2020-2021学年山东省聊城市冠县九年级(上)期末数学试卷
2020-2021学年山东省聊城市冠县九年级(上)期末数学试卷 解析版
2020-2021学年山东省聊城市冠县九年级(上)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)2.△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是()A.sinα=cosαB.tan C=2C.sinβ=cosβD.tanα=13.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0B.k≥﹣1且k≠0C.k≥﹣1D.k>﹣14.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5C.D.55.若抛物线y=ax2+2ax+4(a<0)上有A(﹣,y1),B(﹣,y2),C(,y3)三点,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1 6.如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4B.1:3C.1:2D.1:17.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i =1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米8.如图,在Rt△ABC中,∠A=90°,BC=2,以BC的中点O为圆心⊙O分别与AB,AC相切于D,E两点,则的长为()A.B.C.πD.2π9.已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.10.若a,b是方程x2+2x﹣2016=0的两根,则a2+3a+b=()A.2016B.2015C.2014D.201211.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2的值为()A.2B.3C.4D.﹣412.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④二.填空题(本题共6个小题,每小题3分,共18分,只要求写出最后结果)13.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.14.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.15.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为.17.已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为.18.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y =的图象经过点B,则k的值为.三、解答题(本大题共7个小题,共66分。
聊城市冠县第一学期九年级期末考试
聊城市冠县第一学期期末考试九年级数学一、选择题 (此题共 12个小题,每题4分,共 48分。
在每题给出的四个选项中,只有一项切合题目要求,将正确选项涂到答题卡上)1.在△ ABC 中,∠ C=9 0°, AB=12 ,sinB= 1,则AC等于() 31B. 36 C.1D. 4A .4362.已知两圆的圆心都在 Y 轴上, A 、B 为两圆的交点,若点 A 的坐标为 (1,-2),则点 B的坐标为()A . (-1,-2) B.(1,2) C. (-1, 2) D.没法求出3.以下说法中,合理的有几个( )(1) 买彩票中奖是个随机事件,因其中奖的概率都是50%.(2) 小王在 10次抛图钉的试验中发现3次钉尖向上,据此他说钉尖向上的概率必定是30%.(3) 在一次讲堂进行的试验中,甲乙两组同学预计一枚硬币正面向上的概率分别0.48和 0.51。
(4) 投掷一枚一般的正六面体骰子,骰子落地后出现2的概率是1,但有人连续两次掷得了 2 6点。
A.1个B. 2个C. 3个D. 0个4.二次函数y x 2 2 ax a2 的极点在直线x=2上,则这个二次函数的最小值为( )A . 4 B.16 C. 12 D.115.有四条线段,长度(cm) 分别是 2, 4, 6, 8,从中取三条能组成三角形的概率是( )1 1 1D. 1A .B.C.2 3 426.在 Rt △ ABC 中,∠ C=90°,若 cosA=2,则 sinB 的值为 ()12 3A.B.C.D.122 27.已知二次函数y甲mx 2和 y乙nx 2的图像以下图,则对于m、 n的关系正确的选项是A . m>n B . m<n C. m≥ n D.m≤ n8.如图, AD 是⊙ O的直径, AB , AC ,BC , CD 是⊙ O的弦,若⊙ O的半径为3,AC=2,2则cosB 的值是3 5 5 2A .B .C. D .2 3 2 39.一枚均匀的正方体骰子,六个面分别标有数字1、 2、 3、 4、 5、 6,连续投掷两次,向上的数字分别是 m、n。
山东省聊城市2020年九年级上学期数学期末考试试卷A卷
山东省聊城市2020年九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2017八上·黄梅期中) 下面四个QQ表情图案中,不是轴对称图形的是()A .B .C .D .2. (2分) (2017九上·鄞州月考) 已知二次函数y=kx2﹣7x﹣7的图象与x轴有两个交点,则k的取值范围为()A . k>B . k>且k≠0C .D . 且k≠03. (2分)(2017·武汉模拟) 下列说法中正确的是()A . “打开电视机,正在播放《动物世界》”是必然事件B . 某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C . 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D . 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查4. (2分)实数a,b在数轴上的位置如图所示,则关于x的一元二次方程ax2+bx+1=0()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 不一定有实数根5. (2分)若x=1是方程x2+nx+m=0的根,则m+n的值是()A . 1B . -1C . 2D . -26. (2分)已知抛物线y=x2+3x+c经过三点,则的大小关系为()A .B .C .D .7. (2分)如图,用一块直径为a的圆桌布平铺在对角线长为a的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为()A .B .C .D .8. (2分)(2017·江北模拟) 如图,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面高2.2m,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时达到最大高度4m,篮圈运行的轨迹为抛物线的一部分,篮圈中心距离地面3m,运动员发现未投中,若假设出手的角度和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得()A . 比开始高0.8mB . 比开始高0.4mC . 比开始低0.8mD . 比开始低0.4m9. (2分) (2020九上·醴陵期末) 已知二次函数y=ax2+bx+c()的图像如图所示,则下列结论:(1)ac>0;(2)方程ax2+bx+c=0的两根之积小于0;(3)a+b+c<0;(4)ac+b+1 <0,其中符合题意的个数()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)10. (1分) (2017七下·宝丰期末) 在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是________.11. (1分) (2019九上·道外期末) 二次函数y=x2+2的图象,与y轴的交点坐标为________.12. (1分)若a+b=7,ab=12,则a2+b2的值为________.13. (1分)(2017·鄂州) 已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为________.14. (1分)某种植物的主干长出若干数目的枝干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数目是21,则每个支干长出________.15. (1分)如图,在⊙O中,AB是弦,OC⊥AB,垂足为C,若AB=16,OC=6,则⊙O的半径OA= ________16. (1分)(2017·邗江模拟) 如图坐标系中,O(0,0),A(6,6 ),B(12,0),将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,若OE= ,则CE:DE的值是________.17. (1分) (2019八下·卢龙期中) 如图,将边长为2的等边三角形沿x轴正方向连续翻折2016次,依次得到点P1 , P2 , P3 ,…,P2016 ,则点P2016的坐标是________.三、解答题 (共8题;共72分)18. (5分) (2016九上·栖霞期末) 计算题(1)计算:sin45°﹣cos30°tan60°(2)解方程:x2﹣4x﹣1=0.19. (10分) (2018九上·天台月考) 在正方形ABCD中,点E为对角线AC(不含点A)上的任意一点,AB= ,(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF①把图形补充完整(无需写画法),②求EF2的取值范围;(2)如图2,求BE+AE+DE的最小值20. (2分) (2018九上·渭滨期末) 四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.21. (10分) (2017八下·射阳期末) 已知关于x的方程(1)若方程有实数根,求k的取值范围;(2)若方程有两个相等的实数根,求k的值,并求此时方程的根。
山东省聊城市冠县东古城镇中学九年级数学上学期期末模拟测试试题(无答案) 新人教版
一、选择题(本大题共20小题,每小题3分,满分60分)1.以下多边形中,既是轴对称图形又是中心对称图形的是( )A .正五边形B .矩形C .等边三角形D .平行四边形2. 已知关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为( ). A. 1 B. -1 C. 1或-1 D. 213. 在半径为12cm的圆中,垂直平分半径的弦长为( )A 33 cmB 27 cmC 312 cmD 36 c m4.观察右图,在下列四种图形变换中,该图案不包含的变换是( )A .平移B .轴对称C .旋转D .位似 5.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单 位,则圆的直径为( )A. 12个单位B. 10个单位C.4个单位D. 15个单位6.下列说法中,①平分弦的直径垂直于弦 ②直角所对的弦是直径 ③相等的弦所对的弧相等 ④等弧所对的弦相等 ⑤圆周角等于圆心角的一半,其中正确的命题个数为 ( )A 、0 B 、1 C 、2 D 、37.一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角45ACB ∠=︒,则这个人工湖的直径AD 为( )A. 502mB.1002mC.1502mD. 2002m8.如图,矩形ABCD 中,E 在AD 上,且EF ⊥EC ,EF=EC ,DE=2,矩形的周长为16,则AE 的长是( ) A.3 B.4 C.5 D.79.一次函数b kx y +=.(b k ,是常数,0≠k )的图像如下图所示,则不等式0>+b kx 的解集是( )A.2-<xB.0>xC.2->xD.0<x10.如图,⊙O 直径CD =5cm ,AB 是⊙O 的弦,AB⊥CD,垂足M ,OM :OD =3:5,则AB 的 长是( ) A .2cm B .3cm C .4cm D .221cm 11.若点A 的坐标为(6,3)O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到 OA ′,则点A ′的坐标是( )A 、(3,﹣6)B 、(﹣3,6)C 、(﹣3,﹣6)D 、(3,6)12.以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( ) A 、(3,3) B 、(5,3) C 、(3,5) D 、(5,5)13.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .下列结论:①EG ⊥FH ,②四边形EFGH 是矩形,③HF 平分∠EHG ,④EG = 1 2(BC -AD),⑤四边形EFGH 是菱形.其中正确的个数是( ) A .1 B .2 C .3 D .414、方程(x+1)(x ﹣2)=x+1的解是( )A 、2 B 、3 C 、﹣1,2 D 、﹣1,315、已知关于x 的方程x 2+b x +a =0的一个根是-a (a ≠0),则a -b 值为( )A.-1B.0C.1D.216、如图,梯形ABCD 中,AD∥BC,AB=CD .AD=2,BC=6,∠B=60°,则梯形ABCD 的周长是A 、12B 、14C 、16D 、1817、已知⊙O 1与⊙O 2的直径分别是4cm 和6cm ,O 1O 2=5cm ,则两圆的位置关系是A .外离B .外切C .相交D .内切18.矩形ABCD 中,AB =8,35BC ,点P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内;(C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.19、小明乘车从南充到成都,行车的平均速度v (km/h )和行车时间t (h )之间的函数图象是( )20.已知一次函数1y kx b =+与反比例函数2k y x =在同一直角坐标 系中的图象如图所示,则当y 1<y 2时,x 的取值范围是A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3二、填空题(本大题共4小题,每小题3分,满分12分) 21.如果关于x 的方程220x x m -+=(m 为常数)有两个相等实数根,那么m =______.22.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________如图,PA 与⊙O 相切,切点为A ,PO 交⊙O 于点C ,点B 是优弧CBA 上一点,若∠ABC=32°,则∠P 的度数为 .23、已知双曲线)0(>=x xk y 经过矩形OABC 过AB 的中点F , 交BC 于点E ,且四边形OEBF 的面积为2,则k= .24.如图①,在△AOB 中,∠AOB =90º,OA =3,OB =4.将△AOB 沿x 轴依次以点A 、B 、O 为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为 。
九年级上册聊城数学期末试卷综合测试卷(word含答案)
九年级上册聊城数学期末试卷综合测试卷(word含答案)一、选择题1.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.12.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是( )A.5 B.2 C.5或2 D.2或7-13.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0 4.如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=35°,则∠C的度数为()A.70°B.65°C.55°D.45°5.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.16的解是()6.方程2x xA.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-17.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是()A.100°B.110°C.120°D.130°8.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .169.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10010.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣111.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°12.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2二、填空题13.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.14.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.15.若a 是方程223x x =+的一个根,则代数式263a a -的值是______. 16.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.17.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.18.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.19.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).20.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.21.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 22.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.23.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.24.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.三、解答题25.如图,已知二次函数2223(0)y x mx m m =-++>的图象与x 轴交于,A B 两点(点A在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)点B 的坐标为 ,点D 的坐标为 ;(用含有m 的代数式表示) (2)连接,CD BC .①若CB 平分OCD ∠,求二次函数的表达式; ②连接AC ,若CB 平分ACD ∠,求二次函数的表达式.26.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;(3)点Q 为抛物线上一点,若8QABS=,求出此时点Q 的坐标.27.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?28.已知二次函数y=x2-2mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.29.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日12月19日12月20日12月21日最高气温(℃)106789最低气温(℃)10﹣10330.一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.(1)用树状图列出所有可能出现的结果;(2)求3次摸到的球颜色相同的概率.31.在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)32.如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与⊙O有公共点时,求t的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.2.D解析:D【解析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2210AC AB BC=+= ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227AC BC AB ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB AC AB OF BC OD AC OE ,∴11116276827 2222r r r ,∴r=71- .故选:D.本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.3.D解析:D【解析】∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0.解得:k>﹣1且k≠0.故选D.考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.4.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.5.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE∥BC,DE=12BC,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=12 BC,∴△ADE∽△ABC,∵DEBC=12,∴14ADEABCSS∆∆=,∵△ADE的面积为4,∴△ABC的面积为:16,故选D.【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.6.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x=,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.7.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个,所以,取出红球的概率为2163 P==,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.9.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.10.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c =0,y =x 2﹣2x =x (x ﹣2),与x 轴两个交点,坐标分别为(0,0),(2,0);由上可得,c 的值是1或0,故选:C .【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键. 11.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB 上任意找一点D ,连接AD ,BD .∵∠D =180°﹣∠ACB =50°,∴∠AOB =2∠D =100°,故选:C .【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.12.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF ,∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD ,∴12EF FC =. 故选D . 二、填空题13.6【解析】【分析】取AB 的中点E ,连接OE ,DE ,OD ,依据三角形中位线定理即可得到BC=2DE ,再根据O ,E ,D 在同一直线上时,DE 的最小值等于OD-OE=3,即可得到BC 的最小值等于6.解析:6【解析】【分析】 取AB 的中点E ,连接OE ,DE ,OD ,依据三角形中位线定理即可得到BC=2DE ,再根据O ,E ,D 在同一直线上时,DE 的最小值等于OD-OE=3,即可得到BC 的最小值等于6.【详解】解:如图所示,取AB 的中点E ,连接OE ,DE ,OD ,由题可得,D 是AC 的中点,∴DE 是△ABC 的中位线,∴BC =2DE ,∵点D 坐标为(4,3),∴OD 2234+5,∵Rt △ABO 中,OE =12AB =12×4=2, ∴当O ,E ,D 在同一直线上时,DE 的最小值等于OD ﹣OE =3,∴BC 的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.14.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm2.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.9【解析】【分析】根据方程解的定义,将a代入方程得到含a的等式,将其变形,整体代入所求的代数式.【详解】解:∵a是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a代入方程得到含a的等式,将其变形,整体代入所求的代数式.解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 16.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m 的函数解析式是解题的关键.18.【解析】【分析】在OA 上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB 时,CP 最小,由相似求出的最小值即可.【详解】解:如图,在OA 上取使,∵,∴,在△和△QOC 中,,【解析】【分析】在OA 上取'C 使'OC OC =,得'OPC OQC ≅,则CQ=C'P ,根据点到直线的距离垂线段最短可知当'PC ⊥AB 时,CP 最小,由相似求出C'P 的最小值即可.【详解】解:如图,在OA 上取'C 使'OC OC =,∵90AOC POQ ∠=∠=︒,∴'POC QOC ∠=∠,在△'POC 和△QOC 中,''OP OQ POC QOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△'POC ≌△QOC (SAS ),∴'PC QC =∴当'PC 最小时,QC 最小,过'C 点作''C P ⊥AB ,∵直线l :28y x =+与坐标轴分别交于A ,B 两点,∴A 坐标为:(0,8);B 点(-4,0),∵'4OC OC OB ===, ∴22228445AB OA OB ++=''4AC OA OC =-=. ∵'''OB C P sin BAO AB AC ∠==, ''445C P =, ∴4''55C P = ∴线段CQ 455 455【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.19.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分解析:51 -【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=51-AB.故答案为:51 -.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则51 ACBC-=,正确理解黄金分割的定义是解题的关键.20.【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的解析:410【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AB=2,∴BE=1,∴=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,4x=-,解得:x=4 3∴=.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,21.【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主解析:【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得635x,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.22.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度. 23.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=25510BD AB ==.24.【解析】【分析】作OH ⊥AB ,延长OH 交于E ,反向延长OH 交CD 于G ,交于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB ∥CD ,所以四边形ABCD 是平行解析:163【解析】【分析】作OH ⊥AB ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB ∥CD ,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH ⊥AB ,垂足为H ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,则OA=OB=OC=OD=OE=OF=4,∵弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG , 又∵OB=OD ,∴Rt △OHB ≌Rt △OGD ,∴HB=GD ,同理,可得AH=CG= HB=GD∴AB=CD又∵AB ∥CD∴四边形ABCD 是平行四边形,在Rt △OHA 中,由勾股定理得:==∴AB=∴四边形ABCD 的面积=AB ×GH=故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形.三、解答题25.(1)(3,0)m ,2(,4)m m ;(2)①21y x =-+,②295y x x =-++ 【解析】【分析】(1)令y =0,解关于x 的方程,解方程即可求出x 的值,进而可得点B 的坐标;把抛物线的解析式转化为顶点式,即可得出点D 的坐标;(2)①如图1,过点D 作DH AB ⊥,交BC 于点E ,作DF ⊥y 轴于点F ,则易得点C 的坐标与CF 的长,利用BH 的长和∠B 的正切可求出HE 的长,进而可得DE 的长,由题意和平行线的性质易推得CD DE =,然后可得关于m 的方程,解方程即可求出m 的值,进而可得答案;(3)如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,利用锐角三角函数、抛物线的对称性和等腰三角形的性质可推出1234∠=∠=∠=∠,进而可得AC AE =,然后利用勾股定理可得关于m 的方程,解方程即可求出m ,问题即得解决.【详解】解:(1)令y =0,则22302x mx m -+=+,解得:123,x m x m ==-,∴点B 的坐标为(3,0)m ;∵()2222243y x mx m x m m =-+-++=-,∴点D 的坐标为2(,4)m m ;故答案为:(3,0)m ,2(,4)m m ;(2)①如图1,过点D 作DH AB ⊥于点H ,交BC 于点E ,作DF ⊥y 轴于点F ,则2(0,3)C m ,(,0)A m -,DF=m ,CF =22243m m m -=,∵BC 平分OCD ∠,∴∠BCO =∠BCD ,∵DH ∥OC ,∴∠BCO =∠DEC ,∴∠BCD =∠DEC ,∴CD DE =, ∵23tan 3OC m ABC m OB m∠===,BH =2m , ∴22HE m =,∴222422DE DH HE m m m =-=-=,∵CD DE =,∴22CD DE =,∴2444m m m +=,解得:33m =(3m =-舍去), ∴二次函数的关系式为:2231y x x =-++;②如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,∵223tan 1,tan 23DG m BK m m m CG m CK m∠===∠===, ∴tan 1tan 2∠=∠,∴12∠=∠,∵EA=EB ,∴∠3=∠4,又∵23∠∠=,∴1234∠=∠=∠=∠,∵12DCB ∠=∠+∠,34AEC ∠=∠+∠,∴DCB AEC ACE ∠=∠=∠,∴AC AE =,∴2222AC AE EH AH ==+,即2442944m m m m +=+,解得:15m =(15m =-舍去), ∴二次函数的关系式为:221595y x x =-++.【点睛】本题考查了二次函数的图象与性质、抛物线图象上点的坐标特征、角平分线的性质、等腰三角形的判定和性质、三角形的外角性质、勾股定理、锐角三角函数和一元二次方程的解法等知识,综合性强、难度较大,正确作出辅助线、利用勾股定理构建方程、熟练掌握上述知识是解答的关键.26.(1)223y x x =--;(2)(1,2)P -1032;(3)1(122,4)Q - ,2(122,4)Q + ,3(1,4)Q -【解析】【分析】(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++即可求出b,c 即可求解; (2)根据A,B 关于对称轴对称,连接BC 交对称轴于P 点,即为所求,再求出坐标及PAC 的周长;(3)根据△QAB 的底边为4,故三角形的高为4,令y =4,求出对应的x 即可求解.【详解】(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++得01093b c b c =-+⎧⎨=++⎩ 解得23b c =-⎧⎨=-⎩∴抛物线的解析式为:223y x x =--;(2)如图,连接BC 交对称轴于P 点,即为所求,∵223y x x =--∴C(0,-3),对称轴x=1设直线BC 为y=kx+b,把(30)B ,, C(0,-3)代入y=kx+b 求得k=1,b=-3, ∴直线BC 为y=x-3令x=1,得y=-2,∴P (1,-2),∴PAC 的周长=AC+AP+CP=AC+BC=[]22(10)0(3)--+--+[]22(30)0(3)-+--=1032+;(3)∵△QAB 的底边为AB=4, 182QAB SAB H =⨯= ∴三角形的高为4, 令y =4,即2234x x --=±解得x 1=122-2=122+3=1故点Q 的坐标为1(122,4)Q - , 2(122,4)Q + ,3(1,4)Q -.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法与一次函数的求解.27.(1)乙平均数为8,方差为0.8;(2)乙.【解析】【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:15[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S 甲2=3.2,S 乙2=0.8,∴S 甲2>S 乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 21n=[(x 1x -)2+(x 2x -)2+…+(x n x -)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.28.(1)证明见解析;(2)k ≥34. 【解析】【分析】(1)根据判别式的值得到△=(2m -1)2 +3>0,然后根据判别式的意义得到结论; (2)把(0,-2)带入平移后的解析式,利用配方法得到k= (m+12)²+34,即可得出结果. 【详解】(1)证:当y =0时 x 2-mx +m 2+m -1=0∵b 2-4ac =(-m )2-4(m 2+m -1)=8m 2-4m 2-4m +4=4m 2-4m +4=(2m -1)2 +3>0∴方程x 2-mx +m 2+m -1=0有两个不相等的实数根∴二次函数y =x 2-mx +m 2+m -1图像与x 轴有两个公共点(2)解:平移后的解析式为: y =x 2-mx +m 2+m -1-k,过(0,-2),∴-2=0-0+m²+m-1-k, ∴k= m²+m+1=(m+12)²+34,∴k ≥34. 【点睛】本题考查了二次函数图象与几何变换以及图象与x 轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.29.见解析【解析】【分析】根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.【详解】 ∵x 高=()110+6+7+8+9=85⨯(℃), x 低 =()11+01+0+3=0.65⨯-(℃),2S 高=()()()()()222221108687888985⎡⎤⨯-+-+-+-+-⎣⎦=2(℃2) 2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2) ∴2S 高>2S 低∴这5天的日最高气温波动大.【点睛】 本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=()()()()22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦. 30.(1)见解析;(2)14【解析】【分析】(1)根据题意画树状图,求得所有等可能的结果; (2)由(1)可求得3次摸到的球颜色相同的结果数,再根据概率公式即可解答.【详解】(1)画树状图为:共有8种等可能的结果数;(2)3次摸到的球颜色相同的结果数为2,3次摸到的球颜色相同的概率=28=14. 【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.31.14【解析】【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【详解】根据题意画出树状图如下:一共有4种情况,确保两局胜的有1种,所以,P =14 . 考点:列表法与树状图法.32.(1)30,6;(2)①457≤t 【解析】【分析】 (1)设点Q 的运动速度为a ,则由图②可看出,当运动时间为5s 时,△PDQ 有最大面积450,即此时点Q 到达点B 处,可列出关于a 的方程,即可求出点Q 的速度,进一步求出AB 的长;(2)①如图1,设AB ,CD 的中点分别为E ,F ,当点O 在QD 上时,用含t 的代数式分别表示出OF ,QC 的长,由OF =12QC 可求出t 的值; ②设AB ,CD 的中点分别为E ,F ,⊙O 与AD ,BC 的切点分别为N ,G ,过点Q 作QH ⊥AD 于H ,如图2﹣1,当⊙O 第一次与PQ 相切于点M 时,证△QHP 是等腰直角三角形,分别用含t 的代数式表示CG ,QM ,PM ,再表示出QP ,由QP QH 可求出t 的值;同理,如图2﹣2,当⊙O 第二次与PQ 相切于点M 时,可求出t 的值,即可写出t 的取值范围.【详解】(1)设点Q 的运动速度为a ,则由图②可看出,当运动时间为5s 时,△PDQ 有最大面积450,即此时点Q 到达点B 处, ∵AP =6t ,∴S △PDQ =12(60﹣6×5)×5a =450, ∴a =6,∴AB =5a =30,故答案为:30,6; (2)①如图1,设AB ,CD 的中点分别为E ,F ,当点O 在QD 上时,QC =AB +BC ﹣6t =90﹣6t ,OF =4t ,∵OF ∥QC 且点F 是DC 的中点,∴OF =12QC , 即4t =12(90﹣6t ), 解得,t =457; ②设AB ,CD 的中点分别为E ,F ,⊙O 与AD ,BC 的切点分别为N ,G ,过点Q 作QH ⊥AD 于H ,如图2﹣1,当⊙O 第一次与PQ 相切于点M 时,∵AH +AP =6t ,AB +BQ =6t ,且BQ =AH ,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=2QH,∴150﹣20t=302,∴t=1532-;如图2﹣2,当⊙O第二次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=2QH,∴20t﹣150=302,∴t=15322+,综上所述,当PQ与⊙O有公共点时,t的取值范围为:15322-≤t≤15322+.【点睛】本题考查了圆和一元一次方程的综合问题,掌握圆切线的性质、解一元一次方程的方法、等腰直角三角形的性质是解题的关键.。
山东省聊城市2020版九年级上学期期末数学试卷(I)卷
山东省聊城市2020版九年级上学期期末数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018九上·永定期中) 如图,在中,,分别交,于点,.若,,则的值为()A .B .C .D .2. (2分) (2019九上·温州期中) 下列事件中,属于必然事件的是()A . 2020年的元旦是晴天B . 太阳从东边升起C . 打开电视正在播放新闻联播D . 在一个没有红球的盒子里,摸到红球3. (2分)(2013·成都) 如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A . 40°B . 50°C . 80°D . 100°4. (2分)如图,l1∥l2∥l3 ,则下列等式错误的是()A .B .C .D .5. (2分)在中,, AB=15,sinA=,则BC等于()A . 45B . 5C .D .6. (2分) (2019九上·黄埔期末) 抛物线的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为,则b、c的值为()A . b=2,c=﹣6B . b=2,c=0C . b=﹣6,c=8D . b=﹣6,c=27. (2分)随机掷一枚均匀的硬币两次,两次正面都朝上的概率是()A .B .C .D . 18. (2分)(2017·银川模拟) 如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A . 90°B . 120°C . 135°D . 150°9. (2分)如图为二次函数y=ax2+bx+c的图象,此图象与x轴的交点坐标分别为(-1,0)、(3,0).下列说法正确的个数是()①ac<0②a+b+c>0③方程ax2+bx+c=0的根为x1=-1,x2=3④当x>1时,y随着x的增大而增大.A . 1B . 2C . 3D . 410. (2分) (2018九上·翁牛特旗期末) △ABC的三边长分别为6、8、10,则其外接圆的半径是()A . 3B . 4C . 5D . 10二、填空题 (共6题;共7分)11. (1分) (2020九上·常州期末) 若是锐角,且,则 ________.12. (2分)计算(﹣a4)(6a3﹣12a2+9a)=________ ,十边形的内角和是________ .13. (1分) (2016九上·兴化期中) 某厂今年一月份新产品的研发资金为1000元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=________14. (1分)已知正六边形的边心距为,则这个正六边形的边长为________ .15. (1分)已知△ABC的周长为24,面积为48,则它的内切圆的半径为________.16. (1分)(2017·芜湖模拟) 在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是边BC上一点,AP与BD 交于点M,DP与AC交于点N.①若点P为BC的中点,则AM:PM=2:1;②若点P为BC的中点,则四边形OMPN的面积是8;③若点P为BC的中点,则图中阴影部分的总面积为28;④若点P在BC的运动,则图中阴影部分的总面积不变.其中正确的是________.(填序号即可)三、解答题 (共8题;共92分)17. (5分)已知:如图,一艘渔船正在港口A的正东方向40海里的B处进行捕鱼作业,突然接到通知,要该船前往C岛运送一批物资到A港,已知C岛在A港的北偏东60°方向,且在B的北偏西45°方向。
山东省聊城市冠县九年级上期末考试数学试题(含答案)
山东省聊城市冠县九年级上学期期末考试数学试题(时间100分钟 满分120分)说明:1.试卷由选择题和非选择题组成,共4页.选择题36分,非选择题,84分,共120分.考试时间为100分钟.2.答卷前,考生必须将自己的姓名、班级、考场(或座位号)、准考证号填涂在答题卡指定位置.3.将试题答案全部答在答题卡上,严格按照答题卡中的“注意事项”答题.考试结束只交答题卡.4.一律不允许使用科学计算器.愿你放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷.一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求) 1.在ABC ∆中,A ∠,B ∠都是锐角,且1sin 2A =,cos B =,则ABC ∆是( )A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形2.如同,在ABC ∆中,点D 、E 分别在边AB 、AC 上,下列条件中不能判断ABC AED ∆∆的是( ) A.AD AEAB AC=B.AD ACAE AB=C.ADE C ∠=∠D.AED B ∠=∠第2题图第3题图3.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( ) A.AC AB =B.12C BOD ∠=∠ C.C B ∠=∠D.A BOD ∠=∠4.用配方法解一元二次方程22410x x -+=,变形正确的是( ) A.21()02x -=B.211()22x -=C.21(1)2x -=D.2(1)0x -=5.将抛物线244y x x =--向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( ) A.2(1)13y x =+-B.2(5)3y x =--C.2(5)13y x =--D.2(1)3y x =+-6.如图,在ABC ∆中,//DE BC ,6AD =,3DB =,则ADEABCS S ∆∆的值为( ) A.12B.23C.45D.49第6题图第7题图7.如图,AB 是⊙O 的直径,C ,D 是圆上两点,连接AC ,BC ,AD .若55CAB ∠=︒,则ADC ∠的度数为( ) A.55︒B.45︒C.35︒D.25︒8.关于x 的一元二次方程()22210x m x m +-+=的根的情况是( ) A.无法确定B.有两个不等实根C.有两相等实根D.有实根9.以半径为1的圆的内接正三角形、正方形、正六边形的边心距(圆心到边的距离)为三边作三角形,则该三角形的面积是( )10.若0ab <,则正比例函数y ax =与反比例函数by x=在同一坐标系中的大致图象可能是( ) A. B. C. D.11.冠县开展关于精准扶贫、精准扶贫的决策部署以来,某贫困户2015年人均纯收入为2620元,经过帮扶到2017年人均纯收入为3850元,设该贫困户每年人均纯收入的平均增长率为x ,则下面列出的方程中正确的是( )A.()2262013850x -= B.()262013850x += C.()2620123850x +=D.()2262013850x +=12.如图是二次函数2y ax bx c =++的图象,有下面四个结论:①0abc > ②0a b c -+> ③230a b +>④40c b ->其中,正确的结论是( ) A.①② B.①②③ C.①②④D.①③④二、填空题(本题共6个小题,每小题4分,共24分,只要求写出最后结果)13.一元二次方程2340x x --=与2450x x ++=的所有实数根之和等于__________.14.若二次函数25(0)y ax bx a =-+≠的图象与x 轴交于()1,0,则2013b a -+的值是_________.15.如图,ABC ∆内接于⊙O ,若⊙O 的半径为4,60A ∠=︒,则BC 的长为_________.第15题图第16题图第18题图16.如图,在顶角为30︒的等腰三角形ABC 中,AB AC =,若过点C 作CD AB ⊥于点D ,15BCD ∠=︒.根据图形计算tan15︒=__________.17.若关于x 的一元二次方程()21310k x x -+-=有实根,则k 的取值范围是_________.18.如图,在平面直角坐标系中,点A 、B 的坐标分别为()5,0-、()2,0-.点P 在抛物线2248y x x =-++上,设点P 的横坐标为m .当03m ≤≤时,PAB ∆的面积S 的取值范围是_________. 三、解答题(本大题共6小题,共60个.解答要写出必要的文字说明、证明过程或演算步骤.)19.(10分)如图,在正方形网格中,四边形TABC 的顶点坐标分别为()()()()1,1,2,3,3,3,4,2T A B C . (1)以点()1,1T 为位似中心,在位似中心的同侧将四边形TABC 放大为原来的2倍,放大后点A ,B ,C 的对应点分别为'A ,'B ,'C 画出四边形'''TA B C ;(2)写出点'A ,'B ,'C 的坐标: 'A ( ),'B ( ),'C ( ); (3)在(1)中,若(),D a b 为线段AC 上任一点,则变化后点D 的对应点'D 的坐标为( ).20.(10分)如图,已知一次函数2y x =-与反比例函数3y x=的图象交于A 、B 两点.(1)求A 、B 两点的坐标; (2)求AOB ∆的面积;(3)观察图象,可知一次函数值小于反比例函数值的x 的取值范围是_________.21.(8分)如图,某校要在长为32m ,宽为20m 的长方形操场上修筑宽度相同的道路(图中阴影部分),在余下的空白部分种上草坪,要使草坪的面积为2540m ,求道路的宽.22.(10分)如图,AC 为⊙O 的直径,B 为⊙O 上一点,30ACB ∠=︒,延长CB 至点D ,使得CB BD =,过点D 作DE AC ⊥,垂足E 在CA 的延长线上,连接BE .(1)求证:BE 是⊙O 的切线;(2)当3BE =时,求图中阴影部分的面积.23.(10分)如图,在楼AB 与楼CD 之间有一旗杆EF ,从AB 顶部A点处经过旗杆顶部E 点恰好看到楼CD 的底部D 点,且俯角为45︒,从楼CD 顶部C 点处经过旗杆顶部E 点恰好看到楼AB 的G 点,1BG =米,且俯角为30︒,已知楼AB 高20米,求旗杆EF 的高度.()1,1-,24.(12分)如图,平面直角坐标系xOy 中点A 的坐标为点B 的坐标为()3,3,抛物线经过A 、O 、E 三点,连接OA OB AB 、、,线段AB 交y 轴于点E .(1)求点E 的坐标; (2)求抛物线的函数解析式;(3)点F 为线段OB 上的一个动点(不与点O 、B 重合),直线EF与抛物线交于M 、N 两点(点N 在y 轴右侧),连接ON BN 、,当四边形ABNO 的面积最大时,求点N 的坐标并求出四边形ABNO 面积的最大值.2019-2020学年第一学期期末学业水平检测九年级数学参考答案一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)13.314.201815.16.2 17.54k ≥-且1k ≠ 18.315S ≤≤ 三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.) 19.(共10分)解:(1)如图所示:四边形'''TA B C 即为所求;……………………2分 (2)()'3,5A ,()'5,5B ,()'7,3C ; ……………………8分 (3)'D 的坐标为()21,21a b --.……………………10分20.(10分)解:(1)由23y x y x =-⎧⎪⎨=⎪⎩解得13x y =-⎧⎨=-⎩或31x y =⎧⎨=⎩ ∴点A 坐标()3,1,点B 坐标()1,3--.……………………4分(2)直线AB 为2y x =-,与x 轴交于为()2,0C 点y 轴交于点()0,2D -, ∴112123422AOB OCA DOB S S S ∆∆∆=+=⨯⨯+⨯⨯=. ……………………7分 (3)由图象可知:03x <<或1x <-时,一次函数值小于反比例函数值. 故答案为03x <<或1x <-. ……………………10分 21.(8分)解法一:原图经过平移转化为图1. 设道路宽为x 米.根据题意,得()()2032540x x --=.……………………3分整理得2521000x x -+=.解得150x =(不合题意,舍去),22x =.………………7分 答:道路宽为2米.……………………8分 解法二:原图经过平移转化为图2. 设道路宽为x 米.根据题意,()220322032540x x ⨯-++=,……………… 2分整理得2521000x x -+=.解得150x =(不合题意,舍去),22x =.………………7分 答:道路宽为2米.……………………8分 22.(10分)解:(1)如图所示,连接BO , ∵30ACB ∠=︒,∴30OBC OCB ∠=∠=︒, ∵DE AC ⊥,CB BD =,∴Rt DCE ∆中,12BE CD BC ==,……………………2分 ∴30BEC BCE ∠=∠=︒,∴BCE ∆中,180120EBC BEC BCE ∠=︒-∠-∠=︒,∴1203090EBO EBC OBC ∠=∠-∠=︒-︒=︒,……………………4分 ∴BE 是⊙O 的切线;……………………5分 (2)当3BE =时,3BC =, ∵AC 为⊙O 的直径, ∴90ABC ∠=︒, 又∵30ACB ∠=︒,∴tan 30AB BC =︒⨯=7分∴2AG AB AO ===∴阴影部分的面积=半圆的面积-Rt ABC ∆的面积=2111132222AO AB BC ππ⨯-⨯=⨯- 332π=……………………10分23.(10分)解:过点G 作GP CD ⊥于点P ,与EF 相交于点H .设EF 的长为x 米, 由题意可知,1FH GB ==米,()1EH EF FH x =-=-米,又∵45BAD ADB ∠=∠=︒,∴FD EF x ==米,20AB BD ==米,……………………3分 在Rt GEB ∆中,30EGH ∠=︒,∵tan EHEGH GH∠=1x GH -=,∴)1GH x =-米,……………………7分 ∵BD BF FD GH FD =+=+,)120x x-+=,解得,x=米,……………………9分答:旗杆EF.……………………10分24.(12分)解:(1)设直线AB的解析式为y mx n=+,把()()1,1,3,3A B-代入得133m nm n-+=⎧⎨+=⎩,解得1232mn⎧=⎪⎪⎨⎪=⎪⎩,所以直线AB的解析式为1322y x=+,当0x=时,133222y=⨯+=,所以E点坐标为3(0,)2;……………………3分(2)设抛物线解析式为2y ax bx c=++,把()()()1,1,3,3,0,0A B O-代入得1933a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得1212ab⎧=⎪⎪⎨⎪=-⎪⎩,所以抛物线解析式为21122y x x=-;………………… 7分(3)如图1,作//NG y轴交OB的解析式为y x=,设211(,)(03)22N m m m m-<<,则(),G m m,221113()2222GN m m m m m=--=-+,13131332222AOB AOE BNGS S S∆∆∆=+=⨯⨯+⨯⨯=,22113393()22244BON ONG BNGS S S m m m m∆∆=+=⋅⋅-+=-+所以223933753()444216BON AOBS S S m m m∆∆=+=-++=--+四边形ABNO……………10分当32m=时,四边形ABNO面积的最大值,最大值为7516,此时N点坐标为33(,)28;………………………………………………………………12分。
九年级上册聊城数学期末试卷综合测试卷(word含答案)
九年级上册聊城数学期末试卷综合测试卷(word 含答案)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3B .2:3C .4:9D .16:812.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 723.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.4.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,955.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .58B .58πC .54πD .546.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴 C .圆的每一条直径都是它的对称轴 D .圆的对称中心是它的圆心 7.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定8.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小B.不可能摸出白球C.一定能摸出红球D.摸出红球的可能性最大9.一元二次方程x2=-3x的解是()A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-3 10.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A.点B.点C.点D.点11.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是A.相离B.相切C.相交D.无法判断12.如图,AB为O的切线,切点为A,连接AO BO、,BO与O交于点C,延长BO与O交于点D,连接AD,若36ABO∠=,则ADC∠的度数为( )A.54B.36C.32D.27二、填空题13.平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___ 确定一个圆.(填“能”或“不能”)14.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.15.若53x yx+=,则yx=______.16.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.17.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;18.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.19.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 20.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .21.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____.22.如图,已知PA ,PB 是⊙O 的两条切线,A ,B 为切点.C 是⊙O 上一个动点.且不与A ,B 重合.若∠PAC =α,∠ABC =β,则α与β的关系是_______.23.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.24.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题25.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.26.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a=,b=,c=.(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.27.某校举行秋季运动会,甲、乙两人报名参加100 m比赛,预赛分A、B、C三组进行,运动员通过抽签决定分组.(1)甲分到A组的概率为;(2)求甲、乙恰好分到同一组的概率.28.学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下:得分109876人数33211(1)计算这10名同学这次测试的平均得分;(2)如果得分不少于9分的定义为“优秀”,估计这 500名学生对“八礼四仪”掌握情况优秀的人数;(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?29.已知函数y=ax2+bx+c(a≠0,a、b、c为常数)的图像经过点A(-1,0)、B(0,2).(1)b=(用含有a的代数式表示),c=;(2)点O是坐标原点,点C是该函数图像的顶点,若△AOC的面积为1,则a=;(3)若x>1时,y<5.结合图像,直接写出a的取值范围.30.在平面直角坐标系中,二次函数y=ax2+bx+2 的图象与x 轴交于A(﹣3,0),B (1,0)两点,与y 轴交于点C.(1)求这个二次函数的关系解析式,x 满足什么值时y﹤0 ?(2)点p 是直线AC 上方的抛物线上一动点,是否存在点P,使△ACP 面积最大?若存在,求出点P的坐标;若不存在,说明理由(3)点M 为抛物线上一动点,在x 轴上是否存在点Q,使以A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.31.解方程:(1)x2-8x+6=0(2)(x -1)2 -3(x -1)=032.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:成绩/分888990919596979899学生人数2132121数据分析:样本数据的平均数、众数和中位数如下表:平均数众数中位数9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据面积比为相似比的平方即可求得结果. 【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为23. 故选B. 【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.B解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点,∴12 EFBD=,∴14EFCBCDDSS=,∴18EFCABCDSS=四边形,∴1176824AGH EFCABCDS SS+=+=四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.3.A解析:A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.4.B解析:B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90.故选B.5.B解析:B【解析】【分析】连接AC,根据网格的特点求出r=AC的长度,再得到扇形的圆心角度数,根据扇形面积公【详解】连接AC ,则r=AC=22251=+ 扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.6.C解析:C 【解析】 【分析】圆有无数条对称轴,但圆的对称轴是直线,故C 圆的每一条直线都是它的对称轴的说法是错误的 【详解】本题不正确的选C ,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴 故选C 【点睛】此题主要考察对称轴图形和中心对称图形,难度不大7.C解析:C 【解析】 【分析】将(0,0)代入y =(a ﹣1)x 2﹣x+a 2﹣1 即可得出a 的值. 【详解】解:∵二次函数y =(a ﹣1)x 2﹣x+a 2﹣1 的图象经过原点, ∴a 2﹣1=0, ∴a =±1, ∵a ﹣1≠0, ∴a≠1, ∴a 的值为﹣1.【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.8.D解析:D【解析】【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,∴摸出黑球的概率是2 23,摸出白球的概率是1 23,摸出红球的概率是20 23,∵123<223<2023,∴从中任意摸出1个球,摸出红球的可能性最大;故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.9.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.10.C解析:C【分析】连接AC,利用勾股定理求出AC 的长度,即可解题. 【详解】解:如下图,连接AC, ∵圆A 的半径是4,AB=4,AD=3, ∴由勾股定理可知对角线AC=5, ∴D 在圆A 内,B 在圆上,C 在圆外, 故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC 的长是解题关键.11.C解析:C 【解析】试题分析:根据直线与圆的位置关系来判定:①直线l 和⊙O 相交,则d <r ;②直线l 和⊙O 相切,则d=r ;③直线l 和⊙O 相离,则d >r (d 为直线与圆的距离,r 为圆的半径).因此,∵⊙O 的半径为6,圆心O 到直线l 的距离为5, ∴6>5,即:d <r .∴直线l 与⊙O 的位置关系是相交.故选C .12.D解析:D 【解析】 【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠ 【详解】切线性质得到90BAO ∠= 903654AOB ∴∠=-= OD OA =OAD ODA ∠=∠∴AOB OAD ODA∠=∠+∠27ADC ADO∴∠=∠=故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题13.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.14.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.15.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.16.【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.解析:π【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°, ∴此扇形的弧长为603180π⨯=π. 故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键. 17.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】221266(1)6h t t t=--=+﹣,∴当t=1时,h有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.18.4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键. 19.【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主解析:【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得635x,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.20.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm ∴较小的三角形的周长为643484cm ⨯= 故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键. 21.y =x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y =(x +2)2−5向右平移2个单位,得:y =(x +2−2)2−5,即y =x2−5解析:y =x 2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y =(x +2)2−5向右平移2个单位, 得:y =(x +2−2)2−5,即y =x 2−5.故答案是:y =x 2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.22.或【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点解析:αβ=或180αβ+︒=【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C 在优弧AB 上时,如图,连接OA 、OB 、OC ,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴180αβ+︒=;当点C 在劣弧AB 上时,如图,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC= 90°-α=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴αβ=.综上:α与β的关系是180αβ+︒=或αβ=. 故答案为:αβ=或180αβ+︒=. 【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.23.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm ,则:1:2000=12:x ,解得x =24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm ,则:1:2000=12:x ,解得x =24000,24000cm =240m .故答案为240m .【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.24.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.三、解答题25.(1)6;(2)1m =.【解析】【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可.(2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解.【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒ 12412=⨯++ 6=;(2)∵22210x x m ++-=有两个相等的实数根,∴b 2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键.26.解:(1)a =135,b =134.5,c =1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【解析】【分析】(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据; (2)从不同角度评价,标准不同,会得到不同的结果.【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为1341352+=134.5; 根据方差公式:s 2=()()()()()2222211321351341355135135213613513713510⎡⎤-+-+-+-+-⎣⎦=1.6,∴a =135,b =134.5,c =1.6; (2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S 2一<S 2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当.【点睛】此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力.27.(1)13;(2)13 【解析】【分析】(1)直接利用概率公式求出甲分到A 组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)13(2)甲乙两人抽签分组所有可能出现的结果有:(A ,A )、(A ,B )、(A ,C )、(B ,A )、(B ,B )、(B ,C )、(C ,A )、(C ,B )、(C ,C )共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A )的结果有3种,所以P (A )=13. 【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.28.(1)8.6;(2)300;(3)不同意,理由见解析.【解析】【分析】(1)根据加权平均数的计算公式求平均数;(2)根据表中数据求出这10名同学中优秀所占的比例,然后再求500名学生中对“八礼四仪”掌握情况优秀的人数;(3)根据平均数和中位数的意义进行分析说明即可.【详解】解:(1)103938271618.633211x⨯+⨯+⨯+⨯+⨯==++++∴这10名同学这次测试的平均得分为8.6分;(2)3350030010+⨯=(人)∴这 500名学生对“八礼四仪”掌握情况优秀的人数为300人;(3)不同意平均数容易受极端值的影响,所以小明的测试成绩为8分,并不一定代表他的成绩在班级中等偏上,要想知道自己的成绩是否处于中等偏上,需要了解班内学生成绩的中位数.【点睛】本题考查加权平均数的计算,用样本估计总体以及平均数及中位数的意义,了解相关概念准确计算是本题的解题关键.29.(1)a+2;2;(2)-2或6±3)8a≤--【解析】【分析】(1)将点B的坐标代入解析式,求得c的值;将点A代入解析式,从而求得b;;(2)由题意可得AO=1,设C点坐标为(x,y),然后利用三角形的面积求出点C的纵坐标,然后代入顶点坐标公式求得a的值;(3)结合图像,若x>1时,y<5,则顶点纵坐标大于等于5,根据顶点纵坐标公式列不等式求解即可.【详解】解:(1)将B(0,2)代入解析式得:c=2将A(-1,0)代入解析式得: a×(-1)2+b×(-1)+c=0∴a-b+2=0∴b=a+2故答案为:a+2;2(2)由题意可知:AO=1设C点坐标为(x,y)则111 2y⨯⨯=解得:2y=±当y=2时,242 4ac ba-=由(1)可知,b=a+2;c=2∴242(2)24a aa⨯-+=解得:a=-2当y=-2时,2424ac b a-=- 由(1)可知,b=a+2;c=2 ∴242(2)24a a a⨯-+=-解得:6a =±∴a 的值为-2或6±(3)若x >1时,y <5,又因为图像过点A (-1,0)、B (0,2)∴图像开口向下,即a <0则该图像顶点纵坐标大于等于5 ∴2454ac b a-≥ 即242(2)54a a a⨯-+≥解得:8a ≤--或8a ≥-+∴a 的取值范围为8a ≤--【点睛】本题考查二次函数的性质,掌握顶点坐标公式及数形结合思想解题是本题的解题关键.30.(1)24233y x x =--+,13x <- 或21>x ;(2)P 35,22⎛⎫- ⎪⎝⎭;(3)1234(5,0),(1,0),(2(2--Q Q Q Q【解析】【分析】(1)将点A (﹣3,0),B (1,0)带入y =ax 2+bx +2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时 y ﹤0;(2)设出P 点坐标224233m m m ⎛⎫--+ ⎪⎝⎭,,利用割补法将△ACP 面积转化为PAC PAO PCO ACO S S S S =+-,带入各个三角形面积算法可得出PAC S 与m 之间的函数关系,分析即可得出面积的最大值;(3)分两种情况讨论,一种是CM 平行于x 轴,另一种是CM 不平行于x 轴,画出点Q 大概位置,利用平行四边形性质即可得出关于点Q 坐标的方程,解出即可得到Q 点坐标.【详解】解:(1)将A (﹣3,0),B (1,0)两点带入y =ax 2+bx +2可得:093202a b a b =-+⎧⎨=++⎩解得:2 3 43ab⎧=-⎪⎪⎨⎪=-⎪⎩∴二次函数解析式为24233y x x=--+.由图像可知,当x3<-或x1>时y﹤0;综上:二次函数解析式为24233y x x=--+,当x3<-或x1>时y﹤0;(2)设点P 坐标为224233m m m⎛⎫--+⎪⎝⎭,,如图连接PO,作PM⊥x轴于M,PN⊥y轴于N.PM=224233m m--+,PN=m-,AO=3.当x0=时,24y 002233=-⨯-⨯+=,所以OC=2111222PAC PAO PCO ACOS S S S AO PM CO PN AO CO=+-=+-()221241132232323322m m m m m⎛⎫=⨯--++⨯--⨯⨯=--⎪⎝⎭,∵a10=-<∴函数23PACS m m=--有最大值,当()33m212-=-=-⨯-时,PACS有最大值,此时35P,22⎛⎫-⎪⎝⎭;所以存在点35P,22⎛⎫-⎪⎝⎭,使△ACP 面积最大.(3)存在,1234(5,0),(1,0),(27,0),(27,0)--Q Q Q Q假设存在点Q使以A、C、M、Q 为顶点的四边形是平行四边形①若CM 平行于x 轴,如下图,有符合要求的两个点12Q Q 、,此时1Q A =2.Q A CM =∵CM ∥x 轴,∴点M 、点C (0,2)关于对称轴x 1=-对称,∴M (﹣2,2),∴CM=2.由1Q A =22Q A CM ==,得到12(5,0),(1,0)--Q Q ;②若CM 不平行于x 轴,如下图,过点M 作MG ⊥x 轴于点G ,易证△MGQ ≌△COA ,得QG=OA=3,MG=OC=2,即2M y =-.设M (x ,﹣2),则有242=233--+-x x ,解得:x 17=- 又QG=3,∴327Q G x x =+=∴34(27,0),(27,0)Q Q 综上所述,存在点P 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形,Q 点坐标为:1234(5,0),(1,0),(27,0),(27,0)--Q Q Q Q .【点睛】本题考查二次函数与几何综合题目,涉及到用待定系数法求二次函数解析式,通过函数图像得出关于二次函数不等式的解集,平面直角坐标系中三角形面积的计算通常利用割补法,并且将所要求得点的坐标设出来,得出相关方程;在解答(3)的时候注意先画出大概图像再利用平行四边形性质进行计算和分析.31.(1)x 1104,x 2104(2) x 1=1,x 2=4.【解析】【分析】(1)根据配方法即可求解; (2)根据因式分解法即可求解.【详解】(1)x 2-8x +6=0x 2-8x +16=10(x-4)2=10x-4=±10∴x 1=104+,x 2=-104+(2)(x -1)2 - 3(x -1) =0(x -1)(x -1-3)=0(x -1)(x-4)=0∴x-1=0或x-4=0解得x 1=1,x 2=4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.{题型:3-选择题}{题目}{适用范围:1.七年级}{类别:常考题}{章节:[1-1-3]003}计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生 必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人;扇形统计图中,选“D 一园艺种植”的学生人数所占圆心角的度数是 °;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总 人数(1)200;72(2)60(人),图见解析(3)1050人.【解析】【分析】(1)由A 类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D 人数占总人数的比例可得;(2)首先求得C 项目对应人数,即可补全统计图;(3)总人数乘以样本中B 、C 人数所占比例可得.【详解】(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);选“D一园艺种植”的学生人数所占圆心角的度数是360°×40200=72°,故答案为:200、72;(2)C项目对应人数为:200−20−80−40=60(人);补充如图.(3)1500×8060200=1050(人),答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.32.(1)5;3;90;(2)91;(3)估计评选该荣誉称号的最低分数为97分.理由见解析.【解析】【分析】(1)由题意即可得出结果;(2)由20×50%=10,结合题意即可得出结论;(3)由20×30%=6,即可得出结论.【详解】(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分,∴众数是90分;故答案为:5;3;90;(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分;故答案为:91;(3)估计评选该荣誉称号的最低分数为97分;理由如下:。
山东省聊城市九年级上学期数学期末考试试卷
山东省聊城市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列方程中,关于的一元二次方程是()A .B .C .D .2. (2分)如图,2012年伦敦奥运会,某运动员在10米跳台跳水比赛时估测身体(看成一点)在空中的运动路线是抛物线(图中标出的数据为已知条件),运动员在空中运动的最大高度离水面为()米.A . 10B .C .D .3. (2分) (2019八下·郑州期末) 下列是我国某四个高校校徽的主体图案,其中是中心对称图形的是()A .B .C .D .4. (2分)(2017·兰州模拟) 下列事件中,属于必然事件的是()A . 明天我市下雨B . 抛一枚硬币,正面朝下C . 购买一张福利彩票中奖了D . 掷一枚骰子,向上一面的数字一定大于零5. (2分)(2017·武汉模拟) 下列说法中正确的是()A . “打开电视机,正在播放《动物世界》”是必然事件B . 某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C . 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D . 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查6. (2分) (2016八下·安庆期中) 若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A . 2005B . 2003C . ﹣2005D . 40107. (2分)在平面直角坐标系中,以点为圆心,4为半径的圆与y轴所在直线的位置关系是()A . 相离B . 相切C . 相交D . 无法确定8. (2分) (2017八上·上城期中) 有一个边长为的正方形,经过一次“生长”后在它的上侧生长出两个小正方形(如图),且三个正方形所围成的三角形是直角三角形;再经过一次“生长’’后变成了图,如此继续“生长”下去,则“生长”第K次后所有正方形的面积和为().A .B .C .D .9. (2分)如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC=4,DC=1,则⊙O的半径等于()A .B .C .D .10. (2分) (2016九上·北京期中) 二次函数y=x2﹣2x﹣3的最小值为()A . 5B . 0C . ﹣3D . ﹣4二、填空题 (共6题;共7分)11. (1分) (2019九上·潮南期末) 方程x2=3的解是________.12. (1分) (2016九上·惠山期末) 将二次函数y=x2﹣2x+3的图象先向上平移2个单位,再向右平移3个单位后,所得新抛物线的顶点坐标为________.13. (1分)(2012·盐城) 小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是________.14. (1分) (2018九上·松江期中) 已知点P是线段AB的黄金分割点,AB=4厘米,则较短线段AP的长是________厘米.15. (2分) (2018九上·宝应月考) 正方形的边长为2,则它的内切圆与外接圆围成的圆环面积为________.16. (1分)(2018·重庆) 如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于________.三、解答题 (共8题;共53分)17. (5分)解方程:(1) x2=4(2) x2﹣2x﹣2=0(3) x2﹣3x+1=0.18. (10分) (2019·青海模拟) 如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tanD= ,求AE的长.19. (5分)田忌赛马的故事为我们熟知.小亮与小齐学习概率初步知识后设计了如下游戏:小亮手中有方块10、8、6三张扑克牌,小齐手中有方块9、7、5三张扑克牌.每人从各自手中取出一张牌进行比较,数字大的为本“局”获胜,每次取得牌不能放回.(1)若每人随机取手中的一张牌进行比赛,求小齐本“局”获胜的概率;(2)若比赛采用三局两胜制,即胜2局或3局者为本次比赛获胜者.当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,求小齐本次比赛获胜的概率.20. (5分)如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、H.(1)请根据题意用实线补全图形;(2)求证:△AFB≌△AGE.21. (10分)(2017·花都模拟) 已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PA,PB.(1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA、PB、PC之间的关系.(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.22. (10分) (2017八下·福州期末) 某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件.设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.(1)求y与x的函数关系式;(2)若商场某个月要盈利1250元,求每件商品应上涨多少元?(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大利润是多少元?23. (2分) (2019九上·东港月考) 如图,在平面直角坐标系中,点在反比例函数的图象上,,轴于点C.(1)求反比例函数的表达式;(2)求的面积;(3)若将绕点B按逆时针方向旋转得到点O、A的对应点分别为、,点是否在反比例函数的图象上?若在请直接写出该点坐标,若不在请说明理由.24. (6分)(2018·沙湾模拟) 如图,抛物线经过点,,与轴正半轴交于点,与轴交于点.(1)求直线的解析式;(2)设点为直线下方抛物线上一点,连接、,当面积最大时,求点的坐标;(3)在(2)的条件下,直线过直线与轴的交点 .设的中点为,是直线上一点,是直线上一点,求周长的最小值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共53分)17-1、17-2、17-3、18-1、18-2、19-1、20-1、21-1、21-2、21-3、22-1、22-2、第11 页共13 页22-3、23-1、23-2、23-3、第12 页共13 页24-1、24-2、24-3、第13 页共13 页。
山东省聊城市冠县东古城镇中学九年级数学上学期期末考试试题(无答案) 新人教版
一、选择题(本题共10小题,在每小题给出的四个选项中,只有一个是正确的,请把正 确的选项选出来填在第Ⅱ卷的表格里,每小题选对得3分,满分30分. 多选、不选、错 选均记零分.)1.下图中,图2三角板是怎样由图1的三角板变换得到的?( )A .平移B .平移后再旋转C .旋转D .平移后再对称 2.菱形具有而矩形不具有的性质是( )A .对角相等且互补B .对角线互相平分C .一组对边平行,另一组对边相等D .对角线互相垂直 3. 如果0a >,那么抛物线25y x ax =+-的顶点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4. 如图,△ABC 中,点D 、E 分别为AB 、AC 的中点,连接DE ,线段BE 、CD 相交于点O ,若OD =2,则OC 等于( ) A .1 B .2 C .3 D .4 5. 图中,CA 、CD 分别切1O 于A 、D 两点,CB 、CE 分别切2O 于B 、E 两点.若∠1=60°,∠2=65°,判断AB 、CD 、CE 的长度,下列正确的是( )A .AB >CE >CD B .AB =CE >CDC .AB >CD >CE D .AB =CD =CE6. 关于x 的一元二次方程()2210x m x m +-++=有两个相等的实数根,则m 的值是( )A .0B .8C .4±22D . 0或87. 如图,关于抛物线()212y x =-++,下列说法正确的是( )A .顶点坐标为()1,2-B .当1x >-时,y 随x 的增大而减小C .()2120x -++=无解D .对称轴是直线1x =8. 如图,梯形中,AD ∥BC ,AB CD =,4AD =,12BC =,60B ∠=︒,则梯形ABCD 的周长是(ABCD )A. 24B. 28C. 32D. 369. 如图是一个圆环形砂轮片,为了测量其圆环面积,小亮使直尺的边缘与内圆相切,与外圆相交于,A B 两点,,A B 两点所对应的刻度分别为2mm ,200mm ,则该砂轮片的面积是( )mm 2.A .39996πB .9996πC .9801πD .9409π10. 根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是( )A .男生在13岁时身高增长速度最快B .女生在10岁以后身高增长速度放慢C .11岁时男女生身高增长速度基本相同D .女生身高增长的速度总比男生慢二、填空题(本题共7小题,要求将每小题的最后结果填写在横线上.每小题3分,满分21分)11. 方程()()21312x x +-+=-的解是________________.12. 函数31x +y =x -中自变量x 的取值范围是___________________. 13. 如图,若要使平行四边形ABCD 成为菱形,则需要添加的条件是______________________________.14. 据统计,2009年年底潍坊市汽车保有量是211万辆,2011年年底汽车保有量有望达到264万辆,要求潍坊市汽车保有量的年平均增长率,可设年平均增长率为x ,由此可以列得方程___________.15. 如图,直角三角形的三边长为,,a b c ,其内切圆与外接圆的半径之比是_________________.16. 把“向右平移h 个单位,向上平移k 个单位”记为(),a h k =,函数2y x =按照()1,1a =平移可变为()121y x -=-,即21y x =-. 函数2y x=的图象按照()2,3a =平移可得到函数_____________图象.17. 如图,点C 是⊙O 优弧ACB 上的中点,弦AB =6cm ,E 为OC上任意一点,动点F 从点A 出发,以每秒1cm 的速度沿AB 方向向点B 匀速运动,若y =AE ²-EF ²,则y 与动点F 的运动时间x (0≤x ≤6 )秒的函数关系式为_______________.三、解答题(本题共7小题,解答应写出文字说明、证明过程或推演步骤.共69分) 18. (本题满分8分)如图,在⊙O 中,60ACB BDC ∠=∠=︒,6AC =. (1)求BAC ∠的度数; (2)求⊙O 的周长.19. (本题满分9分)如图,在直角三角形ACO 中,()4,4A -,点()4,0C -,将△ACO 绕点O 沿顺时针方向旋转90°得到△11A C O .(1)作出△11A C O ,并写出1OA 的长度和1COA ∠的度数; (2)求线段OA 从开始到线段1OA 扫过的图形的面积; (3)连接1CC ,求证:四边形11OCC A 是平行四边形.20. (本题满分9分) 已知反比例函数1k y x =的图象与一次函数212y kx b =+的图象交于点()1,2A -和点B . (1)求k 的值和点B 的坐标;(2)在下面的坐标系中,画出题中两个函数的图象;(3)根据图象,写出使得12y y <成立的自变量x 的取值范围;21. (本题满分10分)如图,AB 是O 的直径,AC 是O 的一条弦,连接OC . 作直线CD 使得12ACD AOC ∠=∠. 作AE CD ⊥,垂足为E . (1)证明:CD 为O 的切线; (2)证明:2AC AE AB =⋅22. (本题满分10分)某果园有100棵橙子树,每一棵树平均结600个橙子. 现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少. 根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,且增加的橙子树最多不得超过20棵. 请你帮助分析,增种多少棵橙树时,可以使果园的橙子总产量最多,最多是多少?(注意:为了使同学们更好她解答本题,我们提供了—种分析问题的方法,你可以依照这个方法按要求完成本题的解答.也可以选用其他方法.)分析:设果园增种x 棵橙子树.总产量为y 个.根据问题中的数量关系.完成表格: 增种树的棵数123 (x)每棵树结橙数 600-5 600-5×2…23. (本题满分11分)如图,已知矩形ABCD 的宽AB a =,长AD b =,两条对角线AC 、BD 相交于点O ,P 是线段AB 上任意一点,过点P 分别作直线AC 、BD 的垂线,垂足为E 、F .(1)用a 、b 表示PE PF +;(2)若a 、b 是方程2670x x -+=的解,求PE PF +的值.24. (本题满分12分)如图,抛物线1C :2y x =平移得到抛物线2C ,2C 经过点()0,0O 和点()4,0A ,2C 的顶点为点B ,它的对称轴与1C 相交于点D ,设1C 、2C 与BD 围成的阴影部分面积为S ,解答下列问题:(1)求2C 的函数解析式及它的对称轴,顶点的坐标;(2)求点D 的坐标,并求出S 的值;(3)在直线AD 上是否存在点P ,使得S △POA12S =?若存在,求点P 的坐标;若不存在,请说明理由.。
【数学】九年级上册聊城数学全册期末复习试卷综合测试卷(word含答案)
【数学】九年级上册聊城数学全册期末复习试卷综合测试卷(word 含答案)一、选择题1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .32.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或43.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内4.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度 5.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1 B .54-≤b ≤1 C .94-≤b ≤12D .94-≤b ≤1 6.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( ) A .5B .2C .5或2D .27-17.某篮球队14名队员的年龄如表:年龄(岁) 18 19 20 21 人数5432则这14名队员年龄的众数和中位数分别是( ) A .18,19 B .19,19C .18,4D .5,48.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+9.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50°10.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤11.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 12.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.513.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 7214.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ), A .19B .14C .16D .1315.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内二、填空题16.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm .17.一元二次方程290x 的解是__.18.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.19.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.20.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.21.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)22.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.23.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.24.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .25.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.26.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.27.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.28.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .29.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.30.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.三、解答题31.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值,把x 、y 分别作为点A 的横坐标和纵坐标. (1)用适当的方法写出点A (x ,y )的所有情况. (2)求点A 落在第三象限的概率.32.为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种4种和5种帮扶措施的贫困户分别称为A 、B 、C 、D 类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题: (1)本次抽样调查了 户贫困户;(2)本次共抽查了 户C 类贫困户,请补全条形统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户? 33.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0).(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .34.解方程:(1)3x2-6x-2=0;(2)(x-2)2=(2x+1)2.35.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日12月19日12月20日12月21日最高气温(℃)106789最低气温(℃)10﹣103四、压轴题36.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于32,请直接写出圆心B 的横坐标B x 的取值范围.37.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.38.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.39.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.40.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ; (2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据题干可以明确得到p,q 是方程2330x x --=的两根,再利用韦达定理即可求解. 【详解】解:由题可知p,q 是方程2330x x --=的两根, ∴p+q=3, 故选B. 【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.2.A解析:A 【解析】 【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可. 【详解】 解:如图所示,∵△ABC 、△ABD 都是直角三角形, ∴A,B,C,D 四点共圆, ∵AC=BC ,∴BAC ABC 45∠∠==︒, ∴ADC ABC 45∠∠==︒, 作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =,∵CD=7,CE=7-x,∵AB 52=, ∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+, ∴()22257x x =+- 解得,x=3或x=4, ∴AD 232x ==或42.故答案为:A.【点睛】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解.3.B解析:B 【解析】 【分析】根据圆周角定理可知当∠C=90°时,点C 在圆上,由由题意∠C =88°,根据三角形外角的性质可知点C 在圆外. 【详解】解:∵以AB 为直径作⊙O , 当点C 在圆上时,则∠C=90°而由题意∠C =88°,根据三角形外角的性质 ∴点C 在圆外.故选:B . 【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.4.C解析:C 【解析】 【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到. 【详解】解:∵y =2(x -1)2+3的顶点坐标为(1,3),y=2x 2的顶点坐标为(0,0),∴将抛物线y=2x 2向右平移1个单位,再向上平移3个单位,可得到抛物线y =2(x -1)2+3 故选:C .【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.5.B解析:B【解析】【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PA NA NC=,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围.【详解】解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN ∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA , ∴PB PA NA NC=, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54, x =3时,y 有最小值0,此时b =1,∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.6.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2210AC AB BC=+= ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227AC BC AB ,∵=++ABC AOC BOC AOB S S S S , ∴11112222AB AC AB OF BC OD AC OE , ∴111162768272222r r r , ∴r=71- .故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.7.A解析:A【解析】【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是19192+=19(岁), 故选:A .【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.8.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.9.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC =80°, ∴102ABCAOC 4. 故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 10.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴42x ±= ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.11.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误;B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误;C、AD DEAB BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.12.C解析:C【解析】【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CP//DQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得CP DQ=PE EQ,设PE=x,则EQ=14-x,解得x的取值,OE= OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CP⊥AB,QD⊥AB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP⊥AB,QD⊥AB,垂直于用一直线的两直线相互平行,∴CP//DQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.13.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFCABCDS S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.14.A解析:A【解析】【分析】根据DE ∥BC 得到△ADE ∽△ABC ,再结合相似比是AD :AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE ∥BC ,∴△ADE ∽△ABC ,∵AD :DB=1:2,∴AD :AB=1:3,∴S △ADE :S △ABC =1:9.故选:A .【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.15.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】 如图,∵由勾股定理得2268 ,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.二、填空题16.6;【解析】解:设圆的半径为x ,由题意得:=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l= (弧长为l ,圆心角度数为n ,圆的半径为R ).解析:6;【解析】解:设圆的半径为x ,由题意得:150180x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 17.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x 1=3,x 2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵290x -=∴2x =9,∴x =±3,即x 1=3,x 2=﹣3,故答案为x 1=3,x 2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.18.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.19.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形, ∴它的内切圆半径5121322r +-==, 20.-3【解析】【分析】观察A (3,﹣2),B (﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B 两点关于抛物线对称轴对称,对称轴为经过线段AB 中点且平行于y 轴的直线.【详解】解:∵ A (3,﹣解析:-3【解析】【分析】观察A (3,﹣2),B (﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B 两点关于抛物线对称轴对称,对称轴为经过线段AB 中点且平行于y 轴的直线.【详解】解:∵ A (3,﹣2),B (﹣9,﹣2)两点纵坐标相等,∴A,B 两点关于对称轴对称,根据中点坐标公式可得线段AB 的中点坐标为(-3,-2),∴抛物线的对称轴是直线x= -3.【点睛】本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.21.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有×10=5, 当AC<BC 时,则有BC=12AB=12×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.22.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.23.6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.24.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=.147考点:概率公式.25.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,解析:x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.26.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.27.y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y =2(x ﹣3)2﹣2,故答案为y =2(x ﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.28.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 29.y =-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y =-5(x +2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.30.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 三、解答题31.(1)(﹣7,﹣2),(﹣1,﹣2),(3,﹣2),(﹣7,1),(﹣1,1),(3,1),(﹣7,6),(﹣1,6),(3,6);(2)2 9 .【解析】【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【详解】解:(1)列表如下:(2)∵点A落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况,∴点A落在第三象限的概率是29.32.(1)500户;(2)120户,图见解析;(3)5200户【解析】【分析】(1)用A类贫困户的人数除以它所占的百分比即可得出答案;(2)用总人数减去A,B,D类贫困户的人数即可得到C类贫困户,然后补全条形统计图即可;(3)用总人数乘以C,D类所占的百分比的和即可得出答案.【详解】解:(1)260÷52%=500(户);(2)500-260-80-40=120(户),如图:(3)13000×(24%+16%)=13000×40%=5200(户)答: 估计至少得到4项帮扶措施的大约有5200户.【点睛】本题主要考查条形统计图与扇形统计图,能够将条形统计图和扇形统计图相结合并掌握用样本估计整体的方法是解题的关键.33.(1)见解析;(2)-2【解析】【分析】(1)连接AO 并延长至1A ,使1AO 2AO =,同理作出点B ,C 的对应点,再顺次连接即可;(2)先根据图象找出三点的坐标,再利用正切函数的定义求解即可.【详解】(1)如图;(2)根据题意可得出()13,2A --,()12,0B -,()11,0C -, 设11A B 与x 轴的夹角为α,∴()111tan tan 180αtan α2A BC ∠=-=-=-.【点睛】本题考查的知识点是在坐标系中画位似图形,掌握位似图形的关于概念是解此题的关键.34.(1)x 1=1x 2=12)x 1=13,x 2=-3 【解析】【分析】 (1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23 x 2-2x +1=23+1 (x -1)2=53x -1=±3∴x 1=1+3,x 2=1-3 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.35.见解析【解析】【分析】根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.【详解】 ∵x 高=()110+6+7+8+9=85⨯(℃), x 低 =()11+01+0+3=0.65⨯-(℃), 2S 高=()()()()()222221108687888985⎡⎤⨯-+-+-+-+-⎣⎦=2(℃2)2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2) ∴2S 高>2S 低∴这5天的日最高气温波动大.。
山东省聊城市冠县东古城镇中学2022-2023学年数学九年级第一学期期末检测试题含解析
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.已知x 1=是一元二次方程2x mx 20+-=的一个解,则m 的值是( )A .1B .1-C .2D .2- 2.式子2x x -有意义的x 的取值范围( ) A .x ≥4 B .x≥2 C .x≥0且x≠4 D .x≥0且x≠23.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )A .12B .23C .13D .25 4.二次函数21y x =-的图象与y 轴的交点坐标是( )A .(0,1)B .(1,0)C .(-1,0)D .(0,-1)5.如图,∠ACB 是⊙O 的圆周角,若⊙O 的半径为10,∠ACB =45°,则扇形AOB 的面积为( )A .5πB .12.5πC .20πD .25π6.如图,已知⊙O 中,半径 OC 垂直于弦AB ,垂足为D ,若 OD=3,OA=5,则AB 的长为( )A .2B .4C .6D .87.二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数c y x=的图象可能是A .B .C .D .8.如图,将Rt △ABC 绕直角顶点A ,沿顺时针方向旋转后得到Rt △AB 1C 1,当点B 1恰好落在斜边BC 的中点时,则∠B 1AC =( )A .25°B .30°C .40°D .60°9.不解方程,则一元二次方程22340x x +-=的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .以上都不对10.如图,AB 为圆O 的切线,OB 交圆O 于点D ,C 为圆O 上一点,若24ACD ∠=,则ABO ∠的度数为( ).A .48B .42C .36D .72二、填空题(每小题3分,共24分)11.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.12.将抛物线22y x =-先向上平移3个单位,再向右平移2个单位后得到的新抛物线对应的函数表达式为______.13.如图,在菱形ABCD 中,AE ⊥BC ,E 为垂足,若cosB=45,EC=2,P 是AB 边上的一个动点,则线段PE 的长度的最小值是________.14.如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A 和第二象限内的点C 分别在双曲线1k y x =和2k y x=的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论: ①阴影部分的面积为()121k k 2+; ②若B 点坐标为(0,6),A 点坐标为(2,2),则28k =;③当∠AOC =90︒时,12=k k ;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是 ____________(填写正确结论的序号).15.如图,点()1,B a -、(),4C b -在OA 上,点A 在x 轴的正半轴上,点D 是A 上第一象限内的一点,若45D ∠=︒,则圆心A 的坐标为__.16.若35a b =,则a b b +=____. 17.如图,直线y =ax +b 过点A (0,2)和点B (﹣3,0),则方程ax +b =0的解是_____.18.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.三、解答题(共66分)19.(10分)从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,∠A=40°,∠B=60°,当∠BCD=40°时,证明:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD是以AC为底边的等腰三角形,求∠ACB的度数.(3)如图2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割线,△ACD是以CD为底边的等腰三角形,求CD的长.20.(6分)如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.21.(6分)如图,AB 、AD 是⊙O 的弦,△ABC 是等腰直角三角形,△ADC ≌△AEB ,请仅用无刻度直尺作图:(1)在图1中作出圆心O ;(2)在图2中过点B 作BF ∥AC .22.(8分)已知:如图,在半圆O 中,直径AB 的长为6,点C 是半圆上一点,过圆心O 作AB 的垂线交线段AC 的延长线于点D ,交弦BC 于点E .(1)求证:D ABC ∠=∠;(2)记OE x =,OD y =,求y 关于x 的函数表达式;(3)若OE CE =,求图中阴影部分的面积.23.(8分)某市为调查市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中选择最常用的一项.将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了 名市民,其中“C :公交车”选项的有 人;扇形统计图中,B 项对应的扇形圆心角是 度;(2)若甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.24.(8分)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在ABC ∆中,点O 在线段BC 上,30BAO ∠=︒,75OAC ∠=︒,3AO =,:2:1BO CO =,求AB 的长.经过数学小组成员讨论发现,过点B 作//BD AC ,交AO 的延长线于点D ,通过构造ABD ∆就可以解决问题(如图2)请回答:____ADB ∠=︒,______AB =.(2)请参考以上解决思路,解决问题:如图3在四边形ABCD 中对角线AC 与BD 相交于点O ,AC AD ⊥,3AO =,75ABC ACB ∠=∠=︒,:2:1BO OD =.求DC 的长.25.(10分)如图,在Rt ABC 中,=90B ∠︒,A ∠的平分线交BC 于D ,E 为AB 上一点,DE DC =,以D 为圆心,以DB 的长为半径画圆.(1) 求证:AC 是⊙D 的切线;(2) 求证:AB EB AC +=.26.(10分)工艺商场按标价销售某种工艺品时,每件可获利45元;并且进价50件工艺品与销售40件工艺品的价钱相同.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元参考答案一、选择题(每小题3分,共30分)1、A【解析】把x =1代入方程x 2+mx ﹣2=0得到关于m 的一元一次方程,解之即可.【详解】把x =1代入方程x 2+mx ﹣2=0得:1+m ﹣2=0,解得:m =1.故选A .【点睛】本题考查了一元二次方程的解,正确掌握一元二次方程的解的概念是解题的关键.2、C【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据题意得:0x 20x, 解得:0x 且4x ≠.故选:C .【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值后应排除不在取值范围内的值.3、B【解析】试题解析:∵盒子中装有6个大小相同的乒乓球,其中4个是黄球, ∴摸到黄球的概率是4263= 故选B .考点:概率公式.4、D【详解】当x =0时,y =0-1=-1,∴图象与y 轴的交点坐标是(0,-1).故选D.5、D【分析】首先根据圆周角的度数求得圆心角的度数,然后代入扇形的面积公式求解即可.【详解】解:∵∠ACB =45°,∴∠AOB=90°,∵半径为10,∴扇形AOB的面积为:29010360π⨯=25π,故选:D.【点睛】考查了圆周角定理及扇形的面积公式,解题的关键是牢记扇形的面积公式并正确的运算.6、D【解析】利用垂径定理和勾股定理计算.【详解】根据勾股定理得4AD==,根据垂径定理得AB=2AD=8故选:D.【点睛】考查勾股定理和垂径定理,熟练掌握垂径定理是解题的关键.7、C【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b与反比例函数y=cx的图象分别在哪几个象限,从而可以解答本题.【详解】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=cx的图象在二四象限,故选C.【点睛】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.8、B【分析】先根据直角三角形斜边上的中线性质得AB1=BB1,再根据旋转的性质得AB1=AB,旋转角等于∠BAB1,则可判断△ABB1为等边三角形,所以∠BAB1=60°,从而得出结论.【详解】解:∵点B1为斜边BC的中点,∴AB1=BB1,∵△ABC绕直角顶点A顺时针旋转到△AB1C1的位置,∴AB 1=AB ,旋转角等于∠BAB 1,∴AB 1=BB 1=AB ,∴△ABB 1为等边三角形,∴∠BAB 1=60°.∴∠B 1AC =90°﹣60°=30°.故选:B .【点睛】本题主要考察旋转的性质,解题关键是判断出△ABB 1为等边三角形.9、C【分析】根据∆值判断根的情况【详解】解:a=2 b=3 c= -422=4342(4)932410b ac∆-=-⨯⨯-=+=>∴有两个不相等的实数根故本题答案为:C【点睛】本题考查了通过根的判别式判断根的情况,注意a,b,c 有符号10、B【分析】根据切线的性质以及圆周角定理求解即可.【详解】连接OA∵AB 为圆O 的切线∴90OAB ∠=︒∵24ACD ∠=∴248AOB ACD ==︒∠∠∴180180904842ABO OAB AOB =︒--=︒-︒-︒=︒∠∠∠故答案为:B .【点睛】本题考查了圆的角度问题,掌握切线的性质以及圆周角定理是解题的关键.二、填空题(每小题3分,共24分)11、61 1【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n 行n 个数,故前n 个数字的个数为:1+2+3+…+n =(1)2n n +, ∵当n =63时,前63行共有63642⨯=2016个数字,2020﹣2016=1, ∴2020在第61行左起第1个数,故答案为:61,1.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.12、()2223y x =--+【分析】根据二次函数平移的特点即可求解.【详解】将抛物线22y x =-先向上平移3个单位,再向右平移2个单位后得到的新抛物线对应的函数表达式为()2223y x =--+故答案为: ()2223y x =--+.【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的特点.13、4.2【解析】设菱形ABCD 的边长为x ,则AB =BC =x ,又EC =2,所以BE =x -2,因为AE⊥BC于E,所以在Rt△ABE中,cosB=2xx-,又cosB=45于是2xx-=45,解得x=1,即AB=1.所以易求BE=2,AE=6,当EP⊥AB时,PE取得最小值.故由三角形面积公式有:12AB•PE=12BE•AE,求得PE的最小值为4.2.点睛:本题考查了余弦函数在直角三角形中的运用、三角形面积的计算和最小值的求值问题,求PE的值是解题的关键14、②④【分析】由题意作AE⊥y轴于点E,CF⊥y轴于点F,①由S△AOM=12|k1|,S△CON=12|k2|,得到S阴影部分=S△AOM+S△CON=12(|k1|+|k2|)=12(k1-k2);②由平行四边形的性质求得点C的坐标,根据反比例函数图象上点的坐标特征求得系数k2的值.③当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;④若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=-k2,根据反比例函数的性质得两双曲线既关于x轴对称,同时也关于y轴对称.【详解】解:作AE⊥y轴于E,CF⊥y轴于F,如图:∵S△AOM=12|k1|,S△CON=12|k2|,得到S阴影部分=S△AOM+S△CON=12(|k1|+|k2|);而k1>0,k2<0,∴S阴影部分=12(k1-k2),故①错误;②∵四边形OABC是平行四边形,B点坐标为(0,6),A点坐标为(2,2),O的坐标为(0,0).∴C(-2,4).又∵点C 位于y=2k x上, ∴k 2=xy=-2×4=-1.故②正确;当∠AOC=90°,∴四边形OABC 是矩形,∴不能确定OA 与OC 相等,而OM=ON ,∴不能判断△AOM ≌△CNO ,∴不能判断AM=CN ,∴不能确定|k 1|=|k 2|,故③错误;若OABC 是菱形,则OA=OC ,而OM=ON ,∴Rt △AOM ≌Rt △CNO ,∴AM=CN ,∴|k 1|=|k 2|,∴k 1=-k 2,∴两双曲线既关于x 轴对称,也关于y 轴对称,故④正确.故答案是:②④.【点睛】本题属于反比例函数的综合题,考查反比例函数的图象、反比例函数k 的几何意义、平行四边形的性质、矩形的性质和菱形的性质.注意准确作出辅助线是解此题的关键.15、()3,0【分析】分别过点B ,C 作x 轴的垂线,垂足分别为E ,F ,先通过圆周角定理可得出∠BAC=90°,再证明△BEA ≌△AFC ,得出AE=CF=4,再根据AO=AE-OE 可得出结果.【详解】解:分别过点B ,C 作x 轴的垂线,垂足分别为E ,F ,∵∠D=45°,∴∠BAC=90°.∴∠BAE+∠ABE=90°,∠BAE+∠CAF=90°,∴∠ABE=∠CAF ,又AB=AC ,∠AEB=∠AFC=90°,∴△BEA ≌△AFC (AAS ),∴AE=CF ,又∵B ,C 的坐标为()1,B a -、(),4C b -,∴OE=1,CF=4,∴OA=AE-OE=CF-OE=1.∴点A 的坐标为(1,0).故答案为:(1,0).【点睛】本题主要考查圆周角定理,以及全等三角形的判定与性质,根据已知条件作辅助线构造出全等三角形是解题的关键. 16、85【解析】根据比例的性质进行求解即可. 【详解】∵a 3b 5=, ∴设a=3k ,b=5k , ∴a b 3k 5k b 5k ++==85, 故答案为:85. 【点睛】本题考查了比例的性质,熟练掌握是解题的关键.17、x =﹣1【分析】所求方程ax +b =0的解,即为函数y =ax +b 图像与x 轴交点横坐标,根据已知条件中点B 即可确定.【详解】解:方程ax +b =0的解,即为函数y =ax +b 图象与x 轴交点的横坐标,∵直线y =ax +b 过B (﹣1,0),∴方程ax +b =0的解是x =﹣1,故答案为:x =﹣1.【点睛】本题主要考查了一次函数与一元一次方程的关系,掌握一次函数与一元一次方程之间的关系是解题的关键.18、6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.三、解答题(共66分)19、(1)证明见解析;(2)∠ACB=96°;(3)CD【分析】(1)根据三角形内角和定理可求出∠ACB=80°,进而可得∠ACD=40°,即可证明AD=CD,由∠BCD=∠A=40°,∠B为公共角可证明三角形BCD∽△BAC,即可得结论;(2)根据等腰三角形的性质可得∠ACD=∠A=48°,根据相似三角形的性质可得∠BCD=∠A=48°,进而可得∠ACB的度数;(3)由相似三角形的性质可得∠BCD=∠A,由AC=BC=2可得∠A=∠B,即可证明∠BCD=∠B,可得BD=CD,根据相似三角形的性质列方程求出CD的长即可.【详解】(1)∵∠A=40°,∠B=60°,∴∠ACB=180°-40°-60°=80°,∵∠BCD=40°,∴∠ACD=∠ACB-∠BCD=40°,∴∠ACD=∠A,∴AD=CD,即△ACD是等腰三角形,∵∠BCD=∠A=40°,∠B为公共角,∴△BCD∽△BAC,∴CD为△ABC的完美分割线.(2)∵△ACD是以AC为底边的等腰三角形,∴AD=CD,∴∠ACD=∠A=48°,∵CD是△ABC的完美分割线,∴△BCD∽△BAC,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.(3)∵△ACD是以CD为底边的等腰三角形,∴AD=AC=2,∵CD是△ABC的完美分割线,∴△BCD∽△BAC,∴∠BCD=∠A,CD BC AC AB=,∵AC=BC=2,∴∠A=∠B,∴∠BCD=∠B,∴BD=CD,∴CD BCAC AD CD=+,即CD222CD=+,解得:或(舍去),∴CD【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,正确理解完美分割线的定义并熟练掌握相似三角形的性质是解题关键.20、(1)证明见解析;(2)证明见解析.【分析】(1)连接GE,根据正方形的性质和平行线的性质得到∠AEG=∠CGE,根据菱形的性质和平行线的性质得到∠HEG=∠FGE,解答即可;(2)证明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,证明∠GHE=90°,根据正方形的判定定理证明.【详解】解:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中AH DG HE HG=⎧⎨=⎩,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查的是正方形的性质、菱形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用相关的性质定理和判定定理是解题的关键.21、见解析.【分析】(1)画出⊙O的两条直径,交点即为圆心O.(2)作直线AO交⊙O于F,直线BF即为所求.【详解】解:作图如下:(1);(2).【点睛】本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)见解析;(2)9yx=;(393344π【分析】(1)根据直径所对的圆周角等于90°,可得∠CAB+∠ABC=90°,根据DO⊥AB,得出∠D+∠DAO=90°,进而可得出结果;(2)先证明OCE ODC ∆∆∽,得出OE OC OC OD =,从而可得出结果; (3)设OD 与圆弧的交点为F ,则根据S 阴影=S △AOD -S △AOC -S 扇形COF 求解.【详解】(1)证明:∵AB 是直径,∴90ACB ∠=︒,∴90A ABC ∠+∠=︒.∵⊥DO AB ,∴90A D ∠+∠=︒.∴D ABC ∠=∠.(2)解:∵OB OC =,∴OBC OCE ∠=∠.∴OCE D ∠=∠.而COE COD ∠=∠,∴OCE ODC ∆∆∽,∴OE OC OC OD =即33x y=, ∴9y x =. (3)解:设OD 与圆弧的交点为F ,设B α∠=,则BCO α∠=,∵OE CE =,∴EOC BCO α∠=∠=.在BCO ∆中,90180a αα++︒+=︒,∴30α=︒. ∴∠AOC=60°,∴DO=3AO=33.又AO=CO ,∴△ACO 为等边三角形,S 阴影=S △AOD -S 扇形COF -S △AOC =23013393333π333π236024412⨯⨯-⨯-⨯⨯=-.【点睛】本题主要考查圆周角定理的推论、圆中不规则图形面积的求法、等腰三角形的性质、等边三角形的性质与判定等知识,掌握基本性质与判定方法是解题的关键.注意求不规则图形的面积时,结合割补法求解.23、(1)2000、800、54;(2)14【分析】(1)由选项D 的人数及其所占的百分比可得调查的人数,总调查人数减去A 、B 、D 、E 选项的人数即为C 选项的人数,求出B 选项占总调查人数的百分比再乘以360度即为B 项对应的扇形圆心角度数;(2)用列表法列出所有可能出现的情况,再根据概率公式求解即可.【详解】解:(1)本次调查的总人数为50025%2000÷=人;C 选项的人数为2000(100300500300)800-+++=人;扇形统计图中,B 项对应的扇形圆心角是300360542000⨯=︒︒; (2)列表如下:由表可知共有16种等可能结果,其中甲、乙两人恰好选择同一种交通工具上班的结果有4种,所以甲、乙两人恰好选择同一种交通工具上班的概率为41164=. 【点睛】本题考查了样本估计总体及列表法或树状图法求概率,是数据与概率的综合题,灵活的将条形统计图与扇形统计图中的数据相关联是解(1)的关键,熟练的用列表或树状图列出所有可能情况是求概率的关键.24、(1)75,(2【分析】(1) 根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA 可得出△BOD ∽△COA,利用相似三角形的性质可求出OD 的值,进而可得出AD 的值,由三角形内角和定理可得出∠ABD=75°=∠ ADB,由等角对等边可得出;(2) 过点B 作BE ∥ AD 交AC 于点E ,同(1) 可得出AE ,在Rt △AEB 中,利用勾股定理可求出BE 的长度,再在Rt △CAD 中,利用勾股定理可求出DC 的长,此题得解.【详解】解: (1) //BD AC ,75ADB OAC ∴∠=∠=︒.BOD COA ∠=∠BOD COA ∴∆∆2OD OB OA OC ∴== 又3AO =223OD AO ∴==, 33AD AO OD ∴=+=.30,75,BAD ADB ∠=︒∠=︒18075,ABD BAD ADB ADB ∴∠=︒-∠-∠=︒=∠33AB AD ∴==, 故答案为:75;33.(2)过点B 作//BE AD 交AC 于点E ,如图所示.AC AD ⊥,//BE AD90DAC BEA ∴∠=∠=︒.AOD EOB ∠=∠AOD EOB ∴∆∆==OB OE BE OD OA DA∴ :2:1BO OD ==2OE BE OA DA∴= 3AO =23EO ∴=33AE ∴=75ABC ACB ∠=∠=︒30,BAC AB AC ∴∠=︒=2AB BE ∴=在Rt AEB ∆中,222BE AE AB +=,即()()222332BE BE +=,解得:3BE = 6,6AB AC AD ∴===32AC ∴= 在Rt CAD ∆中,22223317622CD AC AD ⎛⎫=+=+= ⎪⎝⎭ 3172CD ∴=. 【点睛】本题考查了平行线的性质、相似三角形性质及勾股定理,构造相似三角形是解题的关键,利用勾股定理进行计算是解决本题的难点.25、 (1)证明见解析;(2)证明见解析.【分析】(1)过点D 作DF ⊥AC 于F ,求出BD=DF 等于半径,得出AC 是⊙D 的切线;(2)先证明△BDE ≌△FCD (HL ),根据全等三角形对应边相等及切线的性质的AB=AF ,得出AB+EB=AC .【详解】证明:(1)过点D 作DF AC ⊥于F ;∵=90B ∠︒,以D 为圆心,以DB 的长为半径画圆,∴AB 为圆D 的切线又∵90B AFD ︒∠=∠=,且AD 平分∠BACDF DB ∴=,且DF⊥AC,∴AC 是⊙D 的切线.(2)由90B AFD ︒∠=∠=,DB 是半径得AB 的是⊙O 的切线,又由(1)可知AC 是⊙D 的切线AB AF ∴=∵DB DF =,DE CD =∴()Rt BDE Rt FDC HL ≌BE CF ∴=AF C B AC F A BE +=+∴=即AB EB AC +=.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.26、(1)进价为180元,标价为1元,(2)当降价为10元时,获得最大利润为4900元.【分析】(1)设工艺品每件的进价为x 元,则根据题意可知标价为(x+45)元,根据进价50件工艺品与销售40件工艺品的价钱相同,列一元一次方程求解即可;(2)设每件应降价a 元出售,每天获得的利润为w 元,根据题意可得w 和a 的函数关系,利用函数的性质求解即可.【详解】设每件工艺品的进价为x 元,标价为(x+45)元,根据题意,得:50x=40(x+45),解得x=180,x+45=1.答:该工艺品每件的进价180元,标价1元.(2)设每件应降价a 元出售,每天获得的利润为w 元.则w=(45-a )(100+4a )=-4(a-10)2+4900,∴当a=10时,w 最大=4900元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,吃透题意,确定变量,建立函数模型是解题的关键.。
聊城市冠县第一学期九年级期末学业水平评价
聊城市冠县第一学期九年级期末学业水平评论数学试卷第Ⅰ卷(选择题共 36分)一.选择题(本大题共12 个小题,共36 分,在每题给出的四个选项中,只有一个选项符合题意)1.在 Rt △ABC 中,∠ C=90°, cosA=3,则∠A的度数是()2A. 30° B . 45°C.60° D . 90°2.抛物线y x 3 2 2 的对称轴是()A.直线x =-3 B .直线x =3C.直线x =-2 D .直线x =2 3.如图,在△ ABC 中, D、E、F 分别是 AB 、 AC 、BC 的中点,则△ DEF 与△ ABC 的周长之比为()A. 1:2B.1:2C.1:3D.1:44.如图,将△AOB 绕点 O 逆时针方向旋转90°,获取△ A’OB ’,若点 A 的坐标为( 2,1),则点 A ’坐标为()A.( -1, -2) B .( -1, 2)C.( -2, 1) D .( -2,-1)5.假如非零实数a、 b、 c 知足 a - b + c=0,则对于x 的一元二次方程ax2bx c 0必有一根为()A.x =1 B .x =-1C.x =0 D .x =26.在元旦游园晚会上有一个闯关活动:将 5 张分别画有圆、等腰梯形、平行四边形、等腰三角形、菱形的卡片随意摆放,将全部图形的正面朝下,从中随意打开一张,假如打开的图形是轴对称图形就能够过关,那么一次过关的概率是()1 2 3 4A. B .C. D .5 5 5 57.如图,在梯形ABCD 中, AB ∥ CD, E 是 AD 的中点, EF∥ CB 交 AB 于 F, BC=4cm ,则 EF 的长为()A. 2cm B . 2.5cm C.3cm D . 3.5cm 8.投掷一枚硬币三次,三次向上的面均同样的概率为()1 1C.1 1A. B . D .62 3 49.如图,在梯形 ABCD 中, AD ∥ BC,AD=2 ,AB=3 ,BC=6 ,沿 AE 翻折梯形ABCD 使点B 落 AD 的延伸线上,记为点B’,连结 B’E交 CD 于点 F,则DF的值为()FC1 1C.1 1A. B . D .63 4 510.如图,在平面直角坐标系中,二次函数y ax2 c (a≠0)的图象过边长为 1 的正方形ABOC 的三个极点 A 、 B 、C,则 a c 的值为()2 A. -2 B.-1 C.- 2 D .211.以下图,已知△ ABC 的周长为 1,连结△ ABC 三边的中点组成第二个三角形,再连结第二个三角形三边中点组成第三个三角形,挨次类推,第 2008 个三角形的周长为()1 1C.1D .1A. B .2007 2008 2007 2008 2 212.已知二次函数y ax 2 bx c 的图象以下图,对称轴是x 2 ,则在“①b<0,②ac<0,③ 4a+c>2b ,④ a+c>b ”中判断正确的个数是()A .1个二、填空题(此题共B .2 个第Ⅱ卷(非选择题5 小题,每题 3 分,满分C .3 个D .4 个共84分)15 分,只需求填写最后的结果)1 2454 = ___________ .13.计算:614.已知抛物线 yax 2 bx c 与 x 轴交点的横坐标为 -1,则 a + c=___________ .15.在一个不透明的盒子中装有2 个白球, n 个黄球,它们除颜色不一样外,其他均同样.若从中随机摸出一个球,它是白球的概率为2,则 n=___________516.如图, 在△ ABC 中,DE ∥ BC ,若 AD/DB= 1/3 ,已知 DE=3cm ;则 BC=___________cm .17.如图,在梯形 ABCD 中, AD ∥ BC ,AB=DC=AD=6 ,点 E 、 F 分别在线段 AD 、 DC 上运动(点 E 与点 A 、D 不重合),若∠ ABC=60 °,∠ BEF=120 °, AE= x ,DF= y ,则 y 关于 x 的函数关系式为 ___________.三、解答题(此题共 8 小题,共 69 分.解答应写出必需的文字说明、推理过程或演算步骤) 18.(此题满分 6 分)计算:(1) 27 05 16 sin 60 tan 45( 2) sin 302cos 451tan 2 602319.(此题满分 6 分)按指定的方法解方程:( 1) 2x 2 14x (用配方法) ;( 2)x 5 4 x 5 2 (因式分解法).20.(此题满分 6 分)如图,河旁有一座小山,从山顶 A 处测得河对岸点 C 的俯角为 30°,测得岸边点 D 的俯角为 45°,又知河宽CD 为 20 米。
聊城市2021年九年级上学期数学期末考试试卷C卷
聊城市2021年九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·哈尔滨) 下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2017九上·顺德月考) 用配方法解方程,下列配方结果正确的是().A .B .C .D .3. (2分) (2019八下·朝阳期末) 若反比例函数的图象经过点,则该反比例函数的图象位于()A . 第一、二象限B . 第二、三象限C . 第二、四象限D . 第一、三象限4. (2分) (2020九上·潮南期末) 抛物线y=﹣ x2的顶点坐标是()A . (0,)B . (0,)C . (0,0)D . (1,﹣)5. (2分) (2018九上·宁波期中) 已知的⨀O半径为3cm, 点P到圆心O的距离OP=2cm, 则点P()B . 在⨀O 上C . 在⨀O 内D . 无法确定6. (2分)(2020·兰州模拟) 如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BAD的度数是()A . 60°B . 80°C . 100°D . 120°7. (2分)(2020·长兴模拟) 已知圆锥的底面半径为3,侧面展开图的圆心角为180°,则圆锥的母线长是()A . 6B .C .D . 98. (2分) (2018九上·路南期中) 若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向右平移1个单位,再向下平移2个单位,得到的抛物线过点()A . (3,6)B . (3,﹣2)C . (3,1)D . (3,2)9. (2分)已知圆柱的底面直径为4cm,高为5cm,则圆柱的侧面积是()A . 10cm2B . 10兀cm2C . 20兀cm210. (2分) (2019九上·台州月考) 已知二次函数y=ax2-bx-2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a-b为整数时,ab的值为()A . 或B . 或1C . 或D . 或1二、填空题 (共7题;共8分)11. (1分) (2019九上·台州期中) 如图,圆O的半径为2.C1是函数y=x2的图象,C2是函数y=−x2 的图象,则阴影部分的面积是________.12. (1分)如图,等腰中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=________cm.13. (2分)如图,两弦AB、CD相交于点E,且AB⊥CD,若∠B=60°,则∠A等于________度.14. (1分) (2017九上·东台期末) 小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是________.15. (1分) (2018九上·丰润期中) 关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是________.16. (1分)如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,…,则在第n个图形中,互不重叠的三角形共有个________(用含n的代数式表示)17. (1分)(2017·上海) 如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是________.三、解答题 (共8题;共67分)18. (2分) (2019八下·江城期中) 已知:如图CA=CB,那么数轴上的点A所表示的数是________.19. (10分)计算:(1)﹣tan45°+(6﹣π)0;(2)(x+2)2﹣4(x﹣3).20. (5分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.21. (10分)(2012·南京) 某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别切于点A、B,已知∠CO2D=60°,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24cm,设⊙O1的半径为xcm.(1)用含x的代数式表示扇形O2CD的半径;(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2 ,当⊙O1的半径为多少时,该玩具的制作成本最小?22. (10分)(2017·信阳模拟) 如图,AB是⊙O的直径,且AB=6,C是⊙O上一点,D是的中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连接AD.(1)求证:AF⊥EF;(2)填空:①当BE=________时,点C是AF的中点;②当BE=________时,四边形OBDC是菱形.23. (10分) (2019八下·鼓楼期末) 某超市销售一种水果,迸价为每箱40元,规定售价不低于进价.现在的售价为每箱72元,每月可销售60箱.经市场调查发现:若这种水果的售价每降低2元,则每月的销量将增加10箱,设每箱水果降价x元(x为偶数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围.(2)若该超市在销售过程中每月需支出其他费用500元,则如何定价才能使每月销售水果的利润最大?最大利润是多少元?24. (5分)已知关于x的一元二次方程-(k+2)x+2k=0.(1)试说明无论k取何值时,这个方程一定有实数根;(2)已知等腰的一边a=1,若另两边b、c恰好是这个方程的两个根,求的周长.25. (15分)(2017·泰兴模拟) 如图,抛物线y=ax2﹣(a+1)x﹣3与x轴交于点A、B,与y轴交于点C,∠BCO=45°,点M为线段BC上异于B、C的一动点,过点M与y轴平行的直线交抛物线于点Q,点R为线段QM上一动点,RP⊥QM交直线BC于点P.设点M的横坐标为m.(1)求抛物线的表达式;(2)当m=2时,△PQR为等腰直角三角形,求点P的坐标;(3)①求PR+QR的最大值;②求△PQR面积的最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共67分)18-1、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、25-1、25-2、25-3、第11 页共11 页。
聊城市2020版九年级上学期数学期末考试试卷B卷
聊城市2020版九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知2x=3y(xy≠0),则下列各式中错误的是()A . =B . =C . =D . y= x2. (2分)(2018·淮南模拟) 在△ABC中,∠C=90°,AB=6,cosA= ,则AC等于().A . 18B . 2C .D .3. (2分)已知⊙O的直径为8cm,点A与O距离为7cm,则点A与⊙O的位置关系是()A . 点A在⊙O内B . 点A在⊙O上C . 点A在⊙O外D . 不能确定4. (2分)在五张完全相同的卡片上,分别写有数字0,﹣1,﹣2,1,3,现从中随机抽取一张,抽到写有负数的卡片的概率是()A .B .C .D .5. (2分)(2018·莱芜) 如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A . 1B . 2C . 3D . 46. (2分) (2018九上·宜昌期中) 将抛物线向左平移个单位,再向上平移个单位得到的抛物线,其解析式是()A .B .C .D .7. (2分)反比例函数y=的图象如图所示,则下列结论正确的是()A . 常数m<1B . y随x的增大而增大C . 若A(﹣1,h),B(2,k)在图象上,则h<kD . 若P(﹣x,y)在图象上,则P′(x,﹣y)也在图象上9. (2分)(2019·新华模拟) 如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A .B . 2C . 2D . (1+2 )10. (2分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A . 点(0,3)B . 点(2,3)C . 点(5,1)D . 点(6,1)二、填空题 (共5题;共5分)11. (1分)两个相似三角形的面积比1:4,则它们的周长之比为________12. (1分) (2016九上·太原期末) 半径为6 cm的圆内接正四边形的边长是________cm.13. (1分)若扇形的半径为9,圆心角为120°,则它的弧长为________ .14. (1分) (2018九下·尚志开学考) 在反比例函数图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是________.15. (1分)(2020·丰台模拟) 如图,为的直径,弦于点E.如果,,那么的长为________.三、解答题 (共14题;共130分)16. (1分) (2018九上·信阳月考) 已知A,B,C是反比例函数图象上的三个整点(即横、纵坐标均为整数的点),分别以这些点向横轴或纵轴作垂线段,由垂线段为边作出三个正方形,再以正方形的边长为直径作两个半圆,组成如图所示的阴影部分,则阴影部分的面积总和是________.(用含π的代数式表示)17. (5分)计算:×sin45°﹣20150+2﹣1 .18. (10分) (2017八下·临沭期末) 在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.19. (6分) (2019九上·灌云月考) 已知,抛物线的顶点坐标为(2,1),与y轴交于点(0,3).求(1)这条抛物线的表达式;(2)直接写出当1<x<5时,y的取值范围为________.20. (7分) (2018九上·洛阳期中) 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O 上,且OP⊥PQ.(1)如图当PQ∥AB时,求PQ的长;(2)当点P在BC上移动时,线段PQ长的最大值为________;此时,∠POQ的度数为________.21. (10分)(2017·安顺模拟) 已知:如图,反比例函数y= 的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.22. (5分)为了测量山坡上的电线杆的高度,数学兴趣小组带上测角器和皮尺来到山脚下,他们在处测得信号塔顶端的仰角是,信号塔底端点的仰角为,沿水平地面向前走100米到处,测得信号塔顶端的仰角是,求信号塔的高度.(结果保留整数)。
山东省聊城市2020年九年级上学期数学期末考试试卷C卷
山东省聊城市2020年九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·硚口期中) 若关于x的方程ax2﹣3x﹣2=0是一元二次方程,则()A . a>1B . a≠0C . a=1D . a≥02. (2分)(2018·黄冈) 当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为()A . -1B . 2C . 0或2D . -1或23. (2分)(2015·舟山) 下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分)下列事件中,是必然事件的是()A . 抛掷1枚硬币,掷得的结果是正面朝上B . 抛掷1枚硬币,掷得的结果是反面朝上C . 抛掷1枚硬币,掷得的结果不是正面朝上就是反面朝上D . 抛掷2枚硬币,掷得的结果是1个正面朝上与1个反面朝上5. (2分) (2017七下·柳州期末) 下面调查中,适合采用全面调查的事件是()A . 对全国中学生心理健康现状的调查B . 谋批次汽车的抗重击能力的调查C . 春节联欢会晚会收视率的调查D . 对你所在的班级同学的身高情况的调查6. (2分)若方程x2+ax﹣2a=0的一根为1,则a的取值和方程的另一根分别是()A . 1,﹣2B . ﹣1,2C . 1,2D . ﹣1,﹣27. (2分)在平面直角坐标系xOy中,一直线经过点A(﹣3,0),点B(0,),⊙P的圆心P的坐标为(1,0),与y轴相切于点O,若将⊙P沿x轴向左平移,平移后得到⊙P′,当⊙P′与直线相交时,横坐标为整数的点P′共有()A . 1个B . 2个C . 3个D . 4个8. (2分)(2018·随州) 我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A . 33B . 301C . 386D . 5719. (2分)已知O是△ABC的内心,∠A=50°,则∠BOC=()A . 100°B . 115°C . 130°D . 125°10. (2分)已知二次函数y=(x+1)2+(x﹣3)2 ,当函数y取最小值时,x的值是()A . x=﹣1B . x=3C . x=2D . x=1二、填空题 (共6题;共7分)11. (1分) (2019九上·潮南期末) 方程x2=3的解是________.12. (1分) (2018九上·瑞安月考) 将抛物线向左平移3个单位后,得到的抛物线的表达式是________13. (1分)(2013·成都) 2013•成都)若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为________.14. (1分) (2019九上·长兴期末) 已知线段AB=6cm,点C是线段AB的黄金分割点(AC>BC),则AC的长为________ cm15. (2分) (2019九上·台安月考) 已知正六边形的外接圆的半径是,则正六边形的周长是________.16. (1分)(2018·安徽模拟) 如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四边形EFGH是菱形.其中正确的是________(把所有正确结论的序号都选上).三、解答题 (共8题;共53分)17. (5分)公式法求一元二次方程x2-3x-2=0的解18. (10分) (2017九下·萧山开学考) 如图,在直角坐标平面中,O为原点,点A的坐标为(20,0),点B 在第一象限内,BO=10,sin∠BOA= .(1)在图中,求作△ABO的外接圆(尺规作图,不写作法但需保留作图痕迹);(2)求点B的坐标与cos∠BAO的值;(3)若A,O位置不变,将点B沿x轴向右平移使得△ABO为等腰三角形,请求出平移后点B的坐标.19. (5分) (2018九下·吉林模拟) 在一个不透明的口袋中有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其他都相同.从口袋中随机摸出1个球,记录其颜色,然后放回口袋并摇匀;再从口袋中随机摸出1个球,记录其颜色.请用画树状图(或列表)的方法,求两次摸到的球颜色不同的概率.20. (5分) (2017七下·天水期末) 如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果,△ABC旋转后能与△ADE重合,那么哪一点是旋转中心?旋转了多少度?21. (10分)(2019·喀什模拟) 如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.22. (10分) (2017九上·陆丰月考) 某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了迎接“双11”节,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?23. (2分) (2019八下·镇江月考) 如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC、BD相交于点0,将直线AC绕点0顺时针旋转°,分别交直线BC、AD于点E、F.(1)当 =________时,四边形ABEF是平行四边形;(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形,① =________构造的四边形是菱形;②若构造的四边形是矩形,求出该矩形的面积.________24. (6分)(2016·淄博) 已知,点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q的纵坐标为.(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MN⊥x轴,垂足为点N,求证:MF=MN+OF.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共53分)17-1、18-1、18-2、18-3、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。
山东省聊城市2020版九年级上学期数学期末考试试卷C卷
山东省聊城市2020版九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出 (共12题;共36分)1. (3分) (2018八下·肇源期末) 已知P1(x1 , y1),P2(x2 , y2),P3(x3 , y3)是反比例函数的图象上的三点,且x1<x2<0<x3 ,则y1、y2、y3的大小关系是()A . y3<y2<y1B . y1<y2<y3C . y2<y3<y1D . y2<y1<y32. (3分)三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是()A . 9B . 11C . 13D . 143. (3分) (2017九上·宁县期末) sin30°=()A . 0B . 1C .D .4. (3分)如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A .B .C .D .5. (3分)(2017·阿坝) 如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A . msin35°B . mcos35°C .D .6. (3分)已知x1、x2是方程x2-x-3=0的两个实数根,那么x12+x22的值是()A . 1B . 5C . 7D .7. (3分) (2019·永定模拟) 如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A , B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A . 8B . ﹣8C . 4D . ﹣48. (3分)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=()A . 6B . 7C . 8D . 99. (3分)如图,已知灯塔M方圆一定范围内有镭射辅助信号,一艘轮船在海上从南向北方向以一定的速度匀速航行,轮船在A处测得灯塔M在北偏东30°方向,行驶1小时后到达B处,此时刚好进入灯塔M的镭射信号区,测得灯塔M在北偏东45°方向,则轮船通过灯塔M的镭射信号区的时间为()A . (﹣1)小时B . (+1)小时C . 2小时D . 小时10. (3分) (2019八下·宁明期中) 联华超市在销售中发现“卡西龙”牌童装平均每天可售出20件,每件盈利40元.经市场调查发现:如果每件童装每降价2元,那么平均每天就可多售出4件.要想平均每天销售这种童装能盈利1200元,那么每件童装应降价()A . 10元B . 20元C . 30元D . 10元或20元11. (3分)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A . 2个B . 3个C . 4个D . 5个12. (3分)(2016·兴化模拟) 如图,在平面直角坐标系中,点B在y轴上,第一象限内点A满足AB=AO,反比例函数y= 的图象经过点A,若△ABO的面积为2,则k的值为()A . 1B . 2C . 4D .二、填空题:本大题共6小题,每小题3分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年山东省聊城市冠县九年级(上)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)
1.(3分)如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()
A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)2.(3分)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是()
A.sinα=cosαB.tan C=2C.sinβ=cosβD.tanα=1
3.(3分)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0B.k≥﹣1且k≠0C.k≥﹣1D.k>﹣1
4.(3分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB 的长为()
A.B.5C.D.5
5.(3分)若抛物线y=ax2+2ax+4(a<0)上有A(﹣,y1),B(﹣,y2),C(,y3)三点,则y1,y2,y3的大小关系为()
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1 6.(3分)如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:FC=()
A.1:4B.1:3C.1:2D.1:1
7.(3分)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB 的坡度i=1:1.5,则坝底AD的长度为()
A.26米B.28米C.30米D.46米
8.(3分)如图,在Rt△ABC中,∠A=90°,BC=2,以BC的中点O为圆心⊙O分别与AB,AC相切于D,E两点,则的长为()
A.B.C.πD.2π
9.(3分)已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax﹣2b与反比例函数y =在同一平面直角坐标系中的图象大致是()
A.B.
C.D.
10.(3分)若a,b是方程x2+2x﹣2016=0的两根,则a2+3a+b=()A.2016B.2015C.2014D.2012
11.(3分)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2的值为()
A.2B.3C.4D.﹣4
12.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:
①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正确的是()
A.①④B.②④C.①②③D.①②③④
二.填空题(本题共6个小题,每小题3分,共18分,只要求写出最后结果)
13.(3分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE 折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.
14.(3分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.
15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)
16.(3分)如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x 轴相切时,圆心P的坐标为.
17.(3分)已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为.
18.(3分)如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为.
三、解答题(本大题共7个小题,共66分。
解答要写出必要的文字说明、证明过程或演算步骤。
)
19.(6分)根据要求解下列一元二次方程:
(1)x2+2x﹣3=0(配方法);
(2)(x+1)(x﹣2)=4(公式法).
20.(8分)已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.
(1)求证:△ABD∽△DCE;
(2)如果AB=3,EC=,求DC的长.
21.(10分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌
底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH 与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)
22.(10分)如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧的中点,连接CE交AB于点F,且BF=BC.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2,cos B=,求CE的长.
23.(10分)某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?
(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?
24.(10分)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2)、B(2,b)两点,与y轴相交于点C.
(1)求m,n的值;
(2)若点D与点C关于x轴对称,求△ABD的面积;
(3)在坐标轴上是否存在异于D点的点P,使得S△P AB=S△DAB?若存在,直接写出P 点坐标;若不存在,说明理由.
25.(12分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;
若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.。