数学必修2 第四章 圆与方程教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 圆与方程

错误!未找到引用源。4.1.1

圆的标准方程

三维目标:

知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

2、会用待定系数法求圆的标准方程。

过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程

解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。

情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。

教学重点:圆的标准方程

教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程:

1、情境设置:

在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究:

2、探索研究:

确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M

r = ① 化简可得:222

()()x a y b r -+-= ②

引导学生自己证明2

2

2

()()x a y b r -+-=为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。

3、知识应用与解题研究

例(1):写出圆心为(2,3)A -半径长等于5的圆的方程,并判断点12(5,7),(1)M M --是否在这

个圆上。

分析探求:可以从计算点到圆心的距离入手。

探究:点00(,)M x y 与圆222

()()x a y b r -+-=的关系的判断方法:

(1)2200()()x a y b -+->2

r ,点在圆外 (2)2200()()x a y b -+-=2

r ,点在圆上 (3)2200()()x a y b -+-<2

r ,点在圆内

例(2): ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程

师生共同分析:从圆的标准方程2

2

2

()()x a y b r -+-= 可知,要确定圆的标准方程,可用待

定系数法确定a b r 、、三个参数.(学生自己运算解决)

例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为

C 的圆的标准方程.

师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和(2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于CA 或CB 。 (教师板书解题过程。)

总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、例(3)可得出ABC 外接圆的标准方程的两种求法:

①、根据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的标准方程. 根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.

练习:课本127p 第1、3、4题 提炼小结:

1、 圆的标准方程。

2、 点与圆的位置关系的判断方法。

3、 根据已知条件求圆的标准方程的方法。

作业:课本130p 习题4.1第2、3、4题

4.1.2圆的一般方程

三维目标:

知识与技能 : (1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特

征,由圆的一般方程确定圆的圆心半径.掌握方程x 2

+y 2

+Dx +Ey +F=0表示圆的条件.

(2)能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定

系数法求圆的方程。

(3):培养学生探索发现及分析解决问题的实际能力。

过程与方法:通过对方程x 2+y 2+Dx +Ey +F=0表示圆的条件的探究,培养学生探索发现及分析解

决问题的实际能力。

情感态度价值观:渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,

勇于探索。

教学重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确

定方程中的系数,D 、E 、F .

教学难点:对圆的一般方程的认识、掌握和运用

教 具:多媒体、实物投影仪

教学过程:

课题引入:

问题:求过三点A (0,0),B (1,1),C (4,2)的圆的方程。 利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式——圆的一般方程。

探索研究:

请同学们写出圆的标准方程:

(x -a)2+(y -b)2=r 2,圆心(a ,b),半径r .

把圆的标准方程展开,并整理:

x 2

+y 2

-2ax -2by +a 2

+b 2

-r 2

=0.

取2

2

2

,2,2r b a F b E a D -+=-=-=得

相关文档
最新文档