转化思想在数学解题中的几个策略
高中数学思想与逻辑:11种数学思想方法总结与例题讲解
中学数学思想与逻辑:11种数学思想方法总结与例题讲解中学数学转化化归思想与逻辑划分思想例题讲解在转化过程中,应遵循三个原则:1、熟识化原则,即将生疏的问题转化为熟识的问题;2、简洁化原则,即将困难问题转化为简洁问题;3、直观化原则,即将抽象总是详细化.策略一:正向向逆向转化一个命题的题设和结论是因果关系的辨证统一,解题时,假如从下面入手思维受阻,不妨从它的正面动身,逆向思维,往往会另有捷径.例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.A、150B、147C、144D、141分析:本题正面入手,状况困难,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简洁多了.10个点中任取4个点取法有种,其中面ABC内的6个点中任取4点都共面有种,同理其余3个面内也有种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种,不共面取法有种,应选(D).策略二:局部向整体的转化从局部入手,按部就班地分析问题,是常用思维方法,但对较困难的数学问题却须要从总体上去把握事物,不纠缠细微环节,从系统中去分析问题,不单打独斗.例2:一个四面体全部棱长都是,四个顶点在同一球面上,则此球表面积为( )A、B、C、D、分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,简洁出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径为,应选(A).策略三:未知向已知转化又称类比转化,它是一种培育学问迁移实力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相像性,奇妙进行类比转换,答案就会应运而生.例3:在等差数列中,若,则有等式( 成立,类比上述性质,在等比数列中,,则有等式_________成立.分析:等差数列中,,必有,故有类比等比数列,因为,故成立.二、逻辑划分思想例题1、已知集合A= ,B= ,若B A,求实数a 取值的集合.解A= :分两种状况探讨(1)B=¢,此时a=0;(2)B为一元集合,B= ,此时又分两种状况探讨:(i) B={-1},则=-1,a=-1(ii)B={1},则=1,a=1.(二级分类)综合上述所求集合为.例题2、设函数f(x)=ax -2x+2,对于满意1x4的一切x值都有f(x) 0,求实数a的取值范围.例题3、已知,试比较的大小.于是可以知道解本题必需分类探讨,其划分点为.小结:分类探讨的一般步骤:(1)明确探讨对象及对象的范围P.(即对哪一个参数进行探讨);(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级探讨.;(3)逐类探讨,获得阶段性结果.(化整为零,各个击破);(4)归纳小结,综合得出结论.(主元求并,副元分类作答).十一种数学思想方法总结与详解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
浅谈等价转化思想在高中数学解题中的应用策略
浅谈等价转化思想在高中数学解题中的应用策略摘要:高中时期的数学科目学习对于中学生来说十分重要,但是高中数学知识较为抽象,学生理解、学习起来就显得困难。
对于那些数学难题,学生解答起来更是没有头绪,但是如果在这些数学难题解答的过程中能够利用等价转化思想,那么将会大大提升学生对高中数学难题的解答能力。
在高中数学难题的解答过程中,等价转化思想为学生指引了许多思路,本文就是从等价转化思想将数学难题进行熟悉化、简单化、具体化和直接化的转换策略进行探讨,从而提升等价思想在高中数学难题解答中的效果。
关键词:等价转化;高中数学;解题;策略等价转换思想就是指在数学难题解答的过程中利用一些手段、技巧,把比较困难的数学问题转化为比较容易的数学问题来解决。
等价转化思想是一种全新的数学难题解答思路,能够锻炼学生的数学逻辑思维能力,提升高中学生的整体数学解答和应用能力。
所以,高中数学老师在数学教学的过程中,一定要重视对学生训练灵活运用转化思想解决数学难题的能力。
一、将数学难题中的陌生问题熟悉化高中数学难题的解答中,常用的策略就是把那些比较陌生的数学问题转化成相对比较熟悉的问题进行解决。
高中学生的学习精力、学习时间非常的有限,不可能把某一个知识点的每一种题型都能够进行很好的联系,所以高中生一般都是把数学知识点相对应的常见的数学题型掌握好,所以当学生遇到自己比较陌生的数学难题时,能使用转化思想把它们转化为自己已经掌握的问题是非常重要的。
例如:老师领导学生对三角函数这节内容进行学习的时候,老师应该先向学生讲述有关三角函数的定义,让学生掌握三角函数的含义。
随之老师再进一步讲解三角函数的应用方法,老师向学生讲解三角函数公式的演变过程,这样就有利于学生自己掌握三角函数的演变公式。
像一些钝角的三角函数,学生在做题应用中很少用到,对这些钝角函数还不够熟悉,老师就可以引导学生通过运用转化思想把不常见的三角函数转换成为比较熟悉的三角函数,像30度、90度的三角函数,通过这样的等价转化就可以让学生对任何三角函数向自己比较熟悉的三角函数转化。
数学的转化思想方法
数学的转化思想方法数学的转化思想方法导语:数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。
以下是店铺为大家整理分享的数学的转化思想方法,欢迎阅读参考。
数学的转化思想方法特殊与一般的数学思想:对于在一般情况下难以求解的问题,可运用特殊化思想,通过取特殊值、特殊图形等,找到解题的规律和方法,进而推广到一般,从而使问题顺利求解。
常见情形为:用字母表示数;特殊值的应用;特殊图形的应用;用特殊化方法探求结论;用一般规律解题等。
整体的数学思想:所谓整体思想,就是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。
用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏锐地洞察问题的本质,有时也不要放弃直觉的作用,把注意力和着眼点放在问题的整体上。
常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。
分类讨论的数学思想:也称分情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时,我们就需要对这一问题进行必要的分类。
将一个数学问题根据题设分为有限的若干种情况,在每一种情况中分别求解,最后再将各种情况下得到的答案进行归纳综合。
分类讨论是根据问题的不同情况分类求解,它体现了化整为零和积零为整的思想与归类整理的方法。
运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。
分类讨论的原则是:(1)完全性原则,就是说分类后各子类别涵盖的范围之和,应当是原被分对象所涵盖的范围,即分类不能遗漏;(2)互斥性原则,就是说分类后各子类别涵盖的范围之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,就是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。
化归与转化的数学思想解题举例
化归与转化的数学思想解题举例化归与转化的思想确是指在解决问题时,采用某种手段使之转化,进而使问题得到解决的一种解题策略,是数学学科与其它学科相比,一个特有的数学思想方法,化归与转化思想的核心是把生题转化为熟题。
事实上,解题的过程就是一个缩小已知与求解的差异的过程,是求解系统趋近于目标系统的过程,是未知向熟知转化的过程,因此每解一道题,无论是难题还是易题,都离不开化归。
下面介绍一些常用的转化方法,及化归与转化思想解题的应用。
化归与转化常遵循以下几个原则(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。
(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。
(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。
(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。
(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
一、正与反的转化:有些数学问题,如果直接从正面入手求解难度较大,致使思想受阻,我们可以从反面着手去解决。
如对立事件的概率、间接法求解排列组合问题、举不胜举。
例1:某射手射击1次击中目标的概率是0.9他连续射击4次且他各次射击是否击中目标是相互独立的,则他至少击中目标1次的概率为。
例2:求常数m的范围,使曲线y=x2的所有弦都不能被直线y=m(x-3)垂直平分.当面临的数学问题由一般情况难以解决,可以从特殊情况来解决,反之亦然,这种方法在选择题,填空题中非常适用。
例1:设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1、S n 、S n +2成等差数列,则q =___________.例2:已知平面上的直线l 的方向向量)53,54(-=→e ,点(0,0)和A (1,-2)在l 上的射影分别为A O ''和,若A O λ=''则λ为( )A .511 B .-511 C .2 D .-2例3:设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且1PA QC =,则四棱锥B —PAQC 的体积为:A .61V B .41V C .31V D .21V利用主元与参变量的关系,视参变量为主元(即变量与主元的角色换位)常常可以简化问题的解决,先看下面两题。
小学数学中的转化思想
小学数学中的转化思想光明小学肖承焕【摘要】小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。
转化思想是数学思想的重要组成部分。
它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。
在小学数学中,主要表现为数学知识的某一形式向另一形式转变,即化新为旧、化繁为简、化曲为直、化数为形等。
【关键词】小学数学教学转化转化思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。
也就是说,转化方法的基本思想是在解决数学问题时,将待解决的问题,通过某种转化过程,归结到一类已经解决或者比较容易解决的问题,然后通过容易问题还原解决复杂的问题。
将有待解决或未解决的问题,转化为在已有知识的范围内可解决的问题,是解决数学问题的基本思路和途径之一,是一种重要的数学思想方法。
小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。
转化思想是数学思想的重要组成部分。
它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。
在小学数学中,主要表现为数学知识的某一形式向另一形式转变,即化新为旧、化繁为简、化曲为直、化数为形等。
21世纪的数学教师,应该结合相应的数学情景,培养学生善于和习惯利用转化思想解决问题的意识。
使复杂的问题简单化、抽象的问题具体化,特殊的问题一般化,未知的问题已知化,提高学生解决数学问题的能力,从而使学生爱上学数学。
一、转化的形式多种多样(一)计算中的转化1.计算的纵向转化加减计算: 20以内数的加减←―100以内数的加减←―多位数的加减←―小数加减←分数加减。
其中 20以内数的加减计算是基础。
如23+15可以转化成2+1和3+5两道十以内数的计算,64-38 可以转化成14-8和5-3两道计算。
转化思想在小学数学教学中的应用研究
转化思想在小学数学教学中的应用研究【摘要】转化思想是数学思想方法中的一种,随着新课程标准的不断深入,基本思想日渐突出。
本文首先对转化思想的内涵及意义进行了介绍,明确其重要性;其次分析转化思想在教材中的体现;最后探究转化思想在小学数学教学中的应用,以期能够为转化思想的应用提供思路。
【关键词】转化思想;小学数学;应用数学思想方法是学习数学的关键,小学是学生进入系统学习的开端,这个时期让学生理解并掌握一些基本的数学思想方法对其以后的学习非常重要。
因此,教师在教学时不仅要重视传授基础知识与基本技能,也要注重数学思想方法的引导、总结。
而转化思想是数学思想方法的核心。
下面,笔者就结合教学实际谈谈转化思想在小学数学教学中的应用。
一、转化思想的内涵及意义(一)转化思想的内涵转化思想就是将未知解法或難以解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换,转化为已经解决或容易解决的问题的数学思想。
转化思想的实质是化新为旧、化繁为简。
转化思想的优点包括:(1)优化解题的方法。
转化思想就是换个角度思考问题,能大大提高解题速度和效率。
(2)揭露问题本质。
很多问题在某个领域内解决不了,但是如果转化为其他领域,解决起来就会变得简单。
几何作图的几大难题就是转化为代数才得以解决,在历史上还开辟了新的研究领域。
在小学数学中涉及的转化类型有:(1)数形转化,“数”与“形”是两个不同的侧面,既可以互相联系又可以相互转化;(2)未知转化为已知,解题的实质就是将未知问题化为已知,层层拨开题目设置的迷雾,找到关键,转化为自己会解决的问题;(3)一般转化为特殊,有些问题在一般情况下难以破解,但是在特殊情况下解决反而事半功倍;(4)抽象问题转化为直观问题,抽象问题总是让人捉不着头脑,不知如何下手。
但是将其转化为直观问题,有时候答案就呼之欲出了。
(5)化繁为简,数学问题比较复杂时,可以从结构和数量相似的简单问题入手,找到解决问题的方法或建立模型。
化归与转化思想在解题中地重要性
化归与转化思想在解中学数学习题时的重要性大理一中雷蕾摘要:“数学是使人变聪明的一门学科”.数学思想方法是数学的灵魂,是数学精神和科学世界观的重要组成部分,而化归与转化思想又是数学思想的核心和精髓,真正的数学高手过招,比拼的往往就是数学思想.本文根据前人的研究成果,首先概述了化归与转化思想的含义、联系、区别,使用化归与转化思想所遵循的原则、及化归与转化的几种常见形式;然后结合自己的实习经验探讨怎样实施化归与转化思想在教学中的渗透,最后通过例题分析浅谈自身学习化归与转化思想的经验.关键词:数学思想;化归与转化;化归与转化思想;化归思想;转化思想1引言数学思想方法是数学知识在更高层次上的抽象和概括,它蕴涵于知识的发生、发展和应用的过程,是知识转化为能力的桥梁,是在研究和解决数学问题的过程中所采用的手段、途径和方式.数学思想和数学方法是密不可分的.化归与转化思想方法是最基本、最常用的两大数学思想方法之一.1.1化归与转化的含义转化思想是指在研究和解决数学学问题时由一种教学对象转化为另一种数学对象时所采用的数学方法的指导思想.转化有等价转化和非等价转化.化归是“转化归结”的简称,是转化的一种.简单的化归思想就是把那些陌生的或不易解决的问题转化成熟悉、易解决的问题的思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,遵循简单化、熟悉化、具体化、和谐化的原则选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题是上去,最终解决原问题的解决问题的思想,称为化归思想.两者基本上是同一个东西,只是侧重点有一些细微的差异而已.化归是把未解决问题转化归结到已经解决的问题上去,而转化一般是把较难解决的问题转化为相对比较容易解决的问题上去.化归是找到我们研究的问题是属于哪一类型,属于哪一个知识范围.转化是我们找到解题的思路之后所进行的有目的的一项工作.化归与转化思想是解决数学问题的基本且典型的数学思想.解题的过程实际上就是化归与转化的过程.几乎所有问题的解决都离不开化归与转化,我认为运用化归与转化的思想,有这样的三个问题必须明确:(1) 化归的对象:解题中需要变更的部分;(2) 化归的目标:把化归的对象化为熟知的问题,规范性的问题;(3) 化归的途径[1]:从未知到熟知,从多元到少元,从空间到平面,从高维道低维,从复杂到简单.数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程.它不仅需要有敏锐的洞察力和观察力,更需要有丰富的知识储备.1.2化归与转化在解题时应遵循的原则(1)熟悉化原则 将陌生的问题转化为熟悉的问题,以便于我们运用熟知的知识、经验和问题来解决待解决的问题[2];(2)简单化原则 将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据;(3)和谐化原则 通过化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律.和谐统一性原则是化归与转化思想的一项重要原则;(4)回归原则 无论怎么化归与转化,无论转化为什么新的问题,都是手段,不是目的.最终的目的是解决原始问题.因而,最后都要回归到原始问题上来;(5)具体化原则 化归的方向一般应由抽象到具体,即分析问题和解决问题时,应着力将问题向较具体的问题转化,以使其中的数量关系更易把握,如尽可能将抽象的式用具体的形来表示;将抽象的语言描述用具体的式或形表示,以使问题中的各种概念以及概念之间的相互关系具体明确;(6)标准形式化原则 将待解问题在形式上向该类问题的标准形式化归,标准形式是指已经建立起来的数学模式;(7)低层次原则 解决数学问题时,应尽量将高维空间的待解问题化归成低维空间的问题,高次数的问题化归成低次数的问题,多元问题化归为少元问题解决,这是因为低层次问题比高层次问题更直观,更简单.1.3化归与转化的几种常见策略1.3.1陌生向熟悉的转化[3]例1 函数()f x =11(1)x x --的最大值是( ). A 、 45 B 、 54 C 、 34 D 、 43分析 该题学生比较陌生,我们应该“化生为熟”.首先讨论分母1(1)x x --的取值范围221331(1)1244x x x x x ⎛⎫--=-+=-+≥ ⎪⎝⎭.∴有1401(1)3x x <≤--, 所以 ()f x 的最大值是43,故应选(D ).1.3.2数形结合 把函数、方程、不等式等代数形式中的量与量的关系,同几何图形的位置关系相结合,以形论数以数论形.著名的数学家华罗庚教授曾在一首诗中写道:数形结合百般好,两家分离万事休.这一句话道出了数形结合的重要性.例2 如果实数y x ,满足3)2(22=+-y x ,那么xy 的最大值是( ). A.21 B.33 C.23 D.3 分析 由于方程3)2(22=+-y x 表示的曲线以)0,2(A 为圆心,以3为半径的圆(如图1所示),满足方程的y x ,是圆上的点),(y x P ;而xy 是坐标原点)0,0(与圆上各点连线的斜率,所以题目可转化为求原点)0,0(与圆上各点连线的斜率的最大值.结合图像,易知直线kx y =与圆3)2(22=+-y x 相切的时候,直线OP 的斜率 k 就是所求斜率的最大值.图1解 32||,3||π=∠⇒==POA OP AP ∴tan POA ∠=即所求x y 的最大值是3,故选D.1.3.3特殊和一般之间的转化例3 求证995099!<(一般到特殊)分析 本题直接证明显然不易,若将其看作特殊形式,观察可知,一般性的结论为:21!2n n +⎛⎫> ⎪⎝⎭(),1n N n ∈>,这个结论一旦证明了,原题自然获解. 证明 先证一般性的结论:当11,!2n n n n +⎛⎫>> ⎪⎝⎭时,有:()1122n n n n++=>= 即 21!2n n +⎛⎫> ⎪⎝⎭(),1n N n ∈>成立.所以,当99n =时,有995099!<. 1.3.4正难则反易原则(反证法) 当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解[3];例4 设三个方程22x 4mx 4m 2m 30++++=,22x (2m 1)x m 0+++=,()2m 1x 2mx m 10-++-=,中至少有一个方程有实数根,求m 的取值范围.分析 题设中给了三个方程,并且其中至少有一个方程有实数根,要求m 的取值范围,可以根据题意将满足条件的情况分别讨论,以求出相应的m 的取值范围,最后加以归纳、总结.但是,通过进一步分析,我们却发现“三个方程中至少有一个方程有实数根”具体应分为七种情况加以讨论,其中步骤的烦琐可想而知,因此可否换一个角度来思考呢?如从“三个方程中至少有一个方程有实数根”的反面考虑,即“三个方程都没有实数根”时求出m 的取值范围,然后再从实数中排除它,就是所要求的取值范围.解 (1)当m 1=时,方程()2m 1x 2mx m 10-++-=化为一次方程20x =,它有一个实数根x 0=,故m 1=符合题意.(2)当m 1≠时,若三个方程都没有实数根,则有: △22116m 4(4m 2m 3)0=-++<△222(2m 1)4m 0=+-<△()2234m 4m 10=--<解得31<m<24--.从m 1≠的实数中除去31<m<24--,即得31m m 24≤-≥-或,且m 1≠.综上所述,得31m m 24≤-≥-或. 1.3.5空间向平面的转化[4] 在数学解题中,对立体几何问题常常需要化归到熟知的平面几何问题,化归的手段主要有平移、旋转、展开、射影和截面等.例5 设长方体1111ABCD A B C D -的三条棱1,A A a =11,A B b =11A D c =,,,M N ,P Q 分别是1111,,,A B A D BC CD 的中点.求AMN ∆和CPQ ∆的重心间的距离.1D1HG1C1图2(a) 图2(b)分析这是一个空间距离问题,直接求解可能有一些困难,我们试图把空间距离转化为平面距离.解设长方体的对角面1AC分别与平面AMN∆,CPQ∆交于1,AE C F,则,AE 1C F分别是AMN∆和CPQ∆的中线,如图2(a).设AMN∆,CPQ∆的重心分别为,G H.于是空间的问题转化为平面1AC的问题.如图2(b),只要求出矩形11AAC C中, ,G H的距离即可.设,G H在1,AC C C上的射影是1122,,,G H G H,则2211133G H A A a==,111143G H AC CH G A AC CF=--=-.因为AC14CF AC=.于是11412333G H AC CF AC AC AC=-=-==所以GH==.1.3.6高次与低次的转化(因式分解)在解高次方程时,一般都是设法将未知数的次数降低,以达到便于求解的目的.1.3.7命题的等价转化例7 已知f(x)为定义在实数R 上的奇函数,且f(x)在[0,+∞)上是增函数.当02πθ≤≤时,是否存在这样的实数m,使(cos 23)(42cos )(0)f f m m f θθ-+->对所有的[0,]2πθ∈均成立?若存在,求出所有适合条件的实数m ;若不存在,请说明理由.分析 由奇偶性及单调性→f(x)单调性→关于cos θ的不等式→一元二次不等式恒成立→函数最值→m 的范围.解 由f(x)是R 上的奇函数可得f(0)=0.又在[0,+∞)上是增函数,故f(x)在R 上为增函数.由题设条件可得(cos 23)(42cos )0f f m m θθ-+->.又由f(x)为奇函数,可得(cos 23)(2cos 4)f f m m θθ->-.∵f(x)在R 上为增函数,∴cos232cos 4m m θθ->-,即2cos cos 220m m θθ-+->.令cos t θ=,∵02πθ≤≤,∴01t ≤≤.于是问题转化为:对一切0≤t ≤1,不等式t 2-mt+2m-2>0恒成立.又∵222(2)4422t t t t -=-++≤---∴4m >-.∴存在实数m 满足题设的条件4m >-1.3.8函数与方程例8 (1997年理科24题)设二次函数()f x =a 2x 十bx 十c (a >0),方程()f x -x =0的两个根满足0<1x <2x <a1.(1)当1(0,)x x ∈时,证明:1()x f x x <<;(2) 设函数()f x 的图像关于直线0x x =对称,证明102x x <. 分析 本例要分清函数()f x 与方程()0f x x -=是两个不同的条件,0x x =是函数()f x 的对称轴,1x ,2x 则是方程()0f x x -=的根,它们之间的联系通过a ,b ,c 隐蔽地给出,因而充分利用二次函数的性质,引进辅助函数()()g x f x x =-,凸现已知条件的联系,是解题的关键.证明 (1)令()()g x f x x =-,因为1x ,2x 是方程()0f x x -=的根,所以不妨设 12()()()g x a x x x x =--.当(0,)x a ∈时,由于12x x <,∴ 12()()0x x x x -->.又0a >, ∴12()()()0g x a x x x x =-->,即()x f x <,而:111()()()x f x x x x f x x x g x -=-+-=--112()()x x a x x x x =----12()[1()]x x a x x =-+- 又∵1210x x x a<<<< ∴ 10x x ->, 2221()110a x x ax ax ax +-=+->->, 得1()0x f x ->. ∴ 1()f x x <即1()x f x x <<;(2)由题意知 0x =-ab 2.∵ 1x ,2x 是方程()0f x x -=的根,即 1x ,2x 是方程2(1)20ax b x +-+=的根.则:121b x x a-+=,12012()1111()2222a x x b x x x a a a +-=-==+-. ∵ 21x a <, ∴ 102x x <. 1.3.9多元向一元的转化(消元法)例9 已知123,,a a a 成等差数列()10a ≠,234,,a a a 成等比数列,345,,a a a 的倒数也成等差数列,问135,,a a a 之间有什么关系?分析 题目中有5个元素12345,,,,a a a a a ,而解题目标是探讨135,,a a a 之间有什么关系,因此24,a a 对求解目标是多余的,需要从多元向少元化归,即在解题时,设法把24,a a 消去.解 由题设1322324435,2,211.a a a a a a a a a ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩ 为消去24,a a ,从方程组中解出1322a a a +=和354352a a a a a =+,代入2324a a a =得2133533522a a a a a a a +=⋅+.因为30a ≠,则()135335a a a a a a +=+, 整理得2315a a a =.因此135,,a a a 成等比数列. 1.3.10语言的转化例10 对任意函数()f x , x D ∈,可按右图构造一个数列发生器,其工作原理如下:①输入数据0x D ∈,经数列发生器输出10()x f x =;②若1x D ∉,则数列发生器结束工作;若1x D ∈,则将1x 反馈回输入端,再输出21()x f x =,并依此规律继续下去.现定义 42()1x f x x -=+,(1)若输入04965x =,则由数列发生器产生数列{}n x ,请写出{}n x 的所有项;(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据0x 的值;(3)若输入0x 时,产生的无穷数列{}n x ,满足对任意正整数n 均 图3 有1n n x x +<;求0x 的取值范围.分析 本题主要考查学生的阅读审题,综合理解及逻辑推理的能力.解题的关键就是应用转化思想将题意条件转化为数学语言,函数求值的简单运算、方程思想的应用,解不等式及化归转化思想的应用.解 (1)∵()f x 的定义域为(,1)(1,)D =-∞-⋃-+∞∴数列{}n x 只有三项, 123111,,1195x x x ===-. (2)∵42()1x f x x x -==+,即2320X X -+=.∴1X =或2X =.即01x =或2时,有1421n n n n x x x x +-==+.故当01x =时,1n x =;当02x =时,2n x =*()n N ∈. (3)解不等式421x x x -<+,得1X <-或12X <<.要使12X X <,则21X <-或 112X <<.对于函数426()411x f x x x -==-++, 若11X <-,21()4x f x =>,322()X f X X =<;若112X <<时,211()X f X X =>且112X <<.依次类推可得数列{}n x 的所有项均满足:1n n x x +<*()n N ∈.综上所述,1(1,2)X ∈,由10()X f X =,得0(1,2)X ∈.1.3.11合与分的转化(分论讨论)例11 已知集合2{,1,3},M a a =+-2{3,21,1},N a a a =--+ 若{3}M N ⋂=-,则a 的值为( ).分析 该题结合集合的运算考查了分类讨论思想,分类的标准结合集合的性质:无序性、互异性、确定性.解 ∵{3}M N ⋂=-,∴23{3,21,1}N a a a -∈=--+.若33a -=-, 则a=0,此时{0,1,3}M =-,{3,1,1}N =--,则:{3,1}M N ⋂=-,故不符合集合元素的互异性.若213a -=-,则1a =-,此时{0,1,3}M =-,{4,3,2}N =--.若213a +=-,此方程无实数解.1.3.12复数与实数的转化例12 已知复数z ,解方程_313z i z i -⋅=+.分析 设出复数的代数形式,利用复数相等的充要条件,建立实数方程,化虚为实,解方程组,可以求出复数.解 设(,)z x yi x y R =+∈,则方程可化为(3)(3)13x y y x i i -+-=+.由复数相等,有3133x y y x -=⎧⎨-=⎩,解得5434x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴z=-54-34i . 1.3.13常量与变量的转化例13 已知2()log f t t =,t ∈.对于()f t 值域内的所有实数m ,不等式2424x mx m x ++>+恒成立,x 的取值范围是________.分析 根据已知条件,建立以参数为主元的不等式是一个转化的数学思想,通过转化就可利用一次函数()g m 的单调性通过数形结合解决问题,体现了函数与不等式之间的转化关系.解 ∵t ∈,∴1()[,3]2f t ∈,原题转化为:(2)(2)0m x x -+->恒成立,为m 的一次函数.当2x =时,不等式不成立.∴2x ≠.令2()(2)(2)g m m x x =-+-,1[,3]2m ∈,问题转化为: ()g m 在1[,3]2m ∈上恒大于0,则1()0,(3)02g g >>,解得2x >或1x <-. 1.3.14 等与不等的转化 相等与不等是数学解题中矛盾的两方面,但是它们在一定的条件下可以互相转化,例如有些题目,表面看来似乎只具有相等的数量关系,根据这些相等关系又难以解决问题,但若能挖掘其中的不等关系,建立不等式(组)去转化,往往能获得简捷求解的效果.例14 已知b a ,都是实数,且11122=-+-a b b a ,求证:122=+b a .分析 利用均值不等式先得到一个不等关系,再结合已知中的相等关系寻求a 与b 之间的关系.利用等与不等之间的辩证关系,相互转化,往往可以使问题得到有效解决.解 ∵,2)1(1222b a b a -+≤-2)1(1222a b a b -+≤-, ∴11122≤-+-a b b a .又11122=-+-a b b a ,21b a -=且21a b -=,即122=+b a .1.3.15 整体与局部的转化例15 函数()f x 满足对任意x ,y 都有()()()1x y f x f y f xy++=+,且当x <0时,都有()f x >0,求证211()()232f f n n >++. 分析 观察对应法则的结构特征,局部对通项变形.整体把握不等式左端数列和“裂项相消法求和”化简,创造使用题设完成证明.解 赋值易知f(x)为奇函数,且当x >0时,都有()f x <0. 由于211(1)(2)32n n n n =++++且()()()1x y f x f y f xy ++=+,故有: 211111211(1)(2)321()12n n n n n n n n -++==+++++-++. 所以局部处理通项逆用对应法则有2111()()()1232f f f n n n n =-++++,整体处理 不等式左端数列和有:2111()()()51132f f f n n ++⋅⋅⋅+++ 111111(()())(()())(()())233512f f f f f f n n =-+-+⋅⋅⋅+-++ 11()()22f f n =-+. 由题设102n >+, 恒有1()02f n <+,则111()()()222f f f n ->+. 故所证不等式211()()232f f n n >++成立.2运用化归思想的经验(1)熟练、扎实地掌握基础知识、基本技能和基本方法是化归与转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系.“抓基础,重转化”是学好中学数学的金钥匙[5].(2)有目的的实施有效的化归与转化思想,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题.(3)注意紧盯化归与转化目标,保证化归与转化的有效性、规范性.化归与转化作为一种思想方法,应包括化归与转化的对象、目标、途径三个要素.因此,化归思想方法的实施应有明确的对象、设计好目标、选择好方法,而设计目标是问题的关键.在解题过程中,必须始终紧紧盯住化归的目标,即应该始终考虑这样的问题:怎样才能达到解原问题的目的.在这个大前提下实施的化归才是卓有成效的,盲目地选择化归的方向与方法必将走入死胡同.(4)转化的等价性,确保逻辑上的正确.转化包括等价转化和非等价转化,等价转化后的新问题与原问题实质是一样的,不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.高中数学中的转化大多要求等价转化,等价转化要求转化过程中的前因后果既是充分的,又是必要的,以保证转化后的结果为原题的结果.如果在解题过程中没有注意转化的等价性,就会犯不合实际或偷换论题、偷换概念、以偏概全等错误.数学思想方法的学习是一个潜移默化的过程,没有一个统一的模式可以遵循,而是在多方领悟、反复应用的基础上形成的,化归与转化也不例外.学生在解题过程中,必须根据问题本身提供的信息,利用动态的思维,多方式、多途径、有计划、有步骤地反复渗透,要善于反思解题过程,分析解题思维,回味解题中所使用的思想,去寻求有利于问题解决的化归途径和方法.3结束语数学思想方法是数学的精髓,在中学数学中,化归与转化不仅是一种重要的解题思想,也是一种最基本的思维策略.知道了什么是化归与转化,了解化归与转化的实质,掌握如何进行化归与转化,那么,很多数学问题就迎刃而解了.对于即将毕业走上讲台的我来说,重要的不单是教授学生知识,而且要教会学生透过现象看本质,掌握了数学的思想方法,那么万变不离其宗,在教与学的过程中教师才能很好的把握教材,引导学生灵活处理数学问题,使学生轻松学习.参考文献[1]侯敏义.数学思维与数学方法论[M](1991年版).上海:东北师范大学出版社,1991,79~86.[2]张志淼.数学学习与数学思想方法[M](2006年版).郑州:郑州大学出版社,2006,21~35.[3]赵小云,叶立军.数学化归思维论[M](2001年版).北京:科学出版社,2006,91~100.[4]张青.谈中学数学中的构造性思维[J].邯郸师专学报,1996,1 (2):35-39.[5]黄文斐,徐凡等.思维点拔与能力训练[M](2000年版).辽宁:辽宁大学出版社 2000,16~28.。
化归与转化思想在解题中的应用
化归与转化思想在解题中的应用主讲人:黄冈中学高级教师汤彩仙一、复习策略化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想.转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题.化归转化思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中.转化有等价转化与不等价转化.等价转化后的新问题与原问题实质是一样的,不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用化归转化思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化.常见的转化有:1、等与不等的相互转化等与不等是数学中两个重要的关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口.2、正与反的相互转化对于那些从“正面进攻”很难奏效或运算较难的问题,可先攻其反面,从而使正面问题得以解决.3、特殊与一般的相互转化对于那些结论不明或解题思路不易发现的问题,可先用特殊情形探求解题思路或命题结论,再在一般情况下给出证明,这不失为一种解题的明智之举.4、整体与局部的相互转化整体由局部构成,研究某些整体问题可以从局部开始.5、高维与低维的相互转化事物的空间形成,总是表现为不同维数且遵循由低维向高维的发展规律,通过降维转化,可把问题由一个领域转换到另一个领域而得以解决,这种转化在复数与立体几何中特别常见.6、数与形的相互转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性解决问题,使问题简化.7、函数与方程的转化二、典例剖析例1.函数极限的值为().A.B.C.D.分析:依据题意,从定义、定理、公式、概念出发,化抽象为具体,化复杂为简单,从纵向和横向进行联想转化.解:由导数的定义可知.故选C.点评:本题借用函数极限的具体形式,旨在考查对导数定义的正确理解,因而转化为求函数在处的导数.例2.数列中,,,则=______________.解:通过求猜想,从而达到解决问题的目的,也可以利用数列极限的含义进行重组变形,可转化为无穷等比递缩数列的求和,选C.点评:利用结构进行从特殊到一般的转化,既可缩短解题时间,又可提高运算准确性,同时考查思维的灵活性和代数变形能力.例3.(2005年湖北卷)以平行六面体ABCD—A′B′C′D′的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p为()A.B.C.D.分析:以平行六面体的八个顶点中任取三点为顶点可以构成56个三角形,从这56个三角形中任取两个,这两个三角形不共面有多少种不同取法?直接去做较困难,若利用“化归转化”数学思想,采用“正与反的相互转化”,正难则反,从问题的反面入手,找出共面的三角形的对数,问题较易解决.解析:以平行六面体ABCD—A′B′C′D′的任意三个顶点为顶点作三角形共有个,从中随机取出两个三角形共有=28×55种取法,其中两个三角形共面的为,故不共面的两个三角形共有(28×55-12×6)种取法,∴以平行六面体ABCD—A′B′C′D′的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p为,选(A).点评:当问题从正面入手难以解决时,常采用“正与反的相互转化”,从问题的反面入手,将不符合条件的情况去掉(这在排列组合、概率题中常用),或验证问题的反面不成立(反证法),从而使问题得以解决.B1C1中,底面为直角三角形,∠例4.(2006年江西卷)如图,在直三棱柱ABC-A1ACB=90°,AC=6,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值是___________.分析:这里求CP+PA1的最小值,而CP与PA1在直三棱柱ABC-A1B1C1的两个不同平面内,因此需利用“高维与低维的相互转化”把立体问题转化为平面问题来解决.解:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,如图所示,连A1C,则A1C的长度就是所求的最小值.通过计算可得∠A1C1B=90°又∠BC1C=45°,∠A1C1C=135°,由余弦定理可求得A1C=.点评:此题将几何体的侧面展开,空间问题转化成平面问题来解决,这是立体几何分支中常用的降维转化思想在解答立几问题的过程中,还常用等积变换求有关几何体的体积或点到平面的距离;常用割补转化,改变几何体的状态,由复杂几何体变为简单几何体,同时,线线、线面、面面之间的垂直或平行的互相转化,贯穿于立体几何始终;线线、点面、线面、面面之间的距离,既相互联系,又可相互转化.各种转化策略的运用,是解决立几问题的法宝.例5.已知函数的部分图象如图(,且).(1)求的值;(2)若关于的方程(,且)有两个不等实数根;①若证明在(-π,)内有两个不等实数根;②上述①的逆命题是否成立,并证明.解:(1)由图象易知函数的周期为(π)=2π.∴,上述函数的图象是由的图象沿轴负方向平移个单位得到的,其解析式为.∴(2)①由得||≤∴>-1.同样||≤∴<1.令,显然而二次函数的对称轴∈(-1,1).∴二次方程两实根在(-1,1)中.∴关于的方程在(-,)内有两个不同实根.②逆命题不成立.反例,关于的方程为.显然方程在(-,)内有两个不等的实根,并=+=1.例6.(2007安徽卷理)设,.(1)令,讨论在内的单调性并求极值;(2)求证:当时,恒有.分析:(1)讨论在内的单调性并求极值只需求出的导数即可解决;(2)要证当时,恒有,可转化为证时,亦即转化为时恒成立;因,于是可转化为证明,即在上单调递增,这由(1)易知.解:(1)根据求导法则有,故,于是,列表如下:极小值故知在内是减函数,在内是增函数,所以,在处取得极小值.(2)证明:由知,的极小值.于是由上表知,对一切,恒有.从而当时,恒有,故在内单调递增.所以当时,,即.故当时,恒有.点评:对于证明在区间恒成立问题,常运用化归转化思想转化为证明在区间上恒成立,令,即可转化为在上,这样只需求出在区间上的最小值即可解决之.这种化归转化的思想方法在近几年高考中经常用到.例7.(2007年全国Ⅱ理)设数列的首项.(1)求的通项公式;(2)设,证明,其中为正整数.分析:(1)已知数列的递推公式,求数列的通项,常通过变形使之转化为形式的等差或等比数列来解决;(2)比较与的大小,这里由于式子里含有根号,因此可通过平方化无理为有理,比较与的大小.解:(1)由整理得.又,所以是首项为,公比为的等比数列,得.(2)方法一:由(1)可知,故.那么,又由(1)知且,故,因此为正整数.方法二:由(1)可知,因为,所以.由可得,即.两边开平方得.即为正整数.点评:数列是每年高考的必考内容.已知数列的递推公式或已知数列前n项和与的关系求数列通项也是常考内容.若已知数列的递推公式为()的形式,求数列的通项时常通过变形使之转化为形式的等比数列来解决;若已知数列前n项和与的关系式求数列通项,则常用将与的关系式化归转化为与(或与)间的递推关系再进一步求解.例8.(2007年全国卷II理)已知函数.(1)求曲线在点处的切线方程;(2)设,如果过点可作曲线的三条切线,证明:.分析:(1)通过求导得出切线的斜率,从而由点斜式较易写出切线方程;(2)由(1)易得过点的曲线的切线方程,曲线有三条切线可转化为方程有三个相异的实数根,即函数有三个零点,故只需的极大值大于零且的极小值小于零.解:(1)的导数.曲线在点处的切线方程为:,即.(2)如果有一条切线过点,则存在,使.若过点可作曲线的三条切线,则方程有三个相异的实数根.记,则.当变化时,变化情况如下表:极大值极小值由的单调性,当极大值或极小值时,方程最多有一个实数根;当时,解方程得,即方程只有两个相异的实数根;当时,解方程得,即方程只有两个相异的实数根.综上,如果过可作曲线三条切线,即有三个相异的实数根,则即.点评:将证明不等式的问题通过等价转化化归为函数的极值问题来讨论,这是近年来高考试题中常出现的一种类型.例9.已知函数,,的最小值恰好是方程的三个根,其中.(1)求证:;(2)设,是函数的两个极值点.①若,求函数的解析式;②求的取值范围.解:(1)三个函数的最小值依次为1,,,由,得.∴,故方程的两根是,.故,.,即.∴.(2)①依题意是方程的根,故有,,且△,得.由.;得,.由(1)知,故,∴,.∴.②(或).由(1)知.∵,∴,又,∴,,(或).∴.例10.(2007年福建理)已知函数.(1)若,试确定函数的单调区间;(2)若,且对于任意,恒成立,试确定实数的取值范围;(3)设函数,求证:.分析:(1)求出的导函数,易得的单调区间;(2)易知是偶函数,于是对任意成立可等价转化为对任意成立,进一步转化为在上的最小值大于零,从而求出实数的取值范围.解:(1)由得,所以.由得,故的单调递增区间是,由得,故的单调递减区间是.(2)由可知是偶函数.于是对任意成立等价于对任意成立.由得.①当时,.此时在上单调递增.故,符合题意.②当时,.当变化时的变化情况如下表:由此可得,在上,.依题意,,又.综合①,②得,实数的取值范围是.(3),,,由此得,.故.点评:利用偶函数的性质进行等价转化是解决此例问题(2)的关键.高考试题中常利用奇函数或偶函数的性质将函数在R上的问题进行“整体与局部的相互转化”转化为函数在区间上问题来讨论.例11.已知、是方程()的两个不相等实根,函数的定义域为.(1)求;(2)证明:对于(),若,则有.解:(1)设,则因为、是方程()的两个不相等实根,所以,即,从而有,所以函数在区间上是增函数,由此及,得;(2)证明:当且仅当,即()时取得等号,从而,而,当且仅当时取得等号,故有.冲刺练习一、选择题1.定义集合运算:A⊙B={z|z= xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为()A.0B.6C.12D.182.设是R上的一个运算,A是R的非空子集,若对任意有,则称A对运算封闭,下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是()A.自然数集B.整数集C.有理数集D.无理数集3.从集合{1,2,3,…,11}中的任意取两个元素作为椭圆方程中的和,则能组成落在矩形区域内的椭圆的个数是()A. 43B. 72C. 86D. 904.是定义在R上的以3为周期的偶函数,且,则方程=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.25.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B. 18C.24D.366.点P到点A(,0),B(,2)及到直线x=-的距离都相等,如果这样的点恰好只有一个,那么a的值是()A. B.C.或D.-或7.如果二次方程x2-px-q=0(p,q∈N*) 的正根小于3,那么这样的二次方程有()A. 5个 B. 6个C. 7个D. 8个8. 设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A. 不存在B. 只有1个C. 恰有4个D. 有无数多个9.计算机中常用的十六进制是逢16进1的记数制,采用数字0-9和字母A-F共16个记数符号;这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+D=1B,则()A.6EB.72C.5FD.B010.设P是△ABC内任意一点,S△ABC表示△ABC的面积,λ1=,λ2=,λ3=,定义f(P)=(λ1,λ2,λ3),若G是△ABC的重心,f(Q)=(,,),则()A. 点Q在△GAB内B. 点Q在△GBC内C. 点Q在△GCA内D. 点Q与点G重合[提示]二、填空题11.在平面几何中有如下特性:从角的顶点出发的一条射线上任意一点到角两边的距离之比为定值.类比上述性质,请叙述在立体几何中相应地特性,并画出图形.不必证明.类比性质叙述如下:_____________________.12.规定记号“”表示一种运算,即. 若,则函数的值域是_____________________.13.一个正整数数表如下(表中下一行中的数的个数是上一行中数的个数的2倍):则第9行中的第4个数是_____________________.14.某保险公司新开设了一项保险业务,若在一年内事件E发生,该公司要赔偿a元.设在一年内E发生的概率为p,为使公司收益的期望值等于a的百分之十,公司应要求顾客交保险金为_____________________.15.设函数f (x)的图象与直线x=a,x=b及x轴所围成图形的面积称为函数f(x)在[a,b]上的面积,已知函数y=sinnx在[0,]上的面积为(n∈N*),(i)y=sin3x在[0,]上的面积为___________;(ii)y=sin(3x-π)+1在[,]上的面积为______________.16.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A在平面内,其余顶点在的同侧,正方体上与顶点A相邻的三个顶点到的距离分别为1,2和4,P是正方体的其余四个顶点中的一个,则P到平面的距离可能是:①3;②4;③5;④6;⑤7以上结论正确的为______________.(写出所有正确结论的编号)[答案]三、解答题17.设函数.y=f(x)图像的一条对称轴是直线.(1)求;(2)求函数的单调增区间;(3)证明直线与函数的图像不相切.[答案]18.某人玩硬币走跳棋的游戏,已知硬币出现正、反面的概率都是.棋盘上标有第0站、第1站、第2站、……、第100站.一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站;若掷出反面,则棋子向前跳两站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为.(1)求P0,P1,P2;(2)求证:.(3)求玩该游戏获胜的概率.[答案]19.如图,直线l1:与直线l2:之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2.(1)分别用不等式组表示W1和W2;(2)若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,求点P的轨迹C的方程;(3)设不过原点O的直线l与(2)中的曲线C相交于M1,M2两点,且与l1,l2分别交于M3,M4两点. 求证△OM1M2的重心与△OM3M4的重心重合.[答案]20.设轴、轴正方向上的单位向量分别是、,坐标平面上点、分别满足下列两个条件:①且=+;②且=.(1)求及的坐标;(2)若四边形的面积是,求的表达式;(3)对于(2)中的,是否存在最小的自然数M,对一切都有<M 成立?若存在,求M;若不存在,说明理由.提示:1、当x=0时,z=0,当x=1,y=2时,z=6,当x=1,y=3时,z=12,故所有元素之和为18,选D.2、A中1-2=-1不是自然数,即自然数集不满足条件;B中1÷2=0.5不是整数,即整数集不满足条件;C中有理数集满足条件;D中不是无理数,即无理数集不满足条件,故选择答案C.3、根据题意,是不大于10的正整数、是不大于8的正整数.但是当时是圆而不是椭圆.先确定,有8种可能,对每一个确定的,有种可能.故满足条件的椭圆有个.选B.4、由题意至少可得f(0)=f(2)=f(-2)=f(3)=f(-3)=f(-5)=f(5)=f(1)=f(4)=0,即在区间(0,6)内f(x)=0的解的个数的最小值是5,选(D).5、正方体中,一个面有四条棱与之垂直,六个面,共构成24个“正交线面对”;而正方体的六个对角截面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”;选D.6、(思路一)点P在抛物线y2=2x上,设P(,y),则有(+)2=(-)2+(y-2)2,化简得(-)y2-4y+2+=0,当=时,符合题意;当a≠时,Δ=0,有-++=0,( +)(2-+)=0,=-.选D.(思路二)由题意有点P在抛物线y2=2x上,B在直线y=2上,当a=-时,B为直线y=2与准线的交点,符合题意;当a=时,B为直线y=2与抛物线通径的交点,也符合题意,故选D.7、由△=p2+4q>0,-q<0,知方程的根为一正一负.设 f(x)=x2-px-q,则 f(3)=32-3p-q>0,即 3p+q<9.由于p,q∈N*,所以 p=1,q≤5 或p=2,q≤2. 于是共有7组(p,q)符合题意.故选C.8、设四棱锥的两组不相邻的侧面的交线为 m、n,直线 m、n 确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相截,则截得的四边形必为平行四边形.而这样的平面α有无数多个.故选D.9、∵A=10,B=11,又A×B=10×11=110=16×6+14,∴在16进制中A×B=6E,∴选A.10、由题f(p)=若G为.而与之比较知..故选A.11.(下列答案中任一即可,答案不唯一)(1)从二面角的棱出发的一个半平面内任意一点到二面角的两个面的的距离之比为定值.(2)从二面角的棱上一点出发的一条射线上任意一点到二面角的两个面的的距离之比为定值.(3)在空间,从角的顶点出发的一条射线上任意一点到角两边的距离之比为定值.(4)在空间,射线上任意一点到射线、、的距离之比不变.(5)在空间,射线上任意一点到平面、、的距离之比不变.12.13.25914.(0.1+p)a 15.16.①③④⑤提示:12、由得,解得k=1,所以f(x)=,f(x)在(0,+∞)内是增函数,故f(x)>1,即f(x)的值域为.13、第1行第1个数为1=,第2行第1个数为2=,第3行第1个数为4=,…,第9行第1个数为=256,所以第9行第4个数为256+3=259.14、设保险公司要求顾客交x元保险金,若以ξ表示公司每年的收益额,则ξ是一个随机变量,其分布列为:因此,公司每年收益的期望值为Eξ=x(1-p)+(x-a)·p=x-ap.为使公司收益的期望值等于a的百分之十,只需Eξ=0.1a,即x-ap=0.1a,故可得x=(0.1+p)a.即顾客交的保险金为(0.1+p)a时,可使公司期望获益10%a.15、由题意得:y=sin3x在上的面积为,在上的图象为一个半周期,结合图象分析其面积为.16、B、D、A1到平面的距离分别为1、2、4,则D、A1的中点到平面的距离为3,所以D1到平面的距离为6;B、A1的中点到平面的距离为,所以B1到平面的距离为5;则D、B的中点到平面的距离为,所以C到平面的距离为3;C、A1的中点到平面的距离为,所以C1到平面的距离为7;而P为C、C1、B1、D1中的一点,所以选①③④⑤.17.(1)解:∵是函数y=f(x)的图象的对称轴,∴,∴,∵-,∴.(2)由(1)知,因此.由题意得,所以函数的单调增区间为.(3)证明:∵||=|(|=||≤2.所以曲线y=f(x)的切线的斜率取值范围是[-2,2],而直线5x-2y+c=0的斜率为>2,所以直线5x-2y+c=0与函数的图象不相切.18.解:(1)依题意,得P0=1,P1=,.(2)依题意,棋子跳到第n站(2≤n≤99)有两种可能:第一种,棋子先到第n-2站,又掷出反面,其概率为;第二种,棋子先到第n-1站,又掷出正面,其概率为.∴.∴.即.(3)由(2)可知数列{}(1≤n≤99)是首项为公比为-的等比数列,于是有=.因此,玩该游戏获胜的概率为.19.解:(1)(2)直线直线,由题意得即由知所以即所以动点P的轨迹方程为(3)当直线与轴垂直时,可设直线的方程为由于直线、曲线C 关于轴对称,且与关于轴对称,于是的中点坐标都为,所以的重心坐标都为,即它们的重心重合.当直线与轴不垂直时,设直线的方程为由,得由直线与曲线C有两个不同交点,可知,且设的坐标分别为则设的坐标分别为由从而所以所以于是的重心与的重心重合.20.解:(1)..(2),(3).∴,,.,,等.即在数列中,是数列的最大项,所以存在最小的自然数,对一切都有<M成立.。
转化思想在小学数学课堂中的应用与培养
转化思想在小学数学课堂中的应用与培养1. 引言1.1 转化思想在小学数学课堂的重要性在小学数学课堂中,转化思想的重要性不言而喻。
转化思想是指将知识和技能应用于新情境的能力,是培养学生创新思维和解决问题能力的重要途径。
在小学阶段培养学生的转化思想,可以帮助他们更好地理解和应用数学知识,提高解决实际问题的能力。
转化思想在小学数学课堂中的重要性主要体现在以下几个方面:转化思想可以激发学生对数学的兴趣和学习动力,使他们更加主动地探索和学习数学知识;转化思想可以帮助学生将抽象的数学知识与具体的实际问题联系起来,提高数学知识的实际运用能力;转化思想可以培养学生的创新思维和解决问题能力,使他们在未来的学习和工作中具备更强的竞争力。
在小学数学课堂中,教师应该注重培养学生的转化思想,通过引导和激励,帮助他们建立起灵活应用数学知识的能力。
只有这样,学生才能在数学学习中取得更大的进步,为未来的学习和工作打下坚实的基础。
2. 正文2.1 转化思想的概念转化思想是指学生在学习过程中能够灵活地将所学知识应用到新的情境中,形成新的思维方式和解决问题的能力。
转化思想的核心是将抽象的概念与具体的问题相结合,通过变换和转化来理解和解决问题。
在数学教学中,转化思想是培养学生创新和探究能力的重要手段,有助于提高学生的数学素养和解决问题的能力。
在小学数学课堂中,教师可以通过引导学生解决不同类型的问题,进行实际操作和观察,引导学生思考问题的多种解决方法等方式来培养学生的转化思想。
教师可以设计一些启发性的问题,让学生通过自己的思考和探究来寻找解决方法,从而激发学生的求知欲和探究欲。
教师还可以利用游戏、竞赛等活动形式,在轻松愉快的氛围中培养学生的转化思想,激发学生对数学的兴趣和热爱。
2.2 转化思想在小学数学教学中的应用转化思想在小学数学教学中的应用是非常重要的,它可以帮助学生从死记硬背的习惯中解脱出来,培养他们独立思考、灵活应用知识的能力。
“转化思想”在小学数学教学中的运用及培养
“转化思想”在小学数学教学中的运用及培养摘要:在小学数学学习中,转化思想的应用尤为关键,能够提升学生的解题能力,也能提高学生的学习效率。
实际教学阶段,教师需要注重运用转化思想渗透教学,并将转化思想渗透到教学的全过程,深度把控好教材的内容,适度引导学生自主探究数学知识,这样才可以突出学生学习数学知识的本质,解决数学问题,发挥出转化思想应用的价值和效益。
关键词:“转化思想”;小学数学教学;运用及培养;引言在培养学生的数学核心能力的过程中,自主探究能力的培养是其中重要的内容。
从数学的学科特点来看,学生数学探究能力的提升离不开良好的思维训练,同时在这个过程中还需要数学思想的渗透,数学思想的培养与形成对学生逻辑思维体系的塑造以及学习能力的培养有着重要的意义。
转化思想是数学思想中的基础性内容,对于学生科学探究能力的形成有着基础性作用。
通俗地说,转化思想的重点在于转化,就是使用已经掌握的知识来解决新的问题,通过这种转化过程,使现有的数学复杂问题更加简单化和便捷化,使得学生更好地理解知识,有着化繁为简、化新为旧的功效。
一、转化思想在数学教学中的渗透意义当前,我国所开设的小学数学教学活动成效较差,教师受应试教学理念的影响,过于注重学生的学习成绩,强制将数学知识灌输给学生。
这种模式下,学生处于一种被动学习知识的状态,而教师害怕学生所掌握的数学知识不够全面影响成绩,进而会采取题海战术进行教学,让学生大量地进行题目的练习,忽视了学生数学思想的发展。
小学时期的学生自身思维发育会比较迟缓,其对于数学知识的接受能力也会比较差,这就使得学生不能迅速地将教师所讲解的数学知识内化、吸收。
这种情况下,如果教师仍旧沿用固化的教学方式,忽视学生数学思想方面的教育,那么就会对学生日后的学习和发展形成不利的影响。
针对上述问题,教师在教学中要将数学转化思想渗透到数学教学课堂上,促使学生更好地掌握数学知识,并在脑海当中对知识内容进行重组和转化,把新学知识和原本所掌握的知识经验相连接解决数学问题,让数学知识能够由复杂变得更加的简单,由未知变成已知,从而完整地揭示数学的本质。
小学数学中的转化思想
小学数学中的转化思想光明小学肖承焕【摘要】小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。
转化思想是数学思想的重要组成部分。
它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。
在小学数学中,主要表现为数学知识的某一形式向另一形式转变,即化新为旧、化繁为简、化曲为直、化数为形等。
【关键词】小学数学教学转化转化思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。
也就是说,转化方法的基本思想是在解决数学问题时,将待解决的问题,通过某种转化过程,归结到一类已经解决或者比较容易解决的问题,然后通过容易问题还原解决复杂的问题。
将有待解决或未解决的问题,转化为在已有知识的范围内可解决的问题,是解决数学问题的基本思路和途径之一,是一种重要的数学思想方法。
小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。
转化思想是数学思想的重要组成部分。
它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。
在小学数学中,主要表现为数学知识的某一形式向另一形式转变,即化新为旧、化繁为简、化曲为直、化数为形等。
21世纪的数学教师,应该结合相应的数学情景,培养学生善于和习惯利用转化思想解决问题的意识。
使复杂的问题简单化、抽象的问题具体化,特殊的问题一般化,未知的问题已知化,提高学生解决数学问题的能力,从而使学生爱上学数学。
一、转化的形式多种多样(一)计算中的转化1.计算的纵向转化加减计算: 20以内数的加减←―100以内数的加减←―多位数的加减←―小数加减←分数加减。
其中 20以内数的加减计算是基础。
如23+15可以转化成2+1和3+5两道十以内数的计算,64-38 可以转化成14-8和5-3两道计算。
转化思想在数学学习中的应用
转化思想在数学学习中的应用转化思想在数学学习中的应用转化思想在数学学习中的应用转化也称化归,它是指将未知的,陌生的,复杂的问题通过事物之间的内在联系转化为已知的,熟悉的,简单的问题,从而使问题顺利解决的数学思想。
几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作等数学理论无不渗透着转化的思想。
常见的转化方式有:一般、特殊转化,等价转化,复杂、简单转化,数形转化,构造转化,联想转化,类比转化等。
在小学阶段,转化思想在几何方面用到的比较多,比如面积部分,或体积部分,下面我们分别探讨一下,在这几个方面的应用。
一、1、面积方面:多边形的面积我们知道长方形的面积是探讨其他图形面积的基础,长方形的面积=长×宽在学习平行四边形面积时我们就是想法把平行四边形转化为长方形来解决,如何转化,观察下面图形,看平行四边形与长方形的内在联系我们看到,长方形的邻边互相垂直,而平行四边形的邻边则不一定,所以我们可以猜想是否可以沿着平行四边形的某条高把平行四边形剪开,再重新组合一下。
如下图:这时,我们看到平行四边形就转化为了长方形,长方形的长就是原来平行四边形的底变来的,宽则是由原来平行四边形的高变来的,所以原平行四边形的面积=长方形的面积=底×高。
再看三角形如图:我们对比三角形与平行四边形的形状,我们不难想到,如果把两个形状完全一样的三角形反向拼接在一起,就构成了一个平行四边形。
如下图所以不难看出三角形的面积=平行四边形面积的一半=底×高÷2再如梯形从其形状,不难看出,把对角连一下,一个梯形就转变成了两个三角形,如下图。
所以梯形面积=两个三角形的面积和=上底×高÷2+下底×高÷2=(上底+下底)×高÷2。
总结一下:梯形→三角形→平行四边形→长方形2、圆的面积由于圆是曲边图形,它的面积转化稍微复杂一些。
我们采用的是试着等分圆,并且通过观察不难发现,随着等分的次数越来越多,每一分的形状越来越接近于三角形。
关于小学数学教学中转化思想的运用
关于小学数学教学中转化思想的运用转化思想是教学中一种常见的教学策略,特别是在小学数学教学中,运用转化思想可以更好地帮助学生建立数学思维,提高解题能力。
一、什么是转化思想转化思想是指在解决问题时,通过将原来难以解决的问题转化成另外一个相对容易解决的问题,从而达到问题解决的目的。
在小学数学教学中,转化思想可以帮助学生明确问题的本质,快速发现问题的解题思路,提高解题效率。
1.数的分类:数的大小无法直接比较,但可以对数进行分类,然后将问题转化为不同的分类问题进行求解。
例如,对于解决“小明手里有4元钱,小红手里有2元钱,他们有多少钱”这类问题,可以将4元和2元进行简单分类,转化为“小明手里的钱比小红多多少钱”的问题,并计算两个数的差值,从而快速得出答案。
2.量的转换:在小学数学教学中,很多量的计算需要用到单位之间的转换。
例如,将毫米转换为厘米、分米和米等。
通过将问题中的量进行有效的转换,可以快速求得答案。
3.问题的综合运用:在小学数学教学中,一些问题可能需要综合运用多个知识点来解决。
这时,可以通过运用转化思想,将问题分解为多个小问题,然后逐个解决。
例如,在解决小学生常见的“找规律”题目时,可以将原问题转化为“先列出几个数,看它们之间有什么关系”等几个小问题,并进行分别求解。
4.分步求解:对于一些复杂的问题,可以采用分步求解的方法,将整个问题分为多个步骤进行求解。
例如,在同分母加减法的教学中,可以首先将分母进行统一,然后再进行分子的加减计算。
5.借用公式:在小学数学教学中,有些题目的解法可以采用公式。
通过借用公式来进行问题求解,可以快速地求出答案。
例如,在解决面积和周长相关问题时,可以借用面积和周长的相关公式进行计算。
三、总结在小学数学教学中,运用转化思想可以让学生更好地掌握数学知识,提高数学解题能力。
通过分类、单位转换、分步求解、借用公式等方法,可以将原本难解的问题转化为相对容易解决的问题,让学生更加愉快地掌握数学知识。
转化思想在小学数学教学中的运用
2020年第7-8期转化思想在小学数学教学中的运用赵春明摘要:转化思想是小学数学教学中的一种重要思想方法,是指将未知转化为已知,即新知转化为旧知,将新授知识或者未知问题进行变换,转化成已学过的知识或者已知问题,应用已有方法获得新知识和新方法。
本文简要阐述了小学数学教学中化新为旧、化繁为简、化抽象为直观的转化策略。
关键词:小学数学;转化思想;化新为旧;化繁为简;化抽象为直观实践探索转化思想是小学数学教学中的一种重要思想方法,是指将未知转化为已知,即新知转化为旧知,将新授知识或者未知问题进行变换,转化成已学过的知识或者已知问题,应用已有方法获得新知识和新方法。
在小学数学教学中,转化思想的运用随处可见。
一、化新为旧,温故知新在小学数学教学中,新旧知识之间存在着密切的联系,旧知识是新知识的基础,新知识是旧知识的演变和拓展,新的问题从旧知中转化出来,新旧知识自然衔接,才能达到理解知识的目的。
在新旧知识的转化中能使学生的思维得到进一步提升,逐渐形成用转化的思想解决问题获取信息的意识和能力。
如在新授小数除法时,是将除数是小数的除法转化为除数是整数(利用商不变的规律将除数和被除数同时扩大相同的倍数)的除法,之后利用除数是整数的除法进行计算。
这样由新知转为旧知,问题即可迎刃而解。
同样,在新授异分母加减法时,也是将其转化为同分母的分数,按相同的计数单位即可相加减,进而解决新知。
又如在几何图形的教学中,求平行四边形的面积,可以将平行四边形通过剪拼转化为长方形,利用已学过的长方形的面积公式推导出平行四边形的面积公式。
用同样的思想方法,将两个完全一样的三角形拼在一起转化为平行四边形,利用平行四边形的面积公式推导出三角形的面积公式。
求梯形的面积也是如此进行转化,圆也可以通过分割转化成长方形。
这些平面图形面积公式的推导都是运用转化思想,将旧知转化成新知。
二、化繁为简,简化题目难度化繁为简也是小学数学中常用的一种转化的思想方法,既是一种最基本的解题策略,更是一种有效的数学思维方式。
数学解题中转化思维的六种策略
又是一种方法.要善于"形"中寻找到"数"的信息
"数"中寻找到"形"的信息,通过"以数解形"或"以形助数"
从而发挥数的严谨与形的直观两方面的长处.
策略四、主元向辅元的转化
在涉及了多个字母的数学题中
当我们把某一字母确定为主元时
相应的其他字母就是辅元.主元与辅元是人为的相对的
也就是应用逆向思维的方式去思考
有时会使问题简单化
容易化
从而就能找到解题的快捷方法.
例1. 若方程至多有一个负根,试
那么它的反面就是两个根均为负根
从这个角度入手,这个题就可以很快求出结果.
解 若方程有两个负根
则必须满足以下不等式组
比如牛顿莱布尼茨公式.有些问题是求解或证明某个确定的量或确定的量式子
这种确定的量或确定的式子当然是常量或常量的式子
但是我们把它作为常量或常量的式子来处理时
并不容易
有时要借助甚至必须借助使常量变动起来才能解决问题.
例5. 设均为上的连续增函数证明:
分析 所证的不等式即为是一个常数不等式
所以有时根据解题的需要
将"主源"和"辅元"互换地位.
例4.已知关于的方程:有且仅有一个实根
求实数的取值范围.
分析 显然,本题中的是主元
为辅元
但方程中的最高次数为3
按正常思路
应当把x看成主元
先求出x
再对a进行讨论
但是由于求根比较困难
这样做的话解题相当复杂.注意到的最高次数为2
小学数学教学中转化法的应用
小学数学教学中转化法的应用小学数学中常用的解题策略有:列表法、画图法、列举法、假设法、倒推法、转化法等。
其中转化法是比较重要且渗透广泛的一种方法。
数学方法论中的“转化”,就是指将未解决的或待解决的问题,通过某种途径转化为已解决的或易解决的问题,最终使原问题获得解决的一种方法原则。
小学数学中到处蕴涵着转化的思想。
一、转化法在计算教学中的应用小学数学中减法是转化成加法,除法是转化成乘法而完成的;异分母分数的大小比较及加减运算法则的基本思想是,借助通分将其转化为同分母分数的大小比较及加减运算,进而转化为整数(分子)的大小比较及加减运算。
例:计算2.8÷1■×■÷0.7原问题直接计算比较麻烦,而分数的乘法运算比小数方便,故可将原问题恒等变形为:■×■×■×■,这样利用约分就能较快获得本题的答案。
二、转化法在求未知数中的运用小学数学中出现的求未知数都是一元一次方程。
解一元一次方程的主要理论根据是通过加减法之间的关系和乘除法之间的关系来解答的。
如果超出这样的范围,可以用转化的思想进行解答。
例:解方程3x+2=7解这样的方程,学生直接计算是不行的。
只有先将3x看作一个加数,通过变形使它成为简易方程3x=5再求方程的解。
三、转化法在几何初步知识教学中的运用运用转化法处理问题,是将一个问题转化为一个熟悉的问题,有时则把一个问题分割成几个问题,这样几何中组合图形求面积问题常常分割成几个较为简单的求面积问题。
例:求下面图形中阴影部分面积。
阴影部分面积=长方形面积-梯形面积通过上面的例子,我们先将原问题“化整为零”,分散处理。
然后再“集零为整”,使问题获得解决。
这就是转化法在几何图形教学中的运用。
四、转化法在应用题教学中的应用在小学数学中,应用题教学常用的方法主要是分析法和综合法。
随着儿童思维能力的提高,我们可以运用转化的思想,把问题化繁为简、化难为易、化一般为特殊、化特殊为一般、化复合为单一、化隐蔽为外显等。
六年级数学运用转化法解题的策略
六年级数学运用转化法解题的策略1. 啥是转化法转化法呢,就是把一个比较难的数学问题,通过各种巧妙的办法,变成一个我们比较容易解决的问题。
就好像你要把一个大怪兽打败,直接打很难,但是你把它变成小怪兽,就好对付多了。
在六年级的数学里呀,这个转化法可太有用了。
比如说,计算不规则图形的面积的时候,我们可以把这个不规则的图形转化成规则的图形。
像把一个弯弯扭扭的图形,通过切割、拼接啥的,变成一个长方形或者正方形,这样面积就好计算了。
2. 转化法在计算中的应用计算方面转化法也很厉害哦。
就像分数的计算,有些分数看起来很复杂,我们可以把它转化成小数来计算。
或者在做除法的时候,把除法转化成乘法。
比如说,除以一个分数,就等于乘以它的倒数。
像1÷(2/3),我们就可以转化成1×(3/2)=3/2。
还有那种比较复杂的四则运算,里面有括号啥的,我们可以根据运算定律,把式子转化一下顺序,让计算变得简单。
3. 转化法在几何中的应用在几何里,除了刚才说的计算不规则图形面积,在求立体图形的体积的时候也能用。
比如有个三棱柱,我们可以把它转化成和它等底等高的长方体,这样求体积就方便多了。
还有在求圆柱和圆锥的体积关系的时候,我们知道等底等高的圆柱体积是圆锥体积的3倍,这其实也是一种转化的思想。
把圆锥转化成和它有一定关系的圆柱,然后就好理解它们之间的体积关系啦。
4. 转化法在应用题中的应用应用题里转化法也无处不在呢。
比如说行程问题,有两辆车相向而行,速度不同,路程也不同。
我们可以把它转化成一个车不动,另一个车以两车速度之和来行驶的问题。
这样就把相对复杂的两车运动问题,转化成了一个简单的单车行驶问题。
再比如工程问题,几个人合作完成一项工程,我们可以把每个人的工作效率转化成一个整体的工作效率,然后就容易算出工作时间啦。
六年级的数学里,转化法就像是一把万能钥匙,能打开好多难题的锁呢。
只要我们善于发现问题之间的联系,灵活运用转化法,那些看起来头疼的数学题就会变得简单有趣啦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转化思想在数学解题中的几个策略-中学数学论文
转化思想在数学解题中的几个策略
陈旺1谢蓉2
(1、重庆万州外国语学校,重庆404100;2、泸县二中外国语实验学校,四川泸州646100)
摘要:转化思想是初中数学解题中的主要策略之一,也是初中生解决问题和分析问题的基本思想,此外,转化思想可以实现数、形、式之间的任意转化。
可见,转化思想在数学解题中可以得到广泛应用。
因此,笔者将进一步对转化思想在初中数学中的解题策略进行分析,为相关研究者提供一个新的研究视角。
关键词:转化思想;初中数学解题;策略
中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-09-0133-01 随着素质教育改革的推进,学校越来越重视对学生能力的培养。
在对初中生进行数学知识的传授时,更注重学生对学习方法和思想的掌握。
通过让学生养成良好的转化思想,让学生进行学习的自主探索和养成良好的学习习惯,同时将转化思想作为一种培养思维的方式,将一般问题特殊化处理,将问题的未知条件转化为已知条件,对用顺序思维难以解决的问题可以采用逆向思维进行解题,实现学生逻辑思维的提高和创新思维的增强,还可以运用转化思想提高学生的数学意识,实现解题能力的提高。
为此,研究者可以通过加强对数学题型的研究,促进转化思想在数学解题中的应用,让学生可以自主地解决复杂数学问题。
一、转化思想应用的重要性分析
初中学生在学习数学知识时不能只追求问题的答案,更要注重对数学的解题思想和解题思维的学习。
而数学解题的实质就是对数学题目进行转化,然后让初中生
可以利用已有的数学知识进行解题,获得符合要求正确的答案。
另外,学生在利用转化思想的同时可以促进心理的转换,并发现自身存在的不足,并采用相关措施改进解题思维和解题方法,进而实现对数学题目的快速解答。
可见,转化思想对数学解题是具有重要意义的。
二、初中数学解题中转化思想的几种策略分析
(一)将陌生问题转化为熟悉问题
学生掌握的知识毕竟有限,无法应对所有的数学问题,难免会遇到一些陌生的数学题型,在解决这些陌生题型时就需要初中生运用转化思想,将陌生题型转化为自己熟悉的数学题型,再运用自己熟悉的数学知识进行解答,最终得到正确的结果。
为此,数学老师在进行数学教学时,要让学生养成良好的转化思想,培养自身的创造性思维,在讲授新题型时,可以引导学生对量变因素进行挖掘,降低题型的难度,并鼓励学生加强训练提高自身的解题水平,降低接受新知识的难度,达到事半功倍的效果。
比如,在学习一元一次方程时,由于学生对加减法比较了解,可以降低问题难度的效果,并得到问题的答案,让学生轻松地掌握了一元一次方程的实际意义和解题方法。
(二)创建数学模型解决实际问题
初中学生在学习数学知识时,难免会遇到许多的实际问题,需要用数学知识进行解答,加之素质教育要求在数学的教学中加强与日常生活的联系,提高学生运用数学知识解决日常生活的能力,因此,初中数学教材中增加实际问题是必然趋势。
为了让初中生更好的解决教材中的实际问题,需要提高初中生对转化思想的运用,面对不同的实际问题,采用不同的数学模型。
比如,某地方政府扶持大学生进行自主创业,张三在政府的帮助下对某种课桌进行投资,课桌的成本为50元。
通过一段时间的销售发现,课桌的单价x元与每月的销售量y件之间存在一定的数学关系,大体符合一次函数y=-30x+1000。
现在假设用w表示每月获得利润,问当桌子的定价为多少时,张三可以获得最大利润。
在解决这个问题时学生可以建立二次函数极值问题的数学模型,即利润=单件产品的利润×销售数量,获得满足条件的函数式,得到每月的最大利润。
(三)将复杂问题简单化
不同的学生对不同的知识具有不同的接受能力,老师可以对问题进行合理的设计,将难度大的问题分成不同的难度档次,并形成不同的小问题,对这些小问题进行单独的分析,通过对局部问题的解决,实现整个问题的解决。
比如,数学老师为了让学生接受一些抽象的概念,可以对概念的构成进行分析,然后,分析概念的子概念,从而实现概念的延伸,让学生准确的把握概念的内涵。
此外,运用转化思想是实现复杂问题简单化的最直接手段,通过对问题的仔细观察,将复杂的问题转化为简单问题并直接解决。
比如,在解3(x2+5)-4(x2-3)+8=0时,可以令y=x2,将上述方程转化为3(y+5)-4(y-3)+8=0,解的y,进一步解得x。
(四)将抽象的问题直观化
新课改要求学生可以运用转化思想将抽象的图形用直观形式进行描述,然后可以直观的思考问题,得到解决问题的方法。
初中数学是由“形”和“数”组成,因此,在解决函数问题时,可以借助直角坐标系将抽象的函数关系画出来,然后进行直观的解答。
比如,在知道反函数的表达式y=b/x(b≠0)和一次函数的表达式y=x-a,学生可以通过建立直角坐标系进行函数式的绘画,通过图表获得答案。
三、结语
综上所述,转化思想在初中数学解题中的应用是十分广泛的。
此外,转化思想的应用,可以讲复杂的问题简单化,将抽象的问题直观化,将陌生的问题熟悉化,并运用数学模型解决实际问题。
因此,研究者要充分研究转化思想,为转化思想创设良好的教学环境,促进学生运用转化思想。
参考文献:
[1]谢秋影.转化思想在初中数学解题中的应用与实践[J].学周刊,2013,(05):15. [2]全奉.转化思想在初中数学解题中的几个策略[J].科学咨询(教育科研),2013,(04):14
[3]石开成.转化思想在初中数学解题中的应用[J].考试周刊,2010,(11):26.。