常微分方程第五章 微分方程建模案例

合集下载

常微分方程模型.ppt

常微分方程模型.ppt

历史背景:
为了审理这一案件,法庭组织了一个由著名化学家、物理学家和艺术史
学家组成的国际专门小组查究这一事件。他们用X射线检验画布上是否曾经
有过别的画。此外,他们分析了油彩中的拌料(色粉),检验油画中有没有 历经岁月的迹象。科学家们终于在其中的几幅画中发现了现代颜料钴兰的痕 迹,还在几幅画中检验出了20世纪初才发明的酚醛类人工树脂。根据这些证 据,范·梅格伦于1947年10月12日被宣告犯有伪造罪,被判刑一年。可是他 在监狱中只待了两个多月就因心脏病发作,于1947年12月30日死去。
历史背景:
然而,事情到此并未结束,许多人还是不肯相信著名的“在埃牟斯的门 徒”是范·梅格伦伪造的。事实上,在此之前这幅画已经被文物鉴定家认定 为真迹,并以17万美元的高价被伦布兰特学会买下。专家小组对于怀疑者的 回答是:由于范·梅格伦曾因他在艺术界中没有地位而十分懊恼,他下决心 绘制“在埃牟斯的门徒”,来证明他高于三流画家。当创造出这样的杰作后, 他的志气消退了。而且,当他看到这幅“在埃牟斯的门徒”多么容易卖掉以 后,他在炮制后来的伪制品时就不太用心了 。这种解释不能使怀疑者感到 满意,他们要求完全科学地、确定地证明“在埃牟斯的门徒”的确是一个伪 造品。这一问题一直拖了20年,直到1967年,才被卡内基·梅伦(CarnegieMellon)大学的科学家们 基本上解决。
马尔萨斯模型的一个显著特点:种群数量翻一番所需 的时间是固定的。
令种群数量翻一番所需的时间为T,则有:
故 T ln 2
2N0 N0erT
r
模型检预验测
假比如较人历口年数的真人能口保统持计每资3料4.,6年可增发加现一人倍口,增那长么的人实口际数情将况
与 以马几尔何萨级斯数模的型方的式预增报长结。果例基如本,相到符251,0年例,如人,口19达61年2×世10界14人个,

常微分方程--第五章 线性微分方程组(5.1-5.2节)

常微分方程--第五章 线性微分方程组(5.1-5.2节)
5.3.1 常系数线性齐次微分方程组 5.3.2 常系数非齐次线性微分方程组
目录
上页
下页
返回
结束
5.1微分实例及有关概念 多回路的电路问题 考虑多个回路的电路,
E (t )
L
C
R1
R2

E (t ) 是电源电压, L 是电感,C 是电容器电容,
R1 , R2 是电阻, i1 是通过 L 的电流, i2 是通过
T
A (aij ) nn
满足初始条件 x(t0 ) x0 , y(t0 ) y0 , z (t0 ) z0 的解 x(t ), y (t ), z (t ).
目录
上页
下页
返回
结束
事实上, 在第4 章中的高阶微分方程
y
( n)
( n 1) f ( x, y, y , y ).
令 y y1 , y y2 , y ( n1) yn1 , 则上式可以化为方程组
目录
上页
下页
返回
结束
通解及通积分 含有n个任意常数 c1 , cn 的解
x1 1 (t , c1 , cn ) x (t , c , c ) n 1 n n 为方程组的通解 . 这里 c1 , c2 ,, cn 相互独立.
目录
上页
下页
返回
结束
如果通解满足方程组
目录
上页
下页
返回
结束
上面方程组第二式两边对t求导得
di1 L R1 (i1 i2 ) E (t ) dt R ( di2 di1 ) R di2 1 i 0 1 2 2 dt dt dt c
解得

微积分应用基础第五章常微分方程

微积分应用基础第五章常微分方程

微分方程。
例如 dy 2xy ,ysec x y , (1 x2 ) ydy arctan xdx 0
dx
等等都是可分离变量的微分方程。
形如 y f ( y) 的微分方程称为齐次微分方程。
例如 y yx tan y ,y 2dx (x 2 xy)dy 0 为齐次微
为微分方程。 未知函数是一元函数的微分方程,称为常微分方程。 方程中未知函数导数的最高阶数,称为该微分方程
的阶。
第五章 常微分方程
例如 y x2 1 ,2 y 3xy x2 0 是一阶微分方程 d 2s 1 ,y py q f (x) 是二阶微分方程 。
案例1【跳伞规律】 求高空跳伞者的速度随时间的变化规律。(设阻力与
降落速度成比)
解 假设质量为m的物体在降落伞张开后降落时所受的空气
阻力与速度成正比,开始降落时速度为零。
当降落伞降落速度为ν (t )时,降落伞所受重力mg的 方向与ν (t )的方向一致,并受阻力-kν (k为比例系数,
与降落伞的受风面积有关,且大于0),负号表示阻力的
第五章 常微分方程
解 设w表示 圆桶重量,这里为239.456千克,V表示圆桶 体积,这里为0.208立方米,B表示海水浮力,这里为 1025.94V=213.396千克,k表示圆桶下沉时的阻力系数, 这里为0.12,v表示圆桶下沉时的速度,D表示圆桶下沉时 的阻力,这里为kv,t表示圆桶离开海平面下沉的时间,单 位为秒,y(t)表示圆桶在t时刻下沉的深度,单位为米。
dt2 2
阶微分方程的一般形式为:
F (x, y, y, y,, y(n) ) 0
二阶及二阶以上的微分方程称为高阶微分方程。

微分方程建模案例

微分方程建模案例

微分方程建模案例微分方程是数学中的一种重要工具,它被广泛应用于各个领域的建模和问题求解中。

下面将以一个具体的案例来介绍微分方程建模的过程,并通过求解微分方程来解决实际问题。

案例:生物种群的增长模型在生态学中,研究生物种群的增长是一个重要的课题。

种群的增长速度与种群中的个体数量有关。

如果种群中个体数量增加的速度与当前个体数量成正比,可以建立如下的微分方程模型:$$\frac{dN}{dt} = rN$$其中,$N$表示种群的个体数量,$t$表示时间,$r$表示增长的速率。

这个微分方程描述了种群个体数量随时间变化的规律。

解:首先,我们需要求解上述微分方程,得到种群个体数量随时间的函数关系。

这是一个一阶线性常微分方程,我们可以使用分离变量的方法求解。

将微分方程变形为:$$\frac{dN}{N} = rdt$$将方程两边同时积分,得到:$$\int \frac{dN}{N} = \int rdt$$经过积分运算,得到:$$\ln N = rt + C$$其中,$C$为积分常数。

进一步求解,得到:$$N = e^{rt + C}$$根据初始条件,当$t=0$时,$N=N_0$,其中$N_0$为初始种群个体数量。

代入初始条件,解得$C=\ln N_0$,将其代入上述方程,得到最终的解:$$N = N_0e^{rt}$$这个解描述了种群个体数量随时间的增长情况。

接下来,我们来解决一个具体的问题,一个兔子种群的增长情况。

假设初始时刻兔子种群中有100只兔子,增长速率$r=0.02$,那么该种群在未来的10个月内,兔子的数量会如何变化?根据上面的微分方程解,代入初始条件$N_0=100$,$r=0.02$,$t=10$,得到:$$N=100e^{0.02t}$$将$t=10$代入上述方程,可以得到10个月后兔子种群的个体数量:所以,10个月后的兔子种群中大约有122只兔子。

通过这个模型,我们可以预测种群在未来的增长情况,并在实践中应用于生态学、环境保护等领域,为实际问题的决策提供参考。

常微分方程数学建模案例分析

常微分方程数学建模案例分析

常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。

它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。

本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。

假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。

现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。

为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。

根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。

感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。

总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。

进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。

例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。

反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。

另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。

相反,如果γ较小,传染病传播的速度会加快。

通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。

例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。

在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。

此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。

总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。

常微分方程数学建模案例分析

常微分方程数学建模案例分析

常微分方程数学建模案例分析假设我们要研究一个简单的生物系统:一种细菌的生长过程。

我们知道,细菌的生长通常可以描述为以指数速度增长的过程。

为了建立一个数学模型,我们首先需要确定一些基本假设和已知信息。

基本假设:1.我们假设细菌的生长速度与细菌的数量成正比。

2.我们假设细菌的死亡速率与细菌的数量成正比。

已知信息:1.我们已经知道在初始时刻,细菌的数量为N0个。

2.我们已经知道在初始时刻的细菌数量的增长速率为r个/单位时间。

3.我们已经知道在初始时刻的细菌数量的死亡速率为d个/单位时间。

接下来,我们将建立一个常微分方程模型来描述细菌数量的变化。

假设t表示时间,N(t)表示时间t时刻的细菌数量,则我们可以得到以下微分方程:dN/dt = rN - dN这个方程的含义是,细菌数量的变化率等于细菌的增长速率减去细菌的死亡速率。

如果我们将细菌的增长速率和死亡速率设为常数r和d,则上述方程可以进一步简化为:dN/dt = (r-d)N解这个微分方程,我们可以得到细菌数量随时间变化的函数N(t)。

根据初值条件N(0)=N0,我们可以求解该方程并得到解析解:N(t) = N0 * exp((r-d)t)上述解析解告诉我们,细菌数量随时间以指数速度增长。

这与我们的基本假设相符。

然而,对于复杂的系统,往往很难获得精确的解析解。

在这种情况下,我们可以使用数值方法来求解微分方程。

常见的数值方法包括欧拉法、改进的欧拉法和四阶龙格-库塔法等。

这些方法基于近似计算的原理,通过迭代逼近解。

在我们的细菌生长模型中,我们可以使用数值方法来计算细菌数量随时间的变化。

我们可以选择欧拉法,它是一种简单而直观的数值方法。

欧拉法的迭代公式为:N(t+h)=N(t)+h*(r-d)N(t)其中,N(t)是在时间t时刻的细菌数量,N(t+h)是在时间(t+h)时刻的细菌数量,h是时间间隔。

我们可以选择一个足够小的时间间隔h,并迭代使用欧拉法来计算细菌数量的近似解。

最新常微分方程 第五章 线性微分方程组幻灯片课件精品课件

最新常微分方程   第五章 线性微分方程组幻灯片课件精品课件
的n个方程式,如果(rúguǒ)从其中解得
再代回通解或通积分中,就得到所求的初值问题的解.
第六页,共39页。
为了(wèi le)简洁方便,经常采用向量与矩阵来研究一阶微分方程组(1) 令n维向量函数
并定义(dìngyì)
则(1)可记成向量(xiàngliàng)形式
第七页,共39页。
初始条件可记为 其中(qízhōng)
(5.19)
第三十三页,共39页。
例1 求解(qiú jiě)方程组
解 向量(xiàngliàng)函数组
是对应齐次方程组的基本解组(jiě zǔ).现在求非齐次方程组形如
的特解,此时(5.18)的纯量形式为 解之得
第三十四页,共39页。
从而(cóng ér) 最后(zuìhòu)可得该方程组的通解为
则该解组(jiě zǔ)在I上必线性相关.
第二十二页,共39页。
实际上,这个(zhè ge)推论是定理5.4的逆否命题. 推论5.3 方程组(5.2)的n个解在其定义区间I上线
性无关的充要条件是它们的朗斯基行列式W(x)在I上 任一点不为零.
条件的充分性由推论5.1立即可以得到. 必要性用反证法及推论5.2证明是显然的.证毕. 2.一阶线性齐次微分方程组解空间的结构.
第二十九页,共39页。
5.4.2 拉格朗日常数变易法 在第一章我们介绍了对于一阶线性非齐次方程,可用常数变易法求其
通解.现在,对于线性非齐次方程组,自然要问,是否也有常数变易法求 其通解呢?事实上,定理5.10告诉我们,为了求解非齐次方程组(5.1),只 需求出它的一个特解和对应(duìyìng)齐次方程组(5.2)的一个基本解组.而 当(5.2)的基本解组已知时,类似于一阶方程式,有下面的常数变易法可以 求得(5.1)的一个特解.

数学建模-常微分方程模型及差分模型市公开课获奖课件省名师示范课获奖课件

数学建模-常微分方程模型及差分模型市公开课获奖课件省名师示范课获奖课件

SIR模型
假设 1)总人数N不变,病人、健康人和移
出者旳百分比分别为i(t), s(t), r(t)
2)病人旳日接触率 , 日治愈率, 接触数 = /
建模 s(t) i(t) r(t) 1
需建立 i(t), s(t), r(t) 旳两个方程
2023-3-17
Anna
20
模型4
SIR模型
微分方程模型
洛阳理工学院数理部
1
微分方程模型
• 人口增长旳预测 • 传染病模型 • 种群模型
2
动态 模型
• 描述对象特征随时间(空间)旳演变过程. • 分析对象特征旳变化规律. • 预报对象特征旳将来性态. • 研究控制对象特征旳手段.
微分 方程 建模
• 根据函数及其变化率之间旳关系拟定函数. • 根据建模目旳和问题分析作出简化假设. • 按照内在规律或用类比法建立微分方程.
(2)
a ~捕食者掠取食饵能 b ~食饵供养捕食者能力

方程(1),(2) 无解析解
Volterra模型旳平衡点及其稳定性
x(t) (r ay)x rx axy
稳定性分析
y(t) (d bx) y dy bxy
平衡点 P(d / b, r / a), P(0,0)
A
r
ax by
P2
im
s 1/ , i im t , i 0
P1
P3
s满足 s0
i0
s
1
ln s s0
0
0
s S0 1/ s0
1s
P1: s0>1/ i(t)先升后降至0
传染病蔓延
1/ ~
P2: s0<1/ i(t)单调降至0

第五章常微分方程数值解

第五章常微分方程数值解

3、四级四阶RK法
经典四级四阶RK法(P280),基尔四级四阶RK法(P280)
三、单步法的数值稳定性 ˆn , 若计算 xn 产 生 误 差 n ( n ), 即 实 际 得 到 近 似 值 x
ˆn , 则 用 单 步 法 n xn x xn 1 xn h ( xn , t n , h) 计 算xn 1时 , 将 产 生 误 差 ˆn 1 n 1 xn 1 x ˆn h[ ( xn , t n , h) ( x ˆn , t n , h)] xn x ˆ n , t n , h) 太 依 赖 于 由 于 ( xn , t n , h) ( x f ( x, t ), 估 计 其 大 小很困难。为摆脱这依 种赖性,在讨论方法数 的值 稳定性时,都针对同试 一验模型: x x, 为 复 常 数
t n1 tn
f ( x(t ), t )dt,n 0,1,2,.
(5 - 3)
然后数值积分。 或 采 用 台 劳 展 开 的 方, 法 即hn tn1 tn (tn ) x(tn1 ) x(tn ) hn xn (5 - 4)
然后按精度要求截断。 定义:若计算 xn1只 用 到 前 面 一 步 信 息 xn ,即 算 法 是 xn1 xn hn ( xn , tn , hn )
j 0
m
令k j f ( x(r j ), r j ), j 0 : m. x(t n 1 ) x(t n ) c j k j o(hm 2 ) (*)
j 0 m
取r0 t n, 则k0 f ( x(t n ), t n ), x(r j ) x(r j 1 ) (a j a j 1 )hk j 1 x(t n ) h ( ai ai 1 )ki 1 o( h 2 )

常微分方程模型及其数值解

常微分方程模型及其数值解

Q(c,at)
P(x,y)
R(c,y )
0
y
x
c
例2 弱肉强食
问题 自然界中在同一环境下的两个种群之间存在着几种不同的生存方式,比如相互竞争,即争夺同样的食物资源,造成一个种群趋于灭绝,而另一个趋向环境资源容许的最大容量;或者相互依存,即彼此提供部分食物资源,二者和平共处,趋于一种平衡状态;再有一种关系可称之为弱肉强食,即某个种群甲靠丰富的自然资源生存,而另一种群乙靠捕食种群甲为生,种群甲称为食饵(Prey),种群乙为捕食者(Predator),二者组成食饵-捕食者系统。海洋中的食用鱼和软骨鱼(鲨鱼等)、美洲兔和山猫、落叶松和蚜虫等都是这种生存方式的典型。这样两个种群的数量是如何演变的呢?近百年来许多数学家和生态学家对这一系统进行了深入的研究,建立了一系列数学模型,本节介绍的是最初的、最简单的一个模型,它是意大利数学家Volterra在上个世纪20年代建立的。
0.00 0.40 0.80 1.20 1.60 2.00
0.00000 0.36085 0.51371 0.50961 0.45872 0.40419
0.00000 0.34483 0.48780 0.49180 0.44944 0.40000
0.00000 -0.01603 -0.02590 -0.01781 -0.00928 -0.00419

从而有: y(xn+1)-yn+1=O(h3)
2.4 Taylor展开方法
设y(x)是初值问题(4)的精确解, 利用Taylor展开式可得
称之为p阶Taylor展开方法. …… …… …… 因此,可建立节点处近似值yn满足的差分公式 其中
所以,此差分公式是p阶方法.
02

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段内,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是|⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e )(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是)1961(02.09e1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.;例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=,,000)(1d d N t N N N N r t N 上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ;@(2)当m N N <<0时,01d d >⎪⎪⎭⎫ ⎝⎛-=N N N r t N m ,这说明)(t N 是时间t 的单调递增函数;(3)由于N N N N N r t N m m ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<tN ,t N d d 单减,即人口增长率t Nd d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得⎪⎪⎭⎫⎝⎛-=m N N r t N N 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=m N 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿. )值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tpd d 与需求和供给之差成正比,并记),(r p f 为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f tpα 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为—⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t pαα ① 其中d c b a ,,,均为正常数,其解为ca db c a d b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e)(α. 下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-,于是得ca db p +-=,从而价格函数)(t p 可写为 。

常微分方程第五章微分方程建模案例

常微分方程第五章微分方程建模案例

第五章微分方程建‎模案例微分方程作‎为数学科学‎的中心学科‎,已经有三百‎多年的发展‎历史,其解法和理‎论已日臻完‎善,可以为分析‎和求得方程‎的解(或数值解)提供足够的‎方法,使得微分方‎程模型具有‎极大的普遍‎性、有效性和非‎常丰富的数‎学内涵。

微分方程建‎模包括常微‎分方程建模‎、偏微分方程‎建模、差分方程建‎模及其各种‎类型的方程‎组建模。

微分方程建‎模对于许多‎实际问题的‎解决是一种‎极有效的数‎学手段,对于现实世‎界的变化,人们关注的‎往往是其变‎化速度、加速度以及‎所处位置随‎时间的发展‎规律,其规律一般‎可以用微分‎方程或方程‎组表示,微分方程建‎模适用的领‎域比较广,涉及到生活‎中的诸多行‎业,其中的连续‎模型适用于‎常微分方程‎和偏微分方‎程及其方程‎组建模,离散模型适‎用于差分方‎程及其方程‎组建模。

本章主要介‎绍几个简单‎的用微分方‎程建立的模‎型,让读者一窥‎方程的应用‎。

下面简要介‎绍利用方程‎知识建立数‎学模型的几‎种方法:1.利用题目本‎身给出的或‎隐含的等量‎关系建立微‎分方程模型‎这就需要我‎们仔细分析‎题目,明确题意,找出其中的‎等量关系,建立数学模‎型。

例如在光学‎里面,旋转抛物面‎能将放在焦‎点处的光源‎经镜面反射‎后成为平行‎光线,为了证明具‎有这一性质‎的曲线只有‎抛物线,我们就是利‎用了题目中‎隐含的条件‎——入射角等于‎反射角来建‎立微分方程‎模型的。

2.从一些已知‎的基本定律‎或基本公式‎出发建立微‎分方程模型‎我们要熟悉‎一些常用的‎基本定律、基本公式。

例如从几何‎观点看,曲线上某点‎)yy=点的导数;力学中的牛‎顿第二运动‎(x(xyy=的切线斜率‎即函数在该‎)F=,其中加速度‎a就是位移对‎时间的二阶‎导数,也是速度对‎时间的一定律:ma阶‎导数等等。

从这些知识‎出发我们可‎以建立相应‎的微分方程‎模型。

例如在动力‎学中,如何保证高‎空跳伞者的‎安全问题。

微分方程建模的几个简单实例

微分方程建模的几个简单实例

(3)模拟近似法 在生物、经济等学科的实际问题中,许多现象 的规律性不很清楚,即使有所了解也是极其复 杂的,建模时在不同的假设下去模拟实际的现 象,建立能近似反映问题的微分方程,然后从 数学上求解或分析所建方程及其解的性质,再 去同实际情况对比,检验此模型能否刻画、模 拟某些实际现象。
理想单摆运动) 例1 (理想单摆运动)建立理想单摆运动满足的微 分方程,并得出理想单摆运动的周期公式。 分方程,并得出理想单摆运动的周期公式。 从图3-1中不难看出,小球所受的合力为 从图 g 中不难看出,小球所受的合力为mgsinθ, 中不难看出 , 根据牛顿第二定律可得: 牛顿第二定律可得 根据牛顿第二定律可得: θ + θ = 0 (3.2) ) 3.1) (3.1)的 l 近似方程 mlθ = mg sin θ 从而得出两阶微分方程: 从而得出两阶微分方程: (3.2)的解为: θ(t)= θ0cosωt 3.2)的解为: 这是理想单摆应 g θ + sin θ = 0 其中 ω = g 3.1) 满足的运动方程 ( ) l l T θ (0) 0, ,θ(t)=0 当t = =时θ (0) = θ 0 4 gT π = 故有 l 4 2 3.1)是一个两阶非线性方程, (3.1)是一个两阶非线性方程,不 由此即可得出 很小时, 易求解。 ,此时, 易求解。当θ很小时,sinθ≈θ,此时, g T = 2π 可考察(3.1)的近似线性方程: 可考察(3.1)的近似线性方程:
一个半径为Rcm的半球形容器内开始时盛满了 例3 一个半径为 的半球形容器内开始时盛满了 的小孔在t=0时刻 水,但由于其底部一个面积为Scm2的小孔在 时刻 但由于其底部一个面积为 被打开,水被不断放出。 被打开,水被不断放出。问:容器中的水被放完总共 需要多少时间? 需要多少时间? 以容器的底部O点为 原点,取坐标系如图3.3所示 所示。 解: 以容器的底部 点为 原点,取坐标系如图 所示。 时刻容器中水的高度, 令h(t)为t时刻容器中水的高度,现建立 为 时刻容器中水的高度 现建立h(t)满足的微分 满足的微分 方程。 方程。 设水从小孔流出的速度为v(t),由力学定律, 设水从小孔流出的速度为 ,由力学定律,在不计水 即: dh = 0.6 S 2hg 2 的内部磨擦力和表面张力的假定下, 的内部磨擦力和表面张力的假定下,有: dt π [ R 2 ( R h) ]

常微分方程系统建模

常微分方程系统建模

给定参数值:
c1 6.6107 , c2 1.6109, c3 3.4107, SOD 105, cat 105
和初始条件:
O2 (0) 0, H2O2 (0) 0
则可解出其时间过程(数值解),并作图如后。
∑M ∂
举例
∑M ∂
常微分方程
依赖于一个变量(例如时间t)的微分方程称为常微分方程(ODE),否则称为偏微 分方程(PDE)。
∑M ∂
微分方程组
例如,下面是2维的一阶线性微分方程组:
dx1 dt

a11x1
a12 x2

z1

dx2
dt

a21x1
a22 x z2
一般地,对于n维系统的一阶线性微分方程组,可以表示成矢量形式:
x Ax z
矩阵 A aij , 表示方程右边的系数,称为系数矩阵。
对于确定性的系统而言,系统的状态变量随时间的改变,可以表达成如
下的微分方程组:
dxi dt
x fi (x1,
, xn , p1,
, pl , t) i 1,
,n
这里xi表示变量,如浓度;pj表示参数,如酶浓度或动力学常数;t表示时间。
写成矢量形式:
dx x f x, p, t
(1)通过坐标变换,将稳态转换成起始点xˆ x x。
(2)寻找具有下述特性的所谓Lyapunov函数VL (x1, , xn ):
1)VL (x1, , xn )对于所有的变量xi有连续的导数;
x(t) x xˆ(t), 且满足 x f x xˆ(t) d x xˆ(t) d xˆ(t)
dt

微分方程模型-常微分方程

微分方程模型-常微分方程

(4) 从实际的人口检验情况看, 指数增长模型对于时间间隔比较 短,并且背景情况改变不大的情 况适用。对于长时间的人口数模 型不合适。
微分方程的定义:含有未知函数的导 数(或微分)的等式称为微分方程。 未知函数是一元函数的微分方程为常 微分方程,未知函数是多元函数的微 分方程为偏微分方程。
减肥的数学模型
净吸收量。 输出:就是进行工作、生活以及
体育锻炼的总耗量。
输入
输出
食物

a
新陈 代谢
b
工作 生活
运动
于是 每天净吸收量 a b
42000
每天净输出量
42000
由此得体重变t
42000
(0) 0
解出
ab
a b ( )0
dN rN , r 0 dt N (t0 ) N0
可以解得此方程的解为
N (t)
N er(tt0 ) 0
模型分析和应用:
(1)当r > 0 时,人口将随着时间 的增加无限的增长,这是一个不合 理的模型。
(2)对于其中常数增长率r 的估计 可以使用拟合或者参数估计的方法 得到。
(3)在实际情况下,可以使用离散 的近似表达式 N (t) N 0 (1 r)t 作 为人口的预测表达式。
dy 3x dx y |x1 3
引例2 (人口问题):两百多年前英国
人口学家(Malthus,1766-1834)
调查了英国人口统计资料,得出了
人口增长率 r 不变的假设,记时刻t
的人口为
N
(t
),则人口增长速度
dN dt
与人口总量 N (t)成正比,
从而建立了Maltthus人口模型
)0,即净吸收等 0,则体重不变。

常微分方程教案(王高雄)第五章

常微分方程教案(王高雄)第五章
的记号.
⎡ a1 1 ( t ) ⎢ a (t ) A( t ) = ⎢ 2 1 ⎢ L ⎢ ⎢ ⎣ a n1 ( t )
a1 2 ( t ) a 22 (t ) L a n 2 (t )
L L L L
a1 n ( t ) ⎤ a 2 n (t ) ⎥ ⎥ L ⎥ ⎥ a nn (t ) ⎥ ⎦
(5.2)
不难证明,如果 n × n 矩阵 A(t ), B(t ) 及向量 u(t ), v (t ) 是可微的,那么下列等式成立:
( I ) ( A(t ) + B(t ))′ = A′(t ) + B′(t ) (u(t ) + v (t ))′ = u′(t ) + v′(t ) ( II ) ( A(t ) ⋅ B(t ))′ = A′(t )B(t ) + A(t )B′(t ) ( III ) ( A(t )u(t ))′ = A′(t )u(t ) + A (t )u′(t )
类似的,矩阵 B (t ) 或者 u (t ) 在区间 a ≤ t ≤ b 上称为可积的,如果它的每一个元素都在区间
a ≤ t ≤ b 上可积.并且它们的积分分别由下式给出:
⎡ b b ( t ) dt ⎢ ∫a 11 ⎢ b b ( t ) dt b = B ( t ) dt ⎢ ∫a 21 ∫a L ⎢ ⎢ b b ( t ) dt ⎢ ⎣ ∫a n1
b 22 ( t ) dt L b ∫ b n 2 (t ) dt
a a
∫ ∫
b
a b
b12 ( t ) dt
L L L L
∫ ∫
b1 n ( t ) dt ⎤ ⎥ b 2 n ( t ) dt ⎥ a ⎥ L ⎥ b ⎥ ∫a b nn (t ) dt ⎥ ⎦

常微分方程建模方法及案例分析

常微分方程建模方法及案例分析
College of Medicine and Nursing, Dezhou University, Dezhou, Shandong Province, 253023 China) Abstract: Ordinary differential equation modeling is a very important method in mathematical modeling. Using it, it is usually necessary to establish constant coefficient differential equations with multiple variables and derivative information. In this paper, we shall discuss the basic idea, steps and several methods about thus modeling problems f irstly. Then three practical problems will be studied, as the brachistochrone problems, catenary problems and medicament diffusion problems. The important role of the determination of variables and their relations in the establishment of ordinary differential equations is emphasized. Key Words: Ordinary differential equations; Microelement analysis method; Brachistochrone; Catenary; Medicament diffusion

微分方程建模案例

微分方程建模案例

微分方程建模案例微分方程是一种描述自然现象和数学模型中变化规律的数学工具。

它广泛应用于物理学、生物学、经济学等领域,能够帮助研究者解释和预测系统的行为。

接下来,我们将介绍一个微分方程建模的案例,以帮助读者更好地理解和应用微分方程。

案例背景:假设我们要研究一个自然保护区中的狼和兔子的数量变化。

该自然保护区面积有限,为了研究物种的动态平衡以及影响因素对其数量的影响,我们需要建立一个微分方程模型。

问题分析:在自然保护区中,狼以兔子为食物,而兔子则面临被捕食的风险。

因此,我们可以推测狼的数量对于兔子的数量产生压力,并且预测狼的数量与兔子的数量之间存在其中一种关系。

模型建立:假设R(t)表示时间t时刻的兔子的数量,W(t)表示时间t时刻的狼的数量。

为了建立一个微分方程模型,我们需要引入一些假设。

1.兔子的繁殖速率与兔子当前的数量成正比,同时也会受到狼的捕食速率的影响。

我们假设兔子繁殖率为α,捕食速率为β,兔子数量的增长速率与当前兔子的数量和受捕食的比例有关。

因此,兔子数量的增长速率可以表示为αR(t)-βW(t)R(t)。

2.狼的数量的变化与狼的死亡率和捕食率有关。

我们假设狼的死亡率为δ,捕食率为γ,狼的数量的变化率可以表示为-δW(t)+γW(t)R(t)。

综上所述,我们可以得到一个微分方程模型:dR(t)/dt = αR(t) - βW(t)R(t)dW(t)/dt = -δW(t) + γW(t)R(t)模型求解与分析:通过求解该微分方程模型,我们可以得到兔子和狼数量随时间变化的解析解。

对于一个给定的初值条件,我们可以通过数值方法(如欧拉法、龙格-库塔法等)求解微分方程模型,并绘制兔子和狼的数量随时间变化的图像。

在模型的分析过程中,我们可以通过改变模型中的参数(如α、β、δ和γ)来分析它们对系统行为的影响。

通过研究模型的稳定点、极限环等特征,我们可以得出关于狼和兔子数量变化的结论。

总结:这个案例展示了微分方程建模的过程,通过建立微分方程模型,我们可以研究和预测自然保护区中狼和兔子数量的变化规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章微分方程建模案例微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。

微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。

微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。

本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。

下面简要介绍利用方程知识建立数学模型的几种方法:1.利用题目本身给出的或隐含的等量关系建立微分方程模型这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模型。

例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。

2.从一些已知的基本定律或基本公式出发建立微分方程模型我们要熟悉一些常用的基本定律、基本公式。

例如从几何观点看,曲线y=上某点的切线斜率即函数)yy=在该点的导数;力学中的牛顿第二运(x)(xy动定律:maF=,其中加速度a就是位移对时间的二阶导数,也是速度对时间的一阶导数等等。

从这些知识出发我们可以建立相应的微分方程模型。

例如在动力学中,如何保证高空跳伞者的安全问题。

对于高空下落的物体,我们可以利用牛顿第二运动定律建立其微分方程模型,设物体质量为m,空气阻209210力系数为k ,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时刻t 时物体的下落速度为v ,初始条件:0)0(=v . 由牛顿第二运动定律建立其微分方程模型:2kv mg dtdv m -= 求解模型可得:)1]2(exp[)1]2(exp[+-=mkg t k m kg tmg v 由上式可知,当+∞→t 时,物体具有极限速度:kmg v v t ==∞→lim 1, 其中,阻力系数s k αρ=,α为与物体形状有关的常数,ρ为介质密度,s 为物体在地面上的投影面积。

根据极限速度求解式子,在ρα,,m 一定时,要求落地速度1v 不是很大时,我们可以确定出s 来,从而设计出保证跳伞者安全的降落伞的直径大小来。

3.利用导数的定义建立微分方程模型导数是微积分中的一个重要概念,其定义为x y xx f x x f x f x x ∆∆=∆-∆+='→∆→∆00lim )()(lim )(, 商式xy ∆∆表示单位自变量的改变量对应的函数改变量,就是函数的瞬时平均变化率,因而其极限值就是函数的变化率。

函数在某点的导数,就是函数在该点的变化率。

由于一切事物都在不停地发展变化,变化就必然有变化率,也就是变化率是普遍存在的,因而导数也是普遍存在的。

这就很容易将导数与实际联系起来,建立描述研究对象变化规律的微分方程模型。

例如在考古学中,为了测定某种文物的绝对年龄,我们可以考察其中的放射性物质(如镭、铀等),已经证明其裂变速度(单位时间裂变的质量,即其变化率)与其存余量成正比。

我们假设时刻t 时该放射性物质的存余量R 是t 的函数,211由裂变规律,我们可以建立微分方程模型:kR dtdR -= 期中k 是一正的比例常数,与放射性物质本身有关。

求解该模型,我们解得:kt Ce R -=,其中c 是由初始条件确定的常数。

从这个关系式出发,我们就可以测定某文物的绝对年龄。

(参考碳定年代法)另外,在经济学领域中,导数概念有着广泛的应用,将各种函数的导函数(即函数变化率)称为该函数的边际函数,从而得到经济学中的边际分析理论。

4.利用微元法建立微分方程模型一般的,如果某一实际问题中所求的变量p 符合下列条件:p 是与一个变量t 的变化区间],[b a 有关的量;p 对于区间],[b a 具有可加性;部分量i p ∆的近似值可表示为i i t f ∆)(ξ。

那么就可以考虑利用微元法来建立微分方程模型,其步骤是:首先根据问题的具体情况,选取一个变量例如t 为自变量,并确定其变化区间],[b a ;在区间],[b a 中随便选取一个任意小的区间并记作[dt t t +,],求出相应于这个区间的部分量p ∆的近似值。

如果p ∆能近似的标示为],[b a 上的一个连续函数在t 处的值)(t f 与dt 的乘积,我们就把dt t f )(称为量p 的微元且记作dp .这样,我们就可以建立起该问题的微分方程模型:dt t f dp )(=.对于比较简单的模型,两边积分就可以求解该模型。

例如在几何上求曲线的弧长、平面图形的面积、旋转曲面的面积、旋转体体积、空间立体体积;代数方面求近似值以及流体混合问题;物理上求变力做功、压力、平均值、静力矩与重心;这些问题都可以先建立他们的微分方程模型,然后求解其模型。

5.熟悉一些经典的微分方程模型,对一些类似的问题,经过稍加改进或直接套用这些模型。

多年来,在各种领域里,人们已经建立起了一些经典的微分方程模型,熟悉这些模型对我们是大有裨益的。

212案例1 设警方对司机饮酒后驾车时血液中酒精含量的规定为不超过%80 )/(ml mg .现有一起交通事故,在事故发生3个小时后,测得司机血液中酒精含量是)/%(56ml mg ,又过两个小时后, 测得其酒精含量降为)/%(40ml mg ,试判断: 事故发生时,司机是否违反了酒精含量的规定?解 模型建立设)(t x 为时刻t 的血液中酒精的浓度, 则在时间间隔],[t t t ∆+内, 酒精浓度的改变量t t x x ∆⋅≈∆)(,即t t kx t x t t x ∆-=-∆+)()()(其中0>k 为比例常数, 式前负号表示浓度随时间的推移是递减的, 两边除以t ∆, 并令0→∆t , 则得到,d d kx tx -= 且满足40)5(,56)3(==x x 以及0)0(x x =.模型求解容易求得通解为kt c t x -=e )(, 代入0)0(x x =,得到kt x t x -=e )(0.则)0(0x x =为所求. 又由,40)5(,56)3(==x x 代入0)0(x x =可得17.04056e 40e 56e 25030=⇒=⇒⎩⎨⎧==--k x x k k k 将17.0=k 代入得 25.93e 5656e 17.03017.030≈⋅=⇒=⨯⨯-x x >80.故事故发生时,司机血液中的酒精浓度已超出规定.案例2 在凌晨1时警察发现一具尸体, 测得尸体温度是C o 29, 当时环境温度是C o 21.一小时后尸体温度下降到C o 27,若人的正常体温是C o 37,估计死者的死亡时间.解 运用牛顿冷却定律T ')(T T out -=-α,得到它的通解为)(0out out T T T T -+=t α-e ,这里0T 是当0=t 时尸体的温度,也就是所求的死亡时间时尸体的温度,将题目提供的参数代入213⎩⎨⎧=-+=-++--27e)2137(2129e )2137(21)1(t t αα 解得168e =-t α 和 166e )1(=+-t α 则34e =α, 进一步得)(409.2)12(,2877.0h Ln t ≈-=≈αα. 这时求得的t 是死者从死亡起到尸体被发现所经历的时间, 因此反推回去可推测死者的死亡时间大约是前一天的夜晚35:10.案例3 建立铅球掷远模型.不考虑阻力,设铅球初速度为v ,出手高度为h ,出手角度为α(与地面夹角),建立投掷距离与α,,h v 的关系式,并求h v ,一定的条件下求最佳出手角度.解 在图5-1坐标下铅球运动方程为0=x,g y -= ,0)0(=x ,h y =)0(, αcos )0(v x = ,αsin )0(v y = . 解出)(t x ,)(t y 后,可以得铅球掷远为 ααααcos )2sin (cos sin 212222v g h g v g v R ++=. 图5-1 这个关系还可表为 )tan (cos 2222ααR h v g R +=. 由此计算0d d =*ααR,得最佳出手角度和最佳成绩分别为:)(2sin 21gh v v+=-*α, gh v gv R 22+=*. 设s m v m h /10,5.1==,则 4.41=*α,m 4.11=*R .案例4 在一种溶液中,化学物质A 分解而形成B ,其速度与未转换的A 的浓度成比例.转换A 的一半用了20分钟,把B 的浓度y 表示为时间的函数,并作出图象.解 记B 的浓度为时间t 的函数)(t y ,A 的浓度为)(t x .一、假设2141.mol 1A 分解后产生nmol B .2.容体的体积在反应过程中不变.二、建立模型,求解有假设知,A 的消耗速度与A 的浓度成比例,故有下列方程成立kx t x-=d d ,其中k 为比例系数.设反应开始时0=t ,A 的浓度为0x ,由题中条件知当20=t (分)时,A 的浓度为021)20(x x =.解初值问题⎪⎩⎪⎨⎧==-0)0(d d x x kx t x得kt x t x -=e )(0,它应满足020021e )20(x x x k ==⨯-.解得 2ln 201=k ,所以得)2ln 200e )((tx t x -=.由于B 的浓度为x 浓度减少量的n 倍,故有)e 1(]e [)(2ln 2002ln 2000ttnx x x n t y ---=-=.三、作图(如图5-2)nx215图5-2案例5 车间空气清洁问题某生产车间内有一台机器不断排出2CO ,为了清洁车间里的空气,用一台鼓风机通入新鲜空气来降低车间空气中的2CO 含量,那么,上述做法的清洁效果如何呢?这一问题是利用平衡原理来建模,即建立其微分方程模型.请注意,平衡原理在建立微分方程模型时常表现为区间],[x x x ∆+上的微元形式:某个量在该区间上的增加量等于该区间段内进入量与迁出量的差.解 1.问题分析与假设上述清洁空气的原理是通过鼓风机通入新鲜的空气,其2CO 含量尽管也有但较低.新鲜空气与车间内空气混合后再由鼓风机排出室外,从而降低2CO 含量.为讨论问题方便,假设通入的新鲜空气能与原空气迅速均匀混合,并以相同风量排出车间.此问题中的主要变量及参数设为:车间体积:V (单位:立方米),时间:t (单位:分钟),机器产生2CO 速度:r (单位:立方米/分钟),鼓风机风量:K (单位:立方米/分钟)新鲜空气中2CO 含量:%m ,开始时刻车间空气中2CO 含量:%x ,t 时刻车间空气中2CO 含量:)%(t x .2.模型建立考虑时间区间],[t t t ∆+,并利用质量守恒定律:],[t t t ∆+内车间空气中2CO 含量的“增加”等于],[t t t ∆+时间内,通入的新鲜空气中2CO 的量加上机器产生的2CO 的量减去鼓风机排出的2CO 的量,即2CO 增加量=新鲜空气中含有2CO 量+机器产生的2CO 量-排出的2CO 量 数学上表示出来就是216⎰∆+-∆+∆=-∆+tt t ds s Kx t r t Km t x t t x V )%(%)]()%([.其中0≥t . 于是令0→∆t ,取极限便得⎪⎩⎪⎨⎧=>-=.)0(,0,0x x t bx a dt dx 其中.,100VK b V r Km a =+= 3.模型求解与分析此问题是一阶线性非齐次常微分方程的初值问题. 解之得},exp{)100(100}exp{)()(00t VK K r Km x K r Km bt b a x b a t x -+-++=--+= 这就是t 时刻车间空气中含2CO 的百分比.显然,,1000x K r Km <+否则2CO 含量只能增加. 令,+∞→t 则有,100100)(lim Kr m K r Km t x t +=+=+∞→ 这说明了,车间空气中2CO 的含量最多只能降到%100K r Km +.由此可见,鼓风机风量越大(K 越大),新鲜空气中2CO 含量越低(m 越小),净化效果越好.4.模型的优缺点分析及改进方向:优点:模型简洁,易于分析和理解,并体现了建立微分方程模型的基本思想,而且所得到的结果与常识基本一致.缺点:建立数学模型时所作出的假设过于简单.改进方向:(1) 考虑新鲜空气和车间内的空气的混合扩散过程重新建模;(2)若要使得车间空气中的2CO 含量达到一定的指标,确定最优的实施方案.案例6 某人的食量是10467(焦/天),其中5038(焦/天)用于基本的新陈代谢(即自动消耗)。

相关文档
最新文档