立体几何中的向量方法探究性问题

合集下载

专题3.1 以立体几何中探索性问题为背景的解答题——新高考数学专项练习题附解析

专题3.1 以立体几何中探索性问题为背景的解答题——新高考数学专项练习题附解析

专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M ,使平面?说明理由.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为233.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 所成的锐二面角的余弦值为30?若存在,确定点E 的位置;若不存在,请说明理由.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =,试判断线段PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为15,若存在,求出PQ OB 的值;若不存在,说明理由.3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由;(Ⅱ)当二面角D FC B --的余弦值为24时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为正方形,已知PA ⊥平面ABCD ,2AB =,2PA =.(1)证明:BD PC ⊥;(2)求PC 与平面PBD 所成角的正弦值;(3)在棱PC 上是否存在一点E ,使得平面BDE ⊥平面BDP ?若存在,求PEPC的值并证明,若不存在,说明理由.5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值. 6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值;(2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.14. 【河南省开封市2019届高三上学期第一次模拟考试】如图所示,是边长为2的正方形,平面,且.(Ⅰ)求证:平面平面;(Ⅱ)线段上是否存在一点,使二面角所成角的余弦值为?若存在,请找出点的位置;若不存在,请说明理由.15.如图,五面体11A BCC B -中,14AB =,底面ABC 是正三角形,2AB =,四边形11BCC B 是矩形,二面角1A BC C --为直二面角.(1)D 在AC 上运动,当D 在何处时,有1//AB 平面1BDC ,并说明理由; (2)当1//AB 平面1BDC 时,求二面角1C BC D --余弦值.专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.2.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【答案】(1)见解析;(2)33,2【解析】(1)取线段EF的中点M,有GM∥平面BDF.证明如下:如图所示,取线段EF的中点M,∵G为线段ED的中点,M为线段EF的中点,∴GM为△EDF的中位线,故GM∥DF,又GM⊄平面BDF,DF⊂平面BDF,故GM∥平面BDF;(2)∵CF ∥DE ,且AE 与CF 的夹角为60°,故AE 与DE 的夹角为60°,即60AED ∠=︒, 过D 作DP ⊥AE 交AE 于P ,由已知得DE ⊥EF ,AE ⊥EF ,∴EF ⊥平面AED , EF ⊥DP,又AE EF=E,∴DP ⊥平面AEFB , 即DP 为点D 到平面ABFE 的距离,且3DP x =, 设DE =x ,则AE =BF =4﹣x , 由(1)知GM ∥DF ,G BDF M BDF D MBF V V V ---===11131(4)3322MBF S DP x x ⎡⎤⋅⋅=⨯⨯⨯-⨯⎢⎥⎣⎦()24333(4)x x x x -+=-⋅=,当且仅当4﹣x =x 时等号成立,此时x =DE =2. 故三棱锥G ﹣BDF 的体积的最大值为33,此时DE 的长度为2. 【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由. 【解析】(1)证明:由四边形为正方形可知,连接必与相交于中点故∵面∴面(2)线段上存在一点满足题意,且点是中点理由如下:由点分别为中点可得:∵面∴面由(1)可知,面且故面面类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【解析】(1)证明:连接,,=,因为ABCD是平行四边形,则为中点,连接,又为中点,面,面平面.(2)解(Ⅰ)当点在线段中点时,有平面取中点,连接,又,又,,平面,又是正三角形,平面(Ⅱ)当时,有平面平面过作于,由(Ⅰ)知,平面,所以平面平面易得【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【解析】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以 解得.这与矛盾.所以在线段上不存在点M ,使平面.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为23.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 30E 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 位于AS 的靠近A 点的三等分点. 【解析】(1)证明:因为E 、F 分别是SA 、SB 的中点, 所以EF AB ∥,在矩形ABCD 中,AB CD ∥, 所以EF CD ∥,又因为E 、P 分别是SA 、AD 的中点, 所以∥EP SD ,又因为EF CD ∥,EF EP E ⋂=,,EF EP ⊂平面PEF ,,SD CD ⊂平面SCD ,所以平面∥PEF 平面SCD .(2)解:假设棱SA 上存在点E 满足题意. 在等边三角形SAD 中,P 为AD 的中点, 于是SP AD ⊥,又平面SAD ⊥平面ABCD , 平面SAD ⋂平面ABCD AD =,SP ⊂平面SAD ,所以SP ⊥平面ABCD ,所以SP 是四棱锥S ABCD -的高, 设AD m =,则SP =,ABCD S m =矩形,所以1133S ABCD ABDD V S SP m -=⋅==矩形 所以2m =,以P 为坐标原点,PA 所在直线为x 轴,过点P 与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0P ,()1,0,0A ,()1,1,0B,(S ,设(()()01AE AS λλλλ==-=-≤≤,()()1,0,0PE PA AE λ=+=+-()1λ=-,()1,1,0PB =,设平面PEB 的一个法向量为()1,,n x y z =,有()1110n PE x z n PB x y λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩, 令3x λ=,则()13,,1n λλ=-,易知平面SAD 的一个法向量()20,1,0n =,所以12122123cos ,721n n n n n n λλλ-⋅==-+30=, 因为01λ≤≤, 所以13λ=, 所以存在点E ,位于AS 的靠近A 点的三等分点.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【答案】(1)见解析;(2)1CE =.【解析】(1)取1AB 中点G ,连结EG FG 、,则FG ∥1BB 且112FG BB =. 因为当E 为1CC中点时,CE ∥1BB 且112CE BB =, 所以FG ∥CE 且FG = CE .所以四边形CEGF 为平行四边形,CF ∥EG , 又因为1CF AEB ⊄平面,1EG AEB ⊂平面, 所以//CF 平面1AEB ;(2)假设存在满足条件的点E ,设()01CE λλ=≤≤.以F 为原点,向量1FB FC AA 、、方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系. 则()3,0,0A -,()13,0,2B ,()0,1,E λ,平面ABC 的法向量()0,0,1m =,平面1AEB 的法向量()333,3n λ=--,,()23cos 23991m n m n m nλ⋅===++-,,解得1λ=,所以存在满足条件的点E ,此时1CE =.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 【答案】(1)见解析(2)36【解析】 (Ⅰ)取PD 的中点M ,连接AM ,M Q ,Q PC点是的中点,∴M Q∥CD,1.2MQ CD=又AB∥CD,1,2AB CD QM=则∥AB,QM=AB,则四边形ABQM是平行四边形.BQ∴∥AM.又AM⊂平面PAD,BQ⊄平面PAD,BQ∴∥平面PAD.(Ⅱ)解:由题意可得DA,DC,DP两两垂直,以D为原点,DA,DC,DP所在直线为,,x y z轴建立如图所示的空间直角坐标系,则P(0,1,1),C(0,2,0),A(1,0,0),B(1,1,0).令()()()000000,,,,,1,0,2,1.Q x y z PQ x y z PC=-=-则()()000,,,10,2,1,PQ PC x y zλλ=∴-=-()0,2,1.Qλλ∴-又易证BC⊥平面PBD,()1,1,0.n PBD∴=-是平面的一个法向量设平面QBD的法向量为(),,,m x y z=(),0,0,2210,.0,1x yx ym DBy z z ym DQλλλλ=-⎧+=⎧⎧⋅=⎪⎨⎨⎨+-==⋅=⎩⎩⎪-⎩则有即解得令21,1,1,.1y mλλ⎛⎫==-⎪-⎝⎭则60Q BD P 二面角为--,21cos,,22221m n m n m nλλ⋅∴===⎛⎫⋅+ ⎪-⎝⎭解得3 6.λ=±Q 在棱PC 上,01,3 6.λλ<<∴=-2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为155,若存在,求出PQ OB 的值;若不存在,说明理由.【答案】(1)证明见解析(215【解析】(1)证明:连接BE ,在等腰梯形中ABCD ,2AD AB BC ===,4CD =,E 为中点, ∴四边形ABED 为菱形,∴BD AE ⊥,∴OB AE ⊥,OD AE ⊥,即OB AE ⊥,OP AE ⊥,且OBOP O =,OB ⊂平面POB ,OP ⊂平面POB ,∴AE ⊥平面POB .又AE ⊂平面ABCE ,∴平面POB ⊥平面ABCE . (2)由(1)可知四边形ABED 为菱形,∴2AD DE ==, 在等腰梯形ABCD 中2AE BC ==,∴PAE △正三角形, ∴3OP =3OB =∵6PB =,∴222OP OB PB +=,∴OP OB ⊥.由(1)可知OP AE ⊥,OB AE ⊥,以O 为原点,OE ,OB ,OP 分别为x 轴,y 轴,为z 轴,建立空间直角坐标系O xyz -, 由题意得,各点坐标为()0,0,3P ,()1,0,0A -,()0,3,0B,()2,3,0C ,()1,0,0E ,∴(3,3PB =-,(3,3PC =-,()2,0,0AE =,设()01PQ PB λλ=<<,()1,333AQ AP PQ AP PB λλλ=+=+=, 设平面AEQ 的一个法向量为(),,n x y z =,则00n AE n AQ ⎧⋅=⎨⋅=⎩,即()203330x x y λλ=⎧⎪⎨++=⎪⎩,取0x =,1y =,得1z λλ=-,∴0,1,1n λλ⎛⎫= ⎪-⎝⎭,设直线PC 与平面AEQ 所成角为θ,π0,2θ⎡⎤∈⎢⎥⎣⎦, 则15sin cos ,5PC nPC n PC nθ⋅===,即2331511011λλλλ+-=⎛⎫+ ⎪-⎝⎭化简得:24410λλ-+=,解得12λ=, ∴存在点Q 为PB 的中点时,使直线PC 与平面AEQ 所成角的正弦值为155. 3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由; (Ⅱ)当二面角D FC B --的余弦值为2时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒ 【解析】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =, //AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC . (Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =, 所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C ,)3,1,0B,()0,2,FC a =-,()3,1,0CB =-,设平面FBC 的法向量为(),,m x y z =,则由m FCm CB⎧⋅=⎨⋅=⎩得2030y azx y-=⎧⎪⎨-=⎪⎩,令1x=,则3y=,23z=,所以取231,3,m⎛⎫= ⎪⎪⎝⎭,显然可取平面DFC的法向量()1,0,0n=,由题意:22cos,41213m na==++,所以3a=.由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以PBD∠为直线PB与平面ABCD所成的角,易知在Rt PBD∆中,tan3PDPBD aBD∠===,从而60PBD∠=︒,所以直线PB与平面ABCD所成的角为60︒.4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD-中,底面四边形ABCD为正方形,已知PA⊥平面ABCD,2AB=,2PA=.(1)证明:BD PC⊥;(2)求PC与平面PBD所成角的正弦值;(3)在棱PC上是否存在一点E,使得平面BDE⊥平面BDP?若存在,求PEPC的值并证明,若不存在,说明理由.【答案】(1)证明见解析;(210;(3)存在,23PEPC=,理由见解析【解析】(1)如图,连接AC交BD于点O,由于PA⊥平面ABCD,BD⊂平面ABCD所以PA BD⊥,即BD PA⊥由于BD PA ⊥,BD AC ⊥,PA AC A =,所以BD ⊥平面PAC又因为PC ⊂平面PAC ,因此BD PC ⊥ (2)由于PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥又AB AD ⊥,所以PA ,AB ,AD 两两垂直, 因比,如图建立空间直角坐标系A xyz -(2,0,0)B ,(2,2,0)C ,(0,2,0)D,P因此(2,2,PC =,(2,0,PB =,(0,2,PD =设平面PBD 的法向量为(,,)m x y z =,则00m PB m PD ⎧⋅=⎨⋅=⎩即2020x y ⎧=⎪⎨=⎪⎩ 取1x =,1y =,z =,则(1,1,2)m =设直线PC 与平面PBD 所成角为θ,10sin |cos ,|=||10||||m PC m PC m PC θ⋅=<>=⋅(3)存在,设[0,1]PEPCλ=∈,则(2,2))E λλλ- 则(22,2))BE λλλ=--,(2,2,0)BD =-设平面BDE 的法向量为(,,)n a b c =,则0n BE n BD ⎧⋅=⎨⋅=⎩,即2(1)2(1)0220a b a bλλλ⎧-+-=⎪⎨-+=⎪⎩,即1a λ=-,1b λ=-,2)c λ=-则(1,12))n λλλ=---,若平面BDE ⊥平面BDP ,则0m n ⋅=即1(1)1(1)2)0λλλ⋅-+⋅-+-=,则2[0,1]3λ=∈ 因此在棱PC 上存在点E ,使得平面BDE ⊥平面BDP ,23PE PC =5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值.【解析】设AE=BF=x.以D为原点建立空间直角坐标系,得下列坐标:D(0,0,0),A(2,0,0),B (2,2,0),C(0,2,0),D1(0,0,2),A1(2,0,2),B1(2,2,2),C1(0,2,2),E(2,x,0),F(2﹣x,2,0).(1)因为,,所以.所以A1F⊥C1E.(2)因为,所以当S△BEF取得最大值时,三棱锥B1﹣BEF的体积取得最大值.因为,所以当x=1时,即E,F分别是棱AB,BC的中点时,三棱锥B1﹣BEF的体积取得最大值,此时E,F坐标分别为E(2,1,0),F(1,2,0).设平面B1EF的法向量为,则得取a=2,b=2,c=﹣1,得.显然底面ABCD的法向量为.设二面角B1﹣EF﹣B的平面角为θ,由题意知θ为锐角.因为,所以,于是.所以,即二面角B1﹣EF﹣B的正切值为.6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.【解析】(1)∵在底面中,,且∴,∴又∵,,平面,平面∴平面又∵平面∴∵,∴又∵,,平面,平面∴平面(2)方法一:在线段上取点,使则又由(1)得平面∴平面又∵平面∴作于又∵,平面,平面∴平面又∵平面∴又∵∴是二面角的一个平面角设则,这样,二面角的大小为即即∴满足要求的点存在,且方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系且由(1)知是平面的一个法向量设则,∴,设是平面的一个法向量则∴令,则,它背向二面角又∵平面的法向量,它指向二面角这样,二面角的大小为即即∴满足要求的点存在,且7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.【解析】(1)由题设知,平面平面,交线为.因为,平面,所以平面,因此,又,,所以平面.而平面,所以平面平面.(2)以为坐标原点,的方向为轴正方向建立如图所示的直角坐标系,则有,过点作于,设,则.因为,所以,,由题设可得,即,解得或,因为,所以,所以,.由,知是平面的法向量,,.设平面的法向量为,则取得,设二面角为,则,因为,.综上,二面角的正弦值为.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值. 【解析】(1)证明:由已知,得,在中,,∴,即,∵平面,平面,∴,又∵,平面,平面,∴平面(2)∵平面,∴为直线与平面所成角,∴,∴,在中,,取的中点,连结,则,∵平面,平面,∴,又∵,平面,平面,∴平面,以点为坐标原点,建立如图空间直角坐标系,则,,,,∴,,设平面的法向量为,则,取,解得,又平面的法向量为,∴.∴二面角的余弦值为.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【解析】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以. 又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为. (ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.【解析】(1)证明:由平面几何的知识,易得2BD =, 2AD =,又22AB =,所以在ABD ∆中,满足222AD BD AB +=,所以ABD ∆为直角三角形,且BD AD ⊥. 因为四边形BDMN 为矩形,所以BD DM ⊥. 由BD AD ⊥, BD DM ⊥, DM AD D ⋂=, 可得 BD ADM ⊥平面. 又BD ABD ⊂平面,所以平面ADM ⊥平面ABCD .(2)存在点H ,使得二面角H AD M --为大小为,点H 为线段AB 的中点.事实上,以D 为原点, DA 为x 轴, DB 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系D xyz -,则()()()0,0,0,2,0,0,0,2,0D A B , ()1,0,1M , 设(),,H x y z ,由MH MN DB λλ==,即()()1,,10,2,0x y z λ--=,得()1,2,1H λ. 设平面ADH 的一个法向量为()1111,,n x y z =,则,即,不妨设11y =,取()10,1,2n λ=-. 平面ADM 的一个法向量为()20,1,0n =. 二面角H AD M --为大小为于是.解得 或(舍去).所以当点H 为线段MN 的中点时,二面角H AD M --为大小为.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.法二:如图,以O 为原点,分别以过O 点与DB 共线同向的向量, OD , OP 方向上的单位向量为单位正交基建立空间直角坐标系O xyz -,则()()()()()0,0,0,0,2,0,2,1,0,2,1,0,0,0,3,O A B C P --()()()0,2,3,4,0,0,2,3,0AP BC AC ==-=-∴0AP BC ⋅= ∴AP BC ⊥ ∴AP BC ⊥(2)假设M 点存在,设AM AP λ=, (),,M x y z ,则(),2,AM x y z =+,∴()(),2,0,2,3x y z λ+=,∴0{22 3x y z λλ=+==,∴()0,22,3M λλ-, ∴()2,23,3BM λλ=--设平面MBC 的法向量为()1111,,n x y z =,平面APC 的法向量为()2222,,n x y z = 由110{n BM n BC ⋅=⋅=得()111122330{40x y z x λλ-+-+=-=,令11y =,可得1320,1,3n λλ-⎛⎫= ⎪⎝⎭, 由220{n AC n AP ⋅=⋅=得2222230{230x y y z -+=+=,令16y =,可得()29,6,4n =-,若二面角A MC B --为直二面角,则120n n ⋅=,得326403λλ--⋅=, 解得613λ=,∴613AM =故线段AP 上是否存在一点M ,满足题意, AM 的长为613. 12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值; (2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置. 【解析】(1)在中,记,,则由余弦定理:,(当且仅当时,上式取等号)此时,,的面积的最大值为.(2)由(1)知,,,设存在,在三棱锥中,取的中点,连接,易知.作于,由平面平面平面.故在平面上的投影为.与平面所成的角为,由.设,得,,故.故存在,且,满足题意.(2)另解:由(1),,设存在,则在三棱锥中,取的中点,连接,易求.以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,平面的法向量为,设,得,得,又.由.故存在,且,满足题意.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.【解析】(1)连接交于,连接,则是平面与平面的交线.因为平面,平面,所以.又因为是中点,所以是的中点.所以.(2)由已知条件可知,所以,以为原点,为轴,为轴,为轴建立空间直角坐标系.。

空间距离及立体几何中的探索性问题

空间距离及立体几何中的探索性问题

§7.8 空间距离及立体几何中的探索性问题学习目标1.会求空间中点到直线以及点到平面的距离.2.以空间向量为工具,探究空间几何体中线、面的位置关系或空间角存在的条件.知识梳理1.点到直线的距离如图,已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设AP →=a ,则向量AP →在直线l 上的投影向量AQ →=(a·u )u ,在Rt △APQ 中,由勾股定理,得PQ =|AP →|2-|AQ →|2=a 2-(a·u )2.2.点到平面的距离如图,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP →在直线l 上的投影向量QP →的长度,因此PQ =⎪⎪⎪⎪AP →·n |n |=⎪⎪⎪⎪⎪⎪AP →·n |n |=|AP →·n ||n |.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面α上不共线的三点到平面β的距离相等,则α∥β.( × ) (2)点到直线的距离也就是该点与直线上任一点连线的长度.( × ) (3)直线l 平行于平面α,则直线l 上各点到平面α的距离相等.( √ ) (4)直线l 上两点到平面α的距离相等,则l 平行于平面α.( × ) 教材改编题1.已知平面α的一个法向量n =(-2,-2,1),点A (-1,3,0)在α内,则P (-2,1,4)到α的距离为( )A .10B .3 C.83 D.103答案 D解析 由条件可得P (-2,1,4)到α的距离为 |AP →·n ||n |=|(-1,-2,4)·(-2,-2,1)|3=103. 2.正方体ABCD -A 1B 1C 1D 1的棱长为2,则A 1A 到平面B 1D 1DB 的距离为( ) A. 2 B .2 C.22 D.322答案 A解析 由正方体性质可知,A 1A ∥平面B 1D 1DB ,A 1A 到平面B 1D 1DB 的距离就是点A 1到平面B 1D 1DB 的距离,连接A 1C 1,交B 1D 1于O 1(图略),A 1O 1的长即为所求,由题意可得A 1O 1= 12A 1C 1= 2. 3.已知直线l 经过点A (2,3,1)且向量n =⎝⎛⎭⎫22,0,22为l 的一个单位方向向量,则点P (4,3,2)到l 的距离为________. 答案22解析 ∵P A →=(-2,0,-1),n =⎝⎛⎭⎫22,0,22为l 的一个单位方向向量,∴点P 到l 的距离d =|P A →|2-(P A →·n )2=5-⎝⎛⎭⎫-2-222=22.题型一 空间距离例1 如图,在正三棱柱ABC -A 1B 1C 1中,各棱长均为4,N 是CC 1的中点.(1)求点N 到直线AB 的距离; (2)求点C 1到平面ABN 的距离. 解 建立如图所示的空间直角坐标系,则A (0,0,0),B (23,2,0),C (0,4,0),C 1(0,4,4), ∵N 是CC 1的中点,∴N (0,4,2). (1)AN →=(0,4,2),AB →=(23,2,0), 则|AN →|=25,|AB →|=4.设点N 到直线AB 的距离为d 1,则d 1=|AN →|2-⎝⎛⎭⎪⎪⎫ AN →·AB →||AB→2=20-4=4.(2)设平面ABN 的一个法向量为n =(x ,y ,z ), 则由n ⊥AB →,n ⊥AN →, 得⎩⎪⎨⎪⎧n ·AB →=23x +2y =0,n ·AN →=4y +2z =0,令z =2,则y =-1,x =33,即n =⎝⎛⎭⎫33,-1,2. 易知C 1N —→=(0,0,-2),设点C 1到平面ABN 的距离为d 2, 则d 2=|C 1N —→·n ||n |=|-4|433= 3.教师备选1.如图,P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD .若已知AB =3,AD =4,P A =1,则点P 到直线BD 的距离为________.答案135解析 如图,分别以AB ,AD ,AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则P (0,0,1),B (3,0,0), D (0,4,0),则BP →=(-3,0,1),BD →=(-3,4,0), 故点P 到直线BD 的距离 d =|BP →|2-⎝ ⎛⎭⎪⎫BP →·BD →|BD →|2=10-⎝⎛⎭⎫952=135,所以点P 到直线BD 的距离为135.2.如图,已知△ABC 为等边三角形,D ,E 分别为AC ,AB 边的中点,把△ADE 沿DE 折起,使点A 到达点P ,平面PDE ⊥平面BCDE ,若BC =4.求直线DE 到平面PBC 的距离.解 如图,设DE 的中点为O ,BC 的中点为F ,连接OP ,OF ,OB , 因为平面PDE ⊥平面BCDE , 平面PDE ∩平面BCDE =DE , 所以OP ⊥平面BCDE .因为在△ABC 中,点D ,E 分别为AC ,AB 边的中点, 所以DE ∥BC .因为DE ⊄平面PBC ,BC ⊂平面PBC , 所以DE ∥平面PBC . 又OF ⊥DE ,所以以点O 为坐标原点,OE ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则O ()0,0,0,P ()0,0,3,B ()2,3,0, C ()-2,3,0,F ()0,3,0,所以PB →=()2,3,-3,CB →=()4,0,0. 设平面PBC 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PB →=2x +3y -3z =0,n ·CB →=4x =0,得⎩⎪⎨⎪⎧x =0,y =z ,令y =z =1, 所以n =(0,1,1). 因为OF →=(0,3,0),设点O 到平面PBC 的距离为d , 则d =||OF →·n|n |=32=62. 因为点O 在直线DE 上,所以直线DE 到平面PBC 的距离等于62. 思维升华 点到直线的距离(1)设过点P 的直线l 的单位方向向量为n ,A 为直线l 外一点,点A 到直线l 的距离d = |P A →|2-(P A →·n )2.(2)若能求出点在直线上的射影坐标,可以直接利用两点间距离公式求距离.跟踪训练1 (1)(多选)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E ,O 分别是A 1B 1,A 1C 1的中点,P 在正方体内部且满足AP →=34AB →+12AD →+23AA 1—→,则下列说法正确的是( )A .点A 到直线BE 的距离是55B .点O 到平面ABC 1D 1的距离为24C .平面A 1BD 与平面B 1CD 1间的距离为33D .点P 到直线AB 的距离为2536答案 BC解析 如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),C 1(1,1,1),D 1(0,1,1),E ⎝⎛⎭⎫12,0,1,所以BA →=(-1,0,0),BE →=⎝⎛⎭⎫-12,0,1. 设∠ABE =θ,则cos θ=BA →·BE →|BA →||BE →|=55,sin θ=1-cos 2θ=255. 故点A 到直线BE 的距离d 1=|BA →|sin θ=1×255=255,故A 错误;易知C 1O —→=12C 1A 1—→=⎝⎛⎭⎫-12,-12,0, 平面ABC 1D 1的一个法向量DA 1—→=(0,-1,1), 则点O 到平面ABC 1D 1的距离 d 2=|DA 1—→·C 1O —→||DA 1—→|=122=24,故B 正确;A 1B —→=(1,0,-1),A 1D —→=(0,1,-1), A 1D 1—→=(0,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1B —→=0,n ·A 1D —→=0,所以⎩⎪⎨⎪⎧x -z =0,y -z =0,令z =1,得y =1,x =1,所以n =(1,1,1).所以点D 1到平面A 1BD 的距离 d 3=|A 1D 1—→·n ||n |=13=33.因为平面A 1BD ∥平面B 1CD 1,所以平面A 1BD 与平面B 1CD 1间的距离等于点D 1到平面A 1BD 的距离,所以平面A 1BD 与平面B 1CD 1间的距离为33,故C 正确; 因为AP →=34AB →+12AD →+23AA 1—→,所以AP →=⎝⎛⎭⎫34,12,23, 又AB →=(1,0,0),则AP →·AB →|AB →|=34,所以点P 到直线AB 的距离d 4=|AP →|2-⎝ ⎛⎭⎪⎫AP →·AB →|AB →|2=181144-916=56,故D 错误. (2)(2022·枣庄检测)在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点F ,G 分别是AB ,CC 1的中点,则△D 1GF 的面积为________. 答案142解析 以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系(图略), 则D 1(0,0,2),G (0,2,1),F (1,1,0), FD 1—→=(-1,-1,2),FG →=(-1,1,1), ∴点D 1到直线GF 的距离 d =|FD 1—→|2-⎝⎛⎭⎪⎪⎫FD 1—→·FG → |FG →|2 =6-⎝⎛⎭⎫232=423.∴点D 1到直线GF 的距离为423, 又|FG →|=3,∴1D GF S △=12×3×423=142.题型二 立体几何中的探索性问题例2 (2021·北京)已知正方体ABCD -A 1B 1C 1D 1,点E 为A 1D 1中点,直线B 1C 1交平面CDE 于点F .(1)求证:点F 为B 1C 1的中点;(2)若点M 为棱A 1B 1上一点,且二面角M -CF -E 的余弦值为53,求A 1MA 1B 1的值. (1)证明 如图所示,取B 1C 1的中点F ′,连接DE ,EF ′,F ′C ,由于ABCD -A 1B 1C 1D 1为正方体,E ,F ′为中点,故EF ′∥CD , 从而E ,F ′,C ,D 四点共面, 平面CDE 即平面CDEF ′,据此可得,直线B 1C 1交平面CDE 于点F ′,当直线与平面相交时只有唯一的交点,故点F 与点F ′重合, 即点F 为B 1C 1的中点.(2)解 以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,不妨设正方体的棱长为2, 设A 1MA 1B 1=λ(0≤λ≤1), 则M (2,2λ,2),C (0,2,0),F (1,2,2),E (1,0,2), 从而MC →=(-2,2-2λ,-2),CF →=(1,0,2), FE →=(0,-2,0),设平面MCF 的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧m ·MC →=-2x 1+(2-2λ)y 1-2z 1=0,m ·CF →=x 1+2z 1=0,令z 1=-1可得m =⎝⎛⎭⎫2,11-λ,-1(λ≠1),设平面CFE 的法向量为n =(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n ·FE →=-2y 2=0,n ·CF →=x 2+2z 2=0,令z 2=-1可得n =(2,0,-1), 从而m ·n =5,|m |=5+⎝⎛⎭⎫11-λ2,|n |=5,则cos 〈m ,n 〉=m ·n|m ||n |=55+⎝⎛⎭⎫11-λ2×5=53. 整理可得(λ-1)2=14,故λ=12⎝⎛⎭⎫λ=32舍去. 所以A 1M A 1B 1=12.教师备选(2022·盐城模拟)如图,三棱柱ABC -A 1B 1C 1的所有棱长都为2,B 1C =6,AB ⊥B 1C .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)在棱BB 1上是否存在点P ,使直线CP 与平面ACC 1A 1所成角的正弦值为45,若不存在,请说明理由;若存在,求BP 的长.(1)证明 如图,取AB 的中点D ,连接CD ,B 1D .因为三棱柱ABC -A 1B 1C 1的所有棱长都为2,所以AB ⊥CD ,CD =3,BD =1. 又因为AB ⊥B 1C ,且CD ∩B 1C =C ,CD ,B 1C ⊂平面B 1CD , 所以AB ⊥平面B 1CD . 又因为B 1D ⊂平面B 1CD , 所以AB ⊥B 1D .在Rt △B 1BD 中,BD =1,B 1B =2, 所以B 1D = 3.在△B 1CD 中,CD =3,B 1D =3,B 1C =6, 所以CD 2+B 1D 2=B 1C 2, 所以CD ⊥B 1D ,又因为AB ⊥B 1D ,AB ∩CD =D ,AB ,CD ⊂平面ABC , 所以B 1D ⊥平面ABC . 又因为B 1D ⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面ABC .(2)解 假设在棱BB 1上存在点P 满足条件.以DC ,DA ,DB 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,1,0),B (0,-1,0),C (3,0,0),B 1(0,0,3),因此BB 1—→=(0,1,3),AC →=(3,-1,0),AA 1—→=BB 1—→=(0,1,3),CB →=(-3,-1,0). 因为点P 在棱BB 1上,设BP →=λBB 1—→=λ(0,1,3),其中0≤λ≤1.则CP →=CB →+BP →=CB →+λBB 1—→=(-3,-1+λ,3λ). 设平面ACC 1A 1的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AA 1—→=0,得⎩⎨⎧3x -y =0,y +3z =0,取x =1,则y =3,z =-1,所以平面ACC 1A 1的一个法向量为n =(1,3,-1).因为直线CP 与平面ACC 1A 1所成角的正弦值为45,所以|cos 〈n ,CP →〉|=|n ·CP →||n ||CP →|=|-23|5×3+(λ-1)2+3λ2=45,化简得16λ2-8λ+1=0, 解得λ=14,所以|BP →|=14|BB 1—→|=12,故BP 的长为12.思维升华 (1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 跟踪训练2 如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求平面P AC 与平面DAC 夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 如图,连接BD ,设AC 交BD 于点O ,连接SO .由题意知,SO ⊥平面ABCD ,以O 为坐标原点,以OB ,OC ,OS 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系.设底面边长为a ,则高SO =62a ,于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0,C ⎝⎛⎭⎫0,22a ,0. 于是OC →=⎝⎛⎭⎫0,22a ,0,SD →=⎝⎛⎭⎫-22a ,0,-62a .则OC →·SD →=0,故OC ⊥SD ,从而AC ⊥SD .(2)解 由题设知,平面P AC 的一个法向量DS →=⎝⎛⎭⎫22a ,0,62a ,平面DAC 的一个法向量OS→=⎝⎛⎭⎫0,0,62a . 设平面P AC 与平面DAC 的夹角为θ, 则cos θ=|cos 〈OS →,DS →〉|=|OS →·DS →||OS →||DS →|=32,所以平面P AC 与平面DAC 夹角的大小为30°. (3)解 假设在棱SC 上存在一点E 使BE ∥平面P AC . 根据第(2)问知DS →是平面P AC 的一个法向量, 且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a .设CE →=tCS →(0≤t ≤1), 因为B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,所以BC →=⎝⎛⎭⎫-22a ,22a ,0,则BE →=BC →+CE →=BC →+tCS →=⎝⎛⎭⎫-22a ,22a (1-t ),62at . 又BE →·DS →=0, 得-a 22+0+64a 2t =0,则t =13,当SE ∶EC =2∶1时,BE →⊥DS →. 由于BE ⊄平面P AC ,故BE ∥平面P AC .因此在棱SC 上存在点E ,使BE ∥平面P AC ,此时SE ∶EC =2∶1.课时精练1.如图,在梯形ABCD 中,AD ∥BC ,∠ABC =π2,AB =BC =13AD =a ,P A ⊥平面ABCD ,且P A =a ,点F 在AD 上,且CF ⊥PC .(1)求点A 到平面PCF 的距离; (2)求AD 到平面PBC 的距离.解 (1)由题意知AP ,AB ,AD 两两垂直,建立空间直角坐标系,如图,则A (0,0,0),B (a,0,0),C (a ,a,0),D (0,3a ,0), P (0,0,a ).设F (0,m ,0),0≤m ≤3a ,则CF →=(-a ,m -a ,0),CP →=(-a ,-a ,a ). ∵PC ⊥CF ,∴C F →⊥CP →,∴CF →·CP →=(-a )·(-a )+(m -a )·(-a )+0·a =a 2-a (m -a )=0, ∴m =2a ,即F (0,2a ,0).设平面PCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CF →=-ax +ay =0,n ·CP →=-ax -ay +az =0,解得⎩⎪⎨⎪⎧x =y ,z =2x .取x =1,得n =(1,1,2).设点A 到平面PCF 的距离为d ,由AC →=(a ,a ,0), 得d =|AC →·n ||n |=a ×1+a ×1+0×26=63a .(2)由于BP →=(-a ,0,a ),BC →=(0,a ,0), AP →=(0,0,a ).设平面PBC 的法向量为n 1=(x 0,y 0,z 0), 由⎩⎪⎨⎪⎧n 1·BP →=-ax 0+az 0=0,n 1·BC →=ay 0=0,得⎩⎪⎨⎪⎧x 0=z 0,y 0=0. 取x 0=1,得n 1=(1,0,1). 设点A 到平面PBC 的距离为h ,∵AD ∥BC ,AD ⊄平面PBC ,BC ⊂平面PBC , ∴AD ∥平面PBC ,∴h 为AD 到平面PBC 的距离, ∴h =|AP →·n 1||n 1|=a 2=22a .2.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PB ⊥BC ,PD ⊥CD ,且P A =2,E 为PD 的中点.(1)求证:P A ⊥平面ABCD ;(2)求直线PC 与平面ACE 所成角的正弦值;(3)在线段BC 上是否存在点F ,使得点E 到平面P AF 的距离为255若存在,确定点的位置;若不存在,请说明理由.(1)证明 因为四边形ABCD 为正方形,则BC ⊥AB ,CD ⊥AD , 因为PB ⊥BC ,BC ⊥AB ,PB ∩AB =B ,PB ,AB ⊂平面P AB , 所以BC ⊥平面P AB ,因为P A ⊂平面P AB ,所以P A ⊥BC ,因为PD ⊥CD ,CD ⊥AD ,PD ∩AD =D ,PD ,AD ⊂平面P AD , 所以CD ⊥平面P AD ,因为P A ⊂平面P AD ,所以P A ⊥CD , 因为BC ∩CD =C ,BC ,CD ⊂平面ABCD ,所以P A ⊥平面ABCD .(2)解 因为P A ⊥平面ABCD ,AB ⊥AD ,不妨以点A 为坐标原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,0,0),C (2,2,0),P (0,0,2),E (0,1,1), 设平面ACE 的法向量为m =(x ,y ,z ), 则AC →=(2,2,0),AE →=(0,1,1),PC →=(2,2,-2), 由⎩⎪⎨⎪⎧m ·AC →=2x +2y =0,m ·AE →=y +z =0,取y =1,可得m =(-1,1,-1), cos 〈m ,PC →〉=m ·PC →|m ||PC →|=23×23=13,所以直线PC 与平面ACE 所成角的正弦值为13.(3)解 设点F (2,t ,0)(0≤t ≤2),设平面P AF 的法向量为n =(a ,b ,c ), AF →=(2,t ,0),AP →=(0,0,2), 由⎩⎪⎨⎪⎧n ·AF →=2a +tb =0,n ·AP →=2c =0,取a =t ,则n =(t ,-2,0),所以点E 到平面P AF 的距离为d =|AE →·n ||n |=2t 2+4=255,因为t >0,所以t =1.因此,当点F为线段BC 的中点时,点E 到平面P AF 的距离为255.3.(2022·湖南雅礼中学月考)如图,在四棱台ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为菱形,AA 1=A 1B 1=12AB =1,∠ABC =60°,AA 1⊥平面ABCD .(1)若点M 是AD 的中点,求证:C 1M ⊥A 1C ;(2)棱BC 上是否存在一点E ,使得平面EAD 1与平面DAD 1夹角的余弦值为13若存在,求线段CE 的长;若不存在,请说明理由.(1)证明 如图,取BC 的中点Q ,连接AQ ,AC , ∵四边形ABCD 为菱形,则AB =BC , ∵∠ABC =60°,∴△ABC 为等边三角形, ∵Q 为BC 的中点,则AQ ⊥BC , ∵AD ∥BC ,∴AQ ⊥AD ,由于AA 1⊥平面ABCD ,以点A 为坐标原点,以AQ ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则A (0,0,0),A 1(0,0,1),D 1(0,1,1),Q (3,0,0), C (3,1,0),C 1⎝⎛⎭⎫32,12,1,M (0,1,0),C 1M —→=⎝⎛⎭⎫-32,12,-1,A 1C —→=(3,1,-1),∴C 1M —→·A 1C —→=-32+12+(-1)2=0,∴C 1M ⊥A 1C .(2)解 如图,假设点E 存在,设点E 的坐标为(3,λ,0),其中-1≤λ≤1, AE →=(3,λ,0),AD 1—→=(0,1,1), 设平面AD 1E 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=0,n ·AD 1—→=0,即⎩⎨⎧3x +λy =0,y +z =0,取y =-3,则x =λ,z =3, ∴n =(λ,-3,3),平面ADD 1的一个法向量为m =(1,0,0), ∴|cos 〈m ,n 〉|=|m ·n ||m ||n |=|λ|λ2+6=13, 解得λ=±32,即CE =1-32或CE =1+32.因此,棱BC 上存在一点E ,使得平面EAD 1与平面DAD 1夹角的余弦值为13,此时CE =1-32或CE =1+32.4.(2022·潍坊模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为4的正方形,△P AD 是正三角形,CD ⊥平面P AD ,E ,F ,G ,O 分别是PC ,PD ,BC ,AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求平面EFG 与平面ABCD 夹角的大小;(3)在线段P A 上是否存在点M ,使得直线GM 与平面EFG 所成的角为π6,若存在,求线段PM的长度;若不存在,请说明理由.(1)证明 因为△P AD 是正三角形,O 是AD 的中点, 所以PO ⊥AD .又因为CD ⊥平面P AD ,PO ⊂平面P AD , 所以PO ⊥CD .又AD ∩CD =D ,AD ,CD ⊂平面ABCD , 所以PO ⊥平面ABCD .(2)解 如图,连接OG ,以O 点为坐标原点,分别以OA ,OG ,OP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则O (0,0,0),A (2,0,0),B (2,4,0), C (-2,4,0),D (-2,0,0),G (0,4,0),P (0,0,23),E (-1,2,3),F (-1,0,3), EF →=(0,-2,0),EG →=(1,2,-3), 设平面EFG 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧EF →·m =0,EG →·m =0,即⎩⎨⎧-2y =0,x +2y -3z =0,令z =1,则m =(3,0,1), 又平面ABCD 的法向量n =(0,0,1), 设平面EFG 与平面ABCD 的夹角为θ, 所以cos θ=|m ·n ||m ||n |=1(3)2+12×1=12,所以θ=π3,所以平面EFG 与平面ABCD 的夹角为π3.(3)解 不存在,理由如下: 假设在线段P A 上存在点M ,使得直线GM 与平面EFG 所成的角为π6,即直线GM 的方向向量与平面EFG 法向量m 所成的锐角为π3,设PM →=λP A →,λ∈[0,1], GM →=GP →+PM →=GP →+λP A →, 所以GM →=(2λ,-4,23-23λ),所以cos π3=|cos 〈GM →,m 〉|=324λ2-6λ+7,整理得2λ2-3λ+2=0, Δ<0,方程无解, 所以不存在这样的点M .。

利用空间向量解立体几何中的探索性问题

利用空间向量解立体几何中的探索性问题

利⽤空间向量解⽴体⼏何中的探索性问题2019-10-19⽴体⼏何中的探索性问题主要有两类:(1) 探索动点的位置;(2) 探索图形的形状。

前者主要是通过求出动点坐标来达到⽬的;后者通常是通过确定某条边的长度来解决问题。

类型⼀:探索动点的位置(动点在⼀条定直线上移动)【例1】如图,三棱柱ABCA1B1C1中,侧⾯AA1C1C底⾯ABC,AA1=A1C=AC=2,AB=BC,且ABBC,O为AC的中点.在BC1上是否存在⼀点E,使得OE∥平⾯A1AB,若不存在,说明理由;若存在,确定点E的位置.分析 (1) A1O平⾯ABC;(2) 建⽴空间直⾓坐标系;(3) 求平⾯A1AB的法向量n=(x,y,z);(4) 设E点的坐标;(5) 利⽤OE•n=0来求解E点的坐标。

解因为A1A=A1C,且O为AC的中点,所以A1OAC.⼜由题意可知,平⾯AA1C1C平⾯ABC,交线为AC,且A1O平⾯AA1C1C,所以A1O平⾯ABC.如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建⽴空间直⾓坐标系.由题意可知,A1A=A1C=AC=2,⼜AB=BC,ABBCOB=12AC=1.得:O(0,0,0),A(0,-1,0),A1(0,0,3),C(0,1,0),C1(0,2,3),B(1,0,0),则有:A1C=(0,1,-3),AA1=(0,1,3),AB=(1,1,0).设平⾯AA1B的⼀个法向量为n=(x,y,z),则有n•AA1=0,n•AB=0,y+3z=0,x+y=0,令y=1,得x=-1,z=-33,n=-1,1,-33.设E=(x0,y0,z0),令BE=λBC1,即(x0-1,y0,z0)=λ(-1,2,3),得x0=1-λ,y0=2λ,z0=3λ.E=(1-λ,2λ,3λ),得OE=(1-λ,2λ,3λ)令OE∥平⾯AA1B,得OE•n=0,即-1+λ+2λ-λ=0,得λ=12,即存在这样的点E,E为BC1的中点.点拨 (1) 本题的难点在于E点的坐标的设法,要是只设E=(x0,y0,z0),则很难得到答案,运⽤共线向量定理,则问题可以迎刃⽽解;(2) ⼀般的,若动点E在定直线BC1(B、C1是定点)上移动,可以令BE=λBC1。

专题07 立体几何中的向量方法(解析版)

专题07 立体几何中的向量方法(解析版)

专题07 立体几何中的向量方法【要点提炼】1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0. 2.直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则sin θ=|cos a ,μ|=|a ·μ||a ||μ|.(3)面面夹角设平面α,β的夹角为θ(0≤θ<π), 则|cos θ|=|cosμ,v|=|μ·v ||μ||v |.考点考向一 利用空间向量证明平行、垂直【典例1】 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面P AD ; (3)平面PCD ⊥平面P AD .证明 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0. 所以BE ⊥DC .(2)因为AB ⊥AD ,又P A ⊥平面ABCD ,AB ⊂平面ABCD , 所以AB ⊥P A ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以AB ⊥平面P AD ,所以向量AB→=(1,0,0)为平面P AD 的一个法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB , 又BE ⊄平面P AD , 所以BE ∥平面P AD .(3)由(2)知平面P AD 的法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎨⎧2y -2z =0,2x =0,不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →. 所以平面P AD ⊥平面PCD .探究提高 1.利用向量法证明平行、垂直,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素). 2.向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的定理,如在(2)中忽略BE ⊄平面P AD 而致误.【拓展练习1】 如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 (1)由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系A -xyz .设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12.OM →=⎝ ⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)在第(1)问的空间直角坐标系中,设平面MDF 与平面EFCD 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝ ⎛⎭⎪⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1), 由⎩⎪⎨⎪⎧n 1·DF→=0,n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝ ⎛⎭⎪⎫1,12,-12.同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 考向二 线线角、线面角的求解【典例2】 (2020·浙江卷)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .图(1)由∠ACD =45°,DO ⊥AC ,得 CD =2CO .由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC . 所以BC ⊥平面BDO ,故BC ⊥DB .由ABC -DEF 为三棱台,得BC ∥EF ,所以EF ⊥DB .(2)解 法一 如图(1),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO ,得OH ⊥BC ,故OH ⊥平面DBC , 所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2,得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33.法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(2),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .图(2)设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2). 因此OC→=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎨⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33.探究提高 1.异面直线所成的角θ,可以通过两直线的方向向量的夹角φ求得,即cos θ=|cos φ|.2.直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|,有时也可分别求出斜线与它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).【拓展练习2】 (2020·全国Ⅱ卷)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形且M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又侧面BB 1C 1C 是矩形,所以B 1C 1⊥MN . 又A 1N ∩MN =N ,A 1N ,MN ⊂平面A 1AMN , 所以B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知及(1)得AM ⊥BC ,MN ⊥BC ,AM ⊥MN .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM = 3.连接NP ,AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN ,故AO ∥PN . 又AP ∥ON ,则四边形AONP 为平行四边形,故PM =233,E ⎝ ⎛⎭⎪⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC .作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a ,0,0),则 NQ =4-⎝ ⎛⎭⎪⎫233-a2, B 1⎝⎛⎭⎪⎫a ,1,4-⎝ ⎛⎭⎪⎫233-a2. 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a 2, |B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n |·|B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 考向三 利用向量求二面角【典例3】 (2020·全国Ⅲ卷)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.解 设AB =a ,AD =b ,AA 1=c .如图,以C 1为坐标原点,C 1D 1→的方向为x 轴正方向, 建立空间直角坐标系C 1-xyz .(1)证明 连接C 1F ,C 1(0,0,0),A (a ,b ,c ),E ⎝ ⎛⎭⎪⎫a ,0,23c ,F ⎝ ⎛⎭⎪⎫0,b ,13c ,EA→=⎝ ⎛⎭⎪⎫0,b ,13c ,C 1F →=⎝ ⎛⎭⎪⎫0,b ,13c ,得EA →=C 1F →, 因此EA ∥C 1F ,即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0),AE →=(0,-1,-1),AF →=(-2,0,-2),A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x ,y ,z )为平面AEF 的法向量,则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎨⎧-y -z =0,-2x -2z =0,可取n 1=(-1,-1,1).设n 2为平面A 1EF 的法向量,则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,同理可取n 2=⎝ ⎛⎭⎪⎫12,2,1.设二面角A -EF -A 1的平面角为α,所以cos α=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,则sin α=1-cos2α=42 7,所以二面角A-EF-A1的正弦值为42 7.探究提高 1.二面角的大小可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.2.利用向量法求二面角,必须能判定“所求二面角的平面角是锐角或钝角”,否则解法是不严谨的.【拓展练习3】(2020·沈阳一监)如图,已知△ABC为等边三角形,△ABD为等腰直角三角形,AB⊥BD.平面ABC⊥平面ABD,点E与点D在平面ABC的同侧,且CE∥BD,BD=2CE.点F为AD的中点,连接EF.(1)求证:EF∥平面ABC;(2)求二面角C-AE-D的余弦值.(1)证明取AB的中点为O,连接OC,OF,如图.∵O,F分别为AB,AD的中点,∴OF∥BD且BD=2OF.又CE∥BD且BD=2CE,∴CE∥OF且CE=OF,∴OF綊EC,则四边形OCEF为平行四边形,∴EF∥OC.又OC⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC.(2)解∵△ABC为等边三角形,O为AB的中点,∴OC⊥AB.∵平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,BD ⊥AB ,BD ⊂平面ABD ,∴BD ⊥平面ABC .又OF ∥BD ,∴OF ⊥平面ABC .以O 为坐标原点,分别以OA ,OC ,OF 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.不妨令正三角形ABC 的边长为2,则O (0,0,0),A (1,0,0),C (0,3,0),E (0,3,1),D (-1,0,2),∴AC→=(-1,3,0),AE →=(-1,3,1),AD →=(-2,0,2). 设平面AEC 的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧AC →·m =-x 1+3y 1=0,AE →·m =-x 1+3y 1+z 1=0. 不妨令y 1=3,则m =(3,3,0). 设平面AED 的法向量为n =(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧AD →·n =-2x 2+2z 2=0,AE →·n =-x 2+3y 2+z 2=0. 令z 2=1,得n =(1,0,1). ∴cos 〈m ,n 〉=323×2=64.由图易知二面角C -AE -D 为钝角, ∴二面角C -AE -D 的余弦值为-64. 考向四 利用空间向量求解探索性问题【典例4】 (2020·武汉调研)如图所示,在正方体ABCD -A 1B 1C 1D 1中,点O 是AC 与BD 的交点,点E 是线段OD 1上的一点.(1)若点E 为OD 1的中点,求直线OD 1与平面CDE 所成角的正弦值;(2)是否存在点E ,使得平面CDE ⊥平面CD 1O ?若存在,请指出点E 的位置,并加以证明;若不存在,请说明理由. 解 (1)不妨设正方体的棱长为2.以D 为坐标原点,分别以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),D 1(0,0,2),C (0,2,0),O (1,1,0). 因为E 为OD 1的中点, 所以E ⎝ ⎛⎭⎪⎫12,12,1.则OD 1→=(-1,-1,2),DE →=⎝ ⎛⎭⎪⎫12,12,1,DC →=(0,2,0).设p =(x 0,y 0,z 0)是平面CDE 的法向量, 则⎩⎪⎨⎪⎧p ·DE→=0,p ·DC →=0,即⎩⎪⎨⎪⎧12x 0+12y 0+z 0=0,2y 0=0,取x 0=2,则y 0=0,z 0=-1,所以p =(2,0,-1)为平面CDE 的一个法向量. 设直线OD 1与平面CDE 所成角为θ, 所以sin θ=|cos 〈OD 1→,p 〉|=|OD 1→·p ||OD 1→||p |=|-1×2+(-1)×0+2×(-1)|(-1)2+(-1)2+22×22+(-1)2=23015, 即直线OD 1与平面CDE 所成角的正弦值为23015.(2)存在,且点E 为线段OD 1上靠近点O 的三等分点.理由如下. 假设存在点E ,使得平面CDE ⊥平面CD 1O .同第(1)问建立空间直角坐标系,易知点E 不与点O 重合,设D 1E →=λEO →,λ∈[0,+∞),OC →=(-1,1,0),OD 1→=(-1,-1,2). 设m =(x 1,y 1,z 1)是平面CD 1O 的法向量, 则⎩⎪⎨⎪⎧m ·OC →=0,m ·OD 1→=0,即⎩⎨⎧-x 1+y 1=0,-x 1-y 1+2z 1=0,取x 1=1,则y 1=1,z 1=1,所以m =(1,1,1)为平面CD 1O 的一个法向量.因为D 1E →=λEO →,所以点E 的坐标为⎝⎛⎭⎪⎫λ1+λ,λ1+λ,21+λ, 所以DE →=⎝ ⎛⎭⎪⎫λ1+λ,λ1+λ,21+λ. 设n =(x 2,y 2,z 2)是平面CDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE→=0,n ·DC →=0,即⎩⎪⎨⎪⎧λ1+λx 2+λ1+λy 2+21+λz 2=0,2y 2=0,取x 2=1,则y 2=0,z 2=-λ2,所以n =⎝ ⎛⎭⎪⎫1,0,-λ2为平面CDE 的一个法向量. 因为平面CDE ⊥平面CD 1O ,所以m ⊥n . 则m ·n =0,所以1-λ2=0,解得λ=2.所以当D 1E →EO →=2,即点E 为线段OD 1上靠近点O 的三等分点时,平面CDE ⊥平面CD 1O .探究提高 1.空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.但注意空间坐标系建立的规范性及计算的准确性,否则容易出现错误.2.空间向量求解探索性问题:(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论;(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论.【拓展练习4】 (2019·北京卷)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,P A =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且PF PC =13.(1)求证:CD ⊥平面P AD ; (2)求二面角F -AE -P 的余弦值;(3)设点G 在PB 上,且PG PB =23.判断直线AG 是否在平面AEF 内,说明理由. (1)证明 因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD . 又因为AD ⊥CD ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以CD ⊥平面P AD .(2)解 过点A 作AD 的垂线交BC 于点M . 因为P A ⊥平面ABCD ,AM ,AD ⊂平面ABCD , 所以P A ⊥AM ,P A ⊥AD .建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点, 所以E (0,1,1).所以AE→=(0,1,1),PC →=(2,2,-2),AP →=(0,0,2). 所以PF→=13PC →=⎝ ⎛⎭⎪⎫23,23,-23, 所以AF→=AP →+PF →=⎝ ⎛⎭⎪⎫23,23,43. 设平面AEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,即⎩⎪⎨⎪⎧y +z =0,23x +23y +43z =0. 令z =1,则y =-1,x =-1. 于是n =(-1,-1,1).又因为平面P AD 的一个法向量为p =(1,0,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=-33.由题知,二面角F -AE -P 为锐角,所以其余弦值为33. (3)解 直线AG 在平面AEF 内,理由如下: 因为点G 在PB 上,且PG PB =23,PB →=(2,-1,-2), 所以PG→=23PB →=⎝ ⎛⎭⎪⎫43,-23,-43, 所以AG→=AP →+PG →=⎝ ⎛⎭⎪⎫43,-23,23. 由(2)知,平面AEF 的一个法向量n =(-1,-1,1), 所以AG →·n =-43+23+23=0.又点A ∈平面AEF ,所以直线AG 在平面AEF 内.【专题拓展练习】一、单选题1.已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且,,OA a OB b OC c ===,用,,a b c 表示MN ,则MN 等于( )A .()12b c a +- B .()12a b c ++ C .()12a b c -+D .()12c a b --【答案】D 【详解】MN MA AO ON =++1122BA OA OC =-+ ()1122OA OB OA OC =--+ 111222OA OB OC =--+()12c a b =--. 故选:D2.在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为111,BD B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MP 3C .点P 的轨迹是正方形D .点P 轨迹的长度为2+5【答案】D 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,因为该正方体的棱长为1,,M N 分别为111,BD B C 的中点, 则()0,0,0D ,111,,222M ⎛⎫ ⎪⎝⎭,1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C , 所以1,0,12CN ⎛⎫=⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,因为MP CN ⊥, 所以1110222x z ⎛⎫-+-= ⎪⎝⎭,2430x z +-=,当1x =时,14z =;当0x =时,34z =; 取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连接EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭, 所以四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥, 又EFEH E =,且EF ⊂平面EFGH ,EH ⊂平面EFGH ,所以CN ⊥平面EFGH , 又111,,224EM ⎛⎫=-⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,所以M 为EG 中点,则M ∈平面EFGH , 所以,为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体的表面上运动,所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,即A 错; 又1EF GH ==,52EH FG ==,所以EF EH ≠,则点P 的轨迹不是正方形; 且矩形EFGH 的周长为522252+⨯=+,故C 错,D 正确; 因为点M 为EG 中点,则点M 为矩形EFGH 的对角线交点,所以点M 到点E 和点G 的距离相等,且最大,所以线段MP 的最大值为52,故B 错. 3.在空间四边形ABCD 中,AB CD AC DB AD BC ⋅+⋅+⋅=( ) A .-1 B .0 C .1 D .不确定【答案】B 【详解】 如图,令,,AB a AC b AD c ===, 则AB CD AC DB AD BC ⋅+⋅+⋅,()()()a cb b ac c b a =⋅-+⋅-+⋅-,0a c a b b a b c c b c a =⋅-⋅+⋅-⋅+⋅-⋅=.故选:B4.如图,在四棱锥P ABCD -中,底面ABCD 为矩形.PA ⊥底面,2,4ABCD PA AB AD ===.E 为PC 的中点,则异面直线PD 与BE 所成角的余弦值为( )A .35B .3010C .1010D .31010【答案】B 【详解】以A 点为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系如下图所示:则()2,0,0B ,()1,2,1E ,()002P ,,,()0,4,0D , ()1,2,1BE =-∴,()0,4,2PD =-,设异面直线PD 与BE 所成角为θ,则630cos 10625PD BE PD BEθ⋅===⨯⋅. 5.已知四棱锥,-P ABCD 底面是边长为2的正方形,PAD △是以AD 为斜边的等腰直角三角形,AB ⊥平面PAD ,点E 是线段PD 上的动点(不含端点),若线 AB 段上存在点F (不含端点),使得异面直线PA 与 EF 成30的角,则线段PE 长的取值范围是( )A .202⎛⎫ ⎪ ⎪⎝⎭, B .603⎛⎫⎪ ⎪⎝⎭, C .222⎛⎫⎪ ⎪⎝⎭, D .623,⎛⎫⎪⎝⎭【答案】B 【详解】由PAD △是以AD 为斜边的等腰直角三角形,AB ⊥平面PAD ,取AD 中点G ,建立如图空间直角坐标系,依题意(0,0,0),(1,0,0),(1,0,0),(1,2,0),(0,0,1)G A D B P -,设(1,,0)F y ,,设()()1,0,1,0,DE xDP x x x ===,01x <<,故()1,0,E x x -,()2,,EF x y x =--又()1,0,1PA =-,异面直线PA 与 EF 成30的角,故cos30PA EF PA EF ⋅=⋅︒,即()2223222x y x =-++即()222213y x =--+,01x <<,故220,3y ⎡⎫∈⎪⎢⎣⎭,又02y <<,故60y ⎛∈ ⎝⎭,. 故选:B.6.已知二面角l αβ--,其中平面的一个法向量()1,0,1m =-,平面β的一个法向量()0,1,1n =-,则二面角l αβ--的大小可能为( )A .60︒B .120︒C .60︒或120︒D .30【答案】C 【详解】11cos ,222m n m n m n ⋅-<>===-⨯,所以,120m n <>=,又因为二面角的大小与法向量夹角相等或互补, 所以二面角的大小可能是60或120. 故选:C7.已知向量(,,)x y z a a a a =,(,,)x y z b b b b =,{},,i j k 是空间中的一个单位正交基底.规定向量积的行列式计算:()()(),,yz xy xz y z z y z x x z x y y x xy z yz xyxz xyz ij ka a a a a a ab a b a b i a b a b j a b a b k a a a b b b b b b b b b ⎛⎫⨯=-+-+-==-⎪ ⎪⎝⎭其中行列式计算表示为a b ad bc c d=-,若向量(2,1,4),(3,1,2),AB AC ==则AB AC ⨯=( )A .(4,8,1)---B .(1,4,8)--C .(2,8,1)--D .(1,4,8)---【答案】C 【详解】由题意得()()()()1241+4322+21132,8,1AB AC i j k ⨯=⨯-⨯⨯-⨯⨯-⨯=--, 故选:C.8.长方体1111ABCD A B C D -,110AB AA ==,25AD =,P 在左侧面11ADD A 上,已知P 到11A D 、1AA 的距离均为5,则过点P 且与1A C 垂直的长方体截面的形状为( )A .六边形B .五边形C .四边形D .三角形【答案】B 【详解】以D 为坐标原点建立如图所示的空间直角坐标系,则()()()120,0,5,25,0,10,0,10,0P A C ,()125,10,10AC ∴=--, 设截面与11A D 交于(),0,10Q Q x ,则()20,0,5Q PQ x =-,()12520500Q AC PQ x ∴⋅=---=,解得18Qx =,即()18,0,10Q , 设截面与AD 交于(),0,0M M x ,则()20,0,5M PM x =--,()12520500M AC PM x ∴⋅=--+=,解得22Mx =,即()22,0,0M , 设截面与AB 交于()25,,0N N y ,则()3,,0N MN y =,1253100N AC MN y ∴⋅=-⨯+=,解得7.5Ny =,即()25,7.5,0N , 过Q 作//QF MN ,交11B C 于F ,设(),10,10F F x ,则()18,10,0F QF x =-, 则存在λ使得QF MN λ=,即()()18,10,03,7.5,0F x λ-=,解得22F x =,故F 在线段11B C 上,过F 作//EF QM ,交1BB 于E ,设()25,10,E E z ,则()3,0,10E EF z =--,则存在μ使得EF QM μ=,即()()3,0,104,0,10E z μ--=-,解得 2.5E z =,故E 在线段1BB 上,综上,可得过点P 且与1A C 垂直的长方体截面为五边形QMNEF . 故选:B.9.在四面体ABCD 中,6AB =,3BC =,4BD =,若ABD ∠与ABC ∠互余,则()BA BC BD ⋅+的最大值为( )A .20B .30C .40D .50【答案】B 【详解】设ABD α∠=,可得2ABC πα∠=-,则α为锐角,在四面体ABCD 中,6AB =,3BC =,4BD =, 则()cos cos 2BA BC BD BA BC BA BD BA BC BA BD παα⎛⎫⋅+=⋅+⋅=⋅-+⋅ ⎪⎝⎭()18sin 24cos 30sin αααϕ=+=+,其中ϕ为锐角,且4tan 3ϕ=. 02πα<<,则2πϕαϕϕ<+<+,所以,当2παϕ+=时,()BA BC BD ⋅+取得最大值30.10.已知正方体1111ABCD A B C D -的棱长为1,点E 是底面ABCD 上的动点,则()111CE CA D B -⋅的最大值为( )A .22B .1C .2D .6【答案】B 【详解】以点D 为原点,1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,则111(0,0,1),(1,1,1),(1,0,1),D B A设(,,0)E x y ,其中[],0,1x y ∈,则()()11111,,1,1,1,0CE CA A E x y D B -==--=, 所以111()11CE CA D B x y -⋅=+-≤,等号成立的条件是(1,1,0)E ,故其最大值为1, 故选:B .11.如图,在底面为正方形的四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且PA =AB .若点M 为PD 中点,则直线CM 与PB 所成角的大小为( )A .60°B .45°C .30°D .90°【答案】C 【详解】如图所示:以A 为坐标原点,以AB ,AD ,AP 为单位向量建立空间直角坐标系A xyz -,设1PA =,则()0,0,0A ,()1,1,0C ,110,,22M ⎛⎫⎪⎝⎭,()0,0,1P ,()1,0,0B , 故()1,0,1PB =-,111,,22MC ⎛⎫=- ⎪⎝⎭,故1132cos ,21111144PB MC PB MC PB MC+⋅===⋅+⋅++, 由异面直线夹角的范围是(]0,90︒︒,故直线CM 与PB 所成角的大小为30. 故选:C.12.如图,在正四面体ABCD 中,,,2BE EC CF FD DG GA ===,记平面EFG 与平面BCD 、平面ACD 、平面ABD ,所成的锐二面角分别为α、β、γ,则( )A .αβγ>>B .αγβ>>C .βαγ>>D .γαβ>>【答案】A【详解】 解:(空间向量法)因为,,2BE EC CF FD DG GA ===,所以E 、F 分别为BC 、CD 的中点,G 为AD 上靠近A 的三等分点,取BD 的中点M ,连接CM ,过A 作AO ⊥平面BCD ,交CM 于点O ,在平面BCD 中过O 作//ON BD ,交CD 于N ,设正四面体ABCD 的棱长为2,则33OM =,233CO =,22222326233OA AC OC ⎛⎫=-=-= ⎪ ⎪⎝⎭, 以O 为原点,OC 为x 轴,ON 为y 轴,OA 为z 轴,建立空间直角坐标系,26A ⎛ ⎝⎭,31,0B ⎛⎫- ⎪ ⎪⎝⎭,23C ⎫⎪⎝⎭,3D ⎛⎫ ⎪⎝⎭,31,02E ⎫-⎪⎝⎭,31,062F ⎛⎫ ⎪⎝⎭,3146,939G ⎛- ⎝⎭,(0,1,0)EF =,53546,8691EG ⎛⎫=- ⎪ ⎪⎝⎭,232633AC ⎛=- ⎝⎭,32633AD ⎛=-- ⎝⎭,3261,33AB ⎛⎫=--- ⎪⎝⎭,设平面EFG 的一个法向量为()1,,n x y z =,则110n EF n EG ⎧⋅=⎪⎨⋅=⎪⎩,即05354606y x y z =⎧⎪⎨+=⎪⎩,不妨令1z =,则18,0,125n ⎛⎫= ⎪ ⎪⎝⎭,同理可计算出平面BCD 、平面ACD 、平面ABD 的一个法向量分别为2(0,0,1)n =,()32,6,1n =,4(22,0,1)n =-,则可得1212517co 1s 5n n n n α⋅==⋅,1313717co 1s 5n n n n β⋅==⋅,14149cos 1751n n n n γ⋅==⋅,所以cos cos cos αβγ<<,又cos y x =在()0.x π∈上递减,所以αβγ>>, 故选:A.13.在正四棱锥P ABCD -中,1PA PB PC PD AB =====,点Q ,R 分别在棱AB ,PC 上运动,当||QR 达到最小值时,||||PQ CQ 的值为( ) A .7010B .355C .3510D .705【答案】A 【详解】以P 在底面的投影O 为坐标原点,建立如图所示的坐标系,设1(,,0)2Q a ,(,,)R m n q因为211(0(,0),22P C -,,112(,22PC =-, 又因为R 在PC 上,PR PC λ=所以(,m m q -=,11(,),22λλ-, 所以R 11(,2222λλ=--+,所以2222111222QR a λλ⎛⎛⎫⎛⎫=--+-+ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭221324a a λλλ=+-++ 因为[]11,,0,122a λ⎡⎤∈-∈⎢⎥⎣⎦设2213()24f a a a λλλ=+-++,2213()24g a a λλλλ=+-++ 对其求导()2f a a λ'=-,1()22g a λλ'=-+当二个导数同时为0时,取最小值,即20a λ-=,1202a λ-+=所以11,36a λ==时取最小值,所以1121,,,1,,02623PQ CQ ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以PQCQ==10,所以当||QR 达到最小值时,||||PQ CQ 的值为10. 14.如图所示,正方体1111ABCD A B C D -的棱长为1,E 、F 、G 分别为BC 、1CC 、1BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为1D .点C 和点G 到平面AEF 的距离相等 【答案】B 【详解】以D 点为坐标原点,DA 、DC 、1DD 为x ,y ,z 轴建系,则(000)D ,,、(100)A ,,、()010C ,,、1(101)A ,,、1(001)D ,,、 1(10)2E ,,、1(01)2F ,,,1(11)2G ,,, 则()1001DD =,,、1112AF ⎛⎫=- ⎪⎝⎭,,,则112DD AF ⋅=, ∴直线1D D 与直线AF 不垂直,A 错误;则11012A G ⎛⎫=- ⎪⎝⎭,,,1102AE ⎛⎫=- ⎪⎝⎭,,,1112AF ⎛⎫=- ⎪⎝⎭,,, 设平面AEF 的法向量为()n x y z =,,,则10021002x y AE n AF n x y z ⎧-+=⎪⎧⋅=⎪⎪⇒⎨⎨⋅=⎪⎪⎩-++=⎪⎩,令2x =,则1y =,2z =,则(212)n =,,,10AG n ⋅=,∴直线1A G 与平面AEF 平行,B 正确; 易知四边形1AEFD 为平面AEF 截正方体所得的截面,且1D F 、DC 、AE 共点于H ,15D H AH ==,12AD =,∴121232(5)()222AD H S ∆=⨯⨯-=,则113948AD HAEFD S S =⋅=四边形,C 错误; (110)AC =-,,,点C 到平面AEF 的距离113AC n d n⋅==, 1012AG ⎛⎫= ⎪⎝⎭,,,点G 到平面AEF 的距离223AG n d n ⋅==,则12d d ≠,D 错误;故选:B .15.如图所示,1111ABCD A B C D -是棱长为6的正方体,E 、F 分别是棱AB 、BC 上的动点,且AE BF =.当1A 、E 、F 、1C 共面时,平面1A DE 与平面1C DF 所成锐二面角的余弦值为( )A .15B .12C .32D .65【答案】B 【详解】以点D 为原点建立如图所示的空间直角坐标系,则1(606)A ,,、(000)D ,,、1(066)C ,,,由题意知:当(630)E ,,、(360)F ,,时,1A 、E 、F 、1C 共面, 设平面1A DE 的法向量为1111()n x y z =,,,1(606)DA =,,,(630)DE =,,, 则1111111660{630n DA x z n DE x y ⋅=+=⋅=+=,取11x =,解得1(121)n =--,,,设平面1C DF 的法向量为2222()n x y z =,,,1(066)DC =,,,(360)DF =,,, 则2122222660{360n DC y z n DF x y ⋅=+=⋅=+=,取22x =,解得2(211)n =-,,,设平面1A DE 与平面1C DF 所成锐二面角为θ,则1212121cos cos 266n n n n n n θ⋅====⋅⋅,, ∴平面1A DE 与平面1C DF 所成锐二面角的余弦值为12, 故选:B.二、解答题16.在三棱柱111ABC A B C -中,1AB AC ==,13AA =AB AC ⊥,1B C ⊥平面ABC ,E 是1B C 的中点.(1)求证:平面1AB C ⊥平面11ABB A ; (2)求直线AE 与平面11AAC C 所成角的正弦值. 【详解】(1)由1B C ⊥平面ABC ,AB 平面ABC ,得1AB B C ⊥,又AB AC ⊥,1CB AC C =,故AB ⊥平面1AB C ,AB 平面11ABB A ,故平面11ABB A ⊥平面1AB C .(2)以C 为原点,CA 为x 轴,1CB 为z 轴,建立如图所示空间直角坐标系, 则()0,0,0C ,()1,0,0A ,()1,1,0B 又2BC =113BB AA ==故11CB =,()10,0,1B ,10,0,2E ⎛⎫⎪⎝⎭,()1,0,0CA = ()111,1,1AA BB ==--,11,0,2AE ⎛⎫=- ⎪⎝⎭设平面11AAC C 的一个法向量为(),,n x y z =,则100n CA n AA ⎧⋅=⎪⎨⋅=⎪⎩,即00x x y z =⎧⎨--+=⎩,令1y =,则1z =, ()0,1,1n =, 设直线AE 与平面11AAC C 所成的角为θ,故1102sin 1214n AE n AEθ⋅===⨯+,即直线AE 与平面11AAC C 所成角的正弦值为1010.17.如图1,矩形ABCD 中,3AB BC =,将矩形ABCD 折起,使点A 与点C 重合,折痕为EF ,连接AF 、CE ,以AF 和EF 为折痕,将四边形ABFE 折起,使点B 落在线段FC 上,将CDE △向上折起,使平面DEC ⊥平面FEC ,如图2.(1)证明:平面ABE ⊥平面EFC ;(2)连接BE 、BD ,求锐二面角A BE D --的正弦值. 【详解】(1)证明:在平面ABCD 中,AF =FC ,BF +FC 3AB , 设3AB a =,则3BC a =,设BF =x ,在BAF △中,()22233x a a x +=-,解得x a =,则2AF FC a ==, 因为点B 落在线段FC 上,所以BC DE a ==,所以BE FC ⊥, 又AB BF ⊥即AB CF ⊥,AB BE B =,,AB BE ⊂平面ABE ,所以CF ⊥平面ABE ,由CF ⊂平面EFC 可得平面ABE ⊥平面EFC ;(2)以F 为原点,FC 为x 轴,过点F 平行BE 的方向作为作y 轴,过点F 垂直于平面EFC 的方向作为z 轴,建立如图所示空间直角坐标系,则()()()()2,0,0,0,0,0,3,0,,0,0C a F E a a B a ,()0,3,0BE a =, 易得平面ABE 的一个法向量为()2,0,0FC a =,作DG EC ⊥于G , 因为平面DEC ⊥平面FEC ,所以DG ⊥平面EFC ,则5334a G a ⎛⎫ ⎪ ⎪⎝⎭,53334a a D a ⎛ ⎝⎭,13334a a BD a ⎛= ⎝⎭,设平面DBE 的一个法向量为(),,n x y z =,则3013330442n BE ay a an BD ax y z ⎧⋅==⎪⎨⋅=++=⎪⎩,令3z =(3n =-, 因为12239cos ,13239n FC n FC a n FC⋅--===⋅⋅,所以锐二面角A -BE -D 223913113⎛⎫--= ⎪ ⎪⎝⎭. 18.如图,在三梭柱111ABC A B C -中,侧面11AA B B ,11AAC C 均为菱形,12AA =,1160ABB ACC ∠=∠=︒,D 为AB 的中点.(Ⅰ)求证:1//AC 平面1CDB ;(Ⅱ)若60BAC ∠=︒,求直线1AC 与平面11BB C C 所成角的正弦值. 【详解】解:(Ⅰ)连结1BC ,与1B C 交于点O ,连结OD , 四边形11BB C C 是平行四边形,O 为1B C 中点,D 为AB 中点,得1//AC OD ,又OD ⊂平面1CDB ,故1//AC 平面1CDB ;(Ⅱ)方法一:由12AB AC ==,12AC AB ==,且O 为1B C ,1BC 的中点, 得1AO BC ⊥,1AO B C ⊥,11B C BC =, 又1BC ,1CB 为平面11BB C C 内两条相交直线,得AO ⊥平面11BB C C ,故1AC B ∠即为直线1AC 与平面11BB C C 所成的角; 由60BAC ∠=︒,2AB AC ==,2BC =,得四边形11BB C C 为菱形,又11B C BC =,故四边形11BB C C 为正方形,122BC =则1ABC 为等腰直角三角形,且12BAC π∠=,故14AC B π∠=,12sin 2AC B ∠=, 因此,直线1AC 与平面11BB C C 所成角的正弦值为22.方法二:以D 为原点,分别以射线DB ,1DB ,CD 为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系O xyz -,则()0,0,0D ,()1,0,0A -,()1,0,0B ,()13,0A -,()13,0B , 由60BAC ∠=︒,2AB AC ==,ABC 为正三角形, 故CD AB ⊥,又1B D AB ⊥,所以AB ⊥平面1CDB , 设()0,,C y z ,由2CA =,123CA =,得(22223,38,y z y z ⎧+=⎪⎨+=⎪⎩即36,3y z ⎧=⎪⎪⎨⎪=⎪⎩,故3260,33C ⎛- ⎝⎭, 由11B C BC ,得12326C ⎛- ⎝⎭,所以12326AC ⎛= ⎝⎭,()11,3,0BB =-,3261,,33BC ⎛⎫=-- ⎪ ⎪⎝⎭; 设平面11BB C C 的一个法向量为()111,,n x y z =,由10,0,n BB n BC ⎧⋅=⎨⋅=⎩得1111130,33260,x y x y z ⎧-=⎪⎨+-=⎪⎩可取()3,1,2n =,设直线1AC 与平面11BB C C 所成角为θ, 则1112sin cos ,2AC n AC n AC nθ⋅===, 因此,直线1AC 与平面11BB C C 所成角的正弦值为22. 19.如图,在三棱柱111ABC A B C -中,侧面11ABB A 和11BCC B 都是正方形,平面11ABB A ⊥平面11BCC B ,,D E 分别为1BB ,AC 的中点.(1)求证://BE 平面1A CD .(2)求直线1B E 与平面1A CD 所成角的正弦值. 【详解】(1)证明:取1A C 中点F ,连接DF ,EF , ∵,E F 分别为1,AC A C 的中点,∴1//EF AA ,且112EF AA =,又四边形11ABB A 是正方形,∴11//BB AA 且11BB AA =, 即1//EF BB 且112EF BB =,又∵D 为1BB 中点,∴//EF BD 且EF BD =,所以四边形EFDB 为平行四边形,所以//BE DF ,又BE ⊄平面1A CD ,DF ⊂平面1A CD ,所以//BE 平面1A CD .(2)由题意,1,,BA BC BB 两两垂直,所以以B 为原点建立如图所示的空间直角坐标系,设12BA BC BB ===,则11(0,2,0),(1,0,1),(2,0,0),(0,1,0),(0,2,2)B E C D A . ,11(1,2,1),(2,1,0),(2,2,2)B E CD AC =-=-=-,设平面 1A CD 的法向量为(),,m x y z =, 则100AC m CD m ⎧⋅=⎨⋅=⎩,即222020x y z x y -++=⎧⎨-+=⎩,得()1,2,1m =- 设直线1B E 与平面1A CD 所成角为θ,1111412sin cos ,366B E m B E mB E mθ, 所以直线1B E 与平面1A CD 所成角的正弦值为23.。

用空间向量探究立体几何中的存在型问题

用空间向量探究立体几何中的存在型问题

用空间向量探究立体几何中的存在型问题作者:曹娜来源:《科学导报·学术》2020年第27期摘要:在高中阶段,立体几何这一部分占有着十分重要的地位,且更是高考的必考内容。

空间向量作为求空间角和距离的有利工具,是历年高考的必考点。

立体几何中存在型问题的基本特征是要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立。

此类问题的难点在于涉及的点具有运动性和不确定性,用传统方法解决起来的难度较大。

若用空间向量的方法来处理,通过待定系数法求解,则思路简单,解法固定,操作方便。

因此,在数学教学中,如何提高学生利用空间向量解决立体几何中的存在型问题,则为教师提出了更高的教学发展要求。

关键词:空间向量;立体几何;存在型问题空间向量在平面向量,立体几何等教学之后,空间向量既体现了几何图形直观,又提供了代数定量刻画,在这个过程中,向量与起点无关的自由性为求解带来很大便利。

以“平行、垂直、距离和角”为背景的存在型问题是近年来高考数学中创新型命题的一个重要类型,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐。

一、学生解决立体几何中的存在型问题时所产生的问题:1、基础知识差。

数学是一个知识积累的过程,在利用空间向量探索立体几何的存在型问题时,不仅要求学生对立体几何中点、线、面的位置关系和度量关系熟练掌握,同时对空间直角坐标的建立、空间向量及其运算,空间向量坐标表示及应用做到运用自如。

但在实际的数学学习过程中,许多学生对空间几何体的点、线、面位置关系没有熟练掌握,数学运算较差,因此用向量探究立体几何的存在型问题时常常不尽人意。

2、题目分析过程中,读不懂题。

缺乏直观想象能力和空间观念。

虽然知道要用向量,但不能准确建立空间直角坐标系,不能正确地将点、线用空间向量表示,向量运算结果不能准确地转化成几何度量关系和位置关系,导致学生将大量时间浪费在题目分析上和计算上。

所以,在数学教学过程中,对于利用空间向量探究立体几何的存在型问题时,老师必须注重对学生空间观念、直观想象的培养,注重对解题思维的引导,对向量运算的训练,从而提高学生分析问题和解题的能力。

向量法探索立体几何中的存在性问题

向量法探索立体几何中的存在性问题
1 探 索 距 离 问题 . 例 1 (0 1 建 理 2 ) 图 , . 21 福 0如 四棱 锥 P— B D 中 ,A上 AC P 底 面 A C 四边 形 A C 中 ,B上A A A =4 C , B D, BD A D,B+ D , D=
C£ =4 . 5o

所 以 A _ 面 P D. Bj平 A 又A Bc平 面 P B, 以平 面 P BJ平 面 P D A 所 A _ A.
( 以 A为坐标原点 , Ⅱ) 建立空 间直角坐标 系 A— y ( xz 如
图)
在平 面 A C 内, C /A BD 作 E / B交 A 于 点 E, C D 则 E ̄A D.
在 R AC E 中 , E=C ・ o 5 =1 t D D D cs 。 , 4
C E=C ・ i 5 :l A A D s 4 。 设 B= P=t则 B( , 0 , 0 n , t 0, ) P( ,
0t ,)

由A A 4得A : B+ D= , D 4一t所 以 E( 3一t0 , 13 , 0, , ) C( ,
t0 , o, tO , , )o( 4一 ,)

(一110 , , ,)
:( , 0 4一£ 一t , )

( ) 平 面 P D 的法 向量 为 n=( yz , i设 C , ,)
5‘
(i在线段 A i ) D上是否存 在一个 点 G, 得点 G到点 P, 使

c, D的距离都相 等?说 明理 由. 分析 : 题 目中 的四棱锥 能够 找到三 条两两 垂直 的棱 , 从
因此 , 可考虑建立空间直角坐标 系 , 利用向量表 示相关元素 , 然后利用 向量 的运算求解结论.

向量法解立体几何存在性问题的策略

向量法解立体几何存在性问题的策略

向量法解立体几何存在性问题的策

向量法是一种解决立体几何存在性问题的策略,其思想是利用向量运算来代替复杂的数学推理。

该方法可以用于解决立体几何存在性问题,如求两个直线的公垂线、求三个平面的交线、求四面体的面积、求三角形的高度等。

例如,要求两个直线的公垂线,可以根据这两条直线的向量表示式求得它们的夹角,然后再根据夹角的正切值求出其单位法向量,最后将单位法向量乘以对应的系数即可得出所求的公垂线的斜率及截距。

此外,向量法还可以用于求解更复杂的立体几何问题,如求多边形的重心、求平面上的特征点,以及求多面体的面积、体积、质心等。

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。

新教材高中数学精品第4讲 空间向量与距离、探究性问题

新教材高中数学精品第4讲 空间向量与距离、探究性问题

第4讲 空间向量与距离、探究性问题[考情分析] 1.以空间几何体为载体,考查利用向量方法求空间中点到直线以及点到平面的距离,属于中等难度.2.以空间向量为工具,探究空间几何体中线、面的位置关系或空间角存在的条件,计算量较大,一般以解答题的形式考查,难度中等偏上. 考点一 空间距离 核心提炼 (1)点到直线的距离直线l 的单位方向向量为u ,A 是直线l 上的任一点,P 为直线l 外一点,设AP →=a ,则点P 到直线l 的距离d =a 2-(a ·u )2. (2)点到平面的距离平面α的法向量为n ,A 是平面α内任一点,P 为平面α外一点,则点P 到平面α的距离为d =|AP →·n ||n |.考向1 点到直线的距离例1 (1)如图,P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD .若已知AB =3,AD =4,P A =1,则点P 到直线BD 的距离为________.答案135解析 如图,分别以AB ,AD ,AP 所在直线为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),B (3,0,0),D (0,4,0), 则BP →=(-3,0,1),BD →=(-3,4,0), 故点P 到直线BD 的距离d =|BP →|2-⎪⎪⎪⎪⎪⎪BP →·BD →|BD →|2=10-⎝⎛⎭⎫952=135,所以点P 到直线BD 的距离为135.(2)(2022·枣庄检测)在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点F ,G 分别是AB ,CC 1的中点,则1D GF S △的面积为________. 答案142解析 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系(图略), 则D 1(0,0,2),G (0,2,1),F (1,1,0), FD 1→=(-1,-1,2),FG →=(-1,1,1), ∴点D 1到直线GF 的距离d =|FD 1→|·1-⎝⎛⎭⎪⎪⎫FD 1→·FG → |FD 1→|·|FG →|2=6×1-⎝ ⎛⎭⎪⎫26×32=423. ∴点D 1到直线GF 的距离为423,又|FG →|=3, ∴1D GF S △=12×3×423=142.考向2 点到平面的距离例2 (1)在三棱锥P -ABC 中,PC ⊥底面ABC ,∠BAC =90°,AB =AC =4,∠PBC =60°,则点C 到平面P AB 的距离是( ) A.3427 B.4427 C.5427 D.6427答案 B解析 ∵在三棱锥P -ABC 中,PC ⊥底面ABC ,∠BAC =90°,AB =AC =4,∠PBC =60°, ∴以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴, 过A 作平面ABC 的垂线为z 轴,建立空间直角坐标系,如图所示,则C (0,4,0),P (0,4,46),A (0,0,0),B (4,0,0), AC →=(0,4,0),AB →=(4,0,0), AP →=(0,4,46),设平面P AB 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AP →=4y +46z =0,n ·AB →=4x =0,取z =1,得n =(0,-6,1),∴点C 到平面P AB 的距离d =|AC →·n ||n |=467=4427.(2)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N ,E 分别是A 1B 1,CD ,AB 的中点,则直线EC 到平面AMN 的距离为________.答案63解析 因为AN ∥EC ,由线面平行的判定定理可知,EC ∥平面AMN , 则点E 到平面AMN 的距离就是直线EC 到平面AMN 的距离, 以点D 为坐标原点,建立如图所示的空间直角坐标系,则A (2,0,0),N (0,1,0),M (2,1,2),E (2,1,0),C (0,2,0), AN →=(-2,1,0),AM →=(0,1,2),AE →=(0,1,0), 设平面AMN 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AN →=0,n ·AM →=0,即⎩⎪⎨⎪⎧-2x +y =0,y +2z =0,取y =2,则n =(1,2,-1),则点E 到平面AMN 的距离为|AE →·n ||n |=|1×0+2×1+(-1)×0|6=63.规律方法 (1)求直线到平面的距离的前提是直线与平面平行.求直线到平面的距离可转化成直线上任一点到平面的距离.(2)求点到平面的距离有两种方法,一是利用空间向量点到平面的距离公式,二是利用等体积法.跟踪演练1 (多选)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E ,O 分别是A 1B 1,A 1C 1的中点,P 在正方体内部且满足AP →=34AB →+12AD →+23AA 1→,则下列说法正确的是( )A .点A 到直线BE 的距离是55B .点O 到平面ABC 1D 1的距离为24C .平面A 1BD 与平面B 1CD 1间的距离为33D .点P 到直线AB 的距离为2536答案 BC解析 如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),C 1(1,1,1),D 1(0,1,1),E ⎝⎛⎭⎫12,0,1,所以BA →=(-1,0,0),BE →=⎝⎛⎭⎫-12,0,1. 设∠ABE =θ,则cos θ=|BA →·BE →||BA →||BE →|=55,sin θ=1-cos 2θ=255.故A 到直线BE 的距离d 1=|BA →|sin θ=1×255=255,故A 错误;易知C 1O →=12C 1A 1——→=⎝⎛⎭⎫-12,-12,0, 平面ABC 1D 1的一个法向量DA 1→=(0,-1,1),则点O 到平面ABC 1D 1的距离d 2=|DA 1→·C 1O →||DA 1→|=122=24,故B 正确;A 1B →=(1,0,-1),A 1D →=(0,1,-1),A 1D 1——→=(0,1,0). 设平面A 1BD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1B →=0,n ·A 1D →=0,所以⎩⎪⎨⎪⎧x -z =0,y -z =0,令z =1,得y =1,x =1,所以n =(1,1,1).所以点D 1到平面A 1BD 的距离d 3=|A 1D 1——→·n ||n |=13=33.因为平面A 1BD ∥平面B 1CD 1,所以平面A 1BD 与平面B 1CD 1间的距离等于点D 1到平面A 1BD 的距离, 所以平面A 1BD 与平面B 1CD 1间的距离为33,故C 正确; 因为AP →=34AB →+12AD →+23AA 1→,所以AP →=⎝⎛⎭⎫34,12,23, 又AB →=(1,0,0),则AP →·AB →|AB →|=34,所以点P 到直线AB 的距离d =|AP →|2-⎪⎪⎪⎪⎪⎪AP →·AB →|AB →|2=181144-916=56,故D 错误. 考点二 空间中的探究性问题 核心提炼与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或两平面的夹角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.例3 (2022·盐城模拟)如图,三棱柱ABC -A 1B 1C 1的所有棱长都为2,B 1C =6,AB ⊥B 1C .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)在棱BB 1上是否存在点P ,使直线CP 与平面ACC 1A 1所成角的正弦值为45,若不存在,请说明理由;若存在,求BP 的长.(1)证明 如图,取AB 的中点D ,连接CD ,B 1D .因为三棱柱ABC -A 1B 1C 1的所有棱长都为2,所以AB ⊥CD ,CD =3,BD =1.又因为AB ⊥B 1C ,且CD ∩B 1C =C ,CD ,B 1C ⊂平面B 1CD , 所以AB ⊥平面B 1CD . 又因为B 1D ⊂平面B 1CD , 所以AB ⊥B 1D .在Rt △B 1BD 中,BD =1,B 1B =2, 所以B 1D = 3.在△B 1CD 中,CD =3,B 1D =3,B 1C =6, 所以CD 2+B 1D 2=B 1C 2, 所以CD ⊥B 1D ,又因为AB ⊥B 1D ,AB ∩CD =D ,AB ,CD ⊂平面ABC , 所以B 1D ⊥平面ABC . 又因为B 1D ⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面ABC .(2)解 假设在棱BB 1上存在点P 满足条件.以DC ,DA ,DB 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,1,0),B (0,-1,0),C (3,0,0),B 1(0,0,3),因此BB 1→=(0,1,3),AC →=(3,-1,0),AA 1→=BB 1→=(0,1,3),CB →=(-3,-1,0). 因为点P 在棱BB 1上,设BP →=λBB 1→=λ(0,1,3),其中0≤λ≤1.则CP →=CB →+BP →=CB →+λBB 1→=(-3,-1+λ,3λ). 设平面ACC 1A 1的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AA 1→=0,得⎩⎨⎧3x -y =0,y +3z =0,取x =1,则y =3,z =-1,所以平面ACC 1A 1的一个法向量为n =(1,3,-1). 因为直线CP 与平面ACC 1A 1所成角的正弦值为45,所以|cos 〈n ,CP →〉|=⎪⎪⎪⎪⎪⎪n ·CP →|n ||CP →|=⎪⎪⎪⎪⎪⎪-235×3+(λ-1)2+3λ2=45,化简得16λ2-8λ+1=0, 解得λ=14,所以|BP →|=14|BB 1→|=12,故BP 的长为12.规律方法 解决立体几何中探索性问题的基本方法(1)通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明,否则假设不成立. (2)探索线段上是否存在满足条件的点时,一定注意三点共线的条件的应用.跟踪演练2 如图,在直角梯形ABCD 中,AD ∥BC ,∠BAD =90°,且AB =BC =12AD ,E 是AD 的中点,将△ABE 沿BE 折起到△SBE 的位置,使平面SBE ⊥平面BCDE .(1)求平面BSC 与平面SCD 夹角的正弦值;(2)在直线SB 上是否存在点P ,使PD ⊥平面SBC ?若存在,请求出点P 所在的位置;若不存在,请说明理由.解 (1)如图,取BE 的中点O ,由题意可得四边形ABCE 是正方形,则SO ⊥BE ,CO ⊥BE ,又因为平面SBE ⊥平面BCDE ,平面SBE ∩平面BCDE =BE , SO ⊂平面SBE ,CO ⊂平面BCDE , 所以SO ⊥平面BCDE ,CO ⊥平面SBE ,所以SO ⊥CO ,可得OB ,OS ,OC 两两垂直,以O 为原点,OB ,OC ,OS 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系, 不妨设SB =SE =ED =BC =2,则BE =CD =2, 则S (0,0,1),B (1,0,0),C (0,1,0),D (-2,1,0),SB →=(1,0,-1),BC →=(-1,1,0),设平面SBC 的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·SB →=x 1-z 1=0,n 1·BC →=-x 1+y 1=0,令x 1=1,则y 1=1,z 1=1,所以n 1=(1,1,1), 设平面SCD 的一个法向量为n 2=(x 2,y 2,z 2), 又SC →=(0,1,-1),SD →=(-2,1,-1) 则⎩⎪⎨⎪⎧n 2·SC →=y 2-z 2=0,n 2·SD →=-2x 2+y 2-z 2=0,令y 2=1,则z 2=1,x 2=0,所以n 2=(0,1,1), 记平面BSC 与平面SCD 的夹角为θ, 则cos θ=|n 1·n 2||n 1|·|n 2|=1+13×2=63,所以sin θ=1-⎝⎛⎭⎫632=33, 所以平面BSC 与平面SCD 夹角的正弦值为33. (2)不存在,理由如下:假设直线SB 上存在点P ,使得PD ⊥平面SBC , 不妨设P (a ,0,1-a ),所以PD →=(-2-a ,1,a -1), 又因为n 1=(1,1,1),由PD →∥n 1得-2-a 1=11=a -11,无解,故不存在点P ,使PD ⊥平面SBC .专题强化练1.(2022·阳泉模拟)如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别为棱A 1D 1,C 1D 1,BC 的中点.(1)求证:AC ⊥NP ;(2)求四面体DMNP 的体积.(1)证明 建立如图所示的空间直角坐标系,连接AC ,DN .则D (0,0,0),M ⎝⎛⎭⎫a2,0,a , N ⎝⎛⎭⎫0,a 2,a ,P ⎝⎛⎭⎫a2,a ,0,A (a ,0,0),C (0,a ,0), AC →=(-a ,a ,0),PN →=⎝⎛⎭⎫-a 2,-a 2,a , 故AC →·PN →=a 22-a 22+0=0,故AC ⊥NP .(2)解 DM →=⎝⎛⎭⎫a 2,0,a ,DN →=⎝⎛⎭⎫0,a 2,a , 设平面DMN 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·DM →=0,m ·DN →=0,即⎩⎨⎧a2x +az =0,a 2y +az =0,取z =1,则x =-2,y =-2, 故m =(-2,-2,1). 又PN →=⎝⎛⎭⎫-a 2,-a 2,a , 故P 到平面DMN 的距离d =⎪⎪⎪⎪⎪⎪PN →·m |m |=3a3=a ,又|DM →|=|DN →|=52a ,|MN →|=22a ,故S △DMN =12×22a ×5a 24-a 28=3a 28, 故四面体DMNP 的体积为13×3a 28×a =a 38.2.(2022·全国甲卷)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小? (1)证明 因为E ,F 分别是AC 和CC 1的中点,且AB =BC =2, 所以CF =1,BF = 5.如图,连接AF ,由BF ⊥A 1B 1,AB ∥A 1B 1,得BF ⊥AB ,于是AF =BF 2+AB 2=3,所以AC =AF 2-CF 2=2 2.由AB 2+BC 2=AC 2,得BA ⊥BC ,故以B 为坐标原点,以BA ,BC ,BB 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则B (0,0,0),E (1,1,0),F (0,2,1),BF →=(0,2,1). 设B 1D =m (0≤m ≤2),则D (m ,0,2), 于是DE →=(1-m ,1,-2). 所以BF →·DE →=0,所以BF ⊥DE .(2)解 易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0). 设平面DFE 的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧DE →·n 2=0,EF →·n 2=0,又DE →=(1-m ,1,-2),EF →=(-1,1,1),所以⎩⎪⎨⎪⎧(1-m )x +y -2z =0,-x +y +z =0,令x =3,得y =m +1,z =2-m ,于是平面DFE 的一个法向量为n 2=(3,m +1,2-m ),所以cos 〈n 1,n 2〉=32⎝⎛⎭⎫m -122+272. 设平面BB 1C 1C 与平面DFE 所成的二面角为θ,则sin θ=1-cos 2〈n 1,n 2〉,故当m =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小,为33,即当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.3.(2022·聊城模拟)如图,在棱长均为4的四棱柱ABCD -A 1B 1C 1D 1中,DD 1⊥平面ABCD ,∠BAD =60°,E 为线段AD 的中点.(1)求平面BD 1D 与平面BD 1E 夹角的余弦值;(2)在线段B 1C 上是否存在点F ,使得DF ∥平面BD 1E ?若存在,请确定点F 的位置;若不存在,请说明理由.解 连接AC ,与BD 交于点O ,连接A 1C 1,B 1D 1,交于点O 1,连接OO 1,因为DD 1⊥平面ABCD ,所以OO 1⊥平面ABCD .由题意得四边形ABCD 为菱形,所以OA ,OB ,OO 1两两垂直,以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.(1)由题意,得B (0,2,0),D 1(0,-2,4),E (3,-1,0),所以EB →=(-3,3,0),ED 1→=(-3,-1,4),设平面BD 1E 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·EB →=0,n ·ED 1→=0,所以⎩⎨⎧-3x +3y =0,-3x -y +4z =0. 令x =3,则y =1,z =1,所以n =(3,1,1)是平面BD 1E 的一个法向量,因为OA ⊥平面BD 1D ,所以平面BD 1D 的一个法向量为m =(1,0,0),设平面BD 1D 与平面BD 1E 的夹角为θ,则cos θ=|cos 〈n ,m 〉|=|n ·m ||n ||m |=35×1=155, 即平面BD 1D 与平面BD 1E 夹角的余弦值为155. (2)存在.假设在线段B 1C 上存在点F ,使得DF ∥平面BD 1E ,设CF →=λCB 1→(λ∈[0,1]),因为D (0,-2,0),C (-23,0,0),B 1(0,2,4),所以CB 1→=(23,2,4),DC →=(-23,2,0),CF→=λCB 1→=λ(23,2,4)=(23λ,2λ,4λ),所以DF →=DC →+CF →=(-23,2,0)+(23λ,2λ,4λ)=(23(λ-1),2(λ+1),4λ),因为DF ∥平面BD 1E ,所以DF →⊥n ,即DF →·n =0,所以(23(λ-1),2(λ+1),4λ)·(3,1,1)=0,即12λ-4=0,解得λ=13∈[0,1], 所以在线段B 1C 上存在点F ,使得DF ∥平面BD 1E ,此时点F 为线段B 1C 的靠近点C 的三等分点.4.(2022·潍坊模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为4的正方形,△P AD 是正三角形,CD ⊥平面P AD ,E ,F ,G ,O 分别是PC ,PD ,BC ,AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求平面EFG 与平面ABCD 夹角的大小;(3)在线段P A 上是否存在点M ,使得直线GM 与平面EFG 所成角为π6,若存在,求线段PM 的长度;若不存在,请说明理由.(1)证明 因为△P AD 是正三角形,O 是AD 的中点,所以PO ⊥AD .又因为CD ⊥平面P AD ,PO ⊂平面P AD ,所以PO ⊥CD .又AD ∩CD =D ,AD ,CD ⊂平面ABCD ,所以PO ⊥平面ABCD .(2)解 如图,以O 点为原点,分别以OA ,OG ,OP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.则O (0,0,0),A (2,0,0),B (2,4,0),C (-2,4,0),D (-2,0,0),G (0,4,0),P (0,0,23),E (-1,2,3),F (-1,0,3), EF →=(0,-2,0),EG →=(1,2,-3),设平面EFG 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ EF →·m =0,EG →·m =0,即⎩⎨⎧-2y =0,x +2y -3z =0, 令z =1,则m =(3,0,1),又平面ABCD 的法向量n =(0,0,1),设平面EFG 与平面ABCD 的夹角为θ,所以cos θ=|m ·n ||m ||n |=1(3)2+12×1=12, 所以θ=π3. 所以平面EFG 与平面ABCD 的夹角为π3. (3)解 不存在,理由如下:假设在线段P A 上存在点M ,使得直线GM 与平面EFG 所成角为π6, 即直线GM 的方向向量与平面EFG 法向量m 所成的锐角为π3, 设PM →=λP A →,λ∈[0,1],GM →=GP →+PM →=GP →+λP A →,所以GM →=(2λ,-4,23-23λ),所以cos π3=|cos 〈GM →,m 〉|=324λ2-6λ+7, 整理得2λ2-3λ+2=0,Δ<0,方程无解,所以不存在这样的点M .。

向量作为一种工具在解决立体几何探索性问题中有着无比

向量作为一种工具在解决立体几何探索性问题中有着无比

立体几何探索性问题是近年高考或各地模拟考试中的热点题型.向量作为一种工具,在解决立体几何探索性问题中有着无比的优越性.运用向量法解题,可使几何问题代数化,大大简化思维程序,使解题思路直观明了.下面举例说明向量法在求解两类立体几何探索性问题中的运用.一、条件探索型所谓“条件探索型”是指给出了问题的明确结论,但条件不足或未知,需要解题者探求、寻找使结论成立的条件的一类问题,这类问题的常用解法是逆推法,利用结论探求条件. 例1 如图1,棱长为1的正方体1111ABCD A B C D -,E 是BC 的中点,F 是棱CD 上的动点(非C 、D 两点),设二面角1C EF C --的大小为θ.试确定F 点的位置,使得1cos 3θ=.解析:以A 为坐标原点,建立如图1所示的直角坐标系, 则111(001)(111)102A C E ⎛⎫⎪⎝⎭,,,,,,,,.设(10)(01)F x x <<,,, 易知111011022C E EF x ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,,,,,.设()a b c =,,v 是平面1C EF 的一个法向量, 则11021(1)02C E b c EF x a b ⎧=--=⎪⎪⎨⎪=-+=⎪⎩,,v v令1c =,则1211x ⎛⎫=- ⎪-⎝⎭,,v .又1(001)AA =,,是平面AC 的一个法向量, ∴111cos AA AA AA ==⎛,v v v结合条件知可取1cos cos AA θ=,v , 13=,解得12x =或32x =(舍).故当F 是CD 的中点时,1cos 3θ=.二、存在型所谓“存在型”是指结论不确定的问题,即在数学命题中,结论常以“是否存在”的形式出现,其结果可能存在,需要找出来;可能不存在,则需要说明理由.解答这一类问题时,先假设结论存在,若推证无矛盾,则结论存在;若推证出矛盾,则结论不存在.例2 已知正三棱柱111ABC A B C -的侧棱长为2,底面边长为1,M是BC 的中点.在直线1CC 上是否存在一点N,使得1MN AB ⊥?若存在,请你求出它的位置;若不存在,请说明理由.解:假设在直线1CC 上存在一点N,使得1MN AB ⊥.如图2,建立空间直角坐标系,有1131(000)00(01)2242A B M N z B ⎫⎫⎫⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,,,, ∴13131224AB MN z ⎛⎫⎛⎫==- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,,,,,. ∵1AB MN ⊥,∴13131312202488AB MN z z ⎛⎫⎛⎫=-=-++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,, 解得18z =,1018N ⎛⎫ ⎪⎝⎭,,,即18CN =时,1AB MN ⊥. 用法向量求距离一、求异面直线间的距离如图1,若CD 是异面直线a b ,的公垂线段,A B ,分别为a b ,上的任决两点.令向量a b ⊥⊥,n n ,则AB CD =n n . 分析:AB AC CD DB =++, AB AC CD DB ∴=++n n n n .AB CD ∴=n n ,AB CD ∴=n n .AB CD ∴=nn .∴两异面直线a b ,间的距离为AB d =n n (其中n 与a b ,垂直,A B ,分别为两异面直线上的任意两点). 例1 如图2,在正方体1111ABCD A B C D -中,E 为11A B 的中点且正方体棱长为2.求异面直线1D E 和1BC 间的距离.解析:以1D 为原点,建立如图2所示的空间直角坐标系, 则11(210)(202)D E C B =,,,,,.设1D E 和1BC 公垂线段上的向量为(1)λμ=,,n ,则1100D E C B ⎧=⎪⎨=⎪⎩,,n n 即20220λμ+=⎧⎨+=⎩,,21λμ=-⎧⎨=-⎩,.(121)∴=--,,n .又11(020)DC =,,,11D C ==nn所以异面直线1D E 和1BC .二、求点到平面的距离如图3,已知AB 为平面α的一条斜线段,n 为平面α的法向量. 求证:点A 到平面α的距离AB AC =n n . 分析:cos AB AB AB =,n n n , cos AB AB AC AB AB AB AB ∴===,nnn n n .例2 如图4,已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.求点C 到平面1AB D 的距离.解析:11ABB A 为正方形,11A B AB ∴⊥.易得平面1AB D ⊥平面11ABB A ,1A B ∴⊥面1AB D ,1A B ∴是平面1AB D 的一个法向量.设点C 到平面1AB D 的距离为d , 则111()06024AC A BAC A A AB d a A B +====. 三、求直线到平面的距离例3 如图5,已知边长为ABC 中,E F ,分别为BC 和AC 的中点,PA ⊥面ABC ,且2PA =,设平面α过PF 且与AE 平行.求AE 与平面α间的距离.解析:设A P A E E C ,,的单位向量分别为123,,e e e ,选取{}123,,e e e 作为空间向量的一个基底. 易知1213230===e e ee e e ,12AP =e ,226AE =,322EC =,1231()22PF PA AE EC =++=-+e . 设123x y =++n e e e 是平面α的一个法向量,则AE ⊥n ,PF ⊥n.00AE PF ⎧=⎪∴⎨=⎪⎩,,n n即22222123020x ⎧=⎪⎨-=⎪⎩,,e e e 解得02y x =⎧⎪⎨=⎪⎩,13∴=+n e .∴直线AE 与平面α间的距离1121222322AP d ⎛+ ⎝===+e e e nn e e . 四、求两平行平面间的距离例4 如图6,在棱长为1的正方体1111ABCD A B C D -中. 求平面1AB C 与平面11AC D 间的距离.解析:建立如图所示的空间直角坐标系,易知平面1AB C 与平面11AC D 平行.设平面11AC D 的一个法向量(1)x y =,,n , 则1100DA DC ⎧=⎪⎨=⎪⎩,,n n 即(1)(101)01(1)(011)01x y x x y y ==-⎧⎧⇒⎨⎨==-⎩⎩,,,,,,,,,,. (111)∴=--,,n .∴平面1AB C 与平面11AC D 间的距离22(100)(111)(1)1AD d ---===+-+,,,,n n .。

有关“立体几何中的向量方法”的两个案例及建议

有关“立体几何中的向量方法”的两个案例及建议

c 譬 1) ( o 一
设 力 F 方 向 上 的单 位 向量 坐 标 为 ( , , z y,) 由于 F 与 , 的 夹 角均 为 6 。则 有 。 o,
都 为 6 。以 力 F 、 2F O, 。 F 、 a为 棱 作 平 行 六 面 体 , 合 力 则 F +F + F 的 大小 即为 以 A 为端 点 的对 角 线 长 . 此 , 2 s 由 可知 , 1 例 3实质 上是 同 一 道 题 , 不 过 形 式 上 一 例 和 只 个 是 “ 何 化 ” 一 个 是 “ 理 化 ” 已. 以 最 好 将 此 题 几 , 物 而 所 的位 置 延 后 , 根 据 需 要 妥 当 编 排 , 则 , 题 就 像 一 另 否 此 根鱼 刺 “ 哽 在 喉 ” 使 得 整 个 知识 体 系 失 去 应 有 的 连 如 ,
贯 性 和 自然 的美 感 .
cs0一÷ = ( , ,)・( , ,) o 6。 z Y O 1O
c 60 一 1 os 。

பைடு நூலகம்

( ・一 丢, z , ( , 0 )
3, Y ,求 得 7 ,

③ F =
。 。 2 =1 + + 由 ① ② ③ 解 出
z 一壶 1 号 o √ ,, ) o √ ( 类 求 R 2( 一 , ) 似 得e0一 , √ , 0√ ÷ 詈
我使 用 的是 人 教 A 版 选 修 2 1的 教 材 , 教 学 — 在 “ 体 几 何 中 的 向 量 方 法 ” , 到 了 一 些 普 遍 存 在 于 立 时 遇 师生 中 的 困惑 . 文 拟 选 取 其 中 的 两 个 案 例 加 以 阐 述 , 本 并 提 出几 点 建 议 , 图 来 解 决 这 些 问 , 试 题 以促 进 我 们 的 有 效 学 习. 案 例 1 ( 1 6例 3 P1 ) 如 图 l 一 块 均 匀 的 正 三 角 , 形 面 的 钢 板 的 质 量 为 5 0 g 在 它 的 顶 点 处 分 别 0k , 受 力 F1 、 s 每 个 力 与 、 F, 同 它 相 邻 的 三 角 形 的 两 边 之 间 的 夹 角 都 是 6。 且 O, f — f 2I— f 。I一 FI F F 图 1 2 o g 这 块 钢 板 在 这 些 力 ok. 的作 用 下 将 会 怎 样 运 动? 这 三个 力 最 小 为 多 少 时 , 能 提起 这块 钢 板 ? 才 解法 1 教材方法) :(

数学一轮复习第七章立体几何第7讲立体几何中的向量方法学案含解析

数学一轮复习第七章立体几何第7讲立体几何中的向量方法学案含解析

第7讲立体几何中的向量方法[考纲解读]1。

理解直线的方向向量及平面的法向量,并能用向量语言表述线线、线面、面面的平行和垂直关系.(重点)2.能用向量方法证明立体几何中有关线面位置关系的一些简单定理,并能用向量方法解决线线、线面、面面的夹角的计算问题.(难点)[考向预测]从近三年高考情况来看,本讲为高考必考内容.预测2021年高考将会以空间向量为工具证明平行与垂直以及进行空间角的计算.试题以解答题的形式呈现,难度为中等偏上。

1.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔错误!v1∥v2⇔v1=λv2.(2)设直线l的方向向量为v,与平面α共面的两个不共线向量为v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=错误!x v1+y v2。

(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔错误!v⊥u⇔错误!v·u=0。

(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔错误!u1∥u2⇔u1=λu2。

2.用向量证明空间中的垂直关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔错误!v1⊥v2⇔错误!v1·v2=0.(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔错误!v∥u⇔错误!v=λu.(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔错误!u1⊥u2⇔错误!u1·u2=0。

3.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则4.直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sinφ=|cosθ|=错误!错误!,φ的取值范围是[0°,90°].5.求二面角的大小(1)如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=□01〈错误!,错误!〉.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cosθ|=错误!|cos<n1,n2〉|=错误!错误!,二面角的平面角大小是向量n1与n2的夹角(或其补角).1.概念辨析(1)若空间向量a平行于平面α,则a所在直线与平面α平行.()(2)两异面直线夹角的范围是(0°,90°],直线与平面所成角的范围是[0°,90°],二面角的范围是[0°,180°].()(3)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.()(4)若二面角α-a-β的两个半平面α,β的法向量n1,n2所成角为θ,则二面角α-a-β的大小是180°-θ.()答案(1)×(2)√(3)×(4)×2.小题热身(1)若直线l的方向向量为a=(1,0,2),平面α的法向量为n =(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交但不垂直答案B解析因为a=(1,0,2),n=(-2,0,-4),所以n=-2a,所以a∥n,所以l⊥α.(2)已知向量错误!=(2,2,1),错误!=(4,5,3),则平面ABC的单位法向量是()A。

立体几何典型问题的向量解法

立体几何典型问题的向量解法

立体几何中几类典型问题的向量解法空间向量的引入为求立体几何的空间角和距离问题、证线面平行与垂直以及解决立体几何的探索性试题提供了简便、快速的解法。

它的实用性是其它方法无法比拟的,因此应加强运用向量方法解决几何问题的意识,提高使用向量的熟练程度和自觉性,注意培养向量的代数运算推理能力,掌握向量的基本知识和技能,充分利用向量知识解决图形中的角和距离、平行与垂直问题。

一、利用向量知识求点到点,点到线,点到面,线到线,线到面,面到面的距离(1)求点到平面的距离除了根据定义和等积变换外还可运用平面的法向量求得,方法是:求出平面的一个法向量的坐标,再求出已知点P 与平面内任一点M 构成的向量MP u u u r的坐标,那么P 到平面的距离cos ,n MP d MP n MP n •=•<>=r u u u r u u u r r u u u rr(2)求两点,P Q 之间距离,可转化求向量PQ uuu r的模。

(3)求点P 到直线AB 的距离,可在AB 上取一点Q ,令,AQ QB PQ AB λ=⊥u u u r u u u r u u u r u u u r或PQ u u u r 的最小值求得参数λ,以确定Q 的位置,则PQ u u u r为点P 到直线AB 的距离。

还可以在AB 上任取一点Q 先求<AB ,cos ,再转化为><,sin ,则PQ u u u r><,sin 为点P 到直线AB 的距离。

(4)求两条异面直线12,l l 之间距离,可设与公垂线段AB 平行的向量n r,,C D 分别是12,l l 上的任意两点,则12,l l 之间距离CD nAB n•=u u u r r r例1:设(2,3,1),(4,1,2),(6,3,7),(5,4,8)A B C D --,求点D 到平面ABC 的距离例2:如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。

立体几何中的探索性问题

立体几何中的探索性问题

立体几何中的探索性问题立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.这类试题的一般设问方式是“是否存在?存在给出证明,不存在说明理由”.解决这类试题,一般根据探索性问题的设问,首先假设其存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾就否定假设.8如图,在四棱锥P–ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=√3,点F是PB的中点,点E在边BC上移动.(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由.(2)求证:无论点E在BC边的何处,都有PE⊥AF.(3)当BE为何值时,PA与平面PDE所成角的大小为45。

?拓展提升(1)开放性问题是近几年高考的一种常见题型.一般来说,这种题型依据题目特点,充分利用条件不难求解.(2)对于探索性问题,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.9如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的√2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,求二面角P-AC-D的大小.(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由.如图所示,在正方体ABCD—A l B l C1D l中,M,N分别是AB,BC中点.(1)求证:平面B 1MN⊥平面BB1D1D;(2)在棱DD1上是否存在点P,使BD1∥平面PMN,若有,确定点P的位置;若没有,说明理由.如图所示,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,0为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的大小:(3)线段AD上是否存在点Q,使得它到平面PCD3若存在,求出AQ:DQ的值;若不存在,请说明理由.立体几何中探索性问题的向量解法高考中立体几何试题不断出现了一些具有探索性、开放性的试题。

4.2 用向量方法讨论立体几何中的位置关系

4.2  用向量方法讨论立体几何中的位置关系

∠BAC= ,故以点A为原点,AB,AC,AA'所在直线分别
2
为x轴、y轴、z轴建立空间直角坐标系(如图3-39).
设AA'=1,因为AB=AC= 2AA',所以A'(0,0,1) ,
B( 2,0,0), B'( 2,0,1),C(0, 2,0),C'(0, 2,1).
学而优 · 教有方
高中数学
-5
α⊥β,则 x=________.
解析 ∵α⊥β,∴a⊥b,∴a·b=x-4+9=0,∴x=-5.
学而优 · 教有方
高中数学
GAOZHONGSHUXUE
4.已知 a=(0,1,1),b=(1,1,0),c=(1,0,1)分别是平面α,β,γ的法向
0
量,则α,β,γ三个平面中互相垂直的有________对.
求证:n丄α.
图 3-35
学而优 · 教有方
高中数学
GAOZHONGSHUXUE
分析 设m是平面α内的任意一条直线.要证明n丄α,只需证明n丄m.如何充分
运用条件,表达“m是平面α内的任意一条直线''呢?可以考虑将直线m的方
向向量用平面α的 一组基表示.
证明 设m是平面α内的任意一条直线(如图3-35(2)),a,b,,n依次为直线
理、数学抽象素养.
学而优 · 教有方
高中数学
GAOZHONGSHUXUE
探究导学
探究点1 用向量方法表示几何位置关系
因为直线的方向向量与平面的法向量是确定直线和平面位置的关键
因素,所以可以利用直线的方向向量和平面的法向量表示空间直线与平
面间的平行、垂直等位置关系.
设向量l,m分别是直线l,m的方向向量,n1,n2分别是平面α,β的法向量,用

例析立体几何中探索性问题的向量解法

例析立体几何中探索性问题的向量解法

图 1
图 2
点评
本 题 中 的线 面平 行 问 题转 化 为 直线 的
图 3 图4
方 向 向量 与平 面 的法 向量垂 直来 处 理 , 而立 体 几何 中的线 线平 行 和 面 面平 行 则 可 分 别 转 化 为 两 直 线 的方 向 向量 平 行 和两平 面 的法 向量 平行 来 解决 .
) ,
( A )口+’ -) ( 111 ) A. -'(A ) -
设平 面 A C的法 向量 为 n:( yz , n_— 且 E ,,)则 L E A

P 上 , P :E = :1 试 问 在 棱 P D 且 E D 2 , C上 是 否
, a, 1 - 因此 .- d


E ,-, 口 , f -Ⅱ了 l 0 4 I 于是 t
A )=0 .
第 7期

波: 例析 立体几何 中探 索性 问题 的向量 解法
解 得 A= 1

于 = 故 点 是 尸的 是 寻 当 , 棱 c
当点 F是 C 的 中点 时 , E上平 面 A D D, B
点评 空 间 的线 线 、 面 、 面垂 直 问题 都 可 线 面

1 பைடு நூலகம்・
中学教研 ( 学) 数
20 0 9生
创新不可能像语文一样 , 自己的作文 , 有 属于个人
的创作 . 是 , 但 中学 生在数 学上 可 以提 问题. 于提 善 出新 奇 的问题 , 会做 “ 问 ” 而不 仅仅 是 “ 答 ” 学 , 学 重
识; 另一方面 , 也是发展学生数学应用意识、 提高学 生创新 能力 与实 践 能力 的有效 举措 .

《用向量方法研究立体几何中的位置关系》课标解读

《用向量方法研究立体几何中的位置关系》课标解读

《用向量方法研究立体几何中的位置关系》课标解读教材分析本节内容是用向量方法研究立体几何中的位置关系,主要是利用直线的方向向量与平面的法向量解决立体几何中的位置关系问题,是空间向量在立体几何中应用的重要部分,利用空间向量去研究空间中的位置关系是升学考试中的必考内容,常考热点是利用向量证明平行、垂直问题等,用向量方法解决线线、线面位置关系问题时,可通过向量运算去解决,要加强几何位置关系与向量关系的相互转化,这是用向量方法处理几何问题的具体表现.立体几何中的向量方法既是前面内容的延展与深化,又是代数与几何知识的交汇点,产生了一种解决几何问题的新视角,为解决三维空间中线线与线面的位置关系与度量关系问题提供了一个十分有效的工具.通过本节内容的学习与研究,可进一步完善学生的知识结构,更好地培养学生观察发现、运算求解及推理能力,体会转化与方程思想,因此学习这部分知识有着非常重要的意义.本节内容所涉及的主要核心素养有:直观想象、数学抽象、数学运算、逻辑推理等.学情分析在学习本节之前,学生已经掌握了空间向量及其运算,会求直线的方向向量,会求具体问题中平面的法向量,能够运用向量的方法处理一些简单的立体几何问题,掌握了一些用向量解决几何问题的一般方法,然而,学生归纳总结能力还有待提高,类比学习的能力也不强,直观上能感知数学结论,但是不能做到独立进行严谨的数学证明,同时运算求解能力也还需要提升.教学建议1.梳理空间中直线与平面、平面与平面的位置关系及相关判定定理,为利用向量方法研究立体几何中的位置关系奠定基础.2.教学过程中,要注意引导学生利用空间向量数量积去证明三垂线定理及其逆定理,并注意体会向量法证明的优势.3.借助信息技术直观展示空间位置关系,提升学生的直观想象核心素养.4.空间向量是一个矢量,既有大小,又有方向,而学生往往会忽略这些,鉴于在不同的问题中,所用到的法向量或方向向量不是唯一确定的,教学中可尽量多考虑几个不同的法向量或方向向量,这也是为后面即将研究的用向量方法研究立体几何中的角和距离等度量问题做好铺垫.学科核心素养目标与素养1.能用向量方法研究立体几何中的位置关系,会用向量方法证明三垂线定理及其逆定理,达到逻辑推理核心素养学业质量水平二的层次.2.会用向量方法判断空间中的平行和垂直关系,达到数学运算核心素养学业质量水平二的层次.情境与问题案例从回顾直线的方向向量与平面的法向量入手,引导学生思考它们有什么作用,进而提出如何用向量方法来研究立体几何中的平行和垂直关系,引出课题,引导学生探求新知,掌握新知.内容与节点本节内容是前面学习的空间向量与空间中直线的方向向量、平面的法向量内容的延续,是它们在立体几何中的应用,且平面向量的法向量是解决后面即将要学习的空间角、空间距离等问题的桥梁,具有承前启后的作用.过程与方法经历利用向量方法研究立体几何中的位置关系的理论生成过程,通过利用直线的方向向量和平面的法向量论证空间中的平行与垂直关系,并利用法向量证明三垂线定理的思维过程,体验数形结合思想的指导作用,认识向量的科学价值、应用价值和文化价值.同时提高学习数学的兴趣,树立学好数学的信心,发展数学运算、直观想象与逻辑推理核心素养.教学重点难点重点用向量方法证明立体几何中的垂直与平行问题.难点利用方向向量和法向量处理线线、线面、面面间的平行、垂直问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(湖北高考)如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=3,BC=1,PA=2,E为PD的中点.(Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.本小题主要考查线面关系和四棱锥等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)建立如图所示的空间直角坐标系, 则A 、B 、C 、D 、P 、E 的坐标为A (0,0,0)、 B (3,0,0)、C (3,1,0)、D (0,1,0)、P (0,0,2)、E (0,21,1), 从而).2,0,3(),0,1,3(-==设PB AC 与的夹角为θ,则,1473723cos ===θ ∴AC 与PB 所成角的余弦值为1473.(Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(x ,O ,z ),则)1,21,(z x --=,由NE ⊥面PAC 可得,⎪⎩⎪⎨⎧=+-=-⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--⎪⎩⎪⎨⎧=⋅=⋅.0213,01.0)0,1,3()1,21,(,0)2,0,0()1,21,(.0,0x z z x z x AC NE AP NE 化简得即∴⎪⎩⎪⎨⎧==163z x即N 点的坐标为)1,0,63(,从而N 点到AB 、AP 的距离分别为1,63.2.(湖北高考)如图1,45ACB ∠=,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使90BDC ∠=(1)当BD 的长为多少时,三棱锥A BCD -的体积最大; (2)当三棱锥A BCD -的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.DABCADB图图1(Ⅰ)解法1:在如图1所示的△ABC 中,设(03)BD x x =<<,则3CD x =-.由AD BC ⊥,45ACB ∠=知,△ADC 为等腰直角三角形,所以3AD CD x ==-.由折起前AD BC ⊥知,折起后(如图2),AD DC ⊥,AD BD ⊥,且BD DC D = ,所以AD ⊥平面BCD .又90BDC ∠=,所以11(3)22BCDS BD CD x x ∆=⋅=-.于是1111(3)(3)2(3)(3)33212A BCD BCD V AD S x x x x x x -∆=⋅=-⋅-=⋅--312(3)(3)21233x x x +-+-⎡⎤≤=⎢⎥⎣⎦,(lbylfx ) 当且仅当23x x =-,即1x =时,等号成立,故当1x =,即1BD =时, 三棱锥A BCD -的体积最大. 解法2:同解法1,得321111(3)(3)(69)3326A BCDBCDV AD S x x x x x x -∆=⋅=-⋅-=-+.令321()(69)6f x xx x =-+,由1()(1)(3)02f x x x '=--=,且03x <<,解得1x =.当(0,1)x ∈时,()0f x '>;当(1,3)x ∈时,()0f x '<. 所以当1x =时,()f x 取得最大值.故当1BD =时, 三棱锥A BCD -的体积最大. (Ⅱ)解法1:以D 为原点,建立如图a 所示的空间直角坐标系D xyz -.由(Ⅰ)知,当三棱锥A BCD -的体积最大时,1BD =,2AD CD ==.于是可得(0,0,0)D ,(1,0,0)B ,(0,2,0)C ,(0,0,2)A ,(0,1,1)M ,1(,1,0)2E , 且(1,1,1)BM =-.设(0,,0)N λ,则1(,1,0)2EN λ=-- . 因为EN BM⊥等价于0EN BM ⋅=,即11(,1,0)(1,1,1)1022λλ--⋅-=+-=,故12λ=,1(0,,0)2N . 所以当12DN =(即N 是CD 的靠近点D 的一个四等分点)时,EN BM ⊥.设平面BMN 的一个法向量为(,,)x y z =n ,由,,BN BM ⎧⊥⎪⎨⊥⎪⎩n n 及1(1,,0)2BN =- ,得2,.y x z x =⎧⎨=-⎩ 可取(1,2,1)=-n . 设EN 与平面BMN 所成角的大小为θ,则由11(,,0)22EN =--,(1,2,1)=-n ,可得1|1|sin cos(90)||||EN EN θθ--⋅=-===⋅ n n ,即60θ= .故EN 与平面BMN 所成角的大小为60.3. (湖南高考)如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=1,PB=PD=,点E在PD上,(I)证明PA⊥平面ABCD;(II)确定E点的位置,使得二面角E-AC-D的大小为30 ;(Ⅲ)接(II),在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论.(Ⅰ)证明 因为底面ABCD 是菱形,∠ABC=60°, 所以AB=AD=AC=a , 在△PAB 中, 由PA 2+AB 2=2a 2=PB 2 知PA ⊥AB. 同理,PA ⊥AD ,所以PA ⊥平面ABCD. (Ⅱ)PE:ED=2;1(Ⅲ)解法一 以A 为坐标原点,直线AD 、AP 分别为y轴、z 轴,过A 点垂直平面PAD 的直线为x 轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为).0,21,23(),0,21,23(),0,0,0(a a C a a B A - ).31,32,0(),,0,0(),0,,0(a a E a P a D所以 ).0,21,23(),31,32,0(a a AC a a AE ==).,21,23(),,0,0(a a a PC a AP -==).,21,23(a a a -= 设点F 是棱PC 上的点,,10),,21,23(<<-==λλλλλ其中a a a 则),21,23(),21,23(λλλa a a a a a -+-=+= )).1(),1(21),1(23(λλλ-+-=a a a 令 21λλ+= 得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=+=-⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=+=-.311,341,1.31)1(,3221)1(21,23)1(2322112211λλλλλλλλλλλλλλ即a a a a a a a解得.23,21,2121=-==λλλ即21=λ时,.2321AE AC BF +-=亦即,F 是PC 的中点时,BF 、AC 、AE 共面.又 BF ⊄平面AEC ,所以当F 是棱PC 的中点时,BF//平面AEC.解法二 当F 是棱PC 的中点时,BF//平面AEC ,证明如下,证法一 取PE 的中点M ,连结FM ,则FM//CE. ① 由 ,21ED PE EM == 知E 是MD 的中点.连结BM 、BD ,设BD ⋂AC=O ,则O 为BD 的中点. 所以 BM//OE. ②由①、②知,平面BFM//平面AEC.又 BF ⊂平面BFM ,所以BF//平面AEC. 证法二因为 )(2121++=+=.2123)(23)(212321AC AE AD AE AC AD AD DE CD AD -=-+-+=++= 所以 、、共面.又 BF ⊄平面ABC ,从而BF//平面AEC.4. 如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知⊥FA平面ABC,====AB AF CE BD m2,2,3,,(1)当m=1时,能否在棱DE上找一点P,使得CP⊥平面DEF?试说明理由;(2)是否存在m的值,使得平面DEF⊥平面ABDF?试说明理由。

答案(1)34EP ED(2) m=4 练习:1.如图所示。

PD 垂直于正方形ABCD 所在平面,AB=2,E 是PB 的中点,与夹角的余弦值为33。

(1)建立适当的空间坐标系,写出点E 的坐标。

(2)在平面PAD 内是否存在一点F ,使EF ⊥平面PCB ?2.(湖北高考)如图, 在四面体ABOC 中, ,,120OC OA OC OB AOB ⊥⊥∠=。

, 且1OA OB OC ===(Ⅰ)设P 为AC 的中点, 证明: 在AB 上存在一点Q ,使PQ OA ⊥,并计算ABAQ 的值;(Ⅱ)求二面角O AC B --的平面角的余弦值。

3.(湖北高考)如图,已知正三棱柱111ABC A B C -的各棱长都是4,E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合.(Ⅰ)当CF =1时,求证:EF ⊥1A C ; (Ⅱ)设二面角C AF E --的大小为θ,求tan θ的最小值;(III )是否存在F 点,使得1A F //平面AEB 1?试说明理由。

B练习1解析:⑴以DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,设P (0,0,2m ).则A(2,0,0)、B(2,2,0)、C(0,2,0)、E(1,1,m), 从而AE =(-1,1,m),DP=(0,0,2m).=〉〈,cos 3322222=+mm m ,得m=1.所以E 点的坐标为(1,1,1).(2)由于点F 在平面PAD 内,故可设F(z x ,0,), 由⊥平面PCB 得: 0=⋅且0=⋅, 即10)0,0,2()1.1,1(=⇒=⋅---x z x 00)2,2,0()1.1,1(=⇒=-⋅---z z x 。

所以点F 的坐标为(1,0,0),即点F 是DA 的中点时,可使EF ⊥平面PCB.练习2本小题主要考察空间直线与直线、直线与平面的位置关系和两面角等基础知识, 同事考察空间想象能力、推理论证能力和运算求解能力.(满分12分)取O 为坐标原点,分别以OA ,OC 所在的直线为x 轴,z轴,建立空间直角坐标系O x y z - (如图所示)则1(1,0,0),(0,0,1),(2A C B- P 为AC 中点,11(,0,)22P∴设 ((0,1)),AQ AB λλ=∈3(2AB =- 。

333(1,0,0),,0),,0),22O Q O A A Q λλ∴=+=+= 131(,,).2222P Q O Q O P λ∴=-=--,P Q O A ⊥ ,0PQ OA ∴= 即13022λ-=,13λ=。

所以存在点1(2Q 使得 PQ OA ⊥且3AB AQ=。

(Ⅱ)记平面ABC 的法向量为123(,,)n n n n =,则由n CA ⊥,n AB ⊥ ,且(1,0,1)CA =-,得13230302n n n -=⎧⎪⎨-+=⎪⎩, 故可取n =()又平面OAC 的法向量为(0,1,0)e =。

相关文档
最新文档