = ce x 得 c = -1.∞ ∞ ⎰π ⎰⎰π ⎰π ⎰⎰π n nn f (x , y )dxdy =3 dθ sin 2θ ∞ ∞(3)若级数∑a 条件收敛,则x = 3与x = 3依次为幂级数∑na (x -1)n的 nnn =1n =1(A)收敛点,收敛点. (B)收敛点,发散点. (C)发散点,收敛点. (D)发散点,发散点.【答案】B【解析】∞∞∞因为∑a 条件收敛,故x = 2为幂级数∑a ( x -1)n的条件收敛点,进而得∑a ( x -1)nn =1n =1n =1的收敛半径为1,收敛区间为(0, 2);又由于幂级数逐项求导不改变收敛区间,故∑na ( x -1)n (0, 2) x = 3 x = 3 ∑na ( x -1)nn n =1的收敛区间仍为 ,因而 与 依次为幂级数nn =1的收敛点,发散点.(4) 设 D 是第一象限中曲线2xy = 1, 4xy = 1与直线 y = x , y =f (x , y ) 在 D 上连续,则⎰⎰ f (x , y )dxdy =D3x 围成的平面区域,函数(A ) π3 d θ1sin 2θ 1 f (r cos θ , r sin θ )rdr (B ) π3 d θ ⎰ sin 2θ1f (r cos θ, r sin θ )rdr 42sin 2θ42sin 2θ(C) π3 d θ1sin 2θ 1 f (r cos θ , r sin θ )dr ( D)π3 d θ ⎰sin 2θ 1 f (r cos θ, r sin θ )dr42sin 2θ【答案】B【解析】由 y = x 得,θ = π442sin 2θ由 y = 3x 得,θ = π3由2xy = 1得, 2r 2cos θ s in θ =1, r =由4xy = 1得, 4r 2cos θsin θ =1, r =sin 2θ 2sin 2θπ ⎰⎰ ⎰π ⎰1D42sin 2θ所以 f (r cos θ, r sin θ )rdr⎛1 1 1 ⎫ ⎛ 1 ⎫ (5) 设矩阵 A = 1 2 a ⎪, b =d ⎪ ,若集合Ω = {1, 2},则线性方程组 Ax = b 有无⎪ ⎪ 1 4 a 2 ⎪ d 2 ⎪ ⎝ ⎭ ⎝ ⎭穷多个解的充分必要条件为(A )a ∉Ω, d ∉Ω (B ) a ∉Ω, d ∈Ω (C ) a ∈Ω, d ∉Ω (D ) a ∈Ω, d ∈Ω【答案】D⎡1 1 1 1 ⎤⎡1 1 11⎤ 【解析】[ A ,b ] = ⎢1 2 a d ⎥ −−→ ⎢0 1a -1d -1⎥ ⎢ ⎥⎢ ⎥⎢⎣1 4 a 2 d 2⎥⎦ ⎢⎣0 0(a -1)(a - 2)(d -1)(d - 2)⎥⎦Ax = b 有无穷多解↔ R ( A ) = R ( A ,b ) < 3↔ a = 1或 a = 2 且d = 1或 d = 2(6) 设二次型 f (x , x , x ) 在正交变换 x = Py 下的标准形为2y 2 + y 2 - y 2 ,其中12 3123P = (e 1, e 2 , e 3 ) ,若Q = (e 1, -e 3 ,e 2 ),则 f (x 1, x 2 , x 3 ) 在正交变换 x = Qy 下的标准形为(A ) 2 y 2- y 2+ y 2(B ) 2 y 2+ y 2- y 2(C ) 2 y 2- y 2- y 2(D ) 2 y 2+ y 2+ y2 123123123123【答案】A【解析】设二次型对应的矩阵为 A , P = (e 1,e 2 ,e 3 ), 二次型在正交变换x = Py 下的标准行⎡2 为2 y 2+ y 2- y 2, 则 P -1AP = ⎢ 1 ⎤ ⎥ , 若Q = (e , -e ,e ), 则1 2 3 ⎢ ⎥1 32 ⎢⎣ -1⎦⎥ ⎡2 ⎤ Q -1AQ = ⎢ -1 ⎥ , 故在正交变换 x = Qy 下的标准型是: 2 y 2 -y 2 +y 2 故选 A 。
2015考研数学一真题及解析
换 x Qy 下的标准形为 2 y12 y22 y32 .故选(A).
方法二:因在正交变换 x Py 下,有 f xT Ax yT (PT AP) y 2 y12 y22 y32 .故
2 0 0
1 0 0
PT
AP
0
1
0
.而 Q
P
0
0
1
PC
,于是有
0 0 1
0 1 0
2 0 0
(B) 收敛点,发散点 (D) 发散点,发散点
【解】因 an 条件收敛,即收敛,且发散.于是当 x 2 时,有 an (x 1)n an 收敛,
n1
n1
n1
| an (x 1)n | | an |发散.又幂级数 an (x 1)n 的收敛区间以 x 1为中心,故其
n1
n1
n 1
2015 考研数学一真题及解析
(5) 设矩阵 A 1 2
a
,
b
d
,若集合
{1, 2},则线性方程组 Ax
b 有无穷多
1 4 a2 d 2
解的充分必要条件为
(A) a , d
(B) a , d
(C) a , d
(D) a , d
【答】应选(D).
【解】因 Ax b 有无穷多解的充分必要条件为 r( A) r( A) < 3 ,而
【答】应选(A). 【解】方法一:
由题意, f 的标准型中平方项的系数2,1,-1是二次型的矩阵 A 的特征值,矩阵 P 中列向
量 e1, e2 , e3 分别是 A 属于特征值2,1,-1的特征向量,于是,矩阵 Q 中列向量 e1, e3 , e2 分别是 A 属于特征值2,-1,1的特征向量.又由 P 为正交矩阵易见, Q 也是正交矩阵,因此 f 在正交变
考研数一真题及答案解析完整版
2015年考研数学(一)试题解析一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c 【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解xy xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则 3=x 与3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点(C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质. 【解析】因为1nn a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而x =3x =依次为幂级数1(1)n n n na x ∞=-∑的收敛点,发散点.故选(B ).(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰ (C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰34(cos ,sin )d f r r rdr ππθθθ⎰故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组有无穷多解的充分必要条件为 ( )x(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D )(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y (B) 2221232+-y y y (C) 2221232--y y y (D) 2221232++y y y【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得:100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A ) (7) 若A,B 为任意两个随机事件,则 ( )(A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B(C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5 【答案】(D)【解析】22[(2)](2)()()2()E X X Y E X XY X E X E XY E X +-=+-=+- 23221225=++⨯-⨯=,选(D) .二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln cos lim _________.x xx →=【答案】12-【分析】此题考查0型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换.【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===- 方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====- (10)22sin ()d ________.1cos x x x x ππ-+=+⎰【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简.【解析】22202sin 2.1cos 4x x dx xdx xππππ-⎛⎫+== ⎪+⎝⎭⎰⎰(11)若函数(,)=z z x y 由方程cos 2+++=xe xyz x x 确定,则(0,1)d ________.z =【答案】dx -【分析】此题考查隐函数求导.【解析】令(,,)cos 2zF x y z e xyz x x =+++-,则 又当0,1x y ==时1z e =,即0z =. 所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F z zxF yF ''∂∂=-=-=-=''∂∂,因而(0,1).dzdx =-(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算. 【解析】由轮换对称性,得1(23)66zD x y z dxdydz zdxdydz zdz dxdy ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以 112320011(23)66(1)3(2).24x y z dxdydz zdxdydz z z dz z z z dz ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰ (13) n 阶行列式20021202___________.00220012-=-LLM M OM M L L【答案】122n +-【解析】按第一行展开得(14)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而 11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分) 设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()fx 与()g x 在0→x 是等价无穷小,求,,a b k 的值.【答案】,,.a b k =-=-=-11123【解析】法一:原式()3ln 1sin lim1x x a x bx xkx→+++= 即10,0,123a aa b k+=-== 法二:()3ln 1sin lim1x x a x bx xkx→+++= 因为分子的极限为0,则1a =-()212cos sin 1lim16x b x bx x x kx→--+-+==,分子的极限为0,12b =-()022sin sin cos 13lim 16x b x b x bx xx k →----+==,13k =- (16)(本题满分10分) 设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()0,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=-令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程,即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+;即()84f x x =-+.(17)(本题满分10分) 已知函数(),=++fx y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数.【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++此题目转化为对函数(),g x y =在约束条件22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M----. 3=. (18)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()() (II )设函数()()()12n u x ,u x ,,u x L 可导,n f x u x u x u x =L 12()()()(),写出()f x的求导公式.【解析】(I )0()()()()[()()]lim h u x h v x h u x v x u x v x h→++-'=(II )由题意得 (19)(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x zx y y x y z =++-+++⎰.【解析】由题意假设参数方程cos cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-(20) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα. (I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.【答案】 【解析】(I)证明: 故123,,βββ为3R 的一个基. (II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=即13213+2,,+0k k ααααα=即101010020k k=,得k=0 (21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫⎪ ⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵..【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++(II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭C 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫⎪==- ⎪ ⎪⎝⎭P ,(22) (本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.xx f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =L 为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),N Ge k n p -(,):(注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(), 12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑,2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑, 所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--, 从而7168E Y S ==()().(23) (本题满分 11 分)设总体X 的概率密度为:其中θ为未知参数,12n x ,x ,,x L 为来自该总体的简单随机样本. (I)求θ的矩估计量. (II)求θ的最大似然估计量. 【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得$1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),nni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而dln d 1L nθθθ=-(),关于θ单调增加,所以$12minnX X Xθ={,,,}L为θ的最大似然估计量.文档内容由经济学金程考研网整理发布。
2015年考研数学一真题与解析
2015年考研数学一真题一、选择题 1 — 8小题•每小题4分,共32分.1 •设函数f(X )在(」:,•::)上连续,其二阶导数 「(X )的图形如右 图所示,则曲线 、二f(x)在(」:,•::)的拐点个数为(A )0( B )1( C ) 2( D )3【详解】对于连续函数的曲线而言,拐点处的二阶导数等于零或者不存在•从图上可以看出有两个二阶导 数等于零的点,以及一个二阶导数不存在的点 X 二0 •但对于这三个点,左边的二阶导数等于零的点的两侧二阶导数都是正的,所以对应的点不是拐点•而另外两个点的两侧二阶导数是异号的,对应的点才是拐 点,所以应该选(C )11 2.设ye 2x (x )e x 是二阶常系数非齐次线性微分方程\ ay : by = ce x 的一个特解,则23(A ) a = -3, b = 2, c = -1 (B ) a = 3, b = 2,c = -1 (C ) a - -3, b = 2, c = 1(D ) a= 3,b = 2,c = 1【详解】线性微分方程的特征方程为 r 2 ar b = 0 ,由特解可知r, =2 —定是特征方程的一个实根.如 果r 2 =1不是特征方程的实根,则对应于 f (x)二ce x 的特解的形式应该为 Q(x)e x ,其中Q(x)应该是 个零次多项式,即常数,与条件不符,所以r 2 -1也是特征方程的另外一个实根,这样由韦达定理可得a =-(2 1^ -3,b = 2 1-2,同时y* =xe x 是原来方程的一个解,代入可得c = -1应该选(A )□03 •若级数a a n 条件收敛,则nd(0,2),显然 x -3 ,x =3依次为收敛点、发散点,应该选(B )4 .设D 是第一象限中由曲线 2xy =1,4xy = 1与直线y = x, y 二.3x 所围成的平面区域,函数f (x, y)在QOx = 3,x 二3依次为级数7 na n (x-1)n 的n T(A)收敛点,收敛点 (E)收敛点,发散点 (C)发散点,收敛点(D)发散点,发散点cd【详解】注意条件级数 a a n 条件收敛等价于幕级数nACO' a n x n 在x 二1处条件收敛,也就是这个幕级数的 n d□0-1,所以a na n (x-1)n 的收敛半径n=1RJmna n (n 1)a n 1二1,绝对收敛域为立,当然应该选(D ).Q= ei ,-e 3,e 2,则 f(X 1 ,x ?, x 3)在 x = Qy 下的标准形为222(A) 2y 1 - y 2y32 丄 22(B) 2 y 1 y 2 一 y 31 1 1 1、1 1 11 、1 1 1 1 、 12 a d T 0 1 a-1 d -1 T 0 1 a-1 d-1 订 4 2 adJ1° 3 a 2 -1d 2T 」1° 0 (a-1)(a- 2)(d_1)(d_ 2 ”【详解】对线性方程组的增广矩阵进行初等行变换: B =(A,b)二 (a _1)(a _2) = 0,(d _ 1)(d _ 2) = 0同时成 方程组无穷解的充分必要条件是 r(A)二r(A, b) 3,也就是 D 上连续,则 f(x,y)dxdy=() DJi(A) 3dr sin ^ f(rcoB,rsin^)rdr (B)3dr ~4 2sin 2 1si ;2r f(rcos ,rsinv)rdr2 sin 2r Tt1:dr 甲 f(rcos ,rsin 日)dr ■4 2^n2 -d【详解】积分区域如图所示,(C) (D) 「3 dr41;sin 2 r 1 ■'2sin 2 71f (r cos ,rsinv )dr化成极坐标方程: 4 xy =1 = 也就是D :2r 2sin v cosv 4r 2 sin v cos" JI < —3=1 ==1 =< /sin 二JT1_-_ 1Jsin 2B1___________ —2 sin 2=—r2 sin 2r所以.1.1 f(x, y)dxdy 二 3 dr.響2二 f (r cosr, rsinv)rdr ,所以应该选(B )•"1 1 1、『1、 5.设矩阵A =1 2 a ,b = dJ 42a丿2 2>Ax 二b 有无穷多解的充分必要(A )a",dF(B)1, d - 'J6 .设二次型 f (洛,x 2, x 3)在正交变换 x 二Py 下的标准形为2y" yl~ y 3,其中P 丸耳叵鸟,若D4 2sin 2,若集合门-「1,2,则线性方程组 条件是(A ) P(AB)辽 P(A)P(B)(B ) P(AB) _ P(A)P(B)(C) P(AB) J (A )P(B)(D) P(AB)_P(A )P(B)【详解】P(A) _ P(AB), P(B) _ P(AB),所以 P(AB) 一出…旦故选择ln(cosx) 9. lim 2—x x 2 3【详解】只要注意sinx为奇函数,在对称区间上积分为零,1 + cosx2 2【详解】Q f 二 x T Ax c2 2 22 y i- y 2 - y 3(2=y T PAPy (1 0 0、n 0 0、[1 00 '0 1 =P0 1,Q T= 0 0 -1 <0-1 °」1° -1 °丿1 °」(D )—e i , _e 3 ,e 2 ~ ei , e2,e3P TTy小 22 22屮目2 y 3广1 0、0 0、广10 0、广2广1 0、z2所以Q T AQ = 0 0 -1 P T AP0 0 1 = 0 0 -1 10 0 1=-11° 1 °」<° -1 °」<° 1 °」k一1」<° -1 °>故选择(A ).7.若A,B 为任意两个随机事件,则()二 y&设随机变量X,Y 不相关,且 EX = 2,EY =1, DX =3,则 E(X(X Y - 2))(A) -3(B)(C )-5(D) 5【详解】E(X(X Y -2))-2 EX = 5故应该选择(D ). 二、填空题(本题共 6小题,每小题4分,满分24分.把答案填在题中横线上)C ).I 详解】l x m o 常x 102 x10.2二sinx-2 1 cosx11.若函数 z=z(x, y)是由方程 e z • xyz x • cosx = 2 确定,则 dz |(o,n :- 【详解】设 F (x, y, z^ e z xyz x cosx - 2,则zF x (x, y,z) =yz 1 -sinx,F y (x, y,z) = xz,F z (x, y,z) =e xy也就得到 dz |(o ,1)=_dx. 12 .设i ]是由平面x y1和三个坐标面围成的空间区域,则iii(x 2y 3z)dxdydz = _______________ . Q【详解】注意在积分区域内,三个变量 x, y,z 具有轮换对称性,也就是111 xdxdydz 二 ydxdydz 二 zdxdydz Q Q Q1 1 21JJJ (x + 2y+ 3z)dxdydz = 6川zdxdydz = 6J zdzjjdxdy= 3J z(1 -z) dz=-五五D ;42 0III 0 2-1 2III 0 213. n 阶行列式+ ++*=III 2 20 0 III -1 2【详解】按照第- 「行展开, 得D n = 2D n 」+ (- 1)n *2(-1)n 」= 2D n 」+2,有 D n + 2 = 2( % j + 2)由于D^2,D 2=6 , 得 D n =2 2 (Dr +2)_2 = 2n * -2 . 14•设二维随机变量(X,Y)服从正态分布 N(1,0;1,1; 0),则 P XY Y :: 0^二______________________ 【详解】由于相关系数等于零,所以 X , Y 都服从正态分布, X ~ N(1,1),Y ~ N(0,1),且相互独立.则 X -1 ~ N(0,1).P ":XY Y :: 0; ^P Y(X 一1):: 0 •; = P0,X -1 0? P 〈Y 0,X 一1::0^=丄---2 2 2 2 2三、解答题15.(本题满分10分)设函数f (x^ x a ln(V x) bxsinx , g(x)二kx 3在x — 0时为等价无穷小,所以兀2i JI Tsinx1 cosx dx 二 2【xdx 「且当x =0, y =1时,z =- 0,所以 .:z.x1( 0,1)-F 「(0,1,0) _ 1 cz F ;(0,1,0) F z (0,1,0)「, :y (k F z (0,1,0)求常数a,b,k的取值.【详解】当X— 0时,把函数f(x)二x a ln(1 x) bxsin x展开到三阶的马克劳林公式,得2 3 .x x 3 1 3o(x 3))f(x)二x a(x o(x )) bx(x x2 3 6a 2 a 3 3=(1 a)x (-― b)x2(―)x3 o(x3)2 3由于当X-. 0时,f(x), g(x)是等价无穷小,则有1 1解得,a _ _1,b_ -一,k _ __.2 316.(本题满分10分)设函数y二f ( x)在定义域|上的导数大于零,若对任意的x0• I,曲线目二f ( x)在点(x0, f ( x0))处的切线与直线x =x°及x轴所围成区域的面积恒为4,且f(0) = 2,求f (x)的表达式.【详解】y二f(x)在点(X。
2015年全国硕士研究生入学统一考试数学(二)试题解析
2015年全国硕士研究生入学统一考试数学(二)试题解析戴又发一、选择题 共8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选选项前的字母填在答题纸指定位置上. (1) 下列反常积分收敛的是( )(A )dx x⎰+∞21(B )dx x x ⎰+∞2ln (C )dx x x ⎰+∞2ln 1 (D )dx e x x ⎰+∞2 【解析】22222331lim 3)1(lim lim --+∞→--+∞→+∞→+∞=+-=++-==⎰⎰e e e e t e dx e x dx ex t t t t t x t x . 故选D .(2)函数tx t x t x f 2sin 1lim )(⎪⎭⎫⎝⎛+=+∞→ 在),(+∞-∞内 ( ) (A )连续 (B )有可去间断点 (C )有跳跃间断点 (D )有无穷间断点【解析】ttx t x t tx t x t x t x f sin sin sin 1lim sin 1lim )(2⨯+∞→+∞→⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=,当0≠x 时,由e x t tx t =⎪⎭⎫⎝⎛++∞→sin sin 1lim ,x ttx t =+∞→sin lim,得x e x f =)(, 故函数在),(+∞-∞内有可去间断点,故选B .(3)设函数⎪⎩⎪⎨⎧≤>=0,00,1cos )(x x xx x f α)0,0(>>βα,若)(x f '在0=x 处连续,则( ) (A )1>-βα (B )10≤-<βα (C )2>-βα (D )20≤-<βα 【解析】显然0<x 时0)(='x f ,当0>x 时111sin 1cos)(---⋅+='ββαβαβαx xx x x x f ββαβαβαxx x x 1sin 1cos11---+=,由0,0>>βα,)(x f '在0=x 处连续,有01,01>-->-βαα, 所以1>-βα,故选A .(4)设函数)(x f 在),(+∞-∞内连续,其2阶导数)(x f ''的图形如右图所示,则曲线)(x f y =的拐点个数为( )(A ) 0 (B )1 (C )2 (D )3【解析】若函数)(x f 的2阶导数存在,那么使函数2的阶导数)(x f ''为零,且三阶导数不为零的点是函数)(x f 的拐点,当2阶导数不存在时,只要在某点处的2阶导数改变符号,该点就是拐点,显然)(x f y =的拐点个数为2,故选C . (5)设函数),(v u f 满足22),(y x xy y x f -=+,则11==∂∂v u uf 与11==∂∂v u vf 依次是( )(A )21,0 (B )0,21 (C )21-,0 (D )0,21-【解析】记 x y v y x u =+=, ,得v uvy v u x +=+=1,1,于是22)1()1(),(),(v uv v u v u f x y y x f +-+==+,所以222)1(2)1(2v uv v u u f +-+=∂∂,011=∂∂==v u uf ;3222232)1(2)1(2)1(2v v u v vu v u v f +++-+-=∂∂,2141214111-=+--=∂∂==v u uf,故选D.(6)设D 是第一象限中的曲线14,12==xy xy 与直线x y x y 3,==围成的平面区域,函数),(y x f 在D 上连续,则⎰⎰=Ddxdy y x f ),(( )(A )⎰⎰θθππθθθ2sin 12sin 2134)sin ,cos (rdr r r f d(B )⎰⎰θθππθθθ2sin 12sin 2134)sin ,cos (rdr r r f d(C )⎰⎰θθππθθθ2sin 12sin 2134)sin ,cos (dr r r f d(D )⎰⎰θθππθθθ2sin 12sin 2134)sin ,cos (dr r r f d【解析】记 θθsin ,cos r y r x ==,区域D 可表示为,θθ2sin 212sin 1≤≤r ,34πθπ≤≤,θrdrd dxdy =,于是 ⎰⎰=Ddxdy y x f ),(⎰⎰θθππθθθ2sin 12sin 2134)sin ,cos (rdr r r f d ,故选B.(7)设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛24121111a a ,⎪⎪⎪⎭⎫ ⎝⎛=21d d b ,若集合{}2,1=Ω,则线性方程组b Ax =有无穷多解的充分必要条件为( )(A )Ω∉Ω∉d a , (B )Ω∈Ω∉d a , (C )Ω∉Ω∈d a , (D )Ω∈Ω∈d a ,【解析】由方程组b Ax =有无穷多解,得3)()(<=A r A r , 而当0)12)(2)(1(=---=a a A 时,2,1==a a ,当1=a 时,⎪⎪⎪⎭⎫ ⎝⎛+--→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛=23000101011111030101011111411211111222d d d d d d d A 3)(<A r ,所以1=d 或2=d .当2=a 时,⎪⎪⎪⎭⎫ ⎝⎛+--→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛=23000111011111330111011114412211111222d d d d d d d A 3)(<r ,所以1=d 或2=d .故选D.(8)设二次型),,(321x x x f 在正交变换PY X =下的标准型为2322212y y y -+,其中),,(321e e e P =,若),,(231e e e Q -=,则),,(321x x x f 在正交变换QY X =下的标准型为( )(A )2322212y y y +- (B )2322212y y y -+ (C )2322212y y y -- (D )2322212y y y ++ 【解析】设二次型对应的矩阵为A ,由),,(321x x x f 经正交变换PY X =化为标准型2322212y y y -+,得 ⎪⎪⎪⎭⎫⎝⎛-=-1121AP P ,其中),,(321e e e P =,又因为),,(231e e e Q -=,于是有 ⎪⎪⎪⎭⎫⎝⎛-=-1121AQ Q , 所以),,(321x x x f 在正交变换QY X =下的标准型为2322212y y y +-.故选A.二、填空题:9~14每小题4分,共24分.请将答案写在答题纸指定位置上.(9)设⎩⎨⎧+==33arctan t t y t x ,则==122t dx y d .【解析】233t dt dy += ,211t dt dx +=, 363)1)(33(2422++=++=t t t t dx dy ,22232322)1(12)1)((12111212)(t t t t t t t t dt dx dt dx dy d dxy d +=++=++==. 所以==122t dx y d 48.(10)函数x x x f 2)(2⋅=在0=x 处的n 阶导数为=)0()(n f .【解析】因为)2ln 2(22ln 222)(22x x x x x f x x x +=⋅+⋅=',0)0(='f ;))2(ln 2ln 42(22ln )2ln 2(2)2ln 22(2)(222x x x x x x f x x x ++=+++='',222)0(0=⋅=''=x x f ;2ln ))2(ln 2ln 42(2))2(ln 22ln 4(2)(222x x x x f x x ++++='''))2(l n )2(l n 62ln 6(2322x x x ++=,2ln 62ln 62)0(0=⋅='''=x xf ; 2ln ))2(ln )2(ln 62ln 6(2))2(ln 2)2(ln 6(2)(32232)4(x x x x f x x ++++=))2(ln ))2(ln 8)2(ln 12(24232x x x ++=,202)4()2(ln 12)2(ln 122)0(=⋅==x x f ;202)()2)(ln 1()2)(ln 1(2)0(-=--=-⋅=n x n x n n n n n f .(11)设函数)(x f 连续,由方程⎰=2)()(x dt t xf x ϕ,若5)1(,1)1(='=ϕϕ,则=)1(f . 【解析】由⎰⎰==22)()()(x x dt t f x dt t xf x ϕ,得)(2)()(202x f x x dt t f x x ⋅⋅+='⎰ϕ,又5)1(2)()1(1=+='⎰f dt t f ϕ,1)()1(10==⎰dt t f ϕ,所以2)1(=f .(12)设函数)(x y y =是微分方程02=-'+''y y y 的解,且在0=x 处)(x y 取得极值3,则=)(x y .【解析】由022=-+λλ,得2,1-==λλ,于是微分方程的特解为x x e C e C y 221-+=,由022)0(21221=-=-='-C C eC e C y xx,3)0(21=+=C C y ,得1,221==C C ,所以x x e e x y 22)(-+=.(13)若函数),(y x z z =由方程132=+++xyz e z y x 确定,则=)0,0(dz.【解析】由dy yzdx x z dz ∂∂+∂∂=, 方程132=+++xyz e z y x 两边对x 求导,0)31(32=+∂∂+∂∂+++yz xzxy x z e z y x , 代入0,0==y 得310-=∂∂=x xz;方程132=+++xyz e z y x 两边对y 求导,0)32(32=+∂∂+∂∂+++xz yzxy y z e z y x , 代入0,0==y 得32-=∂∂=y yz;所以dy dx dz3231)0,0(--=.(14)设三阶矩阵A 的特征值为1,2,2-,E A A B +-=2,其中E 为3阶单位矩阵,则行列式=B .【解析】由矩阵A 的特征值为1,2,2-, 且E A A B +-=2,可知矩阵B 的特征值为1,7,3,所以21=B .三、解答题:15~23小题,共94分。