【精品】初中数学——分类讨论思想(初二)

合集下载

中学数学中重要的数学思想――分类讨论的思想

中学数学中重要的数学思想――分类讨论的思想

中学数学中重要的数学思想――分类讨论的思想依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做分类的思想。

“物以类聚,人以群分”。

将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做分类讨论的方法。

分类的思想是自然科学乃至社会科学研究中经常用到的,又叫做逻辑划分。

不论从宏观上还是从微观上对研究对象进行分类,都是深化研究对象、发展科学必不可少的思想。

因此分类讨论既是一种逻辑方法,也是一种数学思想。

需要运用分类讨论的思想解决的数学问题,就其引起分类的原因,可归结为:①涉及的数学概念是分类定义的;②运用的数学定理、公式或运算性质、法则是分类给出的;③求解的数学问题的结论有多种情况或多种可能;④数学问题中含有参变量,这些参变量的取值会导致不同结果的。

应用分类讨论思想解决问题,必须保证分类科学、统一,不重复,不遗漏,并力求最简。

运用分类的思想,通过正确的分类,可以使复杂的问题得到清晰、完整、严密的解答。

回顾总结中学数学教材中分类讨论的知识点,大致有:绝对值概念的定义;根式的性质;一元二次方程根的判别式与根的情况;二次函数二次项系数正负与抛物线开口方向;反比例函数k/x的反比例系数k,正比例函数的比例系数k,一次函数kx+b的斜率k 与图象位置及函数单调性关系;幂函数xn的幂指数n的正、负与定义域、单调性、奇偶性的关系;指数函数y=ax及其反函数y=logax中底数a的a>1及0<1对函数单调性的影响;等比数列前n项和公式中q=l与q≠1的区别;复数概念的分类;不等式性质中两边同乘(除)时正数与负数对不等号方向的影响;排列组合中的分类计数原理;圆锥曲线中离心率e的取值与椭圆、抛物线、双曲线的对应关系;直线与圆锥曲线位置关系的讨论;运用点斜式、斜截式直线方程时斜率k是否存在;曲线系方程中的参数与曲线类型;角终边所在象限与三角函数符号;……当你对以上各种情况“心中有数”时,分类讨论便不再令人望而生畏。

浅谈初中数学中的分类讨论思想

浅谈初中数学中的分类讨论思想

浅谈初中数学分类讨论思想在解题中的应用摘要:在初中数学解题中,分类讨论不仅是一种非常重要的数学思想,而且它还也是一种非常有效的解题策略,其主要体现在“集零为整,化整为零”思想和归类整理思想这两个部分。

在初中数学教学中,如果教师在进行初中数学的教学时,对分类讨论思想加以运用,可以使学生对数学知识有更加深入的认识和理解,同时它能够进一步的培养学生的思维能力。

本文主要是对分类讨论在初中数学解题的应用进行探讨。

关键词:分类讨论思想初中数学教学应用俗话说的好,“数学是思维的体操”,要想进行数学学习,就一定是离不开思维运用,在对数学进行每一步探索,都是需要思维来完成。

因此,在初中的数学教学中,教师要对学生慢慢的进行数学思想方法的渗透,使学生的思维能力得到进一步的提升,使其能够形成一个良好的数学思维习惯,这样不仅符合了新课改的新要求,而且其还是实施数学素质教育的一个很好的切入点。

一、分类讨论思想在初中数学解题中的重要作用简单的来说,分类讨论起本质上就是一种逻辑上划分的思维方式。

其在教学中的具体表现为对题目“化整为零”,一个一个的进行逐步击破,这样的就实现了积零为整的教学方式。

在目前,分类讨论思想已经成为一种非常重要的数学思想,其在我国数学教学中得到了广泛的应用。

它不仅只是一种独特的数学逻辑方法,而且在进行数学知识教学时其更是一种有效的解题策略。

由于分类讨论在对不同的问题进行综合考虑时,其在逻辑上具有优势,特别是在培养学生的学习能力以及提升学生的思维严谨性有很好的促进作用。

在对数学题进行解答时,如果因为题目的题意中存在着一些不确定因素,进而导致无法解答出来,这样的情况下,就可以将题目分为若干个小问题,对其进行分类讨论,使相对复杂的问题变得简单化,方便对其进行解答。

二、分类讨论思想在初中数学解题的应用1.在不等式中的运用不等式在初中数学中是一种比较基础和普遍的内容。

因为不等式要涉及到绝对值,所以就要进行转换符号,同时一个不等式可能会存在不止一个绝对值问题,遇到这样的情况,学生往往会变得无所适从,这也就影响着学生的学习成绩的提升,运用分类谈论思想,就能够对不等式进行很好的解答。

初中数学思想方法之分类讨论

初中数学思想方法之分类讨论

初中数学思想方法之分类讨论数学是一门既抽象又具体的学科,它需要学生具备一定的思维方法和思想能力。

在初中数学中,分类讨论是一种常用的思想方法,它可以帮助学生分析问题、归纳规律并解决问题。

本文将详细介绍初中数学中分类讨论的基本思想和具体步骤,并通过例题来说明如何运用这种方法。

一、分类讨论的基本思想分类讨论是指将问题进行细化,将其分解成几个易于分析和解决的小问题,并分别进行讨论和解决。

通过这种方法可以更好地理解问题的本质,找到解题的关键点,并最终得到问题的解决办法。

分类讨论的基本思想包括以下几点:1.具体问题具体分析。

将问题进行细化后,每个小问题都有其独特的特点和解决思路,需要根据具体情况展开分析。

2.归纳总结。

在分析过程中,要总结出各个小问题之间的共同点和规律,以便更好地理解问题,并找到解决办法。

3.统一思考。

将各个小问题的解决办法进行归纳和整合,形成对大问题的解决思路。

二、分类讨论的具体步骤分类讨论的具体步骤可以简单概括为以下几点:1.理解问题。

仔细阅读题目,了解问题的背景和要求,确定需要解决的具体问题。

2.分析问题。

将大问题分解成几个小问题,每个小问题都有明确的目标和限制条件。

在分析过程中,可以通过画图、列举数据等方式进行辅助分析。

3.解决小问题。

按照特定的思路和方法,分别解决各个小问题。

在解决过程中,可以运用已经学过的数学知识、规律和公式。

4.总结归纳。

在解决小问题的过程中,要总结各个小问题之间的共同点和规律,归纳出解决大问题的关键思路和方法。

5.整合答案。

将各个小问题的解答整合成对大问题的解答。

在整合过程中,要仔细检查各个小问题的解答是否符合大问题的要求,并进行必要的修正和调整。

三、分类讨论的具体例题下面以一些常见的初中数学题目为例,说明如何运用分类讨论的方法解决问题。

例题1:现有一些白球和红球,共18个。

白球的个数不超过红球的个数。

问,最少有多少个红球?解题思路:根据题目要求和条件,可以将问题进行分类讨论。

数学思想方法讲解(初二版)

数学思想方法讲解(初二版)

数学思想方法专题知识点归纳:常用的数学思想1.整体思想从整体上去认识问题、思考问题,常常能化繁为简、变难为易. 整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等2.分类讨论思想在数学中,我们常常需要根据研究对象性质的差异。

分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引起的讨论。

3.数形结合思想在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形”在一定条件下可以相互转化、相互渗透。

4.函数与方程的思想方程是研究数量关系的重要工具,在处理生活中实际问题时,根据已知与未知量之间的联系及相等关系建立方程或方程组,从而使问题获得解决的思想方法称为方程思想.而函数的思想是用运动、变化的观点,研究具体问题中的数量关系,再用函数的形式把变量之间的关系表示出来.5.转化思想转化思想是解决数学问题的一种最基本的数学思想。

在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。

第1讲整体思想1.(江苏盐城)已知a-b=1,则代数式2a-2b-3的值是()A.-1 B.1 C.-5 D.52.(山东济南)化简5(2x-3)+4(3-2x)结果为()A.2x-3 B.2x+9 C.8x-3 D.18x-3 3.(浙江杭州)当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为________.4.(江苏苏州)若a =2,a +b =3,则 a 2+ab =______.5.已知⎩⎪⎨⎪⎧x +2y =4k +1,2x +y =k +2,且0<x +y <3,则k 的取值范围是 ______________. 6.若买铅笔4支,日记本3本,圆珠笔2支,共需10元;若买铅笔9支,日记本7本,圆珠笔5支,共需25元,则购买铅笔、日记本、圆珠笔各一样共需______元.图Z1-37.如图Z1-3, ∠1+∠2+∠3+∠4+∠5+∠6=________________.8.(浙江丽水)已知A =2x +y ,B =2x -y ,计算A 2-B 2的值.9.已知1x -1y =3,求代数式2x -14xy -2y x -2xy -y的值.第2讲 分类讨论思想1. 已知等腰三角形的一个内角为75°则其顶角为( )A. 30°B. 75°C. 105°D. 30°或75°2. 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。

初中数学教学中的分类讨论思想

初中数学教学中的分类讨论思想

互相 补充 , 互相 评价 , 个不同种类的一种数学思想。 它能训练学 是应 用分 类思想 解决 问题 的一个完 整的 则应 由学 生讨 论 , 生 的思维条理性和严密性 , 而提高学 生 过程。使学生在学 习知识 的过程 中体会 : 逐 步完善 。 从 分析 问题和解决问题的能力。 分类思想要 为什么要分 类 , 及分类 的基本原则。在随 贯串于整个数学教学 中, 在初 中数学教学 后 的去括号法则 、 有理数 的乘 法、 乘方 的 的过 程 中逐 步恰 当地 渗透数学 分类讨 论 教学 中均可仿照此方法渗透分类的思想 。
意k 对方程性质的影响。 讨论或讲评中, 要
参 考文献 : [] 1王燕春 . 分类 方法. 学会 提高分 类
[] 日制义 务教育课 程标 准 ( 2全 实验 [] 3蔡上鹤. 数学思想和数学方法
初 中数学大纲 明确指 出要让学生 “ 会 使学生明确系数 k决定方程的次数 ,从而 的大小和边长的关系对三角形进行分类 ” b- a> ,Z4 c Ob- a < 三种情况进 Z4 c Ob. a= ,Z4c O
号 , 解题 的过程使学 生体会分类讨论 的 图像过哪几个象限? 道题势必 要考虑 图 在 这
2 1 ・ 02 1

般情况 下, 分类讨论后都要对结论
这也是解决这一类问题必须的 类的依据 ,初步体会分类要不重复 ,不遗 并通过 有关讨论 的知识 的传授起 到潜移 进 行归纳 , 步骤 。对所 有分 类情况 的解进行统计 , 理
解问题 的意思 ,哪些解符合题 目要求 , 需
分类讨论 是重要的数学思想方法 , 但 保留 ; 哪些解不符合题 目要求 , 要舍去。 保



养成分类意识、 渗透分类思想

分类讨论思想

分类讨论思想

初中数学分类讨论思想全国各地每年中考数学试题都离不开考查分类讨论的思想,分类讨论思想是在解决问题出现不确定性时的有效方法。

比如线段及端点的不确定;角的一边不确定;三角形形状不确定;等腰三角形腰或顶角不确定;直角三角形斜边不确定;相似三角形对应角(边)不确定等,都需要我们正确地运用分类讨论的思想进行解决。

分类讨论思想不仅可以使我们有效地解决一些问题,同时还可以培养我们的观察能力和全面数学思维能力。

学生能够自觉合理的运用分类讨论的思想解决相应数学冋题,掌握分类讨论数学思想方法这个锐利武器,提高学生的综合运用的能力和良好的思维品质。

1.分类讨论思想含义数学问题比较复杂时,有时可以分解成若干小问题或一系列步骤进行分类并分别加以讨论的方法,我们称为分类讨论法或分类讨论思想。

2.分类讨论一般应遵循以下原则(1)对问题中的某些条件进行分类要遵循同一标准。

(2)分类要完整,不重复,不遗漏。

(3)有时分类并不是一次完成,还需进行逐级分类,对于不同级的分类,其分类标准不一定统一。

3.需要分类讨论的试题基本类型及其要求(1)考查数学概念及定义的分类。

熟练掌握数学中的概念及定义,其中以绝对值、方程及根的定义,函数的定义尤为重要,必须明确讨论对象及原因,进而确定其存在的条件和标准。

(2)考查字母的取值情况或范围的分类。

此类问题通常在函数中体现颇多,考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围.(3)考查图形的位置关系或形状的分类。

熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决.(4)考查图形的对应关系可能情况的分类。

图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论.4.初中数学涉及分类讨论的常见问题(1)绝对值中的分类讨论,(2)应用题中的方案类型,(3)概率统计中的分类讨论,(4)分式方程无解的分类讨论问题(5)一元二次方程系数的分类讨论问题(6)三角形的形状不定需要分类讨论(7)等腰三角形的分类讨论(8)相似三角形的对应角(或边)不确定而进行的分类(9)常见平面问题中动点问题的分类讨论(10)组合图形(一次函数、二次函数与平面图形等组合)中动点问题的分类。

初中数学思想方法篇——分类讨论

初中数学思想方法篇——分类讨论

新梦想教育中高考名校冲刺教育中心【老师寄语:每天进步一点点,做最好的自己】解题思想之分类讨论一、注解:分类讨论思想又称为逻辑划分,是中学数学最常用的数学思想方法之一,也是中考数学中经常出现的数学思想。

分类讨论就是依据一定的标准,对问题进行分类,求解,然后综合出问题的答案。

当被研究的问题包含多种可能情况,不能一概而论时,必须按照可能出现的情况进行分类,分别讨论,得出各种不同情况下的相应结论。

分类原则:分类的对象是明确的;标准是统一的,不遗漏、不重复、分层次;不越级讨论。

分类方法:明确讨论的对象,确定对象的全体,然后确立分类标准,正确进行分类;逐步进行讨论,获取阶段性结果;归纳总结,综合得出结论。

二、实例运用:1.在实数中的运用【例1】若1a =,4b =且a b <0,则a+b= 【例2】若2m-4与3m-1是同一个数的平方根,求m 。

2. 在代数式中的运用 【例3】若实数x 满足22110x x x x +++=,求1x x+的值。

【例4】分式22943x x x --+的值为0,则x= ( )A 3B 3或-3C -3D 03. 在方程(组)中的运用【例5】已知关于x 的方程ax 2+2x-1=0有实根,求a 的取值范围。

【例6】黄金周期间,某商场购物有如下优惠方案:(1)一次性购物在100元内(不含100元)时,不享受优惠;(2)100元到300元(不含300元)时,一律享受9折优惠;(3)300元以上时,享受8折优惠。

张伟在本商场分两次购物,分别付款80元和252元。

如果改为在该商场一次性购买,需要支付多少钱?4.在不等式中的运用【例7】国家规定个人发表文章,出版图书获得稿费的纳税计算办法是:(1)稿费不高于800元的,不纳税;(2)稿费高于800元,不高于4000元的,缴纳超过800那部分的14%;(3)稿费高于4000元的,应缴纳全部稿费的12%。

已知某作家获得一笔稿费,并交纳个人所得税a元(a>0),求这笔稿费有多少元。

数学分类讨论思想

数学分类讨论思想

在有关动点的几何问题中,由于图形的不确定性,我们常常需要针对各种可能出现的图形对每一种可能的情形都分别进行研究和求解.换句话说,分类思想在动态问题中运用最为广泛.
C
A
D
B
例12、如图,在矩形ABCD中,AB=20厘米,BC=4厘米,点P从点A开始沿折线A—B—C—D以4厘米/秒的速度移动,点Q从点C开始沿CD以1厘米/秒的速度移动,如果点P和Q分别从点A、C同时出发,当其中一个点到达D点时,另一点也随之停止运动.设运动时间为t(秒).
C
B
D
A
E
F
如图,当EA=EF=10时,DE=7, DF= = , S△AEF= ×10× = 5 (cm2)
1
2
C
B
D
A
17
16
E
F
C
B
D
A
E
F
C
B
D
A
E
F
∴三角形面积是50cm2 、 40 cm2 、 cm2
【简解】本题分方程是一元二次方程和一元 一次方程两种情况讨论,答案:k>-1;
3)在同一坐标系中,正比例函数y=-3x与反比例 函数 的图象的交点的个数是( )
A.0个或2个 B.l个 C.2个 D.3个
A
4)、若直线 y=-x+b 与两坐标轴围成的三角形的面积是2,则b的值为 ;
A
C
B
B
A
C
C
B
A
分析(1)圆C与斜边AB相切时, R=2.4 (2)圆C与斜边AB相交时,一个交点在线段AB上,另一个交点在延长线上。 3﹤R≦4
例9、半径为R的两个等圆外切,则半径为2R且和这两个圆都相切的圆有几个?

初中数学思想分类总结

初中数学思想分类总结

初中数学思想分类总结初中数学思想分类总结数学作为一门科学,有其独特的思想和方法论。

在初中数学学习中,我们学习了很多不同的数学思想,每个思想都有自己的特点和应用领域。

下面我将针对初中数学学习中常见的思想进行分类总结,希望对初中数学的思维方式有一个清晰的认识。

一、分类思维分类思维是数学学习中最基本的思维方式之一,它可以帮助我们将问题进行有序的归类和整理。

在初中数学学习中,我们经常遇到一些问题需要进行分类讨论。

分类思维的核心是将问题划分为若干个相同或类似的情况,然后在每个情况中分别进行分析和解决。

比如,在整数的加法运算中,常常会涉及到正整数与负整数的相加。

这时我们可以将问题进行分类,分别讨论正整数与正整数、负整数与负整数、正整数与负整数三种情况,然后根据每种情况的特点进行求解。

二、归纳思维归纳思维是数学学习中非常重要的思维方式,它通过观察和总结已有的规律和模式,然后推广到更一般的情况中。

数学中的很多定理和公式都是通过归纳思维得到的。

比如,我们知道1+2+3+...+n的和可以用公式n(n+1)/2表示。

这个公式就是通过观察和总结前几个自然数求和的结果,然后推广到任意的自然数n得到的。

归纳思维不仅可以帮助我们发现和归纳数学规律,还可以帮助我们解决一些复杂的数学问题。

三、逻辑思维逻辑思维是数学学习中不可或缺的思维方式,它强调严密的推理和论证。

在初中数学学习中,我们学习了很多关于命题、条件、充分必要条件等逻辑概念,并学会了运用这些概念进行推理和证明。

比如,在证明两直线平行的问题中,我们可以运用溜中相交线内角相等的定理和同位角、内错角等概念,通过严密的推理和论证来得出最终的结论。

逻辑思维可以帮助我们培养严谨的思考和论证能力,同时也有助于我们解决一些复杂的数学问题。

四、抽象思维抽象思维是高级数学中的一种重要思维方式,但在初中阶段,我们也需要培养一定的抽象思维能力。

抽象思维是指将具体问题中的一些共同特点提取出来,形成一般性的概念和结论,进而用这些概念和结论解决更一般的问题。

初中数学——分类讨论思想(初二)

初中数学——分类讨论思想(初二)

分类讨论分类讨论问题是创新性问题之一,此类题综合性强,难题较大,在历年中考试题中多以压轴题出现,对考生的能力要求较高,具有很强的选拔性。

综合中考的复习规律,分类讨论的知识点有三大类:1.代数类:代数有绝对值、方程及根的定义,函数的定义以及点(坐标未给定)所在象限等。

2.几何类:几何有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况等.3.综合类:代数与几何类分类情况的综合运用.在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级有序进行.(4)以性质、公式、定理的使用条件为标准分类的题型.题型1。

考查数学概念及定义的分类规律提示:熟练掌握数学中的概念及定义,其中以绝对值、方程及根的定义,函数的定义尤为重要,必须明确讨论对象及原因,进而确定其存在的条件和标准。

例题1.方程560x x x ⋅-+=的最大根与最小根的积为______.例题2.解关于x 的方程:ax — 1= x例题3.试解关于x 的方程111=--x )x (例题4.=+=-+-a 349332无解,求x x ax x例题5.已知四个数:10、10、x 、8,它们的中位数和平均数相等,则x=___________题型2:考查字母的取值情况或范围的分类。

规律提示:此类问题通常在函数中体现颇多,考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。

例题1.已知2225,7x y x y +=+=,则x y -的值等于_______.例题2.如图所示,在平行四边形ABCD 中, 4AD cm =,∠A =60°,BD ⊥AD,一动点P 从A 出发,以每秒1cm的速度沿A B C →→的路线匀速运动,过点P 作直线PM,使PM ⊥AD.(1)当点P 运动2秒时,设直线PM 与AD 相交于点E ,求△APE 的面积;(2)当点P 运动2秒时,另一动点Q 也从A 出发沿A B C →→的路线运动,且在AB 上以每秒1cm 的速度匀速运动,在BC 上以每秒2cm 的速度匀速运动.过Q 作直线QN ,使QN//PM 。

数学的分类讨论思想

数学的分类讨论思想

一、数学分类讨论思想的特性:分类讨论是初中阶段另一种重要的数学思想,也是全国各地近年来中考命题的热点。

它的特点,就是要求我们在解数学题时,一是要准确地做出判断;二是要全面地进行分析,不重复不遗漏,尽可能地对问题作出全面的解答,全面、深入、严谨、周密地思考问题,使解答没有纰漏。

在解题时,根据已知条件和题目的要求,分不同的情况,对国一个问题作出符合题意的解答。

例如:①对字母的取值情况进行筛选,根据题意作出取舍;②在不同的取值范围内,对代数式表达为不同的形式;③对符合题意的图形,作出不同的形状、不同的位置关系等。

在中考中,许多题目的解答都要求运用分类讨论的思想来解答。

二、数学分类讨论思想的方法:分类讨论,顾名思义,对于同一个问题,分不同的情况、不同的种类进行分析、讨论,得出符合题意的结论。

这一类问题的答案往往不是唯一的,有多解的可能性,所以在解决问题时一定要做到全面,不遗漏,做到万无一失。

当然,也有的题目中包含着不符合题意的结果,因而也要根据题意进行取舍,决不能让不符合题意的量混入其中。

这就要求我们在解决问题时,要能够全面、深入、严谨、周密地进行观察、分析,分门别类地进行比较,方可有效的解决问题。

三、例题精讲:例1、解关于x的不等式:ax+3>2x+a分析:通过移项不等式化为(a-2)x>a-3的形式,然后根据不等式的性质可分为a-2>0,a-2=0,和a-2<0三种情况分别解不等式。

解:(1)当a-2>0,即a>2时,不等式的解是x>a-3/a-2(2)当a-2=0,即a=2时,不等式的左边=0,不等式的右边=-1,所以不等式的解是一切实数。

(3)当a-2<0,即a<2时,不等式的解是x< a-3/a-2例2:如图l:在矩形ABCD中,AB=20 cm,BC=4 cm,点P从A开始,沿折线A—B—C—D 以4 cm/s的速度移动,点Q从C开始,沿CD边以1 cm/s的速度移动,点P 和点Q同时出发,当其中一点到达D时,另一点也随之停止运动.(1)设运动时间为t(单位:s),问t为何值时,四边形APQD为矩形?(2)如图2,如果⊙P和⊙Q的半径都是2 cm,那么t为何值时,⊙P和⊙Q外切?解:(1)当AP=DQ时,四边形APQD为矩形.此时4t=20-t,解得t=4(s).所以t为4 s时,四边形APQD为矩形.(2)当PQ-4 cm时,两圆相切,应分三种情况讨论.①点P在AB上.只有当四边形APQD为矩形时,PQ=4,对于这种情况由(1)得t=4(s).②点P在BC上.此时t≥5,CQ≥5,故PQ≥CQ≥5>4,故两圆不可能外切.③点P在CD上运动.当点P在点Q的右侧时,CQ=t,CP=4t-24.令t-(4t-24)=4.解得 (s).当点P在点Q的左侧时,令(4t-24)-t=4,解得 (s) 综上所述,当t=4 s、、时,两圆外切.例3:一个长方体水箱,从里面量得它的深是30 cm,底面的长是25 cm,宽是20 cm,水箱里已盛有深为cm( ≤30)的水,现在往水箱里放入棱长为10 cm的立方体铁块后,水深多少厘米?解:铁块的体积为1000 cm3,水箱底面积为500 cm2.若铁块全部浸入水中,则铁块放入后水面升高2 cm.故(1)当≥28时,放入铁块后水面高为30 cm;(水可以漫出一些)(2)当 =8时,设铁块放入后,水面高度为x cm,则由500×8=(500-100)x,得x=10.即水面高度为10 cm,铁块顶部与水面相平.(3)当8< <28时,铁块放入后,全部浸入水中,故水面高度为( +2)cm.(4)当0< <8时,铁块放入后,不能全部浸入水中,设铁块放入后水面高度为x cm,则由5500 =(500-100)x,得.即水面高度为寻 cm.例4:甲、乙两班学生到集市上购买苹果,苹果的价格如下:甲班分两次共购买苹果70 kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70 kg., (1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?解:(1)乙班共付出70×2=140元,乙班比甲班少付189-140=49元.(2)设甲班第一次买苹果x kg,第二次买苹果y kg(x<y).①当x≤30 kg时,则y>30(否则x+y≤60<70).则解之,得 (不合题意,舍去).②若30<x≤50,则30<y≤50或y>50.当y>50时,x+y>80>70不合题意;当30<y≤50时,70×2.5=175<189同样不合题意.③若x>50,y>x,则x+y>70不合题意.∴甲班第一次买苹果28 kg,第二次买苹果42 kg.例5:.(2005安徽课改中考,21)下面是数学课堂的一个学习片断.阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰△ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°”.还有一些同学也提出了不同的看法……(1)假如你也在课堂中,你的意见如何?为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)解:(1)上述两同学回答的均不全面,应是其余两角的大小是75°和75°或30°和120°.理由如下:(ⅰ)当∠A是顶角时,设底角是α.,∴30°+α+α=180°,α=75°.,∴其余两角是75°和75°.(ⅱ)当∠A是底角时,设顶角是β,,∴30°+30°+β=180°,β=120°.,∴其余两角分别是0°和120°.例6: (2006吉林长春中考,23)如图1-3-1,P为正比例函数y= x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).(1)求⊙P与直线x=2相切时点P的坐标.(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.解:(1)过P作直线x=2的垂线,垂足为A.,当点P在直线x=2右侧时,AP=x-2=3,得x=5.,∴P(5, ).图1-3-1当点P在直线x=2左侧时,PA=2-x=3,得x=-1.,∴P(-1,- ).∴当⊙P与直线x=2相切时,点P的坐标为(5, )或(-1,- ).(2)当-1<x<5时,⊙P与直线x=2相交.;当x<-1或x>5时,⊙P与直线x=2相离.。

初中数学分类讨论思想与例题讲解 讲义

初中数学分类讨论思想与例题讲解  讲义

初中数学分类讨论思想与例题讲解中学数学用到的数学思想(或方法)有:(1)转化化归思想(2)方程思想(3)分类讨论思想(4)函数思想(5)整体思想(6)数形结合思想这里重点讲一下分类讨论思想.中学数学与小学数学相比,最明显的一个区别就是中学数学中某些问题的答案并不是唯一的,需要分为两种或两种以上的情况进行讨论,尤其是高中数学.这就要求学生具有一定的分类讨论能力,具备分类讨论思想.分类讨论思想,是一种很重要的数学思想方法,分类讨论题是中考和高考的必考题,具有较高的难度,需要学生对学过的定义(概念)、定理、公里、结论等有一个更加深刻的、全面的掌握.在解答分类讨论题时,思维要全面,要想到问题的每一种可能情况,避免出现漏解、讨论不完整的现象.另外,还有一点需要注意的是,并不是每种情况的解都符合题意,这就需要对这些解作出正确的取舍.讨论完之后,要对讨论的结果作出一个总结,如“综上所述,…”等.对于初中学生来说,只要对分类讨论题多加练习,勤于思考和总结,就能初步具备一定的分类讨论能力,让分类讨论思想植根于大脑.下面列举一些分类讨论的题目,并给出解答,希望你们认真、用心领悟这种重要的思想方法.【例1】解关于x 的方程723=-x .分析:因为绝对值等于7的数有两个,分别是7和7-,所以本题要分723=-x 和723-=-x 两种情况.注意,绝对值为正数的数有两个,它们互为相反数. 解:分为两种情况: 当723=-x 时,解得3=x ;当723-=-x 时,解得35-=x .综上所述,方程723=-x 的解为3=x 或.35-=x【例2】解关于x 的方程.12+=+x b ax 解:12+=+x b ax()b x a b x ax -=--=-1212 分为以下三种情况:(1)当2,02≠≠-a a 即时,方程有唯一解,为21--=a bx ; (2)当1,2,01,02===-=-b a b a 即时,方程有无数个解(0乘以任何数都得0);(3)当1,2,01,02≠=≠-=-b a b a 即时,方程无解.图(3)A AB B【例3】已知50=∠AOB °,30=∠BOC °,求AOC ∠的度数.分析:读题可知,AOB ∠和BOC ∠有一条公共边,但不知道BOC ∠是在AOB ∠的内部还是外部,所以要分为两种情况讨论. 解:分为两种情况:(1)当BOC ∠在AOB ∠的内部时,如图(1)所示,此时: =∠-∠=∠BOC AOB AOC 50°-30°=20°; (2)当BOC ∠在AOB ∠的内部时,如图(2)所示,此时: =∠+∠=∠BOC AOB AOC 50°+30°=80°. 综上所述,AOC ∠的度数为20°或80°.图(1)COBA 图(2)COBA例4.已知线段AB=5cm,BC=3cm,则线段AC 的长为__________. 解:分为两种情况:(1)当点C 在线段AB 的延长线上时,如图(3)所示,此时: AC=AB+BC=5+3=8cm; (2)当点C 在线段AB 上时, 如图(3)所示,此时: AC=AB -BC=5-3=2cm.综上所述,线段AC 的长为8cm 或2cm.注:例3和例4是关于相对位置展开的讨论. 关于等腰三角形的讨论例 5.若等腰三角形中有一个角为50°,则这个等腰三角形的顶角的度数为【 】(A )50° (B )80° (C )50°或65° (D )50°或80° 分析:等腰三角形有一个顶角、两个底角,并且两个底角相等.题目所给的50°角由于不知道是顶角还是底角,所以要分为两种情况进行讨论. 解:分为两种情况:(1)当50°角为顶角时,它的两个底角为︒︒︒=-65250180;(2)当50°角为底角时,顶角为︒︒︒=⨯-100502180. 综上所述,该等腰三角形的顶角为50°或80°,选择(D ). 参看下面的图(4).图(4)50°角为底角时50°角为顶角时拓展:若把题目中的50°角改为100°角,则本题的答案是什么?还需要讨论吗?例6.若等腰三角形的两条边长分别为3cm 、6cm,则它的周长为【 】 (A )9cm (B )12cm (C )15cm (D )12cm 或15cm分析:两条边长分别为3cm 、6cm,其中必有一条边长为腰长,另一条边长为底边长,究竟哪一条边长是腰长,要分为两种情况讨论.注意,并不是每一种情况都符合题意,最后还要根据三角形三条边之间的关系作出取舍.解:分为两种情况:(1)当3cm 为腰长,6cm 为底边长时,由于3+3=6而不大于6,所以这种情况是构不成三角形的;(2)当3cm 为底边长,6cm 为腰长时,可以构成三角形,故这种情况符合题意,此时该等腰三角形的周长为15cm,选择(C ). 拓展:把题目中的3cm 改为5cm,则答案又是什么? 例7已知2,4==n m ,且,0<mn 则=nm__________. 分析:这是七年级上册数学的内容,考查的是关于绝对值的知识点.关于绝对值的题目大多数也需要讨论. 解:∵2,4==n m ∴2,4±=±=n m ∵0<mn∴n m 、异号,分为两种情况:(1)当2,4-==n m 时,224-=-=n m ; (2)当2,4=-=n m 时,224-=-=n m . 综上所述,2-=nm.注意:本题的两种情况虽然是相互独立的,但结果却是一样的. 例8已知=->==b a b a b a 则且,,3,2__________. 解:∵3,2==b a ∴3,2±=±=b a ∵b a >∴分为下面两种情况:(1)当3,2-==b a 时,532)3(2=+=--=-b a ; (2)当3,2-=-=b a 时,132)3(2=+-=---=-b a . 综上所述,b a -的值为1或5.补充:分类讨论思想解决问题的一般步骤是: 1.先明确需要讨论的对象;2.选择分类的标准,进行合理分类(统一标准 不重不漏);3.逐类讨论;4.归纳总结,得出结论(结果). 关于比较大小的讨论例9已知64,222+-=-=m m B m m A ,试比较B A 、的大小. 分析:在比较两个代数式的大小关系时,常采用作差比较法. 解: ∵64,222+-=-=m m B m m A ∴()64222+---=-m m m m B A6264222-=-+--=m m m m m分为以下三种情况:(1)当,062>-m 即3>m 时,B A B A >>-,0;(2)当,062=-m 即3=m 时,;,0B A B A ==- (3)当,062<-m 即3<m 时,.,0B A B A <<- 例10解关于x 的不等式()63>-x a .分析:既然是关于x 的不等式,那么要求3,03≠≠-a a 即,在分类讨论的时候不再讨论这种情况.解:根据不等式的性质,分为两种情况:(1)当3,03>>-a a 即时,该不等式的解集为36->a x ; (2)当3,03<<-a a 即时,该不等式的解集为36-<a x .例11关于x 的不等式()3232+>+m x m 的解集为__________. 你自己写出解的过程. 解:例12一等腰三角形一腰上的高与另一腰成35°角,则此等腰三角形的顶角是__________度. 解:分为三种情况:(1)当顶角为锐角时,如图(5)所示,则顶角为90°-35°=55°; (2)当顶角为直角时,如图(6)所示,不符合题意;(3)当顶角为钝角时,如图(7)所示,则顶角为()︒︒︒︒=--1253590180. 综上所述,该等腰三角形的顶角为55°或125°.图(5) 图(6) 图(7)例13若324--x x的值为负数,则x 的取值范围是____________.分析:乘除法的运算法则是:同号得正,异号得负. 解:∵324--x x的值为负数 ∴324--x x 与异号 ∴分为两种情况:(1)⎩⎨⎧<->-03204x x ,解得该不等式组的解集为23<x ;(2)⎩⎨⎧>-<-03204x x ,解得该不等式组的解集为4>x .综上所述,x 的取值范围是23<x 或4>x . (注意,这里用“或”,不能用“且”) 例14化简ba +1.解:分为两种情况:(1)当b a =时,aaa a a ab a 221211=⋅⋅==+;(2)当b a ≠时,()()b a ba ba b a b a ba --=-+-=+1.例15两条相交的直线所组成的图形的对称轴有__________条.分析:直线相交有两种情形:一般相交和垂直相交,从对称的角度考虑,这两种相交的对称情况是不一样的.解:分为两种情况:(1)若这两条直线不垂直,如图(8)所示,则整个图形的对称轴只有2条;(2)若这两条直线垂直,如图(9)所示,则整个图形的对称轴有4条. 综上所述,两条相交的直线所组成的图形的对称轴有2或4条.图(8)图(9)例16已知942++mxx是完全平方公式,则=m__________. 分析:完全平方公式有两种:()2222bababa+±=±.解:分为两种情况:(1)当942++mxx为完全平方和公式时,有()91249432942222++=+++=++xxmxxxmxx所以12=m;(2)当942++mxx为完全平方差公式时,有()91249432942222+-=++-=++x x mx x x mx x所以12-=m . 综上所述,12±=m .注意:例16为易错题,八年级的学生应该注意.说明:在以后我们还会遇到许多分类讨论的题目,到时候我再给你们补充,这里只选16道例题,希望你们对此类题目加以重视.。

初二数学分类讨论思想应用

初二数学分类讨论思想应用

分类讨论思想专题一、分类讨论思想数学问题比较复杂时,有时可以分解成若干小问题或一系列步骤进行分类并分别加以讨论的方法,我们称为分类讨论法或分类讨论思想。

二、分类讨论思想应把握的原则明确对象,不重不漏,逐级讨论,综合作答。

三、分类讨论思想的应用[线段中分类讨思想的应用]——线段及端点位置的不确定性引发讨论。

例1已知直线AB上一点C,且有CA=3AB,则线段CA与线段CB之比为____练习:已知A、B、C三点在同一条直线上,且线段AB=7cm,点M为线段A的中点,线段BC=3cm,点N为线段BC的中点,求线段MN的长.例2下列说法正确的是()A、两条线段相交有且只有一个交点。

B、如果线段AB=AC那么点A是BC的中点。

B、两条射线不平行就相交。

D、不在同一直线上的三条线段两两相交必有三个交点。

[与角有关的分类讨论思想的应用]——角的一边不确定性引发讨论。

例3在同一平面上,∠AOB=70°,∠BOC=30°,射线OM平分∠AOB,ON平分∠BOC,求∠MON的大小。

[三角形中分类讨论思想的应用]1、等腰三角形的分类讨论:a、在等腰三角形中求边:等腰三角形中,对给出的边可能是腰,也可能是底边,所以我们要进行分类讨论。

例4、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。

[练习]若等腰三角形一腰上的中线分周长为9cm和12cm两部分,求这个等腰三角形的底和腰的长。

b、在等腰三角形中求角:等腰三角形的一个角可能指底角,也可能指顶角,所以必须分情况讨论。

例5、已知等腰三角形的一个内角为75°则其顶角为()A. 30°B. 75°C. 105°D. 30°或75°1、在ΔABC 中,AB=AC ,AB 的中垂线与AC 所在直线相交所得的锐角为50°,则底角∠B=____________。

2、直角三角形中,直角边和斜边不明确时需要分类讨论例6、 已知x ,y 为直角三角形两边的长,满足x y y 224560-+-+=,则第三边的长为_____________。

【初中数学】分类讨论思想在初中数学 解题教学中的运用

【初中数学】分类讨论思想在初中数学 解题教学中的运用

【初中数学】分类讨论思想在初中数学解题教学中的运用【初中数学】分类讨论思想在初中数学解题教学中的运用数学思想是人们在长期的实践经验和社会生活中得出的有关现实世界的数量关系、空间结构等科学意识的反应,是人类思维活动的结晶。

数学思想在漫长的历史演变中逐渐发展,帮助人类掌握学习知识的技巧,提供最优质的解决方案,常见的数学思想包括数形结合、分类讨论、换元思想、函数与方程、等效思想等等。

本文就以分类讨论思想为例,探讨其在初中数学中的具体运用。

一、分类探讨思想的意义分类讨论思想其最主要本质就是“化整为零,积零为整”的解题策略。

当我们在解决数学问题时,当所面对的问题不能进行整体统一的研究时,根据数学的本质属性需进行分类讨论和研究,这种逻辑思维解决方法就是“分类讨论思想”。

而分类讨论思想在中学数学中,历年是考试的侧重点,主要是考查学生对于知识面的分析能力和解题思路技巧,分类讨论思想不仅有利于提高学生在学习数学中的广泛兴趣,还有利于培养思维能力的条理性和缜密性。

学生可以通过分类讨论思想掌握数学当中分类方法、一题多解和对知识结构认知的能力。

在教学中,教师可以利用小组合作充分发挥分类讨论的作用,为学生营造一种合作交流积极应变的氛围。

因此,分类讨论思想可以有效地培养学生的思维灵活性和解题思路的能力,在初中数学解题应用中具有非常重要的作用和意义。

二、分类探讨思想具体内容解题步骤深入探讨在学生能够基本掌握分类讨论思想的情况下,教师要引导学生运用正确的解题思路,大体可以从以下几个方面去引导,一是要认真仔细阅读题目,明白题目要考查的知识点;二是要明确分类讨论的对象,列举所有可能的结果,不可以遗漏,不可以重复;三是要讨论出所有列举问题的结论;四是要认真总结归纳,对于做过的题目要能够总结出规律和解题思路。

对于数学问题的研究要有效针对各种属性的对象,研究的结果也自然会因为研究对象的不同而产生差异,因此对于不同的研究对象就需要采用不同的研究思想,又或者说在研究过程中出现了不同的状况,就需要采用不同的分类研究的思想。

浅谈初中数学中的分类讨论思想

浅谈初中数学中的分类讨论思想

浅谈初中数学中的分类讨论思想浅谈初中数学中的分类讨论思想⼀、分类思想定义与特点所谓分类讨论思想,就是当⼀个数学问题在⼀定的题设下,其结论并不唯⼀时,我们就需要对这⼀问题进⾏必要的分类。

将⼀个数学问题根据题设分为有限的若⼲种情况,在每⼀种情况中分别求解,最后再将各种情况下得到的答案进⾏归纳综合。

实质上,分类讨论是“化整为零,各个击破,再积零为整”的策略.分类思想有三个明显特点,⼀是对什么东西分类,即确定分类的对象;⼆是按什么标准分类,即选择分类的标准;三是分成哪⼏类,即确定分类的结果。

通过正确的分类,可以使复杂的问题得到清晰、完整、严密的解答。

划分只是⼿段,分类研究才是⽬的.既可以将复杂的问题分解成若⼲个简单的问题,⽽且恰当的分类可避免丢值漏解,从⽽提⾼全⾯考虑问题的能⼒,提⾼周密严谨的数学素养。

⼆、分类讨论思想应遵循以下的原则1、同⼀性原则。

分类应按同⼀标准进⾏,即每次分类不能同时使⽤⼏个不同的分类根据。

有些同学把三⾓形分为锐⾓三⾓形、直⾓三⾓形、钝⾓三⾓形、不等边三⾓形、等腰三⾓形。

这个分类就不正确了,因为这个分类同时使⽤了按边和按⾓两个分类标准。

2、相称性原则。

分类应当相称,即划分后⼦项外延的总和,应当与母项的外延相等。

3、互斥性原则。

分类后的每个⼦项应当互不相容,即做到各⼦项相互排斥,也就是分类后不能有⼀些事物既属于这个⼦项,⼜属于另⼀个⼦项。

4、层次性原则。

分类有⼀次分类和多次分类之分。

⼀次分类是对被讨论对象只分类⼀次;多次分类是把分类后所得的⼦项作为母项,再进⾏分类,直⾄满⾜需要为⽌。

有些对象的分类情况⽐较复杂,这时常采⽤“⼆分法”来分类,就是按对象有⽆某性质来进⾏分类。

按“⼆分法”作分类,就是把讨论对象的外延⼀直分为两个互相⽭盾的概念,⼀直分到不必再分为⽌。

四、分类讨论思想主要步骤通过上述问题的讨论,分类讨论的思想⽅法在初中数学教材中有着⼴泛的渗透。

在运⽤分类思想解题时主要步骤有:(1)明确讨论的对象:即对哪个参数进⾏讨论;(2)对所讨论的对象进⾏合理分类(分类时要做到不重复、不遗漏、标准要统⼀、分层不越级);(3)逐类讨论:即对各类问题详细讨论,逐步解决。

2021年中考数学复习专题2 分类讨论思想(教学课件)

2021年中考数学复习专题2 分类讨论思想(教学课件)

分类讨论常见类型: 类型1:由数学概念引起的的讨论,如实数、有理数、绝对值等 概念的分类讨论; 类型2:由性质、定理、公式的限制条件引起的讨论,如一元二 次方程求根公式的应用引起的讨论; 类型3:由数学运算要求引起的讨论,如不等式两边同乘一个正 数还是负数的问题; 类型4:由图形的不确定性引起的讨论,如直角、锐角、钝角三 角形中的相关问题引起的讨论。 类型5:由字母的取值引起的分类讨论,如含字母的方程、函数 、不等式,由于字母的取值不同
线 y=12 x+12 上,若抛物线 y=ax2-x+1(a≠0)与线段 AB 有两个不
同的交点,则 a 的取值范围是( C )
A.a≤-2
B.a<98
C.1≤a<98 或 a≤-2
D.-2≤a<98
重点题型
题题组组训训练练
【解析】分 a>0,a<0 两种情况讨论.∵抛物线 y=ax2-x+
1(a≠0)与线段 AB 有两个不同的交点,∴令12 x+12 =ax2-x+1,
解析式为 y=-13
x+53
,由y=-13x+53 y=ax2-x+2
,消去 y 得到,3ax2-2x
+1=0,∵Δ>0,∴a<13 ,∴14 ≤a<13 满足条件,综上所述,满
足条件的 a 的值为 a≤-1 或14 ≤a<13 .
重重点点题题型型
题组训练
重点题型
题题组组训训练练
8.在平面直角坐标系内,已知点 A(-1,0),点 B(1,1)都在直
重重点点题题型型
题 型 三 由数学运算要求引起的讨论
题组训练
例6.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成 .已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人? (2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿 童去另一景区B游玩.景区B的门票价格为100元/张,成人全票 ,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元 ?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类讨论
分类讨论问题是创新性问题之一,此类题综合性强,难题较大,在历年中考试题中多以压轴题出现,对考生的
能力要求较高,具有很强的选拔性。

综合中考的复习规律,分类讨论的知识点有三大类:
1.代数类:代数有绝对值、方程及根的定义,函数的定义以及点(坐标未给定)所在象限等
.
2.几何类:几何有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况等
. 3.综合类:代数与几何类分类情况的综合运用. 在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重
要的数学思想方法,同时也是一种解题策略.
分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其
实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.
正确的分类必须是周全的,既不
重复、也不遗漏.
分类的原则:(1)分类中的每一部分是相互独立的;
(2)一次分类按一个标准;(3)分类讨论应逐级有序进行.(4)以性质、公式、定理的使用条件为标准分类的题型. 题型 1.考查数学概念及定义的分类
规律提示:熟练掌握数学中的概念及定义,其中以绝对值、方程及根的定义,函数的定义尤为重要,必须明确讨论
对象及原因,进而确定其存在的条件和标准。

例题1.方程560x x x 的最大根与最小根的积为______.
例题2.解关于x 的方程:ax - 1= x
例题3.试解关于x 的方程1
11x )x (例题4.a
34933
2无解,求x x ax x 例题5.已知四个数:10、10、x 、8,它们的中位数和平均数相等,则x=___________
题型2:考查字母的取值情况或范围的分类.
规律提示:此类问题通常在函数中体现颇多,考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用
条件及范围.
例题1.已知2225,7x y x y ,则x y 的值等于_______.
例题2.如图所示,在平行四边形
ABCD 中,4A D cm ,∠A =60°,BD ⊥AD ,一动点P 从A 出发,以每秒1cm 的速度沿A B C 的路线匀速运动,过点P 作直线PM ,使PM ⊥AD.
(1)当点P 运动2秒时,设直线PM 与AD 相交于点E ,求△APE 的面积;
(2)当点P运动2秒时,另一动点Q也从A出发沿A B C的路线运动,
且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速
运动.过Q作直线QN,使QN//PM.设点Q运动的时间为t秒(0≤t≤10),
直线PM与QN截平行四边形ABCD所得图形的面积为Scm2.
①求S关于t的函数关系式;②(附加题)求S的最大值.
题型3.考查图形的位置关系或形状的分类.
规律提示:熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决.
与,则线段AB的中点C到直线l的距离是()例题1.平面上A、B两点到直线l的距离分别是2323
A.2B.3C.2或3D.不能确定
例题2.直角三角形的两边为3和4,那么第三边长为
例题3.已知x,y为直角三角形两边的长满足,则第三边的长为_____________
例题4.如图,△ABC中,AB=AC=5,BC=6,点P从A出发,沿AB以每秒1cm的速度
向B运动,同时,点Q从点B出发,沿BC以相同速度向C运动,问,当运动几
秒后,△PBQ为直角三角形?
例题5.在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和
12两部分,则这个三角形的底边长为:.
例题6.三角形一边长AB为13cm,另一边AC为15cm,BC上的高为12cm,求此三角形的面积。

例题7.在下图三角形的边上找出一点,使得该点与三角形的两顶点构成等腰三角
形,这样的点共有几个分别画出相应的图形。

例题8.在劳技课上,老师请同学们在一张长为17cm,宽16cm的长方形纸板上剪下一个腰长为10cm的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形上的边上)请你帮助同
学们计算剪下的等腰三角形的面积.
题型4.考查图形的对应关系可能情况的分类
规律提示:图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论.
例题1.一条绳子对折后成右图A、B, A.B上一点C,且有BC=2AC,将其从C点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为____________。

相关文档
最新文档