过程控制系统 第2章 工业过程数学模型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如,各种加热炉、锅炉、贮罐、化学反应器等。
Байду номын сангаас
2.数学模型: 指过程在各输入量的作用下,其相应输出量变化
的函数关系数学表达式。(或者说是反映被控过程 的输出量与输入量之间关系的数学描述。
3.过程通道: 输入量与输出量间的信号联系。
4.扰动通道: 扰动作用与被控量间的信号联系。
5.控制通道:控制作用与被控量间的信号联系
2.1.2经验模型
进行测试。理论上有很多实验设计方法,如正交设计等。在实施 上可能会遇到选取变化区域困难。有一种解决办法是吸收调优操 作的经验,即逐步向更好的操作点移动,这样有可能一举两得, 既扩大了测试的区间,又改进了工艺操作。测试中要确定稳态是 否真正建立 。
把数据进行回归分析或神经网络建模。
(2-2)
(为了简化,采用算术平均值)
式中Q为单位时间传热量,K为传热系数,F为传热面积,G1和G2是流 体1和2的质量流量,C1和C2为相应的热容,θ为温度,下标1、2表 示流体1和2,i和o表示流入和流出。
这里有四个输入变量,即G1、G2、θ1i和θ2i,两个输出变量,即θ1o 和θ2o。如果θ1o是被控温度,是需要研究的输出变量,则为了考 察各个输入变量对它的影响,须把式(2-1)和(2-2)联立求解, 为此,须把另一个输出变量θ2o消去。在本例中没有什么中间变量, 如有的话,也须消去。
➢3.指导生产工艺设备的设计。破坏性试验 指导工艺设计
➢4.培训运行操作人员。安全 方便
数学模型的有关概念
f1(t) … fn(t)
x(t) + e(t)
u(t)
q(t)
c(t)
控制器
执行器
被控过程
-
y(t)
测量变送
同一个系统, 过程通道不同, 其数学模型亦
1.被控过程: 正在运行的各种被控制的生产工艺设不备一,样
模型的建立途径可分机理建模与实验测试两大 类,也可将两者结合起来。
机理建模也有两个弱点:
1)对于复杂的过程,人们对基本方程的某些参数不完全 掌握,例如,换热器的K值,由传热学书籍提供的公式可 能有±(10%-30%)的误差。又如,精馏塔这样已经研 究得比较透彻的设备,对塔板效率、塔板流体中的汽液 比值等参数,很难预先精确估计。
对线性系统来说,设
y=a0+a1u1+a2u2+…+amum
由于已有很多组 y 与 (u1,u2,…,um)的数据,要设
法求取各系数 a0,a1, …,am 。不难看出,要求解这些ai
值,至少需要(m+1)组数据。因为每组测量值都含有若干
误差,所以为了提高模型的精确度,数据的组数应该多得
多。线性回归通常采用最小二乘法,其目标是使目标函数
G1,C,θ1i
G2,C2,θ2i
G2,C2,θ2o
G1,C1,θ1o
图 2-1 无相变的换热器
2.1.1机理建模(续)
原始的基本方程式是热量平衡式(热损失忽略不计)和传热速率式,
分别是:
Q=G1C1(θ1o-θ1i) =G2C2(θ2i-θ2o) (2-1)
Q=KF(θ2i+θ2o-θ1i -θ1o)/2
6.扰动:内扰动--调节器的输出量q(t);对质量指标起决定作用 外扰动--其余非控制的输入量; 也有很大影响
重要概念
第2章工业过程数学模型
过程特性的数学描述称为过程的数学模型。
在控制系统的分析和设计中,过程的数学模型 是极为重要的基础资料。
过程的特性可从稳态和动态两方面来考察,前 者指的是过程在输入和输出变量达到平稳状态 下的行为,后者指的是输出变量和状态变量在 输入影响下的变化过程的情况。可以认为,动 态特性是在稳态特性基础上的发展,稳态特性 是动态特性达到平稳状态的特例。
这里又分两类:
一是求输入变量作小范围变化的影响,通常采 用增量化处理方法;
二是求输入变量作大范围变化时的影响,这通 常需要逐步求解,如采用数值方法或试差方法, 则与仿真求解无甚区别了。
2.1.1机理建模(续)
现以两侧流体都不起相变化的换热器(见图2-1)作为 例子,讨论输入变量作小范围变化的情况。
《过程控制系统》
引言
在过程控制系统的分析和设计中,过程的数学模型是极其重 要的基础资料。
一个过程控制系统的优劣,主要取决于对生产工艺过程的了 解和建立过程的数学模型。
一. 研究并建立数学模型的目的
➢1.设计过程控制系统和整定调节器参数。 前馈控制 最优控制 参数整定
➢2.进行仿真试验研究。 计算机计算 分析 节省成本 加快进度
2.1工业过程稳态数学模型
从生产控制的角度来看,在被控变量与操纵变 量的选择、检测点位置的选择、控制算法设计、 操作优化控制的设计等方面,无不需要稳态数 学模型的知识。
在不少情况下,必须同时掌握过程的动态特性, 需要把稳态和动态的考虑结合起来,然而,象 操作优化这样一个极富有经济价值的控制命题, 主要就依靠稳态数学模型。
对于非线性情况,模型结构需先确定,除非对过程的物理、化 学规律十分清晰,否则没有固定的方法,只能凭e借iu 一些技巧。 采用二次型即包括uiuj(i可以等于j,也可以不等于j)项的最常 见,考
虑引入lnu或 eiu 的也有,这多少是参考了内在的机理规律。
作为工程处理,可以令这些非线性项作为新的变量,从而使方 程成为线性形式。例如:
y a11u1 a12u1u2 a22u22
可改写成
机理建模也有两个弱点:
1)对于复杂的过程,人们对基本方程的某些参数不完全 掌握,例如,换热器的K值,由传热学书籍提供的公式可 能有±(10%-30%)的误差。又如,精馏塔这样已经研 究得比较透彻的设备,对塔板效率、塔板流体中的汽液 比值等参数,很难预先精确估计。
J=∑(y-a0-a1u1-…)2为最小。 有时候,是否所有这些自变量都对y起作用,难以肯定,
此时可以用数学方法检验各个自变量对y影响的显著性,也 可以把某个或某些系数ai置0,从结果进行比较。
回归的结果能否另人满意,可以衡量数据的拟合误差,也可以 用一些数理统计方法,如F检验和复相关系数分析等。
2)如不经过输入/输出数据的验证,则近乎之纸上谈兵, 难以判断其正确性。
经验模型的优点和弱点与机理模型正好相反,特别是现 场测试,实施中有一定难处。
2.1.1机理建模
从机理出发,也就是从过程内在的物理和 化学规律出发,建立稳态数学模型
最常用的是解析法和仿真方法 解析法适用于原始方程比较简单的场合。