类似于PDOP值的描述整周模糊度精度的指标因子

合集下载

GPS精度因子(GDOP,PDOP,HDOP,VDOP,TDOP)

GPS精度因子(GDOP,PDOP,HDOP,VDOP,TDOP)

GPS精度因⼦(GDOP,PDOP,HDOP,VDOP,TDOP)PDOP:位置精度因⼦(Position Dilution of Precision),直译为“精度强弱度”,通常翻译为“相对误差”。

具体含义是:由于观测成果的好坏与被测量的⼈造卫星和接收仪间的⼏何形状有关且影响甚⼤,所以计算上述所引起的误差量称为精度的强弱度。

天空中卫星分布程度越好,定位精度越⾼(数值越⼩精度越⾼)。

PDOP表⽰三维位置定位精度与导航台⼏何配置关系的⼀个参数。

在全球定位(GPS)系统中,等于⽤户位置的径向误差(1°)与⽤户到卫星的距离测量误差(1°)的⽐值。

Pdop取值范围为:0.5--99.9,为纬度、经度和⾼程等误差平⽅和的开根号值,所以Pdop的平⽅ =Hdop 的平⽅ +Vdop 的平⽅。

在⼏何上,PDOP按由接收机和所能观测到的四颗卫星的连线所组成的锥状物的体积⽐例来平分1。

对于好的定位⽽⾔,PDOP值⼩,例如3。

⽐7⼤的值被认为是较差。

因此,⼩的PDOP值与相隔较远的卫星相关。

在GPS导航和定位中,我们使⽤⼏何精度因⼦(DOP,dilution of precision,也翻译为精度衰减因⼦)来衡量观测卫星的空间⼏何分布对定位精度的影响。

DOP分为以下⼏种:PDOP( position dilution of precision ) 三维位置精度因⼦:为纬度、经度和⾼程等误差平⽅和的开根号值TDOP(time dilution of precision )钟差精度因⼦:为接收仪内时表偏移误差值。

HDOP(horizontal dilution of precision )⽔平分量精度因⼦:为纬度和经度等误差平⽅和的开根号值。

VDOP(vertical dilution of precision )垂直分量精度因⼦DOP值的⼤⼩与GPS定位的误差成正⽐,DOP值越⼤,定位误差越⼤,定位的精度就低。

咨询师继续教育工程测量卫星定位测量考题

咨询师继续教育工程测量卫星定位测量考题

一、单选题 【本题型共15道题】1.对工程测量而言,GNSS 网基准一般通过( ),并将其在整体平差计算加以固定的方式实现。

A .假定网中3个点的坐标B .假定网中4个点的坐标C .假定网中3个点的坐标以及一个方位D .联测国家等级控制点用户答案:[D]得分:0.002.GPS 静态网测量时,若采用N 台接收机进行同步观测,正常情况下每次可测得()条独立基线。

A .N-1B .NC .N+1D .不一定用户答案:[D] 得分:0.003.当采用6台接收机进行GPS 静态控制网观测时,每一时段可得到( )条独立基线。

A .3B .4C .5D.6用户答案:[D] 得分:0.004.在GNSS测量中,仅利用卫星观测值,相对定位方法()。

A.可以解算出基线端点处的高精度绝对坐标。

B.仅可解算出接收机天线间的相对位置,也就是基线向量,但无法确定基线端点的绝对坐标。

C.解算结果属于WGS-84坐标系,即使解算过程中采用IGS提供的精密星历。

D.基线向量的计算精度最高可达分米级。

用户答案:[B] 得分:0.005.GPS静态控制网外业观测时,观测人员不需要()。

A.按照观测方案规定的时间到达指定地点B.安置GNSS接收机设备C.天线高的量测及记录D.在外业观测手簿中记录每一个历元的伪距及载波相位观测值。

用户答案:[B] 得分:0.006.导航电文依规定格式组成,按帧向外播送。

每帧电文含有1500比特,播送速度()。

A.20 bit/sB.30 bit/sC.50 bit/sD.1023 bit/s用户答案:[C] 得分:3.007.关于多路径效应,下述说法错误的是()。

A.多路径效应是指在GPS测量中,被测站附近的反射物所反射的卫星信号(反射波)进入接收机天线,和直接来自卫星的信号(直射波)产生干涉,从而使观测值偏离真值的现象B.多路径效应与观测环境有关C.测站附近的大面积水域.大型建筑等不会产生多路径效应D.可以通过适当增加观测时间削弱多路径误差。

卫星定位测量的几个基本概念

卫星定位测量的几个基本概念

4、什么是基线精度计算的计算公 式?
• 相邻点的基线长度中误差公式中的固定 误差和比例误差系数,与接收机厂家给 出的精度公式(A+B×D)中的、含义相 似。厂家给出的公式和规范(3.2.2)式 是两种类型的精度计算公式,应用上各 有其特点。基线长度中误差公式主要应 用于控制网的设计和外业观测数据的检 核。
14、为什么控制网布设时,每个点至少应 与一个以上的相邻点通视? • 卫星定位测量控制网的点位之间原则上 不要求通视,但考虑到在使用其他测量 仪器对控制网进行加密或扩展时的需要, 故提出控制网布设时,每个点至少应与 一个以上的相邻点通视;
15、为什么要有卫星高度角的限制? • 卫星高度角的限制主要是为了减弱对流 层对定位精度的影响,由于随着卫星高 度的降低,对流层影响愈显著,测量误 差随之增大。因此,卫星高度角一般都 规定大于15°;
28、为什么要认真做好测站记录?
• 由于GPS接收机数据采集的高度自动化, 其记录载体不同于常规测量,人们容易 忽视数据采集过程的其他操作。如果不 严格执行各项操作或人工记录有误,如 点名、点号混淆将给数据处理造成麻烦, 天线高量错也将影响成果质量,以致造 成超限返工。因此,应认真做好测站记 录。
13、为什么规定全网独立观测基线总数不 宜少于必要观测基线数的1.5倍 ? • 规范组研究成果,基于工程控制网通常 取1/3为网的可靠性指标进行公式推导得 出的。详见规范说明。 • 故,规定全网独立观测基线总数,不宜 少于必要观测基线数的1.5倍。必要观测 基线数为网点数减1。作业时,应准确把 握以保证控制网的可靠性。
1、什么是卫星定位测量?
• 利用两台或两台以上接收机同时接收多颗定位 卫星信号,确定地面点相对位置的方法。 <解释>卫星定位测量的概念,主要是面向多元化 的全球空间卫星定位系统而提出的,如美国的 GPS、俄罗斯的GLONASS和欧洲的GALILEO等卫星 导航定位系统。其不仅仅局限于美国的GPS。 工程测量主要采用载波相位观测值进行相 对定位。 目前有多部国家和行业标准也都采用了我们 所倡导的这一概念!

GPS测量原理及应用各章知识点总结

GPS测量原理及应用各章知识点总结

GPS测量原理及应用各章知识点总结桂林理工大学测绘08-1 JL(纯手打)第一章绪论1、GPS系统是以卫星为基础的无线电导航定位系统,具有全能性、全球性、全天候、连续性和实时性的导航、定位和定时的功能。

能为各个用户提供三维坐标和时间。

2、GPS卫星位置采用WGS-84大地坐标系3、GPS经历了方案论证、系统论证、生产试验三个阶段。

整个系统包括卫星星座、地面监控部分、用户接收机部分。

4、GPS基本参数为:卫星颗数为21+3,卫星轨道面个数为6,卫星高度为20200km,轨道倾角为55度,卫星运行周期为11小时58分,在地球表面任何时刻,在高度较为15度以上,平均可同时观测到6颗有效卫星,最多可以达到9颗。

5、应用双定位系统的优越性:能同时接收到GPS和GLONASS卫星信号的接收机,简称为双系统卫星接收机。

(1)增加接收卫星数。

这样有利于在山区和城市有障碍物遮挡的地区作业(2)提高效率。

观测卫星数增加,所以求解整周模糊度的时间缩短,从而减少野外作业时间,提高了生产效率。

(3)提高定位的可靠性和精度。

因观测的卫星数增加,用于定位计算的卫星数增加,卫星几何分布也更好,所以提高了定位的可靠性和精度。

6、在GPS信号导航的定位时,为了解算测站的三维坐标,必须观测4颗(以上)卫星,称为定位星座。

7、PRN----------卫星所采用的伪随机噪声码8、在导航定位测量中,一般采用PRN编号。

9、用于捕获信号和粗略定位的为随机码叫做C/A码(又叫S码),用于精密定位的精密测距码叫P 码10、GPS系统中各组成部分的作用:卫星星座1、向广大用户发送导航定位信息。

2、接收注入站发送到卫星的导航电文和其他相关信息,并通过GPS信号电路,适时的发送给广大用户。

3、接收地面主控站通过注入站发送到卫星的调度命令,适时的改正运行偏差和启用备用时钟等。

地面监控系统地面监控系统包括1个主控站,3个注入站和5个监测站。

1、监测和控制卫星上的设备是否正常工作,以及卫星是否一直沿着预定轨道运行。

BDS+GPS相对定位精度因子分析

BDS+GPS相对定位精度因子分析

BDS+GPS相对定位精度因子分析严丽;李萌【摘要】提出了GNSS相对定位大气精度因子,即对流层精度因子TrDOP和电离层精度因子IDOP,能够更全面地评估中长距离相对定位参数估计精度.首次从精度因子的角度论证了BDS与GPS融合对测量时间效率的影响.BDS/GPS系统融合后,模糊度精度因子ADOP、相对几何位置精度因子RGDOP、TrDOP值减小,达到与延长观测时间一致的效果.通过TrDOP和IDOP值分析,表明BDS/GPS系统融合有利于对流层和对流层参数估计.%This paper defines new atmosphere DOP styles that are TrDOP and IDOP in GNSS relative positioning.From DOP standpoint, it is firstly demonstrated that the efficiency of BDS/GPS fusion precise relative positioning are improved.With the joining of BDS, the values of ADOP, RGDOP and TrDOP decrease efficiently that can be achieved by increasing observing sessions.Moreover, by analyzing TrDOP and IDOP values, it indicates that BDS/GPS fusion is favorable to estimate the tropospheric parameter and has a small impact on estimating ionospheric parameters.【期刊名称】《测绘学报》【年(卷),期】2017(046)003【总页数】7页(P325-331)【关键词】BDS;GPS;ADOP;RGDOP;TrDOP;IDOP【作者】严丽;李萌【作者单位】西南交通大学地球科学与环境工程学院, 四川成都 610031;成都理工大学地球科学学院,四川成都 610051【正文语种】中文【中图分类】P228BDS(BeiDou Navigation Satellite System)应用于我国GNSS测量已成一种必然趋势,但因其起步晚,国际国内市场目前仍以GPS为主导[1]。

卫星导航术语200条

卫星导航术语200条
27.蓝皮书(Bluebook):由“NGS蓝色参考书”衍生出的俗称。书中包括NGS要求大地测量 数据所应有的信息和格式。
28.C/A码(C/A Code):C/A是Coarse /Acquisition或Clear/Acquisition的缩写,C/A码的字 意是容易捕获的码。它调制在GPSL1信号上,是1023个伪随机二进制双相调制序列。其 码速率为1.023MHz,因此码的重复周期为一毫秒。该C/A码用来提供良好的捕获特性。
58. 多普勒辅助(Doppler Aiding):利用观测的多普勒载波相位来平滑码相位的测量值。也称载波辅助平滑或载波辅助跟踪。 59. 多普勒频移(Doppler Shift):所接收到的信号的频移,取决于发射机与接收器间的距离的变化率。见“重建载波相位”二次
差分模糊值解(Double-Difference Ambiguity Resolution)确定一组模糊值的一种方法。该值使在求解两个接收器基线矢量 解时的方差减至最小。 60. 动态定位(Dynamic Positioning):按时间顺序求解运动中的接收器的坐标。每一组坐标只由一次信号取样来确定,且通常进 行实时解算。
56. 差分(相对)定位(Differential(Relative)Positioning):两个(或更多的)同时跟踪相同卫星的进行接收器的相对坐标的测 定。动态差分定位是一种通过一个(或多个)监测站向移动的接收器发送差分修正码而实现实时定位的技术。GPS静态差分 的目的是测定一对接收器之间的基线向量。
29.载波(Carrier):是一个无线电波。能用调制的方法使它至少有一个特怔量(如频率、振 幅、相位)发生改变而偏离它的已知参考值。
30.载波差拍相差(Carrier Beat Phase):当输入的含有多普勒频移的卫星载波信号与接收器 中产生的标称恒定参考频率产生差拍(产生差频信号)所得到的信号相位。

RTK的误差特性及控制方法

RTK的误差特性及控制方法

RTK的误差特性及控制方法1RTK定位的误差,一般分为两类:(1)同仪器和干扰有关的误差:包括天线相位中心变化、多径误差、信号干扰和气象因素。

(2)同距离有关的误差:包括轨道误差、电离层误差和对流层误差。

对固定基地站而言,同仪器和干扰有关的误差可通过各种校正方法予以削弱,同距离有关的误差将随移动站至基地站的距离的增加而加大,所以RTK的有效作业半径是非常有限的(一般为几公里)。

2同仪器和干扰有关的误差(1)天线相位中心变化天线的机械中心和电子相位中心一般不重合。

而且电子相位中心是变化的,它取决于接收信号的频率、方位角和高度角。

天线相位中心的变化,可使点位坐标的误差一般达到3-5CM。

因此,若要提高RTK定位精度,必须进行天线检验校正,检验方法分为实验室内的绝对检验法和野外检验法。

(2)多路径误差多径误差是RTK定位测量中最严重的误差。

多径误差取决于天线周围的环境。

多径误差一般为几CM,高反射环境下可超过10CM。

多径误差可通过下列措施予以削弱:A、选择地形开阔、不具反射面的点位。

B、采用扼流圈天线。

C、采用具有削弱多径误差的各种技术的天线。

D、基地站附近辅设吸收电波的材料。

(3)信号干扰信号干扰可能有多种原因,如无线电发射源、雷达装置、高压线等,干扰的强度取决于频率、发射台功率和至干扰源的距离。

为了削弱电磁波幅射副作用,必须在选点时远离这些干扰源,离无线电发射台应超过200米,离高压线应超过50米。

在基地站削弱天线电噪声最有效的方法是连续监测所有可见卫星的周跳和信噪比。

(4)气象因素快速运动中的气象峰面,可能导致观测坐标的变化达到1~2DM。

因此,在天气急剧变化时不宜进行RTK测量。

3同距离有关的误差同距离有关的误差的主要部分可通过多基准站技术来消除。

但是,其残余部分也随着至基地站距离的增加而加大。

(1)轨道误差目前,轨道误差只有几米,其残余的相对误差影响约为1PPM,就短基线(<10KM)而言,对结果的影响可忽略不计。

卫星导航定位_江苏海洋大学中国大学mooc课后章节答案期末考试题库2023年

卫星导航定位_江苏海洋大学中国大学mooc课后章节答案期末考试题库2023年

卫星导航定位_江苏海洋大学中国大学mooc课后章节答案期末考试题库2023年1.GPS高程是一种大地高。

参考答案:正确2.数据文件标准化包括卫星轨道方程的标准化、卫星钟差的标准化和__________。

参考答案:观测值文件的标准化3.几何精度因子用()表示。

参考答案:GDOP4.GPS卫星之所以要采用两个以上不同频率的载波,其主要目的是()。

参考答案:消除电离层延迟5.在接收机间求一次差后,继续在卫星间求二次差后可消除参数。

参考答案:接收机钟差6.测码伪距定位解算中需要进行整周模糊度的解算。

参考答案:错误7.组成宽巷观测值(wide lane)的主要目的是为了()。

参考答案:便于确定整周模糊度8.GPS卫星星历分为_____________星历和______________星历两种。

参考答案:广播星历##%_YZPRLFH_%##预报星历##%_YZPRLFH_%##精密星历9.卫星轨道平面与地球赤道面的交角称。

参考答案:轨道面的倾角10.卫星的运动状态可用()开普勒轨道根数和()反映摄动力影响的参数描述。

参考答案:6个,9个11.GPS网约束平差中,如果发现个别起算数据有质量问题,可放弃有质量问题的数据。

参考答案:正确12.以下哪个因素不会削弱GPS定位的精度。

()参考答案:夜晚进行GPS观测。

13.GPS测量中,卫星钟和接收机钟采用的是哪种时间系统?()参考答案:GPS时14.某GPS网采用某型号的GPS接收机指标为:固定误差为3mm,比例误差为2ppm,对于一条2km的基线,则该基线长度的中误差为()。

参考答案:5mm15.应用RTK技术进行实时定位可以达到 ( )级的点位精度。

参考答案:厘米16.下列GNSS测量误差项中,必须通过合理选点来减弱的信号传播误差是()。

参考答案:多路径误差17.在GPS接收机间求一次差后可消除卫星钟差,继续在卫星间求二次差后可消除()参考答案:与接收机有关误差18.精密星历可以用于实时导航之中。

gps有关专业术语

gps有关专业术语

模糊度(Ambiguity):未知量,是从卫星到接收机间测量的载波相位的整周期数。

基线(Baseline):两测量点的联线,在此两点上同时接收GPS 信号并收集其观测数据。

广播星历(Broadcast ephemeris ):由卫星发布的电文中解调获得的卫星轨道参数。

信噪比SNR(Signal-to-noise ratio):某一端点上信号功率与噪声功率之比。

跳周(Cycle skipping):在干扰作用下,环路从一个平衡点,跳过数周,在新的平衡点上稳定下来,使相位整数周期产生错误的现象。

载波(Carrier):作为载体的电波,其上由已知参考值的调制波进行频率、幅度或相位调制。

C/A码(C/A Code):GPS粗测/捕获码,为1023 bit 的双相调制伪随机二进制码,码率为1.023MHz,码重复周期为1ms。

差分测量(Difference measurement):利用交叉卫星、交叉接收机和交叉历元进行GPS测量。

单差(SD)测量:(交叉接收机)由两个接收机同时观测一颗卫星所接收的信号相位的瞬时差。

双差(DD)测量:(交叉接收机,交叉卫星)观测一颗卫星的单差相对于观测参考卫星的单差之差。

三差(TD)测量:(交叉接收机,交叉卫星,交叉历元)在一历元获得的双差与上一历元的双差之差。

差分定位(Difference positioning):同时跟踪相同的GPS信号,确定两个以上接收机之间的相对坐标的方法。

几何精度因子(Geometric dilution of precision):在动态定位中,描述卫星几何位置对误差的贡献的因子,表示式:。

式中,Q 为瞬时动态位置解的矩阵因子(取决于接收机和卫星的位置)。

在GPS中有如下几种标准术语:GDOP (三维坐标加钟差)四维几何因子PDOP(三维坐标)三维坐标几何因子HDOP(平面坐标)二维坐标几何因子VDOP(高程)高程几何因子TDOP(钟差)钟差因子HTDOP(高程和钟差)高程与钟差几何因子动态定位(Dynamic positioning ):确定运动着的接收机随时间变化的测点坐标的方法。

GPS部分考题及答案

GPS部分考题及答案
边连式是指同步图形之间由一条公共基线连接
网连式是指相邻同步图形之间有两个以上的公共点相连接,这种方法需要4台以上的接收机。
边点混合连接式是指把点连式与
边连式有机地结合起来,组成GPS网
②个人位置服务③气象应用④道路交通管理⑤铁路智能交通⑥海运和水运⑦航空运输⑧应急救援。
3.坐标系统的转换
4.天球坐标系统收到哪种误差影响?
及其规律。
球形、岁差和章动等。在岁差影响下,平北天极绕北黄极的运动;在章动影响下,瞬时北天极绕平北天极顺时针的转动。地球在绕太阳运行时,自转轴的方向不再保持不变,从而使春分点在赤道上产生缓慢的西移,这种现象在天文学中称为岁差,在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极产生旋转,大致成椭圆形轨迹,其长半径约为9.2&quot;,周期约为18.6年。这种现象称为章动。平北天极绕北黄极的运动,这就是上面介绍的岁差现象;瞬时北天极绕平北天极顺时针的转动,即章动现象。
CNSS:北斗卫星导航系统是中国自行研制的全球卫星定位与通信系统。中国此前已成功发射四颗北斗导航试验卫星和十六颗北斗导航卫星(其中,北斗-1A已经结束任务)。该系统的空间部分使用5颗静止轨道卫星和30颗非静止轨道卫星(27颗中轨道(MEO)卫星和3颗倾斜同步(IGSO)卫星组成)组成卫星星座。运行周期约为11小时5分钟。
之间的地心夹角;升交点即当卫星由南向北运行时,其轨道与道面的一地球赤个交点;i轨道面的倾角,即卫星轨道平面与地球赤道面之间的夹角;w近地点角距,即在轨道平面上升交点与近地点之间的地心夹角;V卫星的真近点角,即在轨道平面上,卫星与近地点之间的地心角角距。
◆两瞬时坐标系的X轴的指ቤተ መጻሕፍቲ ባይዱ不同。
6.WGS-84大地坐标系

精度衰减因子

精度衰减因子

精度衰减因子精度衰减因子(Degree of precision, DOP)是衡量定位系统精度的指标之一,它表示接收机在一些特定位置的测量误差范围。

DOP是通过计算卫星的几何配置和接收机接收该卫星信号的质量来确定的。

精度衰减因子的数值范围通常从1到无穷大,其中较小的数值表示更好的精度。

不同的精度衰减因子对应不同的定位准确性。

根据不同的定位需求,可以选择不同的衰减因子来确定合适的定位精度。

精度衰减因子可以由以下几个方面来衡量和计算:1.GDOP(几何因子):GDOP是用于衡量卫星几何配置对定位精度的影响。

GDOP表示所有可见的卫星对定位精度的最坏影响。

GDOP的数值越小,定位精度越高。

2.PDOP(位置因子):PDOP是用于衡量卫星几何配置对三维定位(经度、纬度和高度)精度的影响。

PDOP是GDOP在垂直方向上的分量。

PDOP的数值越小,三维定位精度越高。

3.HDOP(水平因子):HDOP是用于衡量卫星几何配置对水平定位(经度和纬度)精度的影响。

HDOP是GDOP在水平方向上的分量。

HDOP的数值越小,水平定位精度越高。

4.VDOP(垂直因子):VDOP是用于衡量卫星几何配置对高度定位精度的影响。

VDOP是GDOP在垂直方向上的分量。

VDOP的数值越小,高度定位精度越高。

这些精度衰减因子可以通过接收机接收到的卫星信号质量来计算。

接收机会评估不同卫星的信号强度、信噪比以及接收机与卫星的几何配置。

然后,通过将这些因素结合起来,计算出不同的精度衰减因子,并根据需求选择合适的因子。

精度衰减因子对于定位系统而言非常重要,特别是在需要高精度定位的应用中,如航空导航、地理测量和智能交通系统等。

定位系统的设计和优化需要考虑精度衰减因子,以确保实现所需的定位精度,并满足用户的定位要求。

总结起来,精度衰减因子是用于衡量定位系统精度的指标,包括GDOP、PDOP、HDOP和VDOP等。

它们代表了卫星几何配置对定位精度的影响,数值越小表示定位精度越高。

GPS重点知识

GPS重点知识

***三条主线*** 【题型】填空、名词解释、简答一、如何实现定位1、GPS定位基本原理①利用瞬间GPS卫星的空间位置以及接收机观测获取站星之间的距离②基于空间后方交会原理来实现定位③GPS卫星发射测距信号和导航电文④导航电文包含卫星轨道参数及相关时间参考信息,可以计算得到卫星的瞬间位置⑤通过测距码可以测量站星之间的距离⑥由于存在接收机钟差,无法采用有效手段加以改正与消除,因此通常需采用4颗及以上卫星,通过空间距离后方交会方法解算地面点位置。

2、系统组成【第一章 1 】3、信号结构组成【第一章 3 】4、前提条件如何实现5、坐标系统、时间系统【第二章】二、如何提高精度误差源(性质、空间分布)【第四章 2 】三、如何使用及应用1、定位方式:绝对(单点)定位、相对(差分)定位2、使用:精度高,可靠性、可用性高,实时性→RTK、网络RTK、CORS3、GPS高程(为大地高)【第八章】第一章1、GPS的构成:GPS卫星星座、地面监控部分、用户接受处理部分2、GPS的特点:定位精度高、观测时间短、测站间无需通视、可提供三维坐标、操作简单、全天候作业、功能多,应用广【P14】3、GPS卫星的信号:载波(L1载波、L2载波)【可测距】、测距码(P码、C/A码)【PRN,伪随机噪声吗】、导航电文【计算卫星瞬间位置】L1载波:频率=1575.42MHz 波长=19.03cm L2载波:频率=1227.60MHz 波长=24.42cmC/A码的码元宽度293m,测距误差2.9m P码的码元宽度29.3m,测距误差0.29m4、GPS卫星导航电文:卫星星历、时钟改正参数、电离层延迟改正参数、遥测码、由C/A码确定P码信号时的交接码等参数第二章1、天球坐标系统:原点位于地球质心M,z轴指向天球北极,x轴指向春分点,y轴垂直于xMz平面。

2、地球坐标系统:原点位于参考椭球中心,z轴指向参考椭球北极,x轴指向首子午面与赤道的交点,y轴位于赤道面(CTP)方向,X轴指向BIH1984.0的零度子午面和CTP赤道的交点,Y轴和Z、X轴构成右手坐标系。

咨询工程师(投资)继续教育-工程测量卫星定位测量(86分)

咨询工程师(投资)继续教育-工程测量卫星定位测量(86分)

【试卷总题量: 35,总分: 100.00分】用户得分:86.0分一、单选题【本题型共15道题】1.GPS RTK作业时,()不是必须配备的设备。

A.基准站接收机B.步话机C.流动站接收机D.流动站电子手簿用户答案:[B] 得分:3.002.利用GNSS卫星进行定位测量时,关于PDOP(位置精度衰减因子)的说法正确的是()。

A.越大越好B.越小越好C.介于3-5之间最好D.大于10最好用户答案:[B] 得分:3.003.求取不同基准间的坐标转换三参数,需要至少()个已知控制点A.1B.3C.4D.6用户答案:[B] 得分:0.004.()差分可以消除整周模糊度参数。

A.一次B.二次C.三次D.四次用户答案:[B] 得分:0.005.构成GPS静态控制网的基线应该是()。

A.同步观测基线B.独立基线C.同步观测基线与异步观测基线按一定比例构成D.全部必须是异步观测基线用户答案:[B] 得分:3.006.()可用于周跳探测。

A.回避法B.置信区间法C.交换天线法D.高次差法用户答案:[D] 得分:3.007.关于多路径效应,下述说法错误的是()。

A.多路径效应是指在GPS测量中,被测站附近的反射物所反射的卫星信号(反射波)进入接收机天线,和直接来自卫星的信号(直射波)产生干涉,从而使观测值偏离真值的现象B.多路径效应与观测环境有关C.测站附近的大面积水域.大型建筑等不会产生多路径效应D.可以通过适当增加观测时间削弱多路径误差。

用户答案:[C] 得分:3.008.GPS现代化计划完成后,GPS单点定位精度可达()。

A.毫米级B.厘米级C.亚米级D.10米级用户答案:[C] 得分:3.009.GNSS相对定位的基本成果是()。

A.站间基线向量B.测站的绝对WGS84坐标C.测站的绝对1954年北京坐标系坐标D.测站的绝对CGCS2000坐标系坐标用户答案:[D] 得分:0.0010.在GNSS测量中,仅利用卫星观测值,相对定位方法()。

卫星定位测量的几个基本概念资料

卫星定位测量的几个基本概念资料

29、为什么要进行单点定位? • 基线解算时,起算点在WGS-84坐标系中 的坐标精度,将会影响基线解算结果的 精度。单点定位是直接获取已知点在WGS -84坐标系中已知坐标的方法。理论计 算和试验表明:用30min单点定位结果的 平均值作为起算数据,可以满足相对定 位的精度要求;

30、多基线解算模式和单基线解算模式的 主要区别是什么? • 多基线解算模式和单基线解算模式的主 要区别是,前者顾及了同步观测图形中 独立基线之间的误差相关性,后者没有 顾及。大多数商业化软件基线解算只提 供单基线解算模式,在精度上也能满足 工程控制网的要求。因此,规定两种解 算模式都是可以采用的;
14、为什么控制网布设时,每个点至少应 与一个以上的相邻点通视? • 卫星定位测量控制网的点位之间原则上 不要求通视,但考虑到在使用其他测量 仪器对控制网进行加密或扩展时的需要, 故提出控制网布设时,每个点至少应与 一个以上的相邻点通视;
15、为什么要有卫星高度角的限制? • 卫星高度角的限制主要是为了减弱对流 层对定位精度的影响,由于随着卫星高 度的降低,对流层影响愈显著,测量误 差随之增大。因此,卫星高度角一般都 规定大于15°;
24、什么是GPS定位的精度因子?
• 精度因子通常包括:平面位置精度因子 HDOP, 高程位置精度因子 VDOP,空间位置精度因子 PDOP,接收机钟差精度因子 TDOP,几何精度 因子GDOP等; • 用户接收机普遍采用空间位置精度因子(又 称图形强度因子)PDOP值,来直观地计算并 显示所观测卫星的几何分布状况。其值的大 小与观测卫星在空间的几何分布变化有关。 所测卫星高度角越小,分布范围越大,PDOP 值越小。实际观测中,为了减弱大气折射的 影响,卫星高度角不能过低。在满足15°高 度角的前提下,PDOP值越小越好。PDOP值不 能满足规范的要求时,则要求暂时中断观测 并作好记录。

GPS名词解释简答答案

GPS名词解释简答答案

一、名词解释1、岁差:地球在绕太阳运行时,地球自转轴的方向在天球上缓慢移动,春分点在黄道上随之慢慢移动章动:在岁差的基础上还存在各种大小和周期各不相同的微小的周期性变化2、WGS-84坐标系:美国国防部1984年世界大地坐标系,属于协议地球坐标系3、卫星星历:描述有关卫星轨道的信息4、自相关系数:R(t)=(Au-Bu)/(Au+Bu)Au为相同码元数Bu为相异码元数5、重建载波:在进行载波相位测量前,首先要进行解调工作,设法将调制在载波上的测距码和导航电文去掉,重新恢复载波,这一工作叫重建载波6、相对定位:确定同步跟踪相同的GPS卫星信号的若干台接收机之间的相对位置(坐标差)的定位方法7、伪距:ρ=τ*c 距离ρ并不等于卫星至地面测站的真正距离,叫伪距8、整周跳变:如果由于某种原因使计数器无法连续计数,那么信号被重新跟踪后,整周计数器中将丢失某一量而变得不正确。

而不足一整周的部分Fr(φ)由于是一个瞬时量测值,因而仍是正确的,这种现象叫整周跳变9、整周未知数:载波相位测量时,载波相位与基准相位之间相位差的首观测值所对应的整周未知数10、PDOP值:空间位置精度因子11、相对论效应:是由于卫星钟和接收机钟所处的状态(速度和重力位)不同而引起卫星钟和接收机钟产生相对钟误差的现象12、数学同步误差:加上改正数后的卫星钟读数和GPS标准时间之差称为数学同步误差13、平均相位中心:天线瞬时相位中心的平均值14、独立基线:两台接收机得到的多余观测边以外的必要基线15、异步环闭合差:不是完全由同步观测基线所组成的闭合环称为异步环,异步环的闭合差16、基线解算:利用多个测站的GPS同步观测数据,获得这些测站之间坐标差的过程17、网平差:将基线结果再当成数据18、约束平差:平差时所采用的观测值完全是GPS观测值(即GPS基线向量),而且,在平差时引入了使得GPS网产生由非观测量所引起的变形的外部起算数据。

19、Ratio值:反映了所确定出的整周未知数参数的可靠性,这一指标取决于多种因素,既与观测值的质量有关,也与观测条件的好坏有关。

GPS基础知识一

GPS基础知识一

GPS 复习题一1.GPS 卫星定位技术的发展过程推算定位-天文导航-惯性导航-无线电导航第一代:实验卫星(Block I)1978-1985共发射11颗,设计寿命5年,停止工作第二代 :Block II 、Block IIA 、Block IIR 、Block IIF1988-1994年共发射28颗Block II 、Block IIA第三代 : Block I Ⅲ下一代工作卫星2.GPS 系统的组成空间部分:24颗卫星 (21颗工作卫星+3颗备用卫星 ),6个近圆形轨道面,高度约20200km ,地面控制部分: 1个主控站、5个监测站、3个注入站用户设备部分: 用户设备主要是GPS 接收机,它由天线前置放大器、信号处理、控制与显示、记录和供电单元组成。

3.GPS 系统特点定位精度高定位精度高 观测时间短 测站间无需通视 可提供三维坐标 操作简便,全天候作业 功能多,应用广4.名词解释黄道 :地球公转的轨道面与天球相交的大圆,即当地球绕太阳公转时,地球上的观测 者所见到的太阳在天球上的运动轨迹。

黄道面与赤道面的夹角ε称为黄赤交角,约23.50。

春分点 : 当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点γ。

岁差 : 春分点在黄道上产生缓慢西移,此现象在天文学上称为岁差。

章动 : 瞬时北天极将绕瞬时平北天极产生旋转,轨迹大致为椭圆。

这种现象称为章动。

极移 :地球自转轴相对于地球体的位置不是固定的,地极点在地球表面上的位置随时间而变化的现象称为极移。

历元: 在天文学和卫星定位中,与所获取数据对应的时刻也称历元。

5.什么是协议坐标系?建立方法,协议天球坐标系与协议地球坐标系的转换坐标系统是由坐标原点位置、坐标轴指向和尺度所定义的。

在GPS 定位中,坐标系原点一般取地球质心,而坐标轴的指向具有一定的选择性,为了使用上的方便,国际上都通过协议来确定某些全球性坐标系统的坐标轴指向,这种共同确认的坐标系称为协议坐标系。

2020年咨询工程师继续教育试卷工程测量卫星定位测量97分

2020年咨询工程师继续教育试卷工程测量卫星定位测量97分

2020年咨询工程师继续教育试卷工程测量卫星定位测量97分一、单选题【本题型共15道题】1.()差分可以消除整周模糊度参数。

A.一次B.二次C.三次D.四次用户答案:[C] 得分:3.002.GPS静态控制网外业观测时,观测人员不需要()。

A.按照观测方案规定的时间到达指定地点B.安置GNSS接收机设备C.天线高的量测及记录D.在外业观测手簿中记录每一个历元的伪距及载波相位观测值。

用户答案:[D] 得分:3.003.从RINEX格式的观测值文件可以看出()。

A.伪距和载波相位作为直接观测值由接收机直接提供给用户B.伪距观测值由接收机直接提供给用户,载波相位观测值则需要测绘工作者根据接收机提供的其它观测值自行解算。

C.伪距观测值由测绘工作者根据接收机提供的其它观测值自行解算,载波相位观测值则由接收机直接提供D.伪距和载波相位观测值均需要测绘工作者根据接收机提供的其它观测值自行解算用户答案:[C] 得分:3.004.GPS RTK流动站不需要配备()。

A.GNSS接收机B.电子手簿C.电瓶D.对中杆用户答案:[C] 得分:3.005.利用GNSS卫星进行定位测量时,关于PDOP(位置精度衰减因子)的说法正确的是()。

A.越大越好B.越小越好C.介于3-5之间最好D.大于10最好用户答案:[B] 得分:3.006.GPS RTK可达到()精度。

A.亚毫米级B.毫米级C.厘米级D.分米级用户答案:[C] 得分:3.007.依据规划,北斗系统完全建成后,静止轨道卫星的数量为()颗。

A.2B.5C.10D.27用户答案:[B] 得分:3.008.对工程测量而言,GNSS网基准一般通过(),并将其在整体平差计算加以固定的方式实现。

A.假定网中3个点的坐标B.假定网中4个点的坐标C.假定网中3个点的坐标以及一个方位D.联测国家等级控制点用户答案:[B] 得分:3.009.C/A码的码长度为1023比特,周期为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AMBIGUITY DILUTION OF PRECISION:AN ADDITIONAL TOOL FOR GPS QUALITY CONTROLP.J.G. Teunissen, D. Odijk and C.D. de JongDepartment of Mathematical Geodesy and PositioningDelft University of TechnologyThijsseweg 11, Delft 2629 JAThe NetherlandsAbstractInteger carrier phase ambiguity resolution is often a prerequisite for high precision GPS positioning. It applies to a great variety of GPS models, including those which are used in hydrographic applications and marine positioning. Since the quality of kinematic GPS positioning depends critically on whether the correct integer ambiguities are used or not, it is of importance to have easy-to-compute diagnostics available that measure the expected success rate of ambiguity resolution. In this contribution we will introduce and analyse such an ambiguity dilution of precision (ADOP) measure. In contrast to the traditional way in which DOP-measures are introduced, our ADOP is defined such that it is invariant for the class of admissible ambiguity transformations. It does not depend on the arbitrary choice of reference satellite when constructing the double differenced ambiguities. Since the GPS ambiguities are known to be highly correlated, the ADOP is constructed such that it not only captures the precision but also the correlation characteristics of the ambiguities. We will present the ADOP s for a variety of GPS models and show their behaviour by graphical means. These models include single-baselines as well as kinematic networks such as those used for attitude determination and seismic streamer positioning. It is also shown how the ADOP can be used to bound the success rate of ambiguity resolution.1. IntroductionGPS ambiguity resolution is the process of resolving the unknown cycle ambiguities of the double-difference carrier phase data as integers. It is the key to high precision GPS relative positioning. Once the integer ambiguities are resolved, the carrier phase measurements will start to act if they were very precise pseudorange (code) measurements. As a consequence the remaining parameters in the model, such as the baseline components, can be estimated with a comparable high precision.Ambiguity resolution applies to a great variety of GPS models currently in use. These models may range from single-baseline models used for kinematic positioning to multi-baseline models used for studying geodynamic phenomena. An overview of these and other GPS models, together with their applications in surveying, navigation and geodesy, can be found in textbooks such as (Hofmann-Wellenhof et al., 1997), (Kleusberg and Teunissen, 1996), (Leick, 1995), (Parkinson and Spilker, 1996) and (Strang and Borre, 1997). Also in hydrography and marine geodesy, the use of high precision GPS positioning, based on ambiguity resolution, has gained momentum. This not only holds true for the more traditional surveying tasks, but also for applications such as attitude determination and the positioning of seismic streamer networks, see e.g. (Lachapelle et al., 1994), (Zinn and Rapatz, 1995), (Cross, 1994).Surveyors and hydrographers alike have always been aware of the importance of quality control (see e.g. the UKOOA recommendations). They know that a mere adjustment of redundant data is not enough. Proper testing procedures, enabling one to check for errors in the data and/or errorsin the models, need to be included as well, (Baarda, 1968), (Teunissen, 1985). As a consequence the quality of the survey results can be described in terms of precision and reliability. These standard procedures of adjustment, testing and quality control are however not directlyapplicable to the problem of GPS ambiguity resolution. This is due to the integer nature of the carrier phase ambiguities. Only in recent years a rigorous theory has emerged for the estimation and validation of these integer GPS ambiguities (Teunissen, 1993). In this contribution we will focus on one aspect of this theory, namely the success rate of integer ambiguity estimation. For more details on the theory and its application, we refer to the list of the references.2. The quality of ambiguity resolutionAmbiguity resolution is that part of the GPS data adjustment in which the ambiguities areconstrained to integers. The idea is that the precision of the GPS baseline improves when use is made of these integer constraints. The procedure for incorporating these constraints can be divided into three steps. In the first step one simply performs a standard adjustment. Hence, in this first step the integer constraints are still disregarded. As a result one obtains the real-valued least-squares solution for both the ambiguities and the baseline(s). This solution is often referred to as the ‘float’ solution. In the second step the most likely integer values of the ambiguities are determined. They are determined from the real-valued least-squares ambiguities of the first step.Finally in the third step, these integer values of the ambiguities are used to adjust the ‘float’baseline solution of the first step. As a result one obtains the so-called ‘fixed’ baseline solution.For more details on the computational intricacies of this procedure we refer to (Teunissen,1993), (de Jonge and Tiberius, 1996).It is of course not enough to perform the above computations and be done with it. One canalways compute an integer ambiguity solution, whether it is of good quality or not. One therefore still needs to consider the quality of the solution so computed. In case of ambiguity resolution this is particularly critical. Unsuccessful ambiguity resolution, when passed unnoticed, will often lead to unacceptable errors in the positioning results. In the current practice of GPS positioning there are unfortunately no rigorous measures in place to diagnose the quality of ambiguity resolution. Although use is made of important precision- and reliability measures, such asPDOP s (Position Dilution of Precision) and MDB s (Minimal Detectable Biases), no measure is yet available that is particularly focussed on ambiguity resolution. Hence, the user has no way of knowing how often he can expect the computed ambiguity solution to coincide with the true, but unknown integer solution. Is this nine out of ten times, ninety-nine out of a hundred, or a higher percentage? It will surely never equal one hundred percent. After all, the integer ambiguities are computed from the data, and since the data are subject to uncertainty, so are the computed integer ambiguities. Although a success rate of a hundred percent is impossible, the user will clearly not accept a much smaller percentage. A succes rate of ninety percent may seem high, but it still means that only nine out of ten position fixes are based on correct integer ambiguities.This will not be acceptable in applications where one aims at a high productivity, such as in case of instantaneous (on-the-fly) GPS positioning.In order to obtain a proper measure for the success rate of ambiguity resolution, one needs the probability distribution of the integer ambiguities (Teunissen, 1997a). Of this probability mass function, the probability of correct integer estimation is particularly of importance. This probability will be denoted as P a a ()ù=. It describes how often the computed vector of integer ambiguities, ùa , will equal the unknown, but true vector of ambiguities, a . This probability depends on three contributing factors: the observation equations (the functional model), the precision of the observables (the stochastic model) and the chosen method of integer ambiguity estimation. Changes in any one of these will affect the success rate.3. Integer bootstrappingAs to the method of integer ambiguity estimation, one has a variety of options available(Teunissen, 1998a). Here we will restrict ourselves to one of the simpler methods, the method of integer bootstrapping. The integer bootstrapped ambiguity vector follows from applying asequential rounding scheme to the real-valued least-squares ambiguities. It goes as follows. If n ambiguities are available, one starts with the first ambiguity and rounds its value to the nearest integer. Having obtained the integer value of this first ambiguity, the real-valued estimates of all remaining ambiguities are then corrected by virtue of their correlation with the first ambiguity.Then the second, but now corrected, real-valued ambiguity estimate is rounded to its nearest integer. Having obtained the integer value of the second ambiguity, the real-valued estimates of all remaining n-2 ambiguities are then again corrected, but now by virtue of their correlation with the second ambiguity. This process is continued until all ambiguities are taken care of. In essence this ‘bootstrapping’ technique boils down to the use of a sequential conditional least-squares adjustment, with a conditioning on the integer ambiguity values obtained in the previous steps.It can be shown that the success rate of this bootstrapped integer estimation method is given as P a a a i Ii n ()(())üù==−∏=21211Φσwhere Φ(x ) denotes the integral of the standardized normal probability density function from minus infinity to x . This probability equals the product of n terms, where n equals the number of carrier phase ambiguities. In each term the Φ-function needs to be evaluated using one of the sequential conditional standard deviationsσü,,a i I i nfor =1êThis is the standard deviation of the i th ambiguity, conditioned on the assumption that all previous I={1,..., (i-1)} ambiguities are known. The above success rate was introduced in(Teunissen, 1997a) and has been used in (Teunissen et al., 1998a,b) to analyse the reliability of ambiguity resolution for different GPS models.4. Bootstrapping and ambiguity decorrelationAlthough the above given expression gives the exact value of the bootstrapped success rate, it should be noted that the method of integer bootstrapping is not invariant for a reordering or a permutation of the ambiguities. The result of integer bootstrapping may change when the ordering of the ambiguities is changed. Thus also the corresponding success rate may change when the ordering of the ambiguities is changed. This lack of invariance also applies when one changes the definition of the ambiguities. There are different ways of defining DD ambiguities.When defining DD ambiguities, one has to specify which satellite is taken as the reference satellite. Since each satellite can be chosen as reference, one already has as many definitions of the DD ambiguities. Since each such set of DD ambiguities will have a different variance-covariance matrix, also the sequential conditional variances and the bootstrapped success rate will differ for the different sets. This implies that one set of DD ambiguities will have a higher success rate than another set. Since the bootstrapped success rate gets larger when the sequential conditional variances get smaller, one should aim at using an ambiguity parametrization which gives the smallest possible sequential conditional variances. A method which has this aim in mind is the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method. By means of the ambiguity decorrelation process of this method, the original DD ambiguities aretransformed to new ambiguities which all have much smaller conditional variances. The methodwas introduced in (Teunissen, 1993) and has since then been used for various applications. A few examples are (Tiberius and de Jonge, 1995), (Han, 1995), (de Jonge and Tiberius, 1996),(Boon and Ambrosius, 1997), (Boon et al., 1997), (Jonkman, 1998). The conclusion readstherefore that one should first apply the LAMBDA method before commencing with the integer bootstrapping. Thus also the computation of the above given success rate should be based on the sequential conditional variances of the transformed ambiguities obtained by means of the LAMBDA method.5. Ambiguity dilution of precisionAlthough the above given procedure for computing the bootstrapped success rate is the one that should be preferred, it would still be helpful if a simpler diagnostic measure could be found.Such a measure is the Ambiguity Dilution of Precision (ADOP ). It was introduced in (Teunissen,1997b) and it has been applied to different GPS models in (Teunissen and Odijk, 1997). The ADOP is based on the determinant of the variance-covariance matrix of the least-squares ambiguities and it is defined asADOP Q cycle a n=det ()ü1where Q â denotes the variance-covariance matrix of the ambiguities and n its order. The ADOP is a scalar measure and it is expressed in the ‘unit’ of cycles. The ADOP has a number ofinteresting properties, three of which will be mentioned here. The ADOP equals the geometric average of the sequential conditional standard deviations of the least-squares ambiguities. This follows from the fact that the determinant of the variance-covariance matrix of the ambiguities equals the product of the n sequential conditional variances. The ADOP is thus a simple measure for the average precision of the ambiguities. It can be used as a design parameter. No actual measurements are needed to compute the ADOP . Only the variance-covariance matrix of the ambiguities is needed. This variance matrix can be computed from the design matrix and the variance matrix of the GPS observables.An important property of the ADOP is its invariance against the choice of ambiguityparametrization. Since all admissible ambiguity transformations can be shown to have adeterminant which equals one, the ADOP does not change when one changes the definition of the ambiguities. It therefore measures the intrinsic precision of the ambiguities.The ADOP can also be used to provide an upperbound for the success rate of integer bootstrapping. This upperbound reads as P a a ADOP n()[()]ù=≤−2112ΦThis relation shows how the ADOP can be used to infer whether the success rate of integer bootstrapping is not too small. As mentioned earlier the left-hand side of the inequality depends on the chosen ambiguity parametrization. The right-hand side, however, is invariant for this choice. Hence the above upperbound covers the success rates for all possible choices ofambiguity parametrization. This means that when using the ADOP in the above upperbound, one does not have to worry about the definition that has been used in the formation of the ambiguities.6. Some examplesWe will now show how the ADOP can be used to study the success rate of ambiguity resolution for various measurement set-ups. One can choose to use the ADOP s directly, or alternatively choose to use them for the computation of the upperbounds of the ambiguity success rates. Both approaches will be shown. To get a feeling of how the two approaches are related numerically,consider the following. Let us assume that one aims at an ambiguity success rate not smaller than 99%. To reach such a success rate for a single ambiguity requires a standard deviation of about 0.2 cycle. Hence, if n =1 and ADOP =0.2, then P a a ()ù==99%. When we keep the ADOP fixed,this probability will get smaller when n gets larger. Thus for larger n , smaller ADOP -values are needed to get the same probability. Since P a a ().ù==999%in case ADOP =0.15 and n =1, the corresponding upperbound follows as (99.9%)n . This upperbound equals 99% in case n =10.Example 1: short baseline geometry-free modelA GPS model is referred to as a ‘short baseline’ model when the ionospheric delays are assumed absent. The geometry-free GPS model is the simplest model one can think of for ambiguity resolution. In this model the DD observation equations are parametrized in terms of the DD receiver-satellite ranges instead of in the baseline components. Due to this parametrization, the information content of the relative receiver-satellite geometry is not used. Hence the term ‘geometry-free’. The geometry-free model can of course not be used directly for positioning purposes. It can be used however for determining the integer values of the DD carrier phase ambiguities, see e.g. (Hatch, 1982), (Dedes and Goad, 1994), (Teunissen, 1996), (Teunissen and Odijk, 1997), (Jonkman, 1998). Once the integer ambiguities have been determined, the carrier phases will act as if they are very precise pseudoranges. Precise positioning is then possible by means of these ‘resolved’ carrier phases (de Jong, 1998).Figure 1 shows the ADOP s for the short baseline geometry-free model as function of the number of epoch-samples used. The ADOP s are shown for the single frequency (L1) and for the dual-freqeuncy (L1+L2) case. They are also shown for a different number of satellites tracked. For the geometry-free model a minimum of 2 satellites is needed. The standard deviation of theundifferenced phase observation was set at 3mm and the undifferenced standard deviation of the pseudorange (code) observation was set at 30cm. Unless otherwise stated, these same values are also used in the remaining part of this contribution.The figure shows that the improvement in the ADOP s, when increasing the number of satellites,is marginal. This is a consequence of not using the relative receiver-satellite geometry. The figure also shows that there is a significant difference between the single- and dual frequency case. The ADOP s of the dual-frequency case are significantly smaller than those of the single-frequency case (note the logarithmic scale). The figure shows that one can not expect to have a successful ambiguity resolution in the single-frequency case, when one aims at an ADOP of 0.15cycle.pseudorange precisionbaseline geometry-free GPS modelIt will be clear that the ADOP depends on the observation precision. Changes in the standard deviations will change the ADOP. Significant changes in the precision of the carrier phase measurements are not likely. Over the years though, the precision of the pseudoranges did change. Due to technological advances, the precision of the receiver-outputted pseudoranges has improved.Figure 2 shows for the two-satellite case, what a change in the pseudorange precision does to the ADOP s. The standard deviations were set at the values 60cm, 30cm and 10cm. The full curves correspond to the single-frequency case and the dashed curves to the dual-frequency case. The figure shows that single-frequency ambiguity resolution becomes feasible when the pseudorange precision reaches the level of 10cm or better.Example 2: long baseline geometry-free modelIn case of long baselines the ionospheric delays can not be neglected anymore. These delays will have to be included as unknowns into the observation equations. As a consequence, dual-frequency data are needed per se to be able to solve the model. Figure 3 shows the corresponding ADOP s. Note that these dual-frequency ADOP s are of about the same magnitude as the single-frequency ADOP s of the short baseline model. Since the values of the ADOP s stay well above the 0.3 cycle level, one can not expect to have a successful ambiguity resolution.GPS model of ambiguitiesIt is of course quite disappointing that one can not expect to have a successful ambiguity resolution for the long baselines. One should keep in mind however that the above results are based on the assumption that all ambiguities need to be resolved. The success rate of ambiguity resolution improves if one settles for resolving less ambiguities, for instance only the most precise half of the number of ambiguities. This is shown in figure 4.Example 3: ambiguity resolution for attitude determinationSo far we considered the single baseline, geometry-free model. The ADOP s may also be computed for other type of GPS models. Consider a four-receiver network used for attitude determination. In this case we have a geometry-based model, since the relative receiver-satellite geometry is included in the observation equations. The network consists of three independent baselines. Since these baselines are usually extremely short, the atmospheric delays are neglected.Figure 5 shows the corresponding ADOP-profile for a period of 24 hours at the location Plymouth on 7 January 1999. This ADOP-profile is based on the 4-receiver GPS attitude modelusing single epoch, dual-frequency data. Hence, it corresponds to the case of instantaneous attitude determination. The cut-off elevation was set at 20 degrees.Since the relative receiver-satellite geometry is now included in the model, one can expect the ADOP s to be smaller than the dual-frequency, single-epoch ADOP s of figure 1. And indeed as figure 5 shows, most of the ADOP-values are about 0.1 cycle or even much smaller. The figure shows also however, that there are still two periods for which the ADOP s are larger than 0.15 cycles. Hence, there are still two periods in the day where successful ambiguity resolution for instantaneous attitude determination may turn out to be problematic. Of course, the ADOP s will improve if one assumes that a lower cut-off elevation is permitted. For the present case, all ADOPbased on dual-frequency data, using a cut-off elevation of 20 degreesExample 4: short baseline geometry-based modelSo far we have plotted the ADOP s. In this last example we will use the ADOP s to plot the upperbound of the ambiguity success rates. These upperbounds are shown in figure 6 for the single epoch, short baseline, geometry-based model, for a period of 24 hours at the location Plymouth on 7 January 1999. The single-frequency case (cut-off elevation of 10 degrees) is shown in figure 6a and the dual-frequency case (cut-off elevation of 20 degrees) is shown in figure 6b. From figure 6a we learn that there are periods in which one should not rely too much on the results of instantaneous ambiguity resolution using L1 data only. The success rates in these periods are simply too small. A similar result can be seen for the dual-frequency case in7. ReferencesBaarda, W. (1968): A testing procedure for use in geodetic networks. Netherlands Geodetic Commission, Publications on Geodesy, New Series, Vol. 2, No. 5.Boon, F., B. Ambrosius (1997): Results of real-time application of the LAMBDA method in GPS based aircraft landings. Proc KIS97, pp. 339-345.Boon, F., P.J. de Jonge, C.C.J.M. Tiberius (1997): Precise aircraft positioning by fast ambiguity resolution using improved tropospheric modelling. Proc ION GPS-97, Vol. 2, pp. 1877-1884.Cross, P. A. (1994): Quality measures for differential GPS positioning. The Hydro. J., No. 72, pp. 17-22.Dedes, G., C. Goad (1994): Real-time cm-level GPS positioning of cutting blade and earth movement equipment.In: Proc. 1994 Nat. Tech. Meeting ION, San Diego, California, pp. 587-594.de Jong, C.D. (1998): A modular approach to precise GPS positioning. GPS Solutions, Vol. 2, No. 3.de Jonge P.J., C.C.J.M. Tiberius (1996): The LAMBDA method for integer ambiguity estimation: implementation aspects. Delft Geodetic Computing Centre LGR Series No. 12, Delft University of Technology.Han, S. (1995): Ambiguity resolution techniques using integer least-squares estimation for rapid static or kinematic positioning. Symp. Satellite Navigation Technology: 1995 and beyond, 10 p.Hatch, R. (1982): The synergism of GPS code and carrier measurements. In: Proc. 3rd Int. Geod. Symp. Satellite Positioning. Las Cruces, New Mexico, 8-12 February, Vol. 2, pp. 1213-1231.Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins (1997): Global Positioning System: Theory and Practice. 4th edition. Springer Verlag.Jonkman, N.F. (1998): Integer GPS ambiguity estimation without the receiver-satellite geometry. LGR-Series No.18, Delft Geodetic Computing Centre, 95 pp.Kleusberg, A., P.J.G. Teunissen (eds) (1996): GPS for Geodesy, Lecture Notes in Earth Sciences, vol. 60. Springer Heidelberg New York.Lachapelle, G., G. Lu, R. Loncarevic (1994): Precise shipborne attitude determination using wide antenna spacing.Proc KIS94, pp. 323-330.Leick, A. (1995): GPS Satellite Surveying, 2nd edition. John Wiley, New York.Parkinson, B., J.J. Spilker (eds) (1996): GPS: Theory and Applications, Vols 1 and 2, AIAA, Washington DC. Strang, G., K. Borre (1997): Linear Algebra, Geodesy, and GPS. Wellesley-Cambridge Press.Teunissen, P.J.G. (1985): Quality control in geodetic networks. Chapter 17 in Optimization and Design of Geodetic Networks, E. Grafarend and F. Sanso (eds), Springer Verlag.Teunissen, P.J.G. (1993): Least-squares estimation of the integer GPS ambiguities. Invited Lecture, Section IV Theory and Methodology, IAG General Meeting, Beijing, China. Also in: Delft Geodetic Computing Centre LGR Series No. 6, Delft University of Technology.Teunissen, P.J.G. (1996): An analytical study of ambiguity decorrelation using dual-frequency code and carrier phase. Journal of Geodesy., 70:515-528.Teunissen, P.J.G. (1997a): Some remarks on GPS ambiguity resolution. Art. Satellites, Vol. 32, No. 3. Teunissen, P.J.G. (1997b): A canonical theory for short GPS baselines. Journal of Geodesy, Vol. 71. Part I: the baseline precision, No. 6, pp. 320-336. Part II: the ambiguity precision and correlation, No. 7, pp. 389-401. Part III: the geometry of the ambiguity search space, No. 8, pp. 486-501. Part IV: precision versus reliability, No. 9, pp. 513-525.Teunissen, P.J.G. (1998a): A class of unbiased integer GPS ambiguity estimators. Art. Satellites, Vol. 33, No. 1. Teunissen, P.J.G. (1998b): Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of Geodesy, in print.Teunissen, P.J.G., D. Odijk (1997): Ambiguity dilution of precision: definition, properties and application. Proc.ION GPS-97, Kansas City, USA, 16-19 September, pp. 891-899.Teunissen, P.J.G., P. Joosten, D. Odijk (1998a): The reliability of GPS ambiguity resolution. GPS Solutions, Vol. 2, No. 3.Teunissen, P.J.G., D. Odijk, P. Joosten (1998b): A probabilistic evaluation of correct GPS ambiguity resolution.Paper presented at ION GPS-98, Nashville, USA, 15-18 September.Tiberius, C.C.J.M., P.J. de Jonge (1995): Fast positioning using the LAMBDA method. In: Proc. DSNS-95, Bergen, Norway, April 24-28, Paper No. 30.Zinn, N., P.J.V. Rapatz (1995): Reliability analysis in marine seismic networks. The Hydro. J., No. 76, pp. 11-18.。

相关文档
最新文档