成都市初三中考数学模拟试题(1)(含答案)

合集下载

2022年成都市中考数学模拟试题(1)(解析版)

2022年成都市中考数学模拟试题(1)(解析版)

2022年成都市中考数学模拟试题(1)A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.﹣2021的倒数是()A.2021 B.C.﹣2021 D.【答案】D【解析】﹣2021的倒数是:﹣.故选:D.2.如图所示的几何体的从左面看到的图形为()A.B.C.D.【答案】D【解析】从这个几何体的左面看,所得到的图形是长方形,能看到的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此,选项D的图形,符合题意,故选:D.3.据统计,某城市去年接待旅游人数约为89 000 000人,89 000 000这个数据用科学记数法表示为()A.8.9×106B.8.9×105C.8.9×107D.8.9×108【答案】C【解析】89 000 000这个数据用科学记数法表示为8.9×107.故选:C.4.在平面直角坐标系中,点A(m﹣1,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2 B.m=﹣2,n=3 C.m=2,n=3 D.m=﹣2,n=2【答案】D【解析】∵点A(m﹣1,2)与点B(3,n)关于y轴对称,∴m﹣1=﹣3,n=2,解得:m=﹣2,故选:D.5.下列运算正确的是()A.a2•a3=a6B.(a﹣b)2=a2﹣b2C.(a2)3=a6D.5a2﹣3a=2a【答案】C【解析】A、a2•a3=a5,故本选项不合题意;B、(a﹣b)2=a2﹣2ab+b2,故本选项不合题意;C、(a2)3=a2×3=a6,故本选项符合题意;D、5a2与﹣3a不是同类项,所以不能合并,故本选项不合题意;故选:C.6.如图,四边形ABCD是菱形,E、F分别是BC、CD两边上的点,不能保证△ABE和△ADF一定全等的条件是()A.∠BAF=∠DAE B.EC=FC C.AE=AF D.BE=DF【答案】C【解析】A.∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵∠BAF=∠DAE,∴∠BAE=∠CAF,∴△ABE≌△ADF(AAS),故选项A不符合题意;B..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,BC=BD,∵EC=FC,∴BE=DF,∴△ABE≌△ADF(SAS),故选项B不符合题意;C..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵AE=AF,∴△ABE和△ADF只满足两边和一边的对角相等,两个三角形不一定全等,故选项C符合题意;D..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DE,∴△ABE≌△ADF(SAS),故选项D不符合题意.故选:C.7.给出一组数据:3,2,5,3,7,5,3,7,这组数据的中位数是()A.3 B.4 C.5 D.7【答案】B【解析】这组数据按从小到大的顺序排列为:2,3,3,3,5,5,7,7,则中位数为:(3+5)÷2=4.故选:B.8.分式方程=的解是()A.x=9 B.x=7 C.x=5 D.x=﹣1【答案】A【解析】去分母得:2(x﹣2)=x+5,去括号得:2x﹣4=x+5,解得:x=9,经检验x=9是分式方程的解.故选:A.9.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【答案】D【解析】设大马有x匹,小马有y匹,由题意得:,故选:D.10.如图,已知点O是正六边形ABCDEF的中心,扇形AOE的面积是12π,则该正六边形的边长是()A.6 B.C.D.12【答案】A【解析】连接OF,设⊙O的半径为R,∵O是正六边形ABCDEF的中心,∴∠AOF=∠EOF==60°,∴∠AOE=120°,∵OA=OF,∴△OAF是等边三角形,∴AF=OA=R,∵扇形AOE的面积是12π,∴=12π,∴R2=36,∴AF=R=6,∴正六边形的边长是6,故选:A.二.填空题(共4小题,满分16分,每小题4分)11.(4分)分解因式m2﹣4的结果为________.【答案】(m+2)(m﹣2).【解析】m2﹣4=(m+2)(m﹣2).12.(4分)在△ABC中,∠A=45°,AB=,∠ABC=75°.则BC长为________.【答案】4.【解析】过点B作BD⊥AC于点D,如图:∵BD⊥AC,∴∠ADB=∠CDB=90°.在△ABC中,∠A=45°,∠ABC=75°,∴∠C=180°﹣∠A﹣∠ABC=60°,∴∠DBC=30°,∠ABD=∠A=45°,∴AD=BD,BC=2CD,∵AB=,∴AB2=AD2+BD2=2BD2,∴=2BD2,∴BD=2(舍负),设CD=x,则BC=2x,∴+x2=(2x)2,解得:x=2(舍负),∴BC=2x=4.13.(4分)如果抛物线y=ax2﹣3x+1与x轴有交点,那么a的取值范围是________.【答案】a≤且a≠0.【解析】∵抛物线y=ax2﹣3x+1与x轴有交点,∴a≠0,△≥0,∴9﹣4a×1≥0,∴a≤,14.(4分)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若BD=2,则CD的长为________.【答案】.【解析】过点D作DH⊥AB,则DH=DC,由题目作图知,AD是∠CAB的平分线,则CD=DH,∵△ABC为等腰直角三角形,故∠B=45°,则△DHB为等腰直角三角形,故BD=HD=2,则DH=DC=三.解答题(共6小题,满分54分)15.(12分)(1)计算:(﹣3)0+|﹣2|﹣tan60°;(2)解不等式组:.【答案】见解析【解析】(1)原式=1+2﹣=1+2﹣3,=0.(2),由①得x>﹣3,由②得x≤2.故不等式组的解集为﹣3<x≤2.16.(6分)化简:(﹣a+1)÷.【答案】见解析【解析】原式=(﹣)×=×=×=.17.(8分)今年是建党100周年,学校决定开展观看爱国电影、制作手抄报、朗诵经典和唱响红歌四项活动喜迎建党100周年.为了解学生对四种活动的喜爱程度,随机调查了m名学生最喜爱的一项活动(每名学生只能选择一项),并将调查结果绘制成两幅不完整的统计图表.活动学生人数观看电影60制作手抄报36朗诵经典50唱响红歌x合计m请根据统计图表提供的信息,解答下列问题:(1)m=________,n=________,x=________;(2)在扇形统计图中,“朗诵经典”所对应的圆心角度数是________度;(3)若该学校有1000人,请你估计喜欢“制作手抄报”和“唱响红歌”的学生共有________名.【答案】见解析【解析】(1)由题意可得,m=60÷30%=200,n%=50÷200=25%,x=200﹣﹣36﹣50=54,故答案为:200,25,54;(2)扇形统计图中,朗诵经典”所对应的圆心角度数是360°×25%=90°;故答案为:90;(3)由题意可得,全校1000名学生中,喜爱“制作手抄报”的学生有:1000×=180(名),喜爱“唱响红歌”的学生有:1000×=270(名),180+270=450(名),答:估计喜欢“制作手抄报”和“唱响红歌”的学生共有450名.故答案为:450.18.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m (即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB 的高度.(参考数据:tan30°≈0.58,结果保留整数)【答案】见解析【解析】作DG⊥AE于G,则∠BDG=α,则四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×0.58=20.3m,∴BE=20.3+1.6=21.9m.∵斜坡AC的坡比为i AC=1:10,CE=35m,∴EA=35×=3.5,∴AB=BE﹣AE=21.9﹣3.5≈18m.答:旗杆AB的高度为18m.19.如图,在平面直角坐标系xOy中,函数y=(x<0)的图象经过点(﹣6,1),直线y=mx+m 与y轴交于点(0,﹣2).(1)求k,m的值;(2)过第二象限的点P(n,﹣2n)作平行于x轴的直线,交直线y=mx+m于点A,交函数y=(x<0)的图象于点B.①当n=﹣1时,判断线段PA与PB的数量关系,并说明理由;②若PB≥2PA,结合函数的图象,直接写出n的取值范围.【答案】见解析【解析】(1)∵函数y=(x<0)图象经过点(﹣6,1),∴k=﹣6×1=﹣6,∵直线y=mx+m与y轴交于点(0,﹣2),∴m=﹣2;(2)①PB=2PA,理由如下:当n=﹣1时,点P坐标为(﹣1,2),∴点A坐标为(﹣2,2),点B坐标为(﹣3,2),∴PA=1,PB=2,∴PB=2PA;②∵点P坐标为(n,﹣2n),PA平行于x轴,把y=﹣2n分别代入y=(x<0)和y=﹣2x﹣2得,点B坐标为(,﹣2n),点A坐标为(n﹣1,﹣2n),∴PA=n﹣(n﹣1)=1,PB=|n﹣|,当PB=2PA时,则|n﹣|=2,如图1,当n﹣=2,解得n1=﹣1,n2=3(不合题意,舍去),如图2,当﹣n=2解得n1=﹣3,n2=1(不合题意,舍去),∴PB≥2PA时,n≤﹣3或﹣1≤n<0.20.如图所示,过圆w外一点K做圆w的两条切线,其切点分别为L和N,在KN的延长线上取一点M,△KLM的外接圆和圆w相交于点P(异于点L),QN⊥LM于Q,LM与圆w相交于点R,求证:∠MPQ=2∠MPR=2∠KML.【答案】见解析【解析】证明:延长KL至A,延长PR交KM于T,连接PL、RN、LN、QT,设△KLM外接圆为⊙O,如图:∵四边形KLPM是⊙O的内接四边形,∴∠LPM=180°﹣∠K,同理∠LPR=180°﹣∠LNR,∴∠MPT=∠LPM﹣∠LPR=(180°﹣∠K)﹣(180°﹣∠LNR)=∠LNR﹣∠K,∵KA是⊙W的切线,∴∠LNR=∠ALM,∴∠MPT=∠ALM﹣∠K=∠LMK,即∠MPT=∠RMT,∵∠PTM=∠MTR,∴△PTM∽△MTR,∴=,即MT2=PT•RT,∵TN是⊙W的切线,∴NT2=PT•RT,∴MT=NT,∵NQ⊥LM,∴QT是Rt△NQM斜边MN的中线,∴QT=MT=NT,∴=,∠TQM=∠TMQ,∵∠QTR=∠PTQ,∴△QTR∽△PTQ,∴∠QPT=∠TQR,∴∠QPT=∠TQM=∠TMQ=∠MPT,∴∠MPQ=2∠MPR=2∠KML.B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)已知一次函数y=x+3k﹣2的图象不经过第二象限,则k的取值范围是________.【答案】k≤.【解析】一次函数y=x+3k﹣2的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,3k﹣2=0,解得k=,经过一三四象限时,3k﹣2<0.解得k<故k≤.22.(4分)设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为1000.【答案】1000.【解析】∵m、n是方程x2+x﹣1001=0的两个实数根,∴m+n=﹣1,并且m2+m﹣1001=0,∴m2+m=1001,∴m2+2m+n=m2+m+m+n=1001﹣1=1000.23.(4分)在平面直角坐标系xOy中,⊙O的半径为13,直线y=kx﹣3k+4与⊙O交于B,C两点,则弦BC长的最小值等于________.【答案】24.【解析】∵y=kx﹣3k+4,∴(x﹣3)k=y﹣4,∵k为无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线y=kx﹣3k+4过定点(3,4),如图,P(3,4),连接OB,如图,当BC⊥OP时,弦BC最短,此时BP=PC,∵OP==5,∴BP==12,∴BC=2BP=24,即弦BC长的最小值等于24.24.(4分)如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若∠AEF=α,纸片宽AB=2cm,则HE=________cm.【答案】.【解析】如图,分别过G、E作GM⊥HE于M,EN⊥GH于N,延长GF、延长HE至点P,则GM=AB=2cm,由题意,∠AEF=α,由折叠性质可得∠PEF=∠AEF=α,∵四边形ABCD为矩形,∴GF∥HE,∴∠GFE=∠PEF=α,∴GE=GF.同理可得:GE=HE.∴HE=GF,∴四边形GHEF为平行四边形.∴∠GFE=∠GHE=α,∵EN⊥GH于N,HE=GE,∴由等腰三角形三线合一性质可得:HN=GN=,∵sin∠GHE=sinα==,∴HG=,在Rt△HEN中,cos∠GHE=cosα=,∴HE====.25.(4分)如图电路中,随机闭合开关S1,S2,S3,S4中的两个,能够点亮灯泡的概率为.【答案】.【解析】用列表法表示所有可能出现的情况如下:共有12种可能出现的情况,其中能够点亮灯泡的有8种,∴P==,(点亮灯泡)二.解答题(共3小题,满分30分)26.(8分)某电信公司推出20M宽带业务,第一天办理“包一年”业务的有10个顾客,“包两年”的有5个顾客,共收费20500元;第二天办理“包一年”业务的有15个顾客,“包两年”的有10个顾客,共收费35500元.(1)请求出办理“包一年”、“包两年”这两种业务分别应交的费用;(2)电信公司平时的手机收费标准是:主叫300分钟以内.每分钟0.2元;超过300分钟.超过的时间每分钟0.1元.为业务发展需要,电信公司推出20M宽带和手机的捆绑礼包业务,内容如下:使用时间礼包内容手机主叫超过300分钟费用20M宽带免费手机每月最低消费99元(每月免费0.2元/分钟24个月主叫时长300分钟)小方要在该公司办理20M宽带两年的业务,假设他使用该公司的手机,每月主叫时间一样,且手机在使用过程中再无其他费用产生,请你说明选择哪种方案更合算.【答案】见解析【解析】(1)设办理“包一年”业务应交x元,办理“包两年”业务应交y元,依题意,得:,解得:.答:办理“包一年”业务应交1100元,办理“包两年”业务应交1900元.(2)设小方每月主叫时间为m分钟(m为整数,不为整数的按照进一法取整).①当0<m≤300时,选择平时的手机收费标准2年所需费用为1900+12×2×0.2m=(4.8m+1900)元,选择宽带和手机的捆绑礼包业务2年所需费用为12×2×99=2376元.令4.8m+1900<2376,解得:m<99,令4.8m+1900=2376,解得:m=99,令4.8m+1900>2376,解得:m>99.∵m为正整数(利用进一法取整),∴当m≤99时,选择平时的手机收费标准划算;当99<m≤300时,选择宽带和手机的捆绑礼包业务划算;②当m>300时,选择平时的手机收费标准2年所需费用为1900+12×2×[300×0.2+0.1(x﹣300)]=(2.4x+2620)元,选择宽带和手机的捆绑礼包业务2年所需费用为12×2×[99+0.2(x﹣300)]=(4.8x+936)元.令2.4x+2620<4.8x+936,解得:x>701;令2.4x+2620=4.8x+936,解得:x=701;令2.4x+2620>4.8x+936,解得:x<701.∵m为正整数(利用进一法取整),∴当300<m≤701时,选择宽带和手机的捆绑礼包业务划算;当m>701时,选择平时的手机收费标准划算.综上所述:当m≤99或m>701时,选择平时的手机收费标准划算;当99<m≤701时,选择宽带和手机的捆绑礼包业务划算.27.在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:BE+BH=BF;(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且DN=2NC,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当NP+MP 最小时,直接写出△DPN的面积.【答案】见解析【解析】(1)①过D作DH⊥GC于H,如图:∵线段EF绕点E逆时针旋转60°得到线段EG,点E与点B重合,且GF的延长线过点C,∴BG=BF,∠FBG=60°,∴△BGF是等边三角形,∴∠BFG=∠DFC=60°,BF=GF,∵等边△ABC,AB=6,BD⊥AC,∴∠DCF=180°﹣∠BDC﹣∠DFC=30°,∠DBC=∠ABC=30°,CD=AC=AB=3,∴∠BCG=∠ACB﹣∠DCF=30°,∴∠BCG=∠DBC,∴BF=CF,∴GF=CF,Rt△FDC中,CF===2,∴GF=2,Rt△CDH中,DH=CD•sin30°=,CH=CD•cos30°=,∴FH=CF﹣CH=,∴GH=GF+FH=,Rt△GHD中,DG==;②过E作EP⊥AB交BD于P,过H作MH⊥BC交BD于M,连接PG,作BP中点N,连接EN,如图:∵EF绕点E逆时针旋转60°得到线段EG,∴△EGF是等边三角形,∴∠EFG=∠EGF=∠GEF=60°,∠EFH=120°,EF=GF,∵△ABC是等边三角形,∴∠ABC=60°,∴∠ABC+∠EFH=180°,∴B、E、F、H共圆,∴∠FBH=∠FEH,而△ABC是等边三角形,BD⊥AC,∴∠DBC=∠ABD=30°,即∠FBH=30°,∴∠FEH=30°,∴∠FHE=180°﹣∠EFH﹣∠FEH=30°,∴EF=HF=GF①,∵EP⊥AB,∠ABD=30°,∴∠EPB=60°,∠EPF=120°,∴∠EPF+∠EGF=180°,∴E、P、F、G共圆,∴∠GPF=∠GEF=60°,∵MH⊥BC,∠DBC=30°,∴∠BMH=60°,∴∠BMH=∠GPF②,而∠GFP=∠HFM③,由①②③得△GFP≌△HFM(AAS),∴PF=FM,∵EP⊥AB,BP中点N,∠ABD=30°,∴EP=BP=BN=NP,∴PF+NP=FM+BN,∴NF=BM,Rt△MHB中,MH=BM,∴NF=MH,∴NF+BN=MH+EP,即BF=MH+EP,Rt△BEP中,EP=BE•tan30°=BE,Rt△MHB中,MH=BH•tan30°=BH,∴BF=BE+BH,∴BE+BH=BF;(2)以M为顶点,MP为一边,作∠PML=30°,ML交BD于G,过P作PH⊥ML于H,设MP 交BD于K,如图:Rt△PMH中,HP=MP,∴NP+MP最小即是NP+HP最小,此时N、P、H共线,∵将线段EF绕点E顺时针旋转60°得到线段EP,∴F在射线QF上运动,则P在射线MP上运动,根据“瓜豆原理”,F为主动点,P是从动点,E 为定点,∠FEP=60°,则F、P轨迹的夹角∠QKP=∠FEP=60°,∴∠BKM=60°,∵∠ABD=30°,∴∠BMK=90°,∵∠PML=30°,∴∠BML=60°,∴∠BML=∠A,∴ML∥AC,∴∠HNA=180°﹣∠PHM=90°,而BD⊥AC,∴∠BDC=∠HNA=∠PHM=90°,∴四边形GHND是矩形,∴DN=GH,∵等边△ABC中,AB=6,BD⊥AC,∴CD=3,又DN=2NC,∴DN=GH=2,∵等边△ABC中,AB=6,点E为AB中点时,点M为BE中点,∴BM=,BD=AB•sin A=6×sin60°=3,Rt△BGM中,MG=BM=,BG=BM•cos30°=,∴MH=MG+GH=,GD=BD﹣BG=,Rt△MHP中,HP=MH•tan30°=,∴PN=HN﹣HP=GD﹣HP=,∴S△DPN=PN•DN=.28.(12分)定义:在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴的交点坐标为(0,c),那么我们把经过点(0,c)且平行于x轴的直线称为这条抛物线的极限分割线.[特例感知](1)抛物线y=x2+2x+1的极限分割线与这条抛物线的交点坐标为________.[研究深入](2)经过点A(﹣1,0)和B(x,0)(x>﹣1)的抛物线y=﹣x2+mx+n与y轴交于点C,它的极限分割线与该抛物线的另一个交点为D,请用含m的代数式表示点D的坐标.[深入拓展](3)在(2)的条件下,设抛物线y=﹣x2+mx+n的顶点为P,直线EF垂直平分OC,垂足为E,交该抛物线的对称轴于点F.①当∠CDF=45°时,求点P的坐标.②若直线EF与直线MN关于极限分割线对称,是否存在使点P到直线MN的距离与点B到直线EF的距离相等的m的值?若存在,直接写出m的值;若不存在,请说明理由.【答案】见解析【解析】(1)∵抛物线y=x2+2x+1的对称轴为直线x=﹣1,极限分割线为y=1,∴极限分割线与这条抛物线的一个交点坐标为(0,1),则另一个交点坐标为(﹣2,1).故答案为:(0,1)和(﹣2,1).(2)∵抛物线经过点A(﹣1,0),∴﹣×(﹣1)2+m×(﹣1)+n=0,∴n=m+.∵y=﹣x2+mx+n=﹣(x﹣m)2+m2+n=﹣(x﹣m)2+m2+m+,∴对称轴为直线x=m,∴点D的坐标为(2m,m+).(3)①设CD与对称轴交于点G,若∠CDF=45°,则DG=GF.∴|m|=|m+|,∴m=或m=﹣.∴当m=时,y=×++=,点P的坐标为(,);当m=﹣时,y=×+(﹣)+=,点P的坐标为(﹣,).∴点P的坐标为(,)或(﹣,).②存在,m的值为0或1+或1﹣.如图,设MN与对称轴的交点为H.由(2)知,n=m+,y=﹣(x﹣m)2+m2+m+,∴P(m,m2+m+),∴抛物线y=﹣x2+mx+n的极限分割线CD:y=m+,∵直线EF垂直平分OC,∴直线EF:y=m+.∴点B到直线EF的距离为|m+|.∵直线EF与直线MN关于极限分割线CD对称,∴直线MN:y=m++m+=m+.∵P(m,m2+m+),∴点P到直线MN的距离为|m2+m+﹣(m+)|=|m2﹣m﹣|,∵点P到直线MN的距离与点B到直线EF的距离相等,∴|m2﹣m﹣|=|m+|,∴m=0或m=1+或m=1﹣.。

四川成都19-20学年九年级中考模拟试题一--数学(word解析版)

四川成都19-20学年九年级中考模拟试题一--数学(word解析版)

四川成都19-20学年九年级中考模拟试题一--数学(word解析版)班级姓名学号A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小題,每小题3分,共30分,每小题均有四个选项)1. 5的相反数是()A.-5B. 5C.15-D.15【答案】A【解析】本题考查了相反数的定义,5相反数为-5 ,故选A.2.如图是一个L形状的物体,则它的俯视图是()【答案】B【解析】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.故选:B.3.我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为( )A.37×104B.3.7×105C.0.37×106D.3.7×106【答案】B【解析】370000=3.7×105,故选B.4. 在平面直角坐标系中,点P(-3,m2+1)关于原点的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】m2是非负数,m2+1一定是正数,所以点P(-3,m2+1)在第二象限。

关于原点对称的两个点横、纵坐标都互为相反数。

由此得点P关于原点的对称点在第四象限。

5.如图,∠1+∠2=180°,∠3=104°,则∠4的度数是(A) 74°(B) 76°(C) 84°(D) 86°【答案】B【解析】由于∠1+∠2=180°可知两直线平行,所以∠3的对顶角与∠4互补,因为∠3=104°,所以,∠4的度数是76°,所以选B6.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2 B.1 C.﹣1 D.0【答案】A【解析】解:根据题意,得:2m﹣1=m+1,解得m=2.故选:A.【知识点】同类项7.计算11aa a-+,正确的结果是()A.1 B.12C.a D.1a【答案】A.【解析】∵11aa a-+=11aa-+=aa=1,∴选A.8.某射击运动员在训练中射击了10次,成绩如图所示:第6题图下列结论不正确...的是A.众数是8B.中位数是8C.平均数是8.2D.方差是1.2【答案】D【解析】10次设计成绩依次是:9,6,8,8,7,10,7,9,8,10,其中8出现次数最多,故众数是8,A正确;按顺序排列,为6,7,7,8,8,8,9,9,10,10,中间两个数是8和8 ,故中位数为8,B正确;平均数为8.2,C正确;方差为1.56,D错误,故选D.9.如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°【答案】C.【解析】∵正五边形ABCDE内接于⊙O,∴∠ABC=∠C=(52)1805-⨯︒=108°,CB=CD.∴∠CBD=∠CDB=1801082︒-︒=36°.∴∠ABD=∠ABC-∠DBC=108°-72°=36°.故选C.10.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y C.y=x2D.y=﹣x2【答案】D【解析】解:∵A(﹣1,m),B(1,m),∴点A与点B关于y轴对称;OECB第7题图由于y =x ,y的图象关于原点对称,因此选项A 、B 错误;∵n >0,∴m ﹣n <m ; 由B (1,m ),C (2,m ﹣n )可知,在对称轴的右侧,y 随x 的增大而减小,对于二次函数只有a <0时,在对称轴的右侧,y 随x 的增大而减小,∴D 选项正确故选:D .第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11. ﹣2的绝对值是 ;的倒数是 .【答案】2,2【解析】解:﹣2的相反数是 2;的倒数是 2.12.正九边形的一个内角的度数是 .A .108︒B .120︒C .135︒D .140︒ 【答案】D【解析】解:该正九边形内角和180(92)1260=︒⨯-=︒,则每个内角的度数12601409︒==︒. 故选:D .13.已知一次函数y kx b =+的图象经过点11(,)A x y 、22(,)B x y ,且211x x =+时,212y y =-,则k 等于 .A .1B .2C .1-D .2-【答案】D【解析】因为一次函数y kx b =+的图象经过点11(,)A x y 、22(,)B x y ,所以11y kx b =+,22y kx b =+,因为当211x x =+时,212y y =-,所以当211x x =+时,212kx b kx b +=+-,即11(1)2k x b kx b ++=+-,解得2k =-.14. 把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为_______.图3图2图115【答案】12【解析】设图1中小直角三角形的两直角边长分别为a ,b (a>b );则由图2和图3列得方程组51a b a b +=⎧⎨-=⎩,由加减消元法得32a b =⎧⎨=⎩,∴菱形的面积1144321222S ab =⨯=⨯⨯⨯=. 故填12.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:40(1)|13|6tan 30(327)---+︒--.【思路分析】直接利用特殊角的三角函数值以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解题过程】解:原式31(31)61=--+⨯- 131231=-++- 13=+.(2)解不等式组: 12,123.2x x x +>⎧⎪⎨+⎪⎩… 【思路分析】分别求出各不等式的解集,再求出其公共解集即可.【解题过程】解:121232x x x +>⎧⎪⎨+⎪⎩①②… 解不等式①,得1x >,解不等式②,得2x -…,∴不等式组的解集是1x >.16.(6分)先化简,再求值:(1),然后从﹣2≤a <2中选出一个合适的整数作为a 的值代入求值.【思路分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2≤a <2中选出一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解题过程】解:(1),当a =﹣2时,原式1.17.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.第17题图(1)参加此次诗词大会预选赛的同学共有 ▲ 人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 ▲ ;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【思路分析】(1)根据样本容量=鼓励奖人数÷鼓励奖百分率为求样本容量;(2)根据三等奖所对应的圆心角=样本数10÷样本容量×360°求圆心角;(3)先求二等奖人数,再得一等奖人数,最后画出条形图;(4)求出七年级、八年级、九年级的人数,画出树状图,再根据树状图求出概率.【解题过程】(1)鼓励奖人数为18,百分率为45%,所以样本容量为:18÷45%=40(人)(2)三等奖所对应的圆心角=4010×360°=90°; (3)二等奖人数为:20%×40=8(人),一等奖人数为:40-8-10-18=4(人),条形统计图如下:第21题答图①(4)一等奖有4人,则七年级有1人,八年级1人,九年级2人,用树状图表示如下:第21题答图②由树状图可得,总共有12种结果,符合条件的有4种,故所选两名同学中,恰好是一名七年级和一名九年级同学的概率是4÷12=13.18.(8分)如图,为了测得某建筑物的高度AB ,在C 处用高为1米的测角仪CF ,测得该建筑物顶端A 的仰角为45︒,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为60︒.求该建筑物的高度AB .(结果保留根号)【思路分析】设AM x =米,根据等腰三角形的性质求出FM ,利用正切的定义用x 表示出EM ,根据题意列方程,解方程得到答案.【解题过程】解:设AM x =米,在Rt AFM ∆中,45AFM ∠=︒,FM AM x ∴==,在Rt AEM ∆中,tan AM AEM EM ∠=, 则3tan 3AM EM x AEM ==∠, 由题意得,FM EM EF -=,即3403x x -=, 解得,60203x =+,,答:该建筑物的高度AB 为米.19.(10分)双曲线(k y k x =为常数,且0)k ≠与直线2y x b =-+,交于1(2A m -,2)m -,(1,)B n 两点. (1)求k 与b 的值; (2)如图,直线AB 交x 轴于点C ,交y 轴于点D ,若点E 为CD 的中点,求BOE ∆的面积.【思路分析】(1)将A 、B 两点的坐标代入一次函数解析式可得b 和n 的值,则求出点(1,2)B -,代入反比例函数解析式可求出k 的值.(2)先求出点C 、D 两点的坐标,再求出E 点坐标,则1()2BOE ODE ODB B E S S S OD x x ∆∆∆=+=-g ,可求出BOE ∆的面积.【解题过程】解:(1)Q 点1(2A m -,2)m -,(1,)B n 在直线2y x b =-+上, ∴22m b m b n +=-⎧⎨-+=⎩,解得22b n =-⎧⎨=-⎩,(1,2)B ∴-, 代入反比例函数解析式k y x =,∴21k -=,2k ∴=-. (2)Q 直线AB 的解析式为22y x =--,令0x =,解得2y =-,令0y =,解得1x =-,(1,0)C ∴-,(0,2)D -,Q 点E 为CD 的中点,1(,1)2E ∴--, 111()2(1)222BOE ODE ODB B E S S S OD x x ∆∆∆∴=+=-=⨯⨯+g 32=.20.(10分)如图1,在△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF =AC ,连接AF .(1)求证:ED =EC ;(2)求证:AF 是⊙O 的切线;(3)如图2,若点G 是△ACD 的内心,BC •BE =25,求BG 的长.【思路分析】(1)由AB =AC 知∠ABC =∠ACB ,结合∠ACB =∠BCD ,∠ABC =∠ADC 得∠BCD =∠ADC ,从而得证;(2)连接OA ,由∠CAF =∠CFA 知∠ACD =∠CAF +∠CFA =2∠CAF ,结合∠ACB =∠BCD 得∠ACD =2∠ACB ,∠CAF =∠ACB ,据此可知AF ∥BC ,从而得OA ⊥AF ,从而得证;(3)证△ABE ∽△CBA 得AB 2=BC •BE ,据此知AB =5,连接AG ,得∠BAG =∠BAD +∠DAG ,∠BGA =∠GAC +∠ACB ,由点G 为内心知∠DAG =∠GAC ,结合∠BAD +∠DAG =∠GDC +∠ACB 得∠BAG =∠BGA ,从而得出BG =AB =5.【解题过程】解:(1)∵AB =AC ,∴∠ABC =∠ACB ,又∵∠ACB =∠BCD ,∠ABC =∠ADC ,∴∠BCD =∠ADC ,∴ED =EC ;(2)如图1,连接OA ,∵AB=AC,∴,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴,∴AB2=BC•BE,∴BC•BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GDC+∠ACB,∴∠BAG=∠BGA,∴BG=AB=5.B卷一、填空题(本大题共5个小题,每小题4分,共20分)21.若293==nm.则=+nm23▲.【答案】4【解析】3m+2n=3m×32n=3m×(32)n=3m×9n=2×2=4.22.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有个〇.【答案】6058【解析】解:由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,……∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.23. 对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<-3 B.c<-2 C.14c<D.c<1【答案】B【解析】当y=x时,x=x2+2x+c,即为x2+x+c=0,由题意可知:x1、x2是该方程的两个实数根,所以:12121x xx x c+=-⎧⎨⋅=⎩∵x1<1<x2,∴(x1-1)(x2-1)<0即x1x2-(x1+x2) +1<0∴c-(-1) +1<0∴c<-2又知方程有两个不相等的实数根,故Δ>0即12-4c>0,解得:c<14∴c的取值范围为c<-224.如图,矩形OABC的顶点A,C 分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y =(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为.【答案】4.【解析】解:∵四边形OCBA是矩形,∴AB=OC,OA =BC,设B点的坐标为(a ,b),则E的坐标为E(a ,),∵D为AB的中点,∴D(a,b)∵D、E在反比例函数的图象上,∴ab=k,∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣k﹣k﹣•a•(b﹣)=3,∴ab﹣k﹣k﹣ab+k=3,解得:k=4,故答案为:4.25.如图,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.则y的最小值是.【答案】2【分析】通过折叠中的角度关系证得四边形AFGE为菱形,通过三角形的两个对应角对应相等可得两个三角形相似,用相似三角形的对应边成比例可得y和x的函数关系式,通过公式法求出二次函数的最小值.【解题】ANDB C GEFD图1 图2MAB C GEF∵矩形ABCD 中,AD ∥BC ,∴∠DAG =∠AGF , ∵∠DAG =∠FAG , ∠DAG =∠AGF ,∴∠FAG =∠AGF ,∴AF =FG =10,∴BG =BF +FG =6+10=16.∵矩形ABCD 中∠B =90°,∴AB 2+BG 2=AG 2,∴222281685AG AB BG =+=+=∵AD =FG ,AD ∥FG ,∴四边形AFGE 是平行四边形,又∵AD =AF ,∴平行四边形AFGE 是菱形,∴DG =DA =10,∴∠DAG =∠DGA ,∵∠DMG =∠DMN +∠NAG =∠DAM +∠ADM , ∠DMN =∠DAM ,∴∠NMG =∠ADM .在△ADM 和△MNG 中,∠ADM =∠NMG , ∠DAG =∠DGA ,∴△ADM ∽△GMN .∴AD AM MG NG =,∴1085x yx =--,∴21451010y x x =-+, ∵110>0,∴当455451210x -=-=⨯时,y 有最小值为21454101021410⎛⎫⨯⨯-- ⎪⎝⎭=⨯. ∴y 关于x 的函数解析式是:21451010y x x =-+,当x =45时,y 有最小值为2.二、解答题(本大题共3个小题,共30分)26.(8分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【思路分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得2(30)(2160)2(55)1250w x x x =--+=--+,即可求解;(3)由题意得(30)(2160)800x x --+…,解不等式即可得到结论.【解题过程】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b=+⎧⎨=+⎩, 解得:2160k b =-⎧⎨=⎩, 故函数的表达式为:2160y x =-+;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<Q ,故当55x <时,w 随x 的增大而增大,而3050x 剟, ∴当50x =时,w 由最大值,此时,1200w =,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(30)(2160)800x x --+…,解得:70x …,∴每天的销售量216020y x =-+…,∴每天的销售量最少应为20件.27.(10分)在△ABC 中,∠BAC =90°,AB =AC,AD ⊥BC 于点D.(1)如图1,点M,N 分别在AD,AB 上,且∠BMN =90°,当∠AMN =30°,AB =2时,求线段AM 的长;(2)如图2,点E,F 分别在AB,AC 上,且∠EDF =90°,求证:BE =AF;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且∠BMN =90°,求证:AB+AN =2AM.【思路分析】(1)在△ABD 中得到BD 和AD,在△BDM 中求出MD,进而得到AM 的长度;(2)通过证明△BED ≌△AFD 得到BE =AF;(3)过点M 作AB,AC 的垂线,构造全等三角形,将AB+AN 转化为正方形的两条边长的和,进而利用正方形的性质得到结论.【解题过程】(1)在△ABC 中,AB =AC,AD ⊥BC 于点D,∴BD =DC,∠BAD =12∠BAC,∵∠BAC =90°,∴∠BAD =45°,在Rt △ABD 中,∠BAD+∠ABD =90°,∴∠ABD =∠BAD =45°,∴AD =BD,∵AB =2,∴AD =BD 2AB 2,∵∠BMN =90°,∠AMN =30°,∴∠BMD =60°,在Rt △BMD 中,MD =tan BD BMD∠6,∴AM =AD -MD 26(2)∵AD ⊥BC,∴∠BDE+∠EDA =90°,∵∠EDF =90°,∴∠EDA+∠ADF =90°,∴∠BDE =∠ADF,在△ABC 中,∠BAC =90°,∴∠B+∠C =90°,∵AD ⊥BC,∴∠DAC+∠C =90°,∴∠B =∠DAF,∵AD =BD,∴△BED ≌△AFD(ASA),∴BE =AF;(3)过点M 作ME ⊥AB 于点E,作MF ⊥AC 于点F,∴∠MEB =∠MFN =90°,∵AM 平分∠BAC,∴ME =MF,在四边形AEMF 中,∵∠BAC =∠MEB =∠MFN =90°,∴四边形AEMF 是矩形,∠EMF =90°,∴∠EMN+∠NMF =90°,∵∠BMN =90°,∴∠BME+∠EMN =90°,∴∠BME =∠NMF,∴△BME ≌△NMF(ASA),∴BE =NF,在矩形AEMF 中,ME =MF,∴矩形AEMF是正方形,∴AE=AF=2AM,∴AB+AN=AE+AF=2×2AM=2AM.28.(12分)如图,在平面直角坐标系中,直线y x+2与x轴交于点A,与y轴交于点B,抛物线y x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.【思路分析】(1)求得A、B两点坐标,代入抛物线解析式,获得b、c的值,获得抛物线的解析式.(2)通过平行线分割2倍角条件,得到相等的角关系,利用等角的三角函数值相等,得到点坐标.(3)B、O、E、F四点作平行四边形,以已知线段OB为边和对角线分类讨论,当OB为边时,以EF=OB的关系建立方程求解,当OB为对角线时,OB与EF互相平分,利用直线相交获得点E坐标.【解题过程】解:(1)在中,令y=0,得x=4,令x=0,得y=2∴A(4,0),B(0,2)把A(4,0),B(0,2),代入,得,解得∴抛物线得解析式为(2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE得垂线,垂足为F∵BE∥x轴,∴∠BAC=∠ABE∵∠ABD=2∠BAC,∴∠ABD=2∠ABE即∠DBE+∠ABE=2∠ABE∴∠DBE=∠ABE∴∠DBE=∠BAC设D点的坐标为(x,),则BF=x,DF∵tan∠DBE,tan∠BAC∴,即解得x1=0(舍去),x2=2当x=2时, 3∴点D的坐标为(2,3)(3)当BO为边时,OB∥EF,OB=EF设E(m,),F(m,)EF=|()﹣()|=2解得m1=2,,当BO为对角线时,OB与EF互相平分过点O作OF∥AB,直线OF交抛物线于点F()和()求得直线EF解析式为或直线EF与AB的交点为E,点E的横坐标为或∴E点的坐标为(2,1)或(,)或()或()或()。

中考强化训练2022年四川省成都市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析)

中考强化训练2022年四川省成都市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析)

2022年四川省成都市中考数学备考真题模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、若反比例函数k y x =的图象经过点()2,2P -,则该函数图象不经过的点是( ) A .(1,4)B .(2,-2)C .(4,-1)D .(1,-4)2、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( ) A .B .C .D . 3、下列格点三角形中,与右侧已知格点ABC 相似的是( )·线○封○密○外A .B .C .D .4、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )A .的B .祖C .国D .我5、下列式子运算结果为2a 的是( ).A .a a ⋅B .2a +C .a a +D .3a a ÷6、平面直角坐标系中,已知点()21,P m n -,()2,1Q m n -,其中0m >,则下列函数的图象可能同时经过P ,Q 两点的是( ).A .2y x b =+B .22y x x c =--+C .()20y ax a =+>D .()220y ax ax c a =++> 7、下列运算中,正确的是( ) A6 B5 C=4 D8、下列说法中不正确的是( )A .平面内,垂直于同一条直线的两直线平行B .过一点有且只有一条直线与已知直线平行C .平面内,过一点有且只有一条直线与已知直线垂直D .直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离9、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )A .50°B .65°C .75°D .80°10、对于新能源汽车企业来说,2021年是不平凡的一年,无论是特斯拉还是中国的蔚来、小鹏、理想都实现了销量的成倍增长,下图是四家车企的标志,其中既是轴对称图形,又是中心对称图形的是( ) A . B .·线○封○密○外C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:60°18′________°.2、如图,在△AAA中,AB=AC=6,BC=4,点D在边AC上,BD=BC,那么AD的长是______3、如图,∠A=∠A,AA⊥AA,AB EF,AA=25,AA=8,则AA=_______.4、如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为:则输出结果应为______.5、若关于x的二次三项式A2−2(A+1)A+4是完全平方式,则k=____.三、解答题(5小题,每小题10分,共计50分)∥交CD的延长线于点E,点N是线段AC 1、如图,在ABC中,D是边AB的中点,过点B作BE AC上一点,连接BN 交CD 于点M ,且BM AC =. (1)若55E ∠=︒,65A ∠=︒,求CDB ∠的度数;(2)求证:CN MN =. 2、小明根据学习函数的经验,对函数y =﹣|x |+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题. (1)如表y 与x 的几组对应值:①a = ;②若A (b ,﹣7)为该函数图象上的点,则b = ; (2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:·线○封○密·○外①该函数有 (填“最大值”或“最小值”),并写出这个值为 ;②求出函数图象与坐标轴在第二象限内所围成的图形的面积.3、如图,二次函数y =a (x ﹣1)2﹣4a (a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C (0,.(1)求二次函数的表达式;(2)连接AC ,BC ,判定△ABC 的形状,并说明理由.4、计算:2(3)()()a b a b a b +-+-.5、如图,点B ,E ,F ,C 在同一直线上.已知A D ∠=∠,B C ∠=∠,BE CF =,请说明ABF △≌DCE .-参考答案-一、单选题1、A【分析】 由题意可求反比例函数解析式4y x =-,将点的坐标一一打入求出xy 的值,即可求函数的图象不经过的点. 【详解】 解:因为反比例函数k y x =的图象经过点(2,2)P -, 所以4k =-, 选项A 1444xy =⨯=≠-,该函数图象不经过的点(1,4),故选项A 符合题意; 选项B ()224xy =⨯-=-,该函数图象经过的点(2,-2),故选项B 不符合题意; 选项C ()414xy =⨯-=-,该函数图象经过的点(4,-1),故选项C 不符合题意; 选项B ()144xy =⨯-=-,该函数图象经过的点(1,-4),故选项D 不符合题意; 故选A. 【点睛】 考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键. ·线○封○密○外2、A【分析】看哪个几何体的三视图中有长方形,圆,及三角形即可.【详解】解:A、三视图分别为正方形,三角形,圆,故A选项符合题意;B、三视图分别为三角形,三角形,圆及圆心,故B选项不符合题意;C、三视图分别为正方形,正方形,正方形,故C选项不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,故D选项不符合题意;故选:A.【点睛】本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.3、A【分析】根据题中利用方格点求出ABC的三边长,可确定ABC为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.【详解】解:ABC的三边长分别为:AB=AC BC=∵222+=,AB AC BC∴ABC为直角三角形,B,C选项不符合题意,排除;A选项中三边长度分别为:2,4,==A选项符合题意,D≠故选:A.【点睛】题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.4、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5、C·线○封○密○外【分析】由同底数幂的乘法可判断A ,由合并同类项可判断B ,C ,由同底数幂的除法可判断D ,从而可得答案.【详解】解:2,a a a ⋅=故A 不符合题意;2a +不能合并,故B 不符合题意;2,a a a +=故C 符合题意;23,a a a ÷=故D 不符合题意;故选C【点睛】本题考查的是同底数幂的乘法,合并同类项,同底数幂的除法,掌握“幂的运算与合并同类项”是解本题的关键.6、B【分析】先判断1,m m 221,n n 再结合一次函数,二次函数的增减性逐一判断即可.【详解】解:22221110,n n n n221,n n同理:1,m m∴ 当0m >时,y 随x 的增大而减小,由2y x b =+可得y 随x 的增大而增大,故A 不符合题意;22y x x c =--+的对称轴为:21,21x 图象开口向下,当1x >-时,y 随x 的增大而减小,故B 符合题意; 由()20y ax a =+>可得y 随x 的增大而增大,故C 不符合题意; ()220y ax ax c a =++>的对称轴为:21,2a x a 图象开口向上, 1x ∴>-时,y 随x 的增大而增大,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.7、C【分析】根据算术平方根的意义逐项化简即可.【详解】解:B.-5,故不正确; 4,正确; 8,故不正确; 故选C . 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根. ·线○封○密○外8、B【分析】根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.【详解】A、平面内,垂直于同一条直线的两直线平行,故说法正确;B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确.故选:B【点睛】本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立.9、B【分析】根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.【详解】解:如图,根据题意得:BG∥AF,∴∠FAE =∠BED =50°,∵AG 为折痕, ∴()1180652FAE α=︒-∠=︒ . 故选:B 【点睛】 本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键. 10、C 【分析】 根据轴对称图形与中心对称图形的概念结合所给图形的特点即可得出答案. 【详解】 解:A 、是轴对称图形,不是中心对称图形,故错误; B 、是轴对称图形,不是中心对称图形,故错误; C 、既是轴对称图形,又是中心对称图形,故正确; D 、既不是轴对称图形,也不是中心对称图形,故错误. 故选:C . 【点睛】 本题考查了中心对称图形及轴对称图形的特点,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合. 二、填空题 1、60.3 【分析】 ·线○封○密○外根据1′=(160)°先把18′化成0.3°即可.【详解】∵1'=(160)°∴18′=18×(160)°=0.3°∴60°18′=60.3°故:答案为60.3.【点睛】本题考查了度分秒的换算,单位度、分、秒之间是60进制,解题的关键是将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.在进行度、分、秒的运算时还应注意借位和进位的方法.2、103【分析】根据等腰三角形的等边对等角可得∠ABC=∠C=∠BDC,根据相似三角形的判定证明△ABC∽△BDC,根据相似三角形的性质求解即可.【详解】解:∵AB=AC,BD=BC,∴∠ABC=∠C,∠C=∠BDC,∴△ABC∽△BDC,∴AAAA=AAAA,∵AB=AC=6,BC=4,BD=BC,∴64=4AA,∴AA =83,∴AD =AC -CD =6-83=103, 故答案为:103. 【点睛】 本题考查等腰三角形的性质、相似三角形的判定与性质,熟练掌握等腰三角形的性质和相似三角形的判定与性质是解答的关键.3、17 【分析】 由“AAA ”可证ABC EFC ∆≅∆,可得AA =AA ,9BC CF ==,即可求解. 【详解】 解:∵AA ⊥AA ,90ACB ECF ∴∠=∠=︒,在AAAA 和AAAA 中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC EFC AAS ∴∆≅∆, ∴AA =AA ,AA =AA =8, ∴AA =AA =AA −AA =25−8=17, 故答案为:17. 【点睛】 本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等. 4、30·线○封○密·○外【分析】根据科学计算器的使用计算.【详解】解:依题意得:[3×(﹣2)3-1]÷(-56)=30,故答案为30.【点睛】利用科学计算器的使用规则把有理数混合运算,再计算.5、﹣3或1【分析】根据A 2+22这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.【详解】解:∵二次三项式A 2−2(A +1)A +4是完全平方式,∴A 2−2(A +1)A +4=22(2)44x x x -=-+或A 2−2(A +1)A +4=(A +2)2=A 2+4A +4, ∴−2(A +1)=4或−2(A +1)=−4,解得k =﹣3或k =1,故答案为:﹣3或1.【点睛】本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.三、解答题1、(1)120︒(2)证明见解析【分析】(1)先根据平行线的性质可得65ABE A ∠=∠=︒,再根据三角形的外角性质即可得;(2)先根据三角形全等的判定定理证出B ADC DE ≅,再根据全等三角形的性质可得AC BE =,E ACD ∠=∠,从而可得BE BM =,然后根据等腰三角形的性质、对顶角相等可得E BME CMN ∠=∠=∠,从而可得ACD CMN ∠=∠,最后根据等腰三角形的判定即可得证. (1)解:∵AC BE ,65A ∠=︒, ∴65ABE A ∠=∠=︒, ∵55E ∠=︒, ∴5565120CDB E ABE ∠=∠+∠=︒+︒=︒. (2) 证明:∵AC BE , ∴A ABE ∠=∠, ∵D 是边AB 的中点, ∴AD BD =, 在ADC 和BDE 中,A DBE AD BD ADC BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()BD ADC E ASA ≅,∴AC BE =,ACD E ∠=∠,∵BM AC =,∴BE BM =,∴E BME CMN ∠=∠=∠,·线○封○密○外∴ACD CMN∠=∠,∴CN MN=.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,熟练掌握各判定定理与性质是解题关键.2、(1)①0;②±10;(2)见解析;①最大值,3;②9 2【分析】(1)①根据表中对应值和对称性即可求解;②将点A坐标代入函数解析式中求解即可;(2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.(1)解:①由表可知,该函数图象关于y轴对称,∵当x=-3时,y=0,∴当x=3时,a=0,故答案为:0;②将A(b,-7)代入y=﹣|x|+3中,得:-7=﹣|b|+3,即|b|=10,解得:b=±10,故答案为:±10;(2)解:函数y=﹣|x|+3的图象如图所示:①由图象可知,该函数有最大值,最大值是3,故答案为:最大值,3; ②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为193322⨯⨯=. 【点睛】本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键. 3、(1)21)y x =- (2)直角三角形,理由见解析. 【分析】 (1)将点C 的坐标代入函数解析式,即可求出a 的值,即得出二次函数表达式;(2)令0y =,求出x 的值,即得出A 、B 两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断ABC 的形状. ·线○封○密·○外(1)解:将点C (0,代入函数解析式得:2(01)4a a =--,解得:a =故该二次函数表达式为:21)y x =- (2)解:令0y =21)0x --=, 解得:11x =-,23x =.∴A 点坐标为(-1,0),B 点坐标为(3,0).∴OA =1,OC 3(1)4B A AB x x =-=--=,∴2AC ==,BC ===∵22224+=,即222BC AC AB +=,∴ABC 的形状为直角三角形.【点睛】本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C 的坐标求出函数解析式是解答本题的关键.4、22862a ab b ++【分析】根据完全平方公式及平方差公式,然后再合并同类项即可.【详解】 解:原式222296()=++--a ab b a b 222296+=++-a ab b a b 22862a ab b =++. 【点睛】 本题考查了完全平方公式及平方差公式,属于基础题,计算过程中细心即可. 5、见详解. 【分析】 用AAS 证明△ABF ≌△DCE 即可. 【详解】 解:∵BE CF = BE EF CF EF ∴+=+ ,BF CE ∴= 又∵∠A =∠D ,∠B =∠C , ∴△ABF ≌△DCE (AAS ). 【点睛】 本题考查了全等三角形的判定,证明BF =CE 是解决本题的关键. ·线○封○密○外。

2024年四川省成都市中考数学预测试卷(一)及答案解析

2024年四川省成都市中考数学预测试卷(一)及答案解析

2024年四川省成都市中考数学预测试卷(一)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,把序号涂在答题卡上)1.(4分)在﹣2,,0,﹣2.5四个数中,最小的数是()A.﹣2B.C.0D.﹣2.52.(4分)2023年上半年我国新能源汽车取得显著成绩,新能源汽车使用环境持续优化,截至6月底,全国累计建成各类充电桩超过660万台.将数据“660万”用科学记数法表示为()A.6.6×106B.6.6×105C.660×105D.66×105 3.(4分)下列计算正确的是()A.x+x=x2B.(x+y)2=x2+y2C.(﹣x+3)(x+3)=9﹣x2D.3(x﹣2y)=3x﹣2y4.(4分)2023年7月28日至8月8日,第31届世界大学生夏季运动会在四川省成都市举行,为此,成都市共建成49个场馆,其中新建场馆13处,改造场馆36处.大运村设在成都大学,依托现有校区和建设发展规划,新建生活服务中心、医疗中心、国际教育交流中心、实训楼等单体建筑22栋.数据49,13,36,22的中位数为()A.13B.24.5C.29D.365.(4分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O.若要使平行四边形ABCD成为矩形,需要添加的条件是()A.AC⊥BD B.OA=OB C.AB=BC D.∠ABD=∠DBC 6.(4分)川剧由昆腔、高腔、胡琴、弹戏、灯调五种声腔组成,其中,除灯调系源于本土外,其余均.由外地传入.如果小曦要选择其中一种声腔来学习,那么选中外地传入声腔的概率为()A.B.C.1D.7.(4分)小明仿照我国古算题编写了一道题:“今有九百元可得鸡兔共十又一只,一百八十元鸡两只,二百四十元兔四只.问鸡兔各几何?”设鸡有x只,兔有y只,则可列方程组为()A.B.C.D.8.(4分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,M是抛物线的顶点,则下列说法正确的是()A.abc<0B.b+3a>0C.当x>0时,y的值随x值的增大而增大D.若CM⊥AM,则二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)因式分解:3x2y﹣27y=.10.(4分)已知反比例函数图象上的两点(﹣2,y1),(3,y2),且y1>y2,则k 的取值范围是.11.(4分)如图,△ABC≌△DEF,AE=2,AD=3,则AB=.12.(4分)在平面直角坐标系xOy中,点M(﹣2,5)关于x轴对称的点的坐标是.13.(4分)如图,△ABC为锐角三角形,点D在边BC上,∠B=∠BAD=∠CAD.分别以点A,C为圆心、大于的长为半径作弧,两弧相交于点E,F,作直线EF交AD于点P.若,△ABC的面积为8,则△CDP的面积为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解不等式组:15.(8分)成都市某中学为2024年“尤伯杯”预热,组织全校学生参加了“尤伯杯羽毛球比赛”知识竞赛,为了解全校学生竞赛成绩x(单位:分)的情况,随机抽取了一部分学生的成绩,分成四组:A.70分以下(不包括70);B.70≤x<80;C.80≤x<90;D.90≤x≤100,并绘制了如下两幅不完整的统计图.根据上述信息,解答下列问题.(1)被抽取的学生成绩在C组的有人,请补全条形统计图;(2)被抽取的学生成绩在B组的对应扇形圆心角的度数是,若该中学全校共有3600人,则成绩在A组的大约有人;(3)现从D组前四名(2名男生和2名女生)中任选2名代表发表感言,请用列表或画树状图的方法,求选中1名男生和1名女生的概率.16.(8分)屏风是一种古老的家具,它作为一种灵活的空间元素、装饰元素和设计元素,具有实用和艺术欣赏两方面的功能,能通过自身形状、色彩、质地、图案等特质融于丰富多元的现代空间环境,传达着新中式的意味,演绎出中国传统文化韵味,因此至今仍然被广泛地运用.小曦在房间墙角摆放了一架双面屏风,俯视图如图所示,两面屏风AC,BC与墙角AOB围成了一个独立空间用来堆放杂物,经测量AC=BC=1m,∠CAO=∠CBO=60°,请算出这个独立空间的面积.(结果精确到0.01m2.参考数据:,)17.(10分)如图,在Rt△ABC中,∠ACB=90°,AB与⊙O相切于点F,点C为⊙O上一点,CF平分∠ACB,AC和BC分别与⊙O相交于点E,D,DG⊥AB于点G.(1)求证:DG是⊙O的切线;(2)若,⊙O的半径为,求AF的长.18.(10分)如图,在平面直角坐标系中,一次函数y=3x+b的图象与坐标轴交于点A,B,与反比例函数的图象交于点C(1,a),D是反比例函数图象上的一个动点,过点D向y轴作垂线与一次函数图象交于点E,其中点A的坐标为(﹣3,0).(1)求反比例函数的表达式;(2)连接DB,DC,当△DCE的面积等于△DBC面积的2倍时,求点E的坐标;(3)若P是x轴上的一个动点,连接EP,DP,当△DPE与△AOB相似时,求点D的纵坐标.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知非零实数a,b满足a+3b+2ab=0,则=.20.(4分)已知一元二次方程x2﹣6x+m=0的一个根为,则m的值为.21.(4分)“不倒翁”玩具的主视图如图所示,PA,PB分别与不倒翁底部所在的⊙O相切于点A,B,若⊙O的半径为5cm,∠P=50°,则劣弧AB的长为.(结果保留π)22.(4分)一个直角三角形的边长都是整数,则称这种直角三角形为“完美勾股三角形”,k为其面积和周长的比值.当k=2时,满足条件的“完美勾股三角形”的周长为;当0<k≤1时,若存在“完美勾股三角形”,则k =.23.(4分)如图,在正方形ABCD中,O是BC的中点,P是边CD上一动点,将△OCP 沿OP翻折得△OC′P,连接C′D,在C′D左侧有一点E,使得△C′DE为等腰直角三角形,且∠DC′E=90°,连接CE.若正方形ABCD的边长为6,则CE的最小值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2024年世界园艺博览会将在成都举行,某社区决定采购甲、乙两种盆栽美化环境,若购买20盆甲种盆栽和10盆乙种盆栽,则需要130元;若购买30盆甲种盆栽和20盆乙种盆栽,则需要220元.(1)甲、乙两种盆栽的单价各是多少元?(2)若该社区联合附近社区购买甲、乙两种盆栽共1000盆,设购买m盆(500≤m≤700)乙种盆栽,总费用为W元,请你帮社区设计一种购买方案,使总花费最少,并求出最少费用.25.(10分)如图,在平面直角坐标系中,已知一抛物线经过原点,与x轴交于另一点A,顶点坐标为(2,﹣1),过点G(2,0)的直线y=kx+b(k≠0)与抛物线交于点B,C,且点B在点C的左侧.(1)求抛物线的函数表达式;(2)连接AB,AC,当△ABG的面积与△ACG的面积之比为1:2时,求直线的函数表达式;(3)若有直线l:y=﹣2,点B到直线l的距离为BD,点C到直线l的距离为CE,求证:.26.(12分)如图,已知△ABC为等边三角形,D,E分别是边BC,AC上一点,AD与BE 相交于点F,点G是射线AD上一点,且BD=BG=CE,CF与EG相交于点H.(1)求∠AFE的度数;(2)求证:H是EG的中点;(3)若BD=4,AF=6,求△ABC的边长.2024年四川省成都市中考数学预测试卷(一)参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,把序号涂在答题卡上)1.【分析】根据负数小于零小于正数得到答案即可.【解答】解:,故选:D.【点评】本题主要考查有理数比较大小,熟练掌握有理数大小比较是解题的关键.2.【分析】确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值小于1时,n 是负整数.据此求解即可.【解答】解:660万=6600000=6.6×106,故选:A.【点评】本题考查科学记数法,关键是熟记科学记数法的一般形式为a×10n,其中1≤|a|<10,n为整数.3.【分析】根据运算法则和完全平方公式、平方差公式逐项判断即可.【解答】解:A、x+x=2x,原计算错误,不符合题意;B、(x+y)2=x2+2xy+y2,原计算错误,不符合题意;C、(﹣x+3)(x+3)=9﹣x2,原计算正确,符合题意;D、3(x﹣2y)=3x﹣6y,原计算错误,不符合题意;故选:C.【点评】本题考查整式的混合运算,关键是完全平方公式的应用.4.【分析】根据中位数的定义,先将数据从小到大排序,中间两数的平均数就是这组数据的中位数.【解答】解:将数据49,13,36,22从小到大排序为13,22,36,49,所以这组数据的中位数为.故选:C.【点评】本题考查了求中位数,正确理解中位数的定义是解题的关键.5.【分析】根据矩形的判定方法逐项判断即可.【解答】解:A、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,即AC=BD,∴平行四边形ABCD是矩形,符合题意;C、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意;D、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABD=∠BDC,∵∠ABD=∠DBC,∴∠BDC=∠DBC,∴BC=CD,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意,故选:B.【点评】本题考查矩形的判定,涉及到平行四边形的性质、菱形的判定、等腰三角形的判定等知识,熟知矩形的判定是解答的关键.6.【分析】根据概率公式直接求解即可.【解答】解:五种声腔中,外地传入的声腔有四种,故中外地传入声腔的概率,故选:D.【点评】本题主要考查了概率的求法,熟练掌握概率公式是解题的关键.7.【分析】根据题目中的等量关系列出方程即可.【解答】解:根据题意可得:,故选:A.【点评】本题主要考查由实际问题抽象出二元一次方程组,读懂题意是解题的关键.8.【分析】根据抛物线的位置判断即可;利用对称轴公式,可得b=﹣4a,可得结论;应该是x>2时,y随x的增大而增大;设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,可得M(2,﹣9a),C(0,﹣5a),过点M作MH⊥y轴于点H,设对称轴交x 轴于点K.利用相似三角形的性质,构建方程求出a即可.【解答】解:A.∵抛物线开口向上,∴a>0,∵对称轴是直线x=2,∴,∴b=﹣4a<0∵抛物线交y轴的负半轴,∴c<0,∴abc>0,故不正确,不符合题意,B.∵b=﹣4a,a>0,∴b+3a=﹣a<0,故不正确,不符合题意,C.观察图象可知,当0<x≤2时,y随x的增大而减小,不正确,不符合题意,D.∵抛物线经过(﹣1,0),(5,0),∴可以假设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,∴M(2,﹣9a),C(0,﹣5a),过点M作MH⊥y轴于点H,设对称轴交x轴于点K.∵AM⊥CM,∴∠AMC=∠KMH=90°,∴∠CMH=∠KMA,∵∠MHC=∠MKA=90°,∴△MHC∽△MKA,∴,∴,∴,∵a>0,∴,故正确,符合题意;故选:D.【点评】本题考查二次函数的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】首先提取公因式3y,再利用平方差进行二次分解即可.【解答】解:原式=3y(x2﹣9)=3y(x+3)(x﹣3),故答案为:3y(x+3)(x﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.【分析】利用反比例函数的增减性求参数,分类讨论即可求解.【解答】解;若2k+1>0,∵﹣2<0<3,∴y1<0<y2,与y1>y2矛盾,∴2k+1<0,解得:.故答案为:.【点评】本题考查了已知反比例函数的增减性求参数,分类讨论即可求解.11.【分析】根据全等三角形的性质求解即可.【解答】解:∵AE=2,AD=3,∴DE=AD+AE=5,∵△ABC≌△DEF,∴AB=DE=5,故答案为:5.【点评】此题考查了全等三角形的性质,熟记“全等三角形的对应边相等”是解题的关键.12.【分析】根据平面直角坐标系中对称点的规律解答.【解答】解:根据平面直角坐标系中对称点的规律可知,点M(﹣2,5)关于x轴的对称点为(﹣2,﹣5).故答案为:(﹣2,﹣5).【点评】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13.【分析】根据角平分线的性质得到S△ABD:S△ADC=5:3,进而,,设BD=5x,CD=3x,根据等腰三角形的判定与性质,结合三角形的外角性质得到BD=AD=5x,CD=CP=AP=3x,则DP=2x,进而得到S△CDP:S△CAP=DP:AP=2:3即可求解.【解答】解:设点D到AB、AC的距离为a,b,∵∠BAD=∠CAD,∴a=b,∵,:S△ADC=5:3,又△ABC的面积为8,∴S△ABD∴,,设BD=5x,CD=3x,∵∠B=∠BAD,∴BD=AD=5x,∠PDC=2∠B,由作图痕迹得PE垂直平分AC,则PA=PC,∴∠CAP=∠ACP,则∠CPD=2∠CAD=2∠B,∴∠CPD=∠CDP,∴CD=CP=AP=3x,则DP=2x,:S△CAP=DP:AP=2:3,∴S△CDP∴,故答案为:.【点评】本题考查等腰三角形的判定与性质、线段垂直平分线的画法及其性质、三角形的外角性质、角平分线的性质等知识,解题的关键是掌握相关知识的灵活运用.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.【分析】(1)先根据二次根式的性质、特殊角的三角函数值、负整数指数幂以及绝对值的性质计算,再加减运算即可求解;(2)先求得每个不等式的解集,再求它们的公共部分即为该不等式组的解集.【解答】解:(1)﹣2tan60°﹣=﹣2×﹣4+4﹣2=;(2)不等式组,解不等式①,得x≥2,解不等式②,得x<4,∴该不等式组的解集为2≤x<4.【点评】本题考查实数的混合运算、解一元一次不等式组,涉及二次根式的化简、绝对值的化简、特殊角的三角函数值、负整数指数幂的运算,正确求解是解答的关键.15.【分析】(1)先由D组人数除以其所占的百分比求出抽取总人数,进而可求得C组人数,进而补全条形统计图即可;(2)用360°乘以B组人数所占的百分比即可求得其对应的圆心角的度数,用全校总人数乘以样本中A组人数所占的比例求解即可;(3)画树状图得到所有等可能的结果数,选出满足条件的结果数,然后利用概率公式求解即可.【解答】解:(1)抽查总人数为18÷30%=60(人),C组人数为60﹣6﹣12﹣18=24(人),故答案为:24,补全条形统计图如图:(2)被抽取的学生成绩在B组的对应扇形圆心角的度数是,成绩在A组的大约有(人),故答案为:72°,360;(3)画树状图:共有12种等可能的结果,其中选中1名男生和1名女生的有8种结果,故选中1名男生和1名女生的概率为.【点评】本题考查扇形统计图和条形统计图的关联、用样本估计总体、用列表或画树状图法求概率,理解题意,能从统计图中获取信息是解答的关键.16.【分析】过C作CE⊥OA于E,CF⊥OB于F,利用锐角三角函数分别求得AE,CE,CF,BF,利用三角形的面积和矩形的面积公式求解即可.【解答】解:过C作CE⊥OA于E,CF⊥OB于F,则四边形CEOF是矩形,在Rt△AEC中,,,在Rt△CFB中,,,+S△CFB+S矩形CEOF∴这个独立空间的面积为S△AEC==≈1.18m2.【点评】本题考查解直角三角形的应用,解题的关键是掌握其知识的灵活运用.17.【分析】(1)连接OF,OD,分别根据圆周角定理、切线的性质及垂直定义得到∠DGF=∠OFG=∠DOF=90°,证得四边形OFGD是矩形,则∠ODG=90°,根据切线的判定可得结论;(2)连接OE,过E作EH⊥AB于H,证明四边形EHFO是正方形得到,利用正切定义求得,进而可求解.【解答】(1)证明:连接OF,OD,∵CF平分∠ACB,∠ACB=90°,∴,则∠DOF=2∠BCF=90°,∵AB与⊙O相切于点F,∴∠OFG=∠OFA=90°,∵DG⊥AB,∴∠DGF=90°,则∠DGF=∠OFG=∠DOF=90°,∴四边形OFGD是矩形,∴∠ODG=90°,即OF⊥AB,∵OF是⊙O的半径,∴DG是⊙O的切线;(2)解:连接OE,过E作EH⊥AB于H,则∠EHF=∠EHA=90°,∵∠EOF=2∠ACF=90°,∴∠EOF=∠EHF=∠OFH=90°,∴四边形EHFO是矩形,∵OE=OF,∴四边形EHFO是正方形,∴,∵,∴,∴.【点评】本题考查切线的判定与性质、矩形的判定与性质、正方形的判定与性质、圆周角定理、角平分线的定义、锐角三角函数等知识,综合性强,熟练掌握相关知识的联系与运用是解答的关键.18.【分析】(1)先把(﹣3,0)代入y=3x+b求出一次函数解析式,再求出交点C(1,a),最后代入反比例函数解析式即可.=2S△BDE,表示出D、E (2)当△DCE的面积等于△DBC面积的2倍时即可得到S△CDE坐标,再计算即可;(3)表示出D、E、P坐标,根据△DPE与△AOB相似计算即可,注意分情况讨论:△AOB∽△PED;△AOB∽△DEP;△AOB∽△PDE;△AOB∽△EDP;△AOB∽△EPD;△AOB∽△DPE等情况分别解答即可.【解答】解:(1)一次函数y=3x+b的图象与坐标轴交于点A,B,其中点A的坐标为(﹣3,0).代入得:0=3×(﹣3)+b,解得b=9,∴y=3x+9,∴B(0,9);一次函数y=3x+9的图象与反比例函数的图象交于点C(1,a),代入得:a=3+9=12,∴C(1,12),把C(1,12)代入y=(x>0)得:12=,解得:k=12,∴y=(x>0),∴反比例函数的表达式为y=(x>0);(2)如图1,D是反比例函数图象上的一个动点,过点D向y轴作垂线与一次函数图象交于点E,连接CD、BD,∴DE∥x轴,∴设D(m,),把纵坐标代入一次函数y=3x+9得:∴y=3x+9=,解得x=﹣3,∴点E的坐标为(﹣3,),=2S△BDE,∵S△CDE∴(12﹣)•DE=2×(9﹣)•DE,解得m=2,∴点E的坐标为(﹣1,6);(3)设P(n,0),由(2)可得,,其中m>0,P是x轴上的一个动点,连接EP,DP,当△DPE与△AOB相似时,分以下几种情况:当△AOB∽△PED时,当PE⊥x轴时,如图2,点E、P的横坐标相等,故点P的坐标为,∴PE=,DE=m﹣(﹣3),∴==,当==时,△AOB∽△PED,∴=,解得m1=﹣8,m2=5,∴m=5,∴,当==3时,△AOB∽△DEP,∴=3,解得m=,∴m=,∴,同理,当PD⊥x轴时,如图3,点P的横坐标与点D的横坐标相等,故点P的坐标为P (m,0),∴,,∴==,当==时,△AOB∽△PDE,∴点D的坐标为,当==3时,△AOB∽△EDP,∴点D的坐标为,当PD⊥PE时,作EM⊥x于M,DN⊥x于N,则△EPM∽△PDN,∴==,此时EM=DN=,DE=MN=PM+PN=m﹣+3,当△AOB∽△EPD时,==,∴===,∴PN=3EM=,PM=DN=,∴=,解得或(不合题意,舍去),∴=,∴点D的坐标为(,),同理当△AOB∽△DPE时,==3,∴====3,∴,,∴,解得或(不合题意,舍去),∴=,∴点D的坐标为(,),综上所述,当△DPE与△AOB相似时,求点D的纵坐标为,,.【点评】本题考查反比例函数与一次函数综合,相似三角形的判定与性质,解答本题的关键是分类讨论思想的运用.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.【分析】先根据分式的混合计算法则化简所求式子,再根据已知条件式得到a+3b=﹣2ab,据此代值计算即可.【解答】解:===,∵a+3b+2ab=0,∴a+3b=﹣2ab,∴原式=,故答案为:﹣2.【点评】本题主要考查了分式的化简求值,掌握约分是关键.20.【分析】将根为代入方程即可得到答案.【解答】解:将代入一元二次方程x2﹣6x+m=0,得,解得m=6,故答案为:6.【点评】本题主要考查一元二次方程的解,明确方程的解一定适合方程是解题的关键.21.【分析】连接OB,由切线的性质得∠PAO=∠PBO=90°,求出∠AOB=130°,然后利用弧长公式求解即可.【解答】解:连接OB.∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∴∠AOB=180°﹣∠P=130°,劣弧AB的长为:;故答案为:.【点评】本题考查由三视图,切线的性质,弧长公式,解题的关键是掌握切线的性质,属于中考常考题型.22.【分析】利用a=3,b=4,c=5的直角三角形来研究,对三边同时扩大1,2,3,⋯倍数来计算,看是否满足题意即可求解.【解答】解:设直角三角形的边长分别为a,b,c,其中a,b为直角边,且a<b,由题意知:,利用特殊的勾三股四直角三角形来研究,当a=3,b=4,c=5,周长=12,面积=6,k=,上式不成立,依次将a=3,b=4,c=5扩大相同的倍数,当都扩大2倍时:a=6,b=8,c=10,周长=24,面积=24,k=1,等式不成立,当都扩大3倍时:a=9,b=12,c=15,周长=36,面积=54,k=1.5,等式不成立,当都扩大4倍时:a=12,b=16,c=20,周长=48,面积=96,k=2,等式成立,故此时满足条件的“完美勾股三角形”的周长为:48;当a=10,b=24,c=26,周长=60,面积=120,k=2,等式成立,当0<k≤1时,当a=3,b=4,c=5时,,当a=6,b=8,c=10时,,故答案为:48;或1.【点评】本题考查了勾股定理,关键是注意都是各边长都是整数.23.【分析】构造等腰直角△DOM,即可证明△MDE∽△ODC′,得到,,再证明△MON≌△ODC,得到MN=OC=3,ON=CD=6,求出,最后根据CE≥CM﹣AE得到CE的最小值.【解答】解:连接OD,过O作OD⊥OM,取OD=OM,连接MD,ME,过M作MN ⊥CN,∵OD⊥OM,OD=OM,∴,∠MDO=45°,∵△C′DE为等腰直角三角形,∴,∠EDC′=45°,∴,∠ODC′=∠MDE=45°﹣∠ODE,∴△MDE∽△ODC′,∴,∵正方形ABCD中,O是BC的中点,正方形ABCD的边长为6,∴OC=3,CD=BC=6,∵将△OCP沿OP翻折得△OC′P,∴OC=OC′=3,∴,∵MN⊥CN,∴∠MNO=∠DCO=90°,∵∠MON=∠ODC=90°﹣∠COD,OD=OM,∴△MON≌△ODC,∴MN=OC=3,ON=CD=6,∴CN=9,∴,∴,∴当C、M、E三点共线时CE有最小值,最小值为,故答案为:.【点评】本题考查相似三角形的判定与性质,全等三角形的判定与性质,正确记忆相关知识点是任解题关键.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.【分析】(1)设甲种盆栽的单价为x元,乙种盆栽的单价为y元,直接根据题意列方程组求解即可;(2)根据(1)中单价,由费用=单价×数量列函数关系式,利用一次函数性质求解即可.【解答】解:(1)设甲种盆栽的单价为x元,乙种盆栽的单价为y元,根据题意,得,解得,答:甲种盆栽的单价为4元,乙种盆栽的单价为5元;(2)根据题意,得W=4(1000﹣m)+5m=m+4000,∵1>0,500≤m≤700,∴W随m的增大而增大,∴当m=500时,W有最小值,最小值为W=500+4000=4500,1000﹣m=1000﹣500=500(盆),答:当购买甲种盆栽和乙种盆栽各500盆时,总花费最少,最少费用为4500元.【点评】本题考查二元一次方程组的应用、一次函数的应用,理解题意,正确列出方程以及函数关系式是解答的关键.25.【分析】(1)利用待定系数法求解即可;(2)首先将G(2,0)代入直线解析式得到y=kx﹣2k,然后与抛物线联立得到x2﹣(4k+4)x+8k=0,求出x B和x C,然后根据题意得到,代入x B和x C得到,进而求解即可;(3)由(2)求出,,然后根据题意得到BD,CE,然后代入整理求解即可.【解答】解:(1)∵抛物线顶点坐标为(2,﹣1),∴设抛物线解析式为y=a(x﹣2)2﹣1,∵抛物线经过原点,∴将(0,0)代入得,0=a(0﹣2)2﹣1,解得,∴;(2)∵直线y=kx+b(k≠0)过点G(2,0),∴0=2k+b,∴b=﹣2k,∴直线y=kx﹣2k,联立,整理得,x2﹣(4k+4)x+8k=0,解得,,∴x B+x C=4k+4,∵△ABG的面积与△ACG的面积之比为1:2,∴,∴,∴,整理得x C+2x B=6,将,代入x C+2x B=6,整理得,∴9k2=k2+1,∴8k2=1,∴或(舍去),∴直线的函数表达式为;(3)由(2)得,,,∴,,∵有直线l:y=﹣2,点B到直线l的距离为BD,点C到直线l的距离为CE,∴,,∴=======1.【点评】此题考查了二次函数和一次函数综合题,待定系数法求解析式,面积综合题,解一元二次方程等知识,解题的关键是正确表示出点B和点C的坐标.26.【分析】(1)证明△ABD≌△BCE(SAS)得出∠BAD=∠EBC,根据三角形的外角的性质,即可求解;(2)如图所示,将△ABF绕点A逆时针旋转60°得到△ACN,则△ABF≌△ACN,进而证明△BFG≌△CNE(SAS)得出B,E,N三点共线,△AFN是等边三角形,过点E作EM∥NC,根据平行线分线段成比例和相似三角形的性质得出,可得EM=GF,进而证明△EHM≌△GHF,根据全等三角形的性质,即可得证;(3)过点E作ET⊥AG于点T,设TF=x,则,,证明△ENC∽△EFA,得出,解,进而即可求解.【解答】(1)解:∵△ABC为等边三角形,∴AB=BC,∠ABD=∠BCE=60°,又∵BD=EC,∴△ABD≌△BCE(SAS),∴∠BAD=∠EBC,∴∠AFE=∠BAD+∠ABF=∠EBC+∠ABF=∠ABC=60°;(2)证明:如图所示,将△ABF绕点A逆时针旋转60°得到△ACN,连接EN,∴△ABF≌△ACN,∴BF=CN,AF=AN,∠AFB=∠ANC,设∠BAG=α,则∠EBC=∠BAG=α,∵BD=BG,∴∠BDG=∠BGD=∠ABD+∠BAD=60°+α,∵∠AFE=60°,∴∠BFG=60°,∴∠FBG=180°﹣60°﹣(60°+α)=60°﹣α=∠ABF=∠ACN,在△BFG和△CNE中,,∴△BFG≌△CNE(SAS),∴∠BFG=∠CNE=60°,∠BGF=∠CEN=60°+α,∵∠AEB=∠CBE+∠ACB=60°+α,∴∠AEB=∠CEN,∴B,E,N三点共线,∵AF=AN,∠AFE=60°,∴△AFN是等边三角形,∴∠ANF=60°,∵∠AFB=∠ANC=120°,∴∠ENC=60°=∠AFE,∴FG∥CN,过点E作EM∥NC,交CF于点M,∴AG∥EM∥NC,∴△CEM∽△CAF,∴,∴EM=GF,∵EM∥FG,∴∠HEM=∠HGF,在△EHM和△GHF中,,∴△EHM≌△GHF(AAS),∴GH=HE,即H是GE的中点;(3)解:如图所示,过点E作ET⊥AG于点T,∵∠AFE=60°,∴EF=2TF,设TF=x,则,∴AT=AF﹣TF=6﹣x,∴,∵NC∥AG,∴△ENC∽△EFA,∴,∵EC=BG=BD=4,FN=AF=6,EN=6﹣2x,即,∴,,∴,整理得:(x2+9)2﹣9(x2+9)x+14x2=0,即(x2+9﹣7x)(x2+9﹣2x)=0,解得:(舍去)或,∴,∴.【点评】本题是三角形综合题,考查了旋转的性质,相似三角形的性质与判定,等边三角形的性质与判定,勾股定理,平行线分线段成比例,含30度角的直角三角形的性质,熟练掌握旋转的性质是解题的关键。

2024年中考数学第一次模拟考试(四川成都卷)(全解全析)

2024年中考数学第一次模拟考试(四川成都卷)(全解全析)

2024年中考第一次模拟考试(成都卷)数学·全解全析注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

A卷(共100分)第Ⅰ卷(共32分)一、选择题(本大题共8个小题,每小题4分,共32分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑).【答案】B【分析】本题考查了相反数的定义,根据只有符号不同的两个数互为相反数进行解答即可得.−,故选:B.【详解】解:2024的相反数是20242.杭州亚运会已闭幕,中国代表团共收获201金、111银、71铜,总计383枚奖牌,创历史.图①是2023年10月2日乒乓球男单颁奖现场.图②是领奖台的示意图,则此领奖台主视图是()A.B.C.D.【答案】B【分析】本题考查了组合体的主视图.熟练掌握从正面看到的是主视图是解题的关键.根据从正面看到的是主视图进行判断作答即可.【详解】解:由题意知,是主视图,故选:B .3.俄罗斯和乌克兰的战争从去年2月24日开始到现在还在持续,战争持续的主要原因是:以美国为首的北约在不断拱火,据不完全统计仅美国就先后向乌克兰提供军火价值275.8亿美元,275.8亿用科学记数法如何表示( ) A .82.75810⨯ B .92.75810⨯ C .102.75810⨯ D .11275810.⨯【答案】C【分析】根据科学记数法的表示方法求解即可.【详解】解:275.8亿用科学记数法表示为102.75810⨯.故选:C .【点睛】此题考查了科学记数法的表示方法,解题的关键是熟练掌握科学记数法的表示方法.科学记数法的表示形式为10na ⨯的形式,其中1<10a ≤,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.4.若关于x 的方程230x mx −+=的一个根是11x =,则另一个根2x 及m 的值分别是( ) A .234x m ==−, B .214x m ==, C .224x m ==−, D .234x m ==,【答案】D【分析】本题考查了一元二次方程的解,把11x =代入方程先求出m 的值,从而确定出方程,再解方程即可求出2x ,理解方程的解并准确计算是解题的关键.【详解】解:∵11x =是方程230x mx −+=的一个根,∴130m −+=,∴4m =,∴方程为2430x x −+=,解得11x =,23x =,∴另一个根2x 为3,m 的值为4,故选:D .【答案】D【分析】分式方程两边乘以最简公分母,去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.【详解】解:A 、方程两边同乘以()2x −,得:()1122x x −=−−−,故本选项不符合题意;B 、解方程得2x =,当2x =时分母20x −=,2x =是方程的增根,故本选项不符合题意;C 、方程两边同乘以()2x −,得:()1122x x −=−−,故本选项不符合题意;D 、解方程得2x =,当2x =时分母20x −=,2x =是方程的增根,故本选项符合题意;故选:D . 【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.C . 302⎛⎫− ⎪⎝⎭, 【答案】A【分析】本题考查的是位似图形的概念、相似三角形的性质,根据位似图形的概念得出EF OC ∥,DE OP ∥是解题的关键.根据位似图形的概念得到EF OC ∥,DE OP ∥,进而证明CED CPO POD PAB ∽,∽,根据相似三角形的性质求出OP ,得到答案. 【详解】解:∵四边形OABC 为矩形,()23B ,,∴32AB OC OA ===,,∵矩形OABC 与矩形ODEF 是位似图形,∴EF OC ∥,DE OP ∥,∴CED CPO POD PAB ∽,∽∴CD DE CO OP =,PO ODPA AB = ∴31323OD OP OD OP OP −==+,,解得:2OP =,32OD =∴点P 的坐标为()20−,,故选:A .根据数据分析,可以判断本次监测数学最后一道单选题的正确答案应为()A.A B.B C.C D.D【答案】B【分析】先计算出最后一道单选题参考人数得分的平均分,再分别测算,进行比较即可.【详解】解:题目难度系数=该题参考人数得分的平均分÷该题的满分,∴最后一道单选题参考人数得分的平均分=题目难度系数⨯该题的满分0.345 1.7=⨯=,如果正确答案应为A,则参考人数得分的平均分为:36.21%5 1.8⨯≈,如果正确答案应为B,则参考人数得分的平均分为:33.85%5 1.7⨯≈,如果正确答案应为C,则参考人数得分的平均分为:17.7%50.9⨯≈,如果正确答案应为D,则参考人数得分的平均分为:11.96%50.6⨯≈,故选:B.【点睛】本题考查了统计表、新概念“题目难度系数”等知识,熟练掌握新概念“题目难度系数”,由统计表的数据计算出参考人数得分的平均分是解题的关键.下列说法中正确的是()A.开口向下B.当0x>时,y随x的增大而增大C.对称轴为直线1x=D.函数的最小值是5−【答案】C【分析】本题主要考查了求二次函数解析式以及二次函数的性质,把二次函数化简成顶点式即可解题.【详解】解:把()1,2−−,()0,5−,()3,2−代入2y ax bx c=++,得:25932a b cca b c−+=−⎧⎪=−⎨⎪++=−⎩,解得∶125abc=⎧⎪=−⎨⎪=−⎩,∴()222516y x x x=−−=−−,∴10a =>抛物线开口向上,对称轴为直线1x =,顶点坐标为()1,6−,即当1x =时,函数取最小值6−,当1x >时,y 随x 的增大而增大, 故A ,B ,D 错误,C 正确,故选:C .第Ⅱ卷(共68分)二、填空题(本大题共5个小题,每题4分,满分20分,将答案填在答题纸上)9.《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的 倍.【答案】1.2【分析】设被称物的重量为a ,砝码的重量为1,根据图中可图列出方程即可求解. 【详解】解:设被称物的重量为a ,砝码的重量为1,依题意得,2.531a =⨯,解得 1.2a =,故答案为:1.2.【点睛】本题考查了比例的性质,掌握杠杆的原理是解题的关键.【答案】1−(答案不唯一)【分析】本题考查了一元二次方程根的情况求参数.根据题意得()2=24110k ∆−⨯⨯−+<,进行计算即可得.【详解】解:∵一元二次方程2210x x k +−+=没有实数根,∴()2=24110k ∆−⨯⨯−+<,∴0k <,∴k 的值可能是1−(答案不唯一),故答案为:1−(答案不唯一).11.如图所示是地球截面图,其中AB ,EF 分别表示南回归线和北回归线,CD 表示赤道,点P 表示太原市的位置.现已知地球南回归线的纬度是南纬()23262326BOD ''︒∠=︒,太原市的纬度是北纬()37323732POD ''︒∠=︒,而冬至正午时,太阳光直射南回归线(光线MB 的延长线经过地心O ),则太原市冬至正午时,太阳光线与地面水平线PQ 的夹角α的度数是 .【答案】292'︒【分析】设PQ 与OM 交于点K ,先由三角形内角和定理求出.292OKP '∠=︒,再根据平行线的性质求解即可.【详解】如图,设PQ 与OM 交于点K ,∵2326BOD '∠=︒,3732POD '∠=︒,∴6058POM POD BOD '∠=∠+∠=︒, 在OPK 中,180POK OPK OKP ∠+∠+∠=︒,90OPK ∠=︒,∴292OKP '∠=︒, ∵PN OM ∥,∴292OKP α'∠=∠=︒,故答案为:292'︒.【点睛】本题考查了三角形内角和定理,平行线的性质,读懂题意并熟练掌握知识点是解题的关键.【答案】<【分析】直接利用反比例函数的增减性分析得出答案. 【详解】∵11(,)M x y ,22(,)N x y 两点都在反比例函数5y x −=的图象上,50k =−<,且120x x >>,∴该图象在第二、四象限上,且每个分支上y 随x 的增大而增大,12,00y y <>,∴12y y <.故答案为:<.【点睛】本题主要考查了反比例函数的增减性,正确记忆反比例函数的性质是解题的关键.GB【答案】5【分析】本题考查了基本作图,掌握相似三角形的判定定理和性质定理是解题的关键.先根据作图得出AE 平分ABC∠,MN垂直平分AE,再根据平行四边形的性质和相似三角形的性质求解.【详解】解:四边形ABCD是平行四边形,4AB CD DE∴==,AD BC∥,AD BC=,AEB CBE∴∠=∠,由作图得:AE平分ABC∠,MN垂直平分AE,ABE CBE∴∠=∠,AF EF=,AEB ABE∴∠=∠,4AB AE CD ED∴===,2EF DE∴=,5BC AD DE∴==,AD BC,EFG BCG∴∽,∴25EG EFGB BC==,故答案为:25.三、解答题(本大题共5小题,共48分.解答应写出文字说明、证明过程或演算步骤.)【答案】(1)1+;(2)1x≤−【分析】(1)先代入三角函数值、计算负整数指数幂、化简二次根式,再去绝对值符号、计算乘法,最后计算加减即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找大大小小找不到确定不等式组的解集;【详解】(1)112cos301sin453−⎛⎫︒−︒⎪⎝⎭)2133=+−(4分)133=+−+(5分)1=+;(6分)(2)将()332x x+>−去括号得:336x x+>−(7分)解得:92x<;(8分)将15126x x+−≤−去分母得:()()3165x x+≤−−(9分)去括号得:3365x x+≤−+(10分)解得:1x≤−;(11分)故方程组的解集为:1x≤−.(12分)【点睛】本题主要考查解一元一次不等式组、实数的运算,特殊角三角函数,解题的关键是掌握实数的混合运算顺序和运算法则.15.(满分8分)中国城市基础设施的现代化程度显著提高,新技术、新手段得到广泛应用,基础设施的功能日益增加,承载能力、系统性和效率都有了显著的提升.城市经济发展了,居民生活条件改善了,如5G基础进设、新能源汽车充电桩、人工智能等,其中,随着人们对新能源汽车的认可,公共充电桩的需求量逐渐增大.根据巾商情报网信息:某月“特来电”“星星充电”“国家电网”“云快充”等企业投放公共充电桩的数量及市场份额的统计图如图所示请根据图中信息,解答下列问题:(1)①将统计图中“国家电网”的公共充电桩数量和市场份额补充完整;②统计图中所涉及的十一种企业投放公共充电桩数量的中位数是万台.(2)小辉收集到下列四个企业的图标,并将其制成编号分别为A,B,C,D的四张卡片(除编号和内容外,其余部分完全相同),将四张卡片背面朝上洗匀,放在桌面上,从中任意抽取一张,不放回,再抽取一张.请你用列表或画树状图的方法,求抽取到的两张卡片恰好是“A”和“D“的概率.【答案】(1)①见解析;②2 (2)1【分析】本题考查的是从统计图中获取信息,求解中位数,利用画树状图求解随机事件的概率,掌握以上基础的统计知识是解本题的关键;(1)①由星星充电10万台充电桩占比20%求解总的充电桩的数量,再求解国家电网的充电桩的数量与占比即可;②根据11家企业的充电桩是数量按照从大到小顺序排列后,排在第6的数据是中位数,从而可得答案;(2)先画树状图得到所有的等可能的结果数,再得到符合条件的结果数,结合概率公式可得答案.【详解】(1)解:①公共充电桩的总数为1020%50÷=(万台),∴“国家电网”的公共充电桩数量为5015105222 1.510.538−−−−−−−−−−=(万台),“国家电网”的公共充电桩的市场份额为8100%=16% 50⨯;如图,(2分)②统计图中所涉及的十一种企业投放公共充电桩数量的中位数是2万台.(4分) (2)画树状图为:(6分)共有12种等可能的结果,其中抽取到的两张卡片恰好是“A”和“D“的结果数为2,(7分) 所以抽取到的两张卡片恰好是“A”和“D“的概率21126==.(8分)【答案】要使该楼的日照间距系数不低于1.25,底部C 距F 处至少30m 远【分析】本题考查了解直角三角形的应用-坡度坡角问题,过点E 作EH CF ⊥,垂足为点H ,根据EF 的坡度为1:0.75,设4m EH x =,则3m FH x =,求得3x =,进而求得1,,L H H 的长,根据该楼的日照间距系数不低于1.25,列出不等式141.2536.3 1.1CF +≥−,解不等式即可.【详解】解:过点E 作EH CF ⊥,垂足为点H (1分)90H ∴∠=︒,在Rt EFH △中,EF 的坡度为1:0.75,43EH FH ∴=,(2分)设4m EH x =,则3m FH x =,5mEF x ∴===,(3分)15m EF =Q ,515m x ∴=,3x =,39m FH x ∴==,412m EH x ==.(4分) 9514L CF FH EA CF CF ∴=++=++=+,(5分) 24.31236.3H AB EH =+=+=,1 1.1H =,(6分)由题意得:141.2536.3 1.1CF +≥− 解得:30CF ≥(7分)答:要使该楼的日照间距系数不低于1.25,底部C 距F 处至少30m 远 (8分)是O 的一条弦,是O 的切线.是O 的直径.【答案】(1)见解析(2)3AG =【分析】(1)本题考查等腰三角形的性质和判定和切线的性质,连接OB ,利用切线性质和等角的余角相等,再结合题干的条件证明HBE HEB ∠=∠,即可解题.(2)本题考查等腰三角形性质、勾股定理和相似三角形的性质和判定,作HM BE ⊥于点M ,利用等腰三角形性质、勾股定理和题干的条件,求得HM 、BM 、EM 、AE ,再证明AGE HME ∽△△,利用相似比,即可解题. 【详解】(1)解:连接OB ,如图所示:BC 是O 的切线.90OBH ∴∠=︒,90HBE OBA ∴∠+∠=︒,(1分)直线EF AD ⊥于点G ,有90A GEA ∠+∠=︒,(2分)GEA HED ∠=∠,90A HEB ∴∠+∠=︒,(3分)OA OB =,A OBA ∴∠=∠,HBEHEB ∴∠=∠,BH EH ∴=.(4分)(2)解:作HM BE ⊥于点M ,如图所示:90HMB HME ∴∠=∠=︒,(5分)BH EH =,BM EM ∴=,(6分)E 是AB 的中点,8AB =,4AE BE ∴==,2BM EM ∴==,(7分)103BH =,83HM ∴==,(8分)90AGE HME ∠=∠=︒,则AEG HEM ∠=∠,AGE HME ∴∽△△,(9分)AE AG ME HM ∴=,有4823AG=,解得163AG =.(10分):2:1OBCOBQSS=则当ODE【答案】(1)8y x =;(2)存在,点Q 的横坐标为3732+或3732−+,理由见解析;(3)5412−+或10.【分析】(1)过F 作FH x ⊥轴于H ,由矩形的性质得90BCO FHO ∠=∠=︒,根据相似三角形的判定和性质得4OH =2FH =,求得()4,2F ,代入即可;(2)分情况①当Q 在OB 下方时,②当Q 在OB 上方时讨论即可得解;(3)分45DOE ∠=︒和45OED ∠=︒两种情况讨论,构造全等三角形,然后根据交点坐标及直线解析式求出k 的值即可. 【详解】(1)如图,过F 作FH x ⊥轴于H ,∵四边形OABC 是矩形,∴90BCO FHO ∠=∠=︒,∴FH BC ∥, ∴OHF OCB ∽,∴OF OHOB OC =,(1分)∵2OF BF =,点()6,E m ,∴6OC =,∴263OH =,∴4OH =,∵1tan 2FH BOC OH ∠==,∴2FH =,∴()4,2F ,∴428k =⨯=,∴反比例函数解析式为8y x =;(2分)(2)存在,理由:①当Q 在OB 下方时,满足:2:1OBCOBQSS=,则需平行OB 且过OC 中点的直线,找OC 中点P ,过1PQ OB 交反比例函数图象于点1Q ,由(1)得:()4,2F ,∴直线OB 解析式为:12y x =,∵()6,B m ,∴()6,0C ,则点()3,0P ,∴设直线1PQ 为12y x a =+,∴1032a =⨯+,解得:32a =−,∴直线1PQ 为1322y x =−,(3分)联立13228y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)∴点1Q的横坐标为;(4分)②当Q 在OB 上方时,满足:2:1OBCOBQSS=,则需平行OB 且过OA 中点的直线,找OA 中点M ,过2MQ OB∥交反比例函数图象于点2Q ,同(1)理:直线OB 解析式为:12y x =,∵()6,B m ,∴3m =,∴点()0,3A ,∴30,2M ⎛⎫ ⎪⎝⎭,则直线2MQ 为1322y x =+,(5分)联立13228y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)∴点2Q的横坐标为,综上可知:点Q的横坐标为或;(6分)(3)∵()2,1B ,(),1D k ,2,2k E ⎛⎫⎪⎝⎭,①如图,当45DOE ∠=︒时,作EM OE ⊥,交OD 延长线于点M ,作MN BC ⊥,交CB 延长线于N∴OEM △是等腰直角三角形,∴=OE EM ,∵90OEC EOC ∠+∠=︒,90OEC ∠+=︒,∴EOC MEN ∠=∠,又∵90OCE ENM ∠=∠=︒∴()AAS OCE ENM ≌,∴EN OC =,MN EC =,(7分)∴2,222k k M ⎛⎫−+ ⎪⎝⎭,设直线OD 的解析式为y gx =,∴1kg =,解得:1g k =, ∴直线OD 的解析式为xy k =,∴12222k k k ⎛⎫−=+⎪⎝⎭,解得:k =或k =(负值舍去),(8分)②当45OED ∠=︒,作OG OE ⊥,交ED 延长线于点G ,过点G 作GH x ⊥轴于点H ,同理①可证:GHO OCE ≌,∴OH EC =,GH OC =,∴,22k G ⎛⎫− ⎪⎝⎭,(9分)设直线DE 的解析式为y sx t =+,∴62122k s t ks t k s t ⎧−+=⎪⎪+=⎨⎪⎪+=⎩,解得:10124k s t =⎧⎪⎪=⎨⎪=⎪⎩或43734k s t ⎧=−⎪⎪⎪=−⎨⎪=⎪⎪⎩(不合题意,舍去) 综上,符合条件的k的值为52−或10.(10分)【点睛】本题主要考查了反比例函数,熟练掌握反比例函数的图象和性质,一次函数的性质,等腰直角三角形的性质,相似三角形的判定与性质,全等三角形的判定和性质等知识是解题的关键.B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)【答案】2/0.5【分析】先算括号里,再算括号外,然后把2a 3a +的值代入化简后的式子进行计算即可解答.【详解】解:22313()93a a a a−+⋅−+2333(3)(3)a a a a a +−−=⋅+−23(3)(3)a a a a a −=⋅+−1(3)a a=+213a a =+, 2320a a +−=,232a a ∴+=,∴原式12=,故答案为:12.【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.【答案】()()()2111a a a a a −+−+− ()()211a a a −++【分析】把图2可有两种计算方法:①三个长方体相加;②大正方体减去小正方体,按要求列出式子,即可解答.【详解】解:将图2看作三个长方体相加时,可得式子:()()()()()()2111111111a a a a a a a a a a a ⨯⨯−+⨯⨯⨯−−−+⨯=+−+−;原式两边提取1a −,可得原式()()211a a a =−++. 故答案为:()()()2111a a a a a −+−+−;()()211a a a −++.【点睛】本题考查了整式的乘法,因式分解,观察图形的体积如何计算是解题的关键.【答案】1【分析】本题考查了几何概率及频率估计概率,根据落在三个区域的豆子数比等于各部分面积比,用各个区域面积比估计概率计算即可.【详解】解:A 区域面积为22π24πcm ´=,B 区域面积为()22π224π=12πcm ´+-,C 区域面积为()()()2222π22π22=8ππcm a a a ´++-´++,又落在这三个区域中的豆子数依次为m ,n ,34n m−, 4π112π3m n \==,即3n m =,238ππ44πn m a a m -+\=,解得:121,9a a ==-(不合题意,舍去),故答案为:1. 为平面内任意一点,将ACD 绕点【答案】533,28⎛⎫−− ⎪⎝⎭或()2,3−【分析】根据题意,分别求出点,A C 的坐标,设(,)M m n ,根据旋转的性质,可用含,m n 的式子表示出对应点,,A C D '''的坐标,分类讨论,①当点,A C ''在抛物线213222y x x =−−上时;②当点,A D ''在抛物线213222y x x =−−上时;③当点,C D ''在抛物线213222y x x =−−上时;列二元一次方程组并求解即可.【详解】解:抛物线213222y x x =−−与x 轴交于,A B 两点,令0y =,∴2132022x x −−=,解得,11x =−,24x =,∴(1,0)A −,(4,0)B , ∵点C 的横坐标为5,∴213552322y =⨯−⨯−=,即(5,3)C ,∵将ACD 绕点M 旋转180︒得到对应的A C D '''△(点,,A C D 的对应点分别为A ',C ',D ¢),且(1,0)A −,(5,3)C ,()3,0D ,∴设(,)M m n ,根据旋转的性质,则点A 与点A '关于点M 中心对称,点C 与点C '关于点M 中心对称,点D 与点D ¢关于点M 中心对称, ∴()21,2A m n '+,()25,23C m n '−−,(23,2)D m n '−,①当点,A C ''在抛物线213222y x x =−−上时,如图所示,()()()()22132121222213252522322m m n m m n ⎧+−+−=⎪⎪⎨⎪−−−−=−⎪⎩,解方程组得,232m n =⎧⎪⎨=⎪⎩, ∴点32,2M ⎛⎫⎪⎝⎭,则C '的坐标为(1,0)−,与点A 重合,不符合题意;②当点,A D ''在抛物线213222y x x =−−上时,如图所示,()()()()2213212122221323232222m m n m m n ⎧+−+−=⎪⎪⎨⎪−−−−=⎪⎩,解方程组得,54916m n ⎧=⎪⎪⎨⎪=−⎪⎩, ∴点59,416M ⎛⎫− ⎪⎝⎭,则C '的坐标为533,28⎛⎫−− ⎪⎝⎭,符合题意;③当点,C D ''在抛物线213222y x x =−−上时,如图所示,()()()()22132525223221323232222m m n m m n⎧−−−−=−⎪⎪⎨⎪−−−−=⎪⎩,解方程组得,720m n ⎧=⎪⎨⎪=⎩, ∴点7,02M ⎛⎫⎪⎝⎭,则C '的坐标为()2,3−,符合题意;综上所示,点C '的坐标为533,28⎛⎫−− ⎪⎝⎭或()2,3−, 故答案为:533,28⎛⎫−− ⎪⎝⎭或()2,3−.【点睛】本题主要考查二次函数图形与几何图形的综合,掌握二次函数图像的性质,旋转的性质求点坐标,解二元方程组是解题的关键.,将ABE 沿BE【答案】①②④⑤【分析】①正确.由正方形ABCD 的性质可证明SAS BCP DCP ≌(),可得结论;②正确.证明CFB EFB ∠=∠,推出90CBF CFB ∠∠=︒+,推出22180CBF CFB ∠∠=︒+,由2180EFD CFB ∠∠=︒+,可得结论;③错误.可以证明PQ PA CQ <+;④正确.利用相似三角形的性质证明90BPF ∠=︒,可得结论;⑤正确.求出BD ,BH ,根据DH BD BH ≥−,可得结论.【详解】解:∵四边形ABCD 是正方形,∴CB CD =,190452BCP DCP ∠=∠=⨯︒=︒,在BCP 和DCP 中CB CD BCP DCPCP CP =⎧⎪∠=∠⎨⎪=⎩∴()SAS BCP DCP ≌△△,∴PB PD =,故①正确;∵ABE 沿BE 翻折,点A 落在点H 处,直线EH 交CD 于点F ,∴ABE BHE ≌,则BH AB BC ==,90BHF BCF ∠=∠=︒,∵BF BF =,∴()HL BHF BCF ≌,则HBF CBF ∠=∠,∵ABE HBE ∠=∠,∴190452EBF HBE HBF ∠=∠+∠=⨯︒=︒,∵45QCF EBF ∠=∠=︒,PQB FQC ∠=∠,∴PQB FQC ∽,则BQ PQ CQ FQ =,BPQ CFQ ∠=∠,∴BQ CQ PQ FQ =, ∵PQF BQC ∠=∠,∴PQF BQC ∽,则QPF QBC ∠=∠,∵90QBC CFQ ∠+∠=︒,∴90BPF BPQ QPF ∠=∠+∠=︒,∴45PBF PFB ∠=∠=︒,∴PB PF =,则BPF △为等腰直角三角形,故④正确;∵90BPF BPQ QPF ∠=∠+∠=︒,∴90EPF ∠=︒,∵90EDF ∠=︒,∴P ,E ,D ,F 四点共圆,∴PEF PDF ∠=∠,∵PB PD PF ==,∴PDF PFD ∠=∠, ∵180AEB DEP ∠∠=︒+,180DEP DFP ∠∠=︒+,∴AEB DFP ∠=∠,∴AEB BEH ∠=∠,∵BH EF ⊥,∴90BAE BHE ∠=∠=︒,∵BE BE =,∴()AAS BEA BEH ≌,∴AB BH BC ==,∵90BHF BCF ∠∠=︒,BF BF =,∴()Rt Rt HL BFH BFC ≌,∴BFC BFH ∠=∠,∵90CBF BFC ∠∠=︒+,∴22180CBF CFB ∠∠=︒+,∵2180EFD CFH EFD CFB ∠∠=∠∠=︒++,∴2EFD CBF ∠=∠,故②正确,将ABP 绕点B 顺时针旋转90︒得到BCT ,连接QT ,∴ABP CBT ∠=∠,∴90PBT ABC ∠=∠=︒,∴45PBQ TBQ ∠=∠=︒,∵BQ BQ =,BP BT =,∴()SAS BQP BQT ≌,∴PQ QT =,∵QT CQ CT CQ AP <=++,∴PQ AP CQ <+,故③错误,连接BD ,DH ,∵BD ==,4BH AB ==,∴4DH BD BH ≥−=,∴DH 的最小值为4,故⑤正确.故答案为:①②④⑤.【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题关键是学会添加常用辅助线吗,构造全等三角形解决问题,属于中考填空题中的压轴题.二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.) 24.(满分8分)(1)【阅读理解】倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司采购一批包含A 、B 两款不同型号的垃圾分拣机器人.已知1台A 型机器人和1台B 型机器人同时工作10小时,可处理垃圾5吨;若1台B 型机器人先工作5小时后,再加入1台A 型机器人同时工作,则还需工作8小时才能处理完5吨垃圾.问1台A 型机器人和1台B 型机器若垃圾处理厂采购的这批机器人(A、B两款机器人的总台数不超过80台)每小时共能处理垃圾20吨,请利用(2)中的数据回答:如何采购才能使总费用最省?最少费用是多少万元?【答案】(1)1台A型81台B型13小时的垃圾处理量(2)1台A型机器人和1台B型机器人每小时分别处理垃圾0.3吨和0.2吨(3)当采购A型机器人66台,B型机器人1台时,采购费用最低,为1334万元【分析】(1)根据第二个线段图可以得到解答;(2)设1台A型机器人和1台B型机器人每小时分别处理垃圾x吨和y吨,由题意得到关于x、y的二元一次方程组并解方程组即可;(3)设采购A型机器人t台,由题意可以用t表示B型机器人的台数,并求得t的取值范围.然后用t表示出采购费用,根据一次函数的增减性即可得解.【详解】解:(1)根据第二个线段图可得:1台A型8小时的垃圾处理量1+台B型13小时的垃圾处理量5=吨;故答案为:1台A型8小时的垃圾处理量,1台B型13小时的垃圾处理量;(2分)(2)设1台A型机器人和1台B型机器人每小时分别处理垃圾x吨和y吨,则:101058135x y x y +=⎧⎨+=⎩,解之可得:0.30.2x y =⎧⎨=⎩,(3分)经检验,0.30.2x y =⎧⎨=⎩是原方程组的解,且符合题意,答:1台A 型机器人和1台B 型机器人每小时分别处理垃圾0.3吨和0.2吨;(4分)(3)设采购A 型机器人t 台,则采购B 型机器人200.3100 1.50.2t t −=−(台),则:()100 1.5800.3200.2100 1.520t t t t ⎧−+≤⎪≤⎨⎪−≤⎩,解之可得:4066t ≤≤(t 为整数),(5分)由题意可知,采购费用为:()2014100 1.51400w t t t =+−=−+,(6分)∵10−<,∴w 随t 的增大而减小,∴当66t =时,采购费用最低,为1400661334−=(万元),(7分)此时100 1.51t −=台,即采购A 型机器人66台,B 型机器人1台,答:当采购A 型机器人66台,B 型机器人1台时,采购费用最低,为1334万元.(8分)【点睛】本题考查一次函数的综合应用,熟练掌握二元一次方程组的应用、一元一次不等式组的应用及一次函数的增减性是解题关键.(1)求抛物线的解析式;(2)若点D 在抛物线上,E 在抛物线的对称轴上,以A B D E ,,,为顶点的四边形是平行四边形,且平行四边形的一条边,求点D 的坐标;(3)抛物线的对称轴交x 轴于点G F ,在对称轴上,且在第二象限,2FG BC =,不平行于y 轴的直线l 分别交线段BF CF ,(不含端点)于M N ,两点,直线l 与抛物线只有一个公共点,求证:MF NF +的值是个定值.【答案】(1)223y x x =−−+(2)D 的坐标为()4,5−−或()2,5−;(3)证明见解析 【分析】(1)先求解A 的坐标,再求解B ,C 的坐标,再利用待定系数法求解解析式即可;(2)设()1,E t −,()2,23D n n n −−+,而AB DE ∥,分两种情况讨论: 当平行四边形为平行四边形ABDE ,当平行四边形为平行四边形ABED ,再结合平行四边形的性质可得答案;(3)先求解()1,8F −,直线FB 为412y x =+,直线FC 为44y x =−+,设直线MN 为y kx e =+,由()2230x k x e +++−=有两个相等的实数根,可得()21234e k =++,求解直线MN 为()21234y kx k =+++,再求解M ,N 的坐标,结合勾股定理进行计算即可.【详解】(1)解:∵抛物线23y ax bx =++,当0x =时,3y =,即3OA =,()0,3A ,∵3OA OB OC ==,∴1OC =,3OB =,∴()3,0B −,()1,0C ,(1分)∴933030a b a b −+=⎧⎨++=⎩,解得:12a b =−⎧⎨=−⎩,∴抛物线为:223y x x =−−+;(2分)(2)∵抛物线223y x x =−−+,∴对称轴为直线()2121x −=−=−⨯−,设()1,E t −,()2,23D n n n −−+,而AB DE ∥,()0,3A ,()3,0B −,(3分)由平行四边形ABDE 的性质可得:2013233n t n n +=−−⎧⎨=−−++⎩,解得:42n t =−⎧⎨=−⎩,∴()4,5D −−,(4分)由平行四边形ABED 的性质可得:231323n t n n −=−⎧⎨+=−−+⎩,解得:28n t =⎧⎨=−⎩,∴()2,5D −;综上:D 的坐标为()4,5−−或()2,5−;(5分)(3)∵抛物线223y x x =−−+,∴对称轴为直线()2121x −=−=−⨯−,∵4BC =,2FG BC =,∴8FG =,即()1,8F −,设直线FB 为y mx n =+,∴308m n m n −+=⎧⎨−+=⎩,解得:412m n =⎧⎨=⎩,∴直线FB 为412y x =+,(6分)同理可得:直线FC 为44y x =−+,设直线MN 为y kx e =+,∴223y kx e y x x =+⎧⎨=−−+⎩,∴结合题意可得:223x x kx e −−+=+即()2230x k x e +++−=有两个相等的实数根, ∴()21234e k =++,∴直线MN 为()21234y kx k =+++,(7分) ∴()24121234y x y kx k =+⎧⎪⎨=+++⎪⎩,解得:844k x y k +⎧=−⎪⎨⎪=−+⎩,即8,44k M k +⎛⎫−−+ ⎪⎝⎭,同理可得:,44k N k ⎛⎫−+ ⎪⎝⎭, ∴()()22228171484416k MF k k +⎛⎫=−++−+−=+ ⎪⎝⎭,()()2222171484416k NF k k ⎛⎫=−+++−=− ⎪⎝⎭,(8分) 当直线MN 从左往右上升时,04k <<,∴)4MF k +,)4NF k =−,∴MF NF +=(9分) 当直线MN 从左往右下降时,40k −<<,)4MF k +,)4NF k =−,∴MF NF +=∴MF NF +为定值.(10分) 【点睛】本题考查的是利用待定系数法求解一次函数与二次函数的解析式,二次函数与一次函数的交点坐标问题,一次函数的交点坐标,勾股定理的应用,平行四边形的性质,本题难度大,计算量大,属于中考压轴题. 26.(满分12分)已知Rt ABC △,90ACB ∠=︒,30ABC ∠=︒,CD AB ⊥于点D ,AD AE =.(1)如图1,若60EAD ∠=︒,取BD 的中点F ,连接EF ,2AD =,求EF 的长度;(2)如图2,连接BE ,点G 在线段BE 上,且GE CD =,连接CG 、AG ,若90AGC GCB ∠+∠=︒,H 为BG 中点,证明:CH BH CD =+;(3)如图3,在(2)的条件下,将AEG △绕点A 逆时针旋转得APQ △,连接BQ ,点R 是BQ 中点,连接CR ,若5AC =,在APQ △旋转过程中,当2CR BR −最大时,直线CR 与直线AB 交于点T ,请直接写出BQT △的面积.【答案】(1)EF =见详解(3)【分析】(1)解2,5,AEF AE AF EAF ==∠V ,60=︒,进而求得结果;(2)连接CE ,作AT CE ⊥于T ,不妨设AD AE =2=,可证得AEG ADC V V ≌,从而AEG A ∠=∠90DC =︒,进而得出点A 、C 、B 、E 共圆,从而30,60AEC ABC CEB CAB ∠=∠=︒∠=∠=︒,从而求得,AT ET 的值,进而得出EH CE ==,从而得出CEH △是等边三角形,进一步得出结论;(3)取AB 的中点O ,连接OR ,在AB 上截取OT 54=,可推出点R 在以O 为圆心,52为半径的圆上运动,可证得ROT BOR V V ∽,从而得出12RT =BR ,进而推出22CR BR CT −≤,从而当C 、T 、R 共线时,2CR BR −最大;作OS CR ⊥于S ,作RV AB ⊥于V ,解Rt CRT 求得4CT =,根据TOS TCD V V ∽求得OS ST ==,解Rt ROS 求得SR =,从而得出RT =,根据RTV CTD V V ∽求得RV =【详解】(1)解:如图1,作EG AB ⊥于G ,90,AGE EGF ∴∠=∠=︒30,90,ABC ACB ∠=︒∠=︒Q 60,BAC ∴∠=︒(1分)90,ADC ∠=︒Q 24,AC AD ∴==28,AB AC ∴==6,BD AB AD ∴=−=∵F 是BD 的中点,13,2DF BD ∴==5,AF AD DF ∴=+=(2分)在Rt AEG 中,2,60AE AD EAD ==∠=︒,2cos 601,2sin 60AG EG ∴=︒==︒=4,FG AF AG ∴=−=EF ∴=(3分)(2)证明:如图2,连接CE ,作AT CE ⊥于T ,不妨设2AD AE ==,90,ACB ∠=︒90,ACG GCB ∴∠+∠=︒90,AGC GCB ∠+∠=︒Q ,AGC ACG ∴∠=∠,AG AC ∴=,,AE AD GE CD ==Q (),AEG ADC SSS ∴≌(4分)90,AEG ADC ∴∠=∠=︒180,AEG ACB ∴∠+∠=︒A C B E ∴、、、四点共圆,30,60,AEC ABC CEB CAB ∴∠=∠=︒∠=∠=︒11,2AT AE ET AE ∴====(5分)CT ==Q CE ET CT ∴=+=2,90,60,AD ADC CAD =∠=︒∠=︒2tan 60EG CD ∴==︒=2,8,AE AD AB ===Q EB ∴=BG BE EG ∴=−=(6分)H 是BG 中点,12BH GH GB ∴===EH EB BH ∴=−= ,EH CE ∴=CEH ∴是等边三角形,;CH EH EG GH CD BH ∴==+=+(7分)(3)解:如图3,取AB 的中点O ,连接OR ,在AB 上截取54OT =, ∵R 是BQ 的中点,115,222OR AQ AC ∴=== ∴点R 在以O 为圆心,52为半径的圆上运动,1,,2OT OR ROT BOR OR OB ==∠=∠Q ∴ROT BOR V V ∽,(8分)1,2RT OT BR OR ∴==1,2RT BR ∴=,CR RT CT ∴−≤ 222,CR RT CT ∴−≤22,CR BR CT ∴−≤∴当C 、T 、R 共线时,2CR BR −最大,(9分)作OS CR ⊥于S ,作RV AB ⊥于V ,在Rt CRT 中,5524CD DT OD OT ==+=+15,4=CT ∴== 由TOS TCD V V ∽得,,OS ST OT CD DT CT ==5154ST =(10分)OS ST ∴===在Rt ROS中,14SR =RT SR ST ∴=−=(11分) 由RTV CTD V V ∽得,,RV RT CD CT=RV ∴=154BQT S BT RV ∴=⋅==V (12分)【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,确定圆的条件,解直角三角形,等边三角形的判定和性质等知识,解决问题的关键是较强的计算能力.。

【3套试卷】成都市中考模拟考试数学试题含答案

【3套试卷】成都市中考模拟考试数学试题含答案

中考一模数学试卷及答案1.以下代数式中, x 1的一个有理化因式是()【A】x 1【B】x 1【C】x 1【D】x 12. 为了认识学生双休日造作业的时间,老师随机抽查了10 位学生双休日造作业时间,结果以下表所示:作业时间(分90100120150200钟)人数22231那么这 10 位学生双休日造作业时间的中位数与众数分别是()【A】150,150【B】 120,150【C】135,150【D】 150,1203. 已知 P是ABC 内一点,联接PA、PB、PC,把ABC 的面积三均分,则P 点必定是()【A】ABC 的三边中垂线的交点【B】ABC 的三条角均分线的交点【C】ABC 的三条高的叫点【D】ABC 的三条中线的交点4. 以下运算正确的选项是个数是①x2x3x6;② x2 x3x5;③ (3x 2 )39 x6;④(2 x2 )24x4()【A】1 个【B】2 个【C】3 个【D】4 个5.在平面直角坐标系内,点 A 的坐标为( 1,0),点 B 的坐标为( a,0),圆 A 的半径为 2,以下说法中不正确的选项是()【A】当 a=-1 时,点 B 在圆 A 上【B】当 a C a 【D】当 -11时,点 B在圆 A内-1B Aa3时,点 B在圆 A内6.以下命题中,属于假命题的是()【A】对角线相等的梯形是等腰梯形【B】两腰相等的梯形是等腰梯形【C】底角相等的梯形是等腰梯形【D】等腰三角形被平行于底边的直线截成两部分,所截得的四边形的等腰梯形一、填空题(本大题共12 题,每题 4 分,满分48 分)7.科学家发现一种病毒的直径为0.000104米,用科学计数法表示为 _______米8.方程的 2 x 3x 根是_______9.已知对于 x 的一元二次方程x2bx 10 有两个不相等的实数根,则 b 的值为_________10. 将抛物线y x2 2 x向左平移两个单位长度,再向下平移 3 个长度单位,获取的抛物线的表达式为_________11.已知反比率函数的图像经过点p ( 2,1) ,则这个函数的图像分别在第_________ 象限。

精选成都市初三中考数学第一次模拟试卷【含答案】

精选成都市初三中考数学第一次模拟试卷【含答案】

精选成都市初三中考数学第一次模拟试卷【含答案】一、选择题(本大题共8小题,共24分)1.2的算术平方根是()A. B. C. D. 22.下列运算正确的是()A. B. C. D.3.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. B. C. D.4.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是()A. 中位数是2B. 众数是17C. 平均数是2D. 方差是26.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. B. C. D.7.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A.B.C.D.8.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.二、填空题(本大题共8小题,共24分)9.-5的相反数是______.10.分解因式:4a2-4a+1=______.11.若在实数范围内有意义,则x的取值范围为______.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.13.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.15.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)17.计算|-6|+(-2)3+()018.化简:19.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)20.解不等式组21.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.23.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?24.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:=1.41,=1.73)25.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.27.正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=S△OBG,连接GP,则当BO 为何值时,四边形PKBG的面积最大?最大面积为多少?答案和解析1.【答案】B【解析】解:2的算术平方根是,故选:B.根据算术平方根的定义直接解答即可.本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.【答案】C【解析】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.【答案】D【解析】解:将180000用科学记数法表示为1.8×105,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:从左边看得到的是两个叠在一起的正方形.故选:A.左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.5.【答案】A【解析】解:观察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选:A.先根据表格提示的数据得出50名学生读书的册数,然后除以50即可求出平均数;在这组样本数据中,3出现的次数最多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2,根据方差公式即可得出答案.本题考查的知识点有:用样本估计总体、众数、方差以及中位数的知识,解题的关键是牢记概念及公式.6.【答案】C【解析】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=-2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.7.【答案】D【解析】解:过点P作PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO=6∴S矩形ABDO=S▱ABCD∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=-3故选:D.由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.本题考查了反比例函数k的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.8.【答案】D【解析】解:连接AC、BD、OE,∵四边形ABCD是菱形,∴AC⊥BD,AM=CM,BM=DM,∵⊙O与边AB、AD都相切,∴点O在AC上,设AM=x,BM=y,∵∠BAD<90°,∴x>y,由勾股定理得,x2+y2=25,∵菱形ABCD的面积为20,∴xy=5,,解得,x=2,y=,∵⊙O与边AB相切,∴∠OEA=90°,∵∠OEA=∠BMA,∠OAE=∠BAM,∴△AOE∽△ABM,∴=,即=,解得,OE=,故选:D.连接AC、BD、OE,根据菱形的性质、勾股定理分别求出AM、BM,根据切线的性质得到∠OEA=90°,证明△AOE∽△ABM,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、菱形的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.9.【答案】5【解析】解:-5的相反数是5.故答案为:5.根据相反数的定义直接求得结果.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.【答案】(2a-1)2【解析】解:4a2-4a+1=(2a-1)2.故答案为:(2a-1)2.根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.11.【答案】x≥2【解析】解:由题意得:x-2≥0,解得:x≥2,故答案为:x≥2.根据二次根式有意义的条件可得x-2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.【答案】30【解析】解:∵△AOB绕点O按逆时针方向旋转45°后得到△COD,∴∠BOD=45°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为:30.根据旋转的性质可得∠BOD,再根据∠AOD=∠BOD-∠AOB计算即可得解.本题考查了旋转的性质,主要利用了旋转角的概念,需熟记.13.【答案】【解析】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】-40【解析】解:根据题意得x+32=x,解得x=-40.故答案是:-40.根据题意得x+32=x,解方程即可求得x的值.本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.【答案】(2+2)【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC-BP=(4+4)cm,∵∠EPC=180°-90°-60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.本题考查了翻折变换-折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.16.【答案】【解析】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助线是解题的关键.17.【答案】解:原式=6-8+1=-1.【解析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:==a.【解析】根据分式的减法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.【答案】【解析】解:(1)画树状图为:共有4种等可能的结果数,其中小明和小刚都在本周日上午去游玩的结果数为1,所以小明和小刚都在本周日上午去游玩的概率=;故答案为(2)画树状图为:共有8种等可能的结果数,其中他们三人在同一个半天去游玩的结果数为2,所以他们三人在同一个半天去游玩的概率=.(1)画树状图展示所有4种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.【答案】解:解不等式2x>1-x,得:x>,解不等式4x+2<x+4,得:x<,则不等式组的解集为<x<.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】200 12 36 108【解析】解:(1)∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.(2)200×30%=60(名).(3)∵3200×36%=1152(名)∴“总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】解:(1)∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∠B=∠D=90°,∠BAC=∠DCA.由翻折的性质可知:∠EAB=∠BAC,∠DCF=∠DCA.∴∠EAB=∠DCF.∠∠在△ABE和△CDF中,∠∠∴△ABE≌△CDF(ASA),∴DF=BE.∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形;(2)当∠BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°-30°=60°,即∠CAE=∠ACE,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.【解析】(1)首先证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等四边形是平行四边形可证明AECF是平行四边形;(2)由折叠性质得到∠BAE=∠CAE=30°,求得∠ACE=90°-30°=60°,即∠CAE=∠ACE,得到EA=EC,于是得到结论.本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.23.【答案】240【解析】解:(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有,解得,∴y=-6x+300,由题意(-6x+300)x=3600,解得x=20或30(舍弃)答:参加这次旅游的人数是20人.(1)观察图象即可解决问题;(2)首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题.本题考查一次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,读懂图象信息,用数形结合的思想思考问题,属于中考常考题型.24.【答案】150° 5【解析】解:(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.∵∠DCG=60°,∴∠CDN=30°.又∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∴∠MAD=∠CDN=30°(同角的余角相等),∴箱盖绕点A转过的角度为:360°-90°-30°-90°=150°.在直角△BCH中,∠BCH=30°,BC=10cm,则BH=BC=5cm.故答案是:150°;5;(2)在直角△AMD中,AD=BC=10cm,∠MAD=30°,则MD=AD•sin30°=×10=5(cm).∵∠DCN=30°,∴cos∠DCN=cos30°==,即=,解得EF=32.4.即箱子的宽EF是32.4cm.(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.利用矩形的性质、直角三角形的性质以及等角的余角相等得到∠MAD=30°,根据周角的定义易求箱盖绕点A转过的角度;通过解直角△BHC来求BH的长度;(2)通过解直角△AMD得到线段MD的长度,则DN=65-EF-DM,利用解直角△DCN来求CD的长度,即EF的长度即可.本题考查了解直角三角形的应用.主要是余弦概念及运算,关键把实际问题转化为数学问题加以计算.25.【答案】解:(1)∵点A(,0)与点B(0,-),∴OA=,OB=,∴AB==2,∵∠AOB=90°,∴AB是直径,∴⊙M的半径为:;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,即AE是切线,∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°-∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°,∴OC=OB•tan30°=×=,∴AC=OA-OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF=AE=,∴OF=OA-AF=,∴点E的坐标为:(,).【解析】(1)由点A(,0)与点B(0,-),可求得线段AB的长,然后由∠AOB=90°,可得AB是直径,继而求得⊙M的半径;(2)由圆周角定理可得:∠COD=∠ABC,又由∠COD=∠CBO,即可得BD平分∠ABO;(3)首先过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,易得△AEC是等边三角形,继而求得EF与AF的长,则可求得点E的坐标.此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.26.【答案】解:(1)∵二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),∴,得,∴y=x2-x-=,∴二次函数的表达式是y=x2-x-,顶点坐标是(,);(2)①点M的坐标为(,),(,-)或(,-),理由:当AM1⊥AB时,如右图1所示,∵点A(-1,0),点B(0,-),∴OA=1,OB=,∴tan∠BAO==,∴∠BAO=60°,∴∠OAM1=30°,∴tan∠OAM1=,解得,DM1=,∴M1的坐标为(,);当BM3⊥AB时,同理可得,,解得,DM3=,∴M3的坐标为(,-);当点M2到线段AB的中点的距离等于线段AB的一半时,∵点A(-1,0),点B(0,-),∴线段AB中点的坐标为(-,),线段AB的长度是2,设点M2的坐标为(,m),则=1,解得,m=,即点M2的坐标为(,-);由上可得,点M的坐标为(,),(,-)或(,-);②如图2所示,作AB的垂直平分线,于y轴交于点F,由题意知,AB=2,∠BAF=∠ABO=30°,∠AFB=120°,∴以F为圆心,AF长为半径作圆交对称轴于点M和M′点,则∠AMB=∠AM′B=∠AFB=60°,∵∠BAF=∠ABO=30°,OA=1,∴∠FAO=30°,AF==FM=FM′,OF=,过点F作FG⊥MM′于点G,∵FG=,∴MG=M′G=,又∵G(,-),∴M(,),M′(,),∴≤t≤.【解析】(1)根据二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),可以求得该函数的解析式,然后将函数解析式化为顶点式,即可得到该函数的顶点坐标;(2)①根据题意,画出相应的图形,然后利用分类讨论的方法即可求得点M的坐标;②根据题意,构造一个圆,然后根据圆周角与圆心角的关系和∠AMB不小于60°,即可求得t的取值范围.本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用分类讨论和数形结合的思想解答.27.【答案】不可能【解析】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②如图2中,∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°-∠AOB,在正方形ABCD中,∠BAO=90°-∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中,,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,又OF=CF+OC=AB=BC=BO+OC=EF+OC,∴CF=EF,∴四边形EFCH为正方形;③结论:OA=OE.理由:如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.∵AB=BC,BQ=BO,∴AQ=QC,∵∠QAO=∠EOC,∠AQO=∠ECO=135°,∴△AQO≌△OCE(ASA),∴AO=OE.(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO=S△OBG,∴=()2=,∴OP=1,∴S△POG=OG•OP=×1×2=1,设OB=a,BG=b,则a2+b2=OG2=4,∴b=,∴S△OBG=ab=a==,∴当a2=2时,△OBG有最大值1,此时S△PKO=S△OBG=,∴四边形PKBG的最大面积为1+1+=.∴当BO为时,四边形PKBG的面积最大,最大面积为.(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;③结论:OA=OE.如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.证明△AQO ≌△OCE(ASA)即可.(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△OBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反中学数学一模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠66.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF (1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.25.(10分)已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF ⊥AC于F.求证:BE=CF.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(12分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC 上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.28.(12分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE 上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.。

初中数学四川省成都市中考模拟数学模拟考试卷一含答案解析.docx

初中数学四川省成都市中考模拟数学模拟考试卷一含答案解析.docx

xx学校xx 学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:(2019·山东中考模拟)在实数1、0、﹣1、﹣2中,最小的实数是()A.-2 B.-1 C.1 D.0 试题2:(2019·浙江中考模拟)据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为A. B. C. D.试题3:(2019·北京中考模拟)某个几何体的三视图如图所示,该几何体是A. B. C. D.试题4:(2019·广东中考模拟)下列运算正确的是()评卷人得分A.3a﹣a=3 B.a6÷a2=a3C.﹣a(1﹣a)=﹣a+a2 D.试题5:(2019·上海中考模拟)关于反比例函数,下列说法正确的是()A.函数图像经过点(2,2); B.函数图像位于第一、三象限;C.当时,函数值随着的增大而增大; D.当时,.试题6:(2019·甘肃中考模拟)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9试题7:(2019·山东中考模拟)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为( )A.1.70,1.75 B.1.70,1.70C.1.65,1.75 D.1.65,1.70试题8:(2019·云南中考模拟)某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x件,则下列方程正确的是()A.=4 B.=4C.=4 D.试题9:(2019·江苏中考模拟)如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100° B.120° C.130° D.150°试题10:(2019·广州大学附属中学中考模拟)如图,抛物线过点和点,且顶点在第四象限,设,则的取值范围是().A. B. C. D.试题11:(2019·广东中考模拟)如果多边形的每个外角都是45°,那么这个多边形的边数是_____.试题12:(2019·云南初三)函数y=中自变量x的取值范围是___________.试题13:(2019·安徽中考模拟)如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD=2,BC=4,则EF=________.试题14:(2019·湖北中考模拟)在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.试题15:(2019·北京中考模拟)计算:.试题16:(2019·湖南中考模拟)解不等式组:,并把解集在数轴上表示出来.试题17:(2019·河南中考模拟)先化简,再求值:,其中.试题18:(2019·哈尔滨市第四十七中学中考模拟)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生?(2)将图1补充完整;(3)求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.试题19:(2019·上海中考模拟)如图,一座古塔AH的高为33米,AH⊥直线l,某校九年级数学兴趣小组为了测得该古塔塔刹AB 的高,在直线l上选取了点D,在D处测得点A的仰角为26.6°,测得点B的仰角为22.8°,求该古塔塔刹AB的高.(精确到0.1米)(参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5,sin22.8°=0.39,cos22.8°=092,tan22.8°=0.42)试题20:(2019·江西中考模拟)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k≠0)的图象经过点B.(1)求反比例函数的解析式;(2)若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积.试题21:(2019·江苏中考模拟)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若sinG=0.6,CF=4,求GA的长.试题22:(2019·重庆中考模拟)在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是______.试题23:(2019·山东中考模拟)关于 x 的一元二次方程(a﹣1)x2﹣2x+3=0 有实数根,则整数 a 的最大值是_____________.试题24:(2019·四川中考模拟)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则=_____.试题25:(2019·江苏中考模拟)如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____.试题26:(2019·福建中考模拟)如图,直线y=-x+b与双曲线分别相交于点A,B,C,D,已知点A的坐标为(-1,4),且AB:CD=5:2,则m=_________.试题27:(2019·辽宁中考模拟)某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量万件与销售单价元之间符合一次函数关系,其图象如图所示.求y与x的函数关系式;物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x定为每件多少元时,厂家每月获得的利润最大?最大利润是多少?试题28:(2019·广东中考模拟)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)若点F为AB的中点,连接FN、FM(如图②),求证:∠MFN=∠BDC.试题29:(2019·湖南中考模拟)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“衍生直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.试题1答案:A【解析】1>0>-1>-2最小的实数是-2.故选A.【点睛】本题考查了实数的大小比较,熟练掌握比较法则是解题的关键.试题2答案:D【解析】4 600 000 000用科学记数法表示为:4.6×109.故选D.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题3答案:A【解析】由该几何体的主视图可以判断C项错误,由该几何体的俯视图可以判断B和D错误,所以选择A项.【点睛】本题考查由三视图判断几何体,解题的关键是掌握根据三视图判断几何体.试题4答案:C【解析】A.3a=a=2a,故A错误;B.a6÷a2=a4,故B错误;C.﹣a(1﹣a)=﹣a+a2,故C正确;D.=4,故D错误.故选:C.【点睛】本题考查了合并同类项,同底数幂的除法,负整数指数幂,积的乘方等多个运算性质,需同学们熟练掌握.试题5答案:C【解析】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.试题6答案:A【解析】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.试题7答案:A【解析】15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.75,共有4人,所以,众数是1.75.因此,中位数与众数分别是1.70,1.75,故选A.【点睛】本题考查了中位数与众数,熟练掌握中位数及众数的定义以及求解方法是解题的关键.试题8答案:A【解析】设每月原计划生产的医疗器械有x件,根据题意,得:故选A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.试题9答案:C【解析】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,试题10答案:B【解析】∵抛物线()过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,=a+b+c,∴P==a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a <3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选B.试题11答案:8【解析】∵一个多边形的每个外角都等于45°,∴多边形的边数为360°÷45°=8.则这个多边形是八边形.试题12答案:x≥﹣且x≠1【解析】根据题意得:解得:x≥﹣且x≠1.试题13答案:【解析】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2- =,故答案为:.【点睛】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.试题14答案:20【解析】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.试题15答案:7.【解析】【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.试题16答案:则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.【解析】解不等式①得:x>﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.试题17答案:,.【解析】原式=,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.试题18答案:200名;见解析;;(4)375.【解析】,答:此次抽样调查中,共调查了200名学生;反对的人数为:,补全的条形统计图如右图所示;扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;(4),答:该校1500名学生中有375名学生持“无所谓”意见.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.试题19答案:该古塔塔刹AB的高为5.3m.【解析】∵AH⊥直线l,∴∠AHD=90°,在Rt△ADH中,tan∠ADH=,∴DH=,在Rt△BDH中,tan∠BDH=,∴DH=∴,解得:AB≈5.3m,答:该古塔塔刹AB的高为5.3m.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,正确的解直角三角形是解题的关键.试题20答案:(1)y=;(2)36;【解析】(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=36.【点睛】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法.在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键.试题21答案:(1)见解析;(2)见解析;(3)AG=5.【解析】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=5.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键. 试题22答案:.【解析】画树状图得:∵共有6种等可能的结果,能让灯泡L1发光的有2种情况,∴能让灯泡L1发光的概率为:=.故答案为.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比试题23答案:【解析】根据题意得:a+1≠0且△=(-2)2-4×(a+1)×3≥0,解得a≤且a≠-1,所以整数a的最大值为-2.故答案为-2.试题24答案:【解析】a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴+++…+=++++…+=(1–+–+–+–+…+–)=(1+––)=.故答案为.试题25答案:4或4.【解析】①当AF<AD时,如图1,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,设MN是BC的垂直平分线,则AM=AD=3,过E作EH⊥MN于H,则四边形AEHM是矩形,∴MH=AE=2,∵A′H=,∴A′M=,∵MF2+A′M2=A′F2,∴(3-AF)2+()2=AF2,∴AF=2,∴EF==4;②当AF>AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,设MN是BC的垂直平分线,过A′作HG∥BC交AB于G,交CD于H,则四边形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=HG=3,∴EG==,∴DH=AG=AE+EG=3,∴A′F==6,∴EF==4,综上所述,折痕EF的长为4或4,故答案为:4或4.【点睛】本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键.试题26答案:【解析】如图由题意:k=﹣4,设直线AB交x轴于F,交y轴于E.∵反比例函数y和直线AB组成的图形关于直线y=x对称,A(﹣1,4),∴B(4,﹣1),∴直线AB的解析式为y =﹣x+3,∴E(0,3),F(3,0),∴AB=5,EF=3.∵AB:CD=5:2,∴CD=2,∴CE=DF.设C(x,-x+3),∴CE=,解得:x=(负数舍去),∴x=,-x+3=,∴C(),∴m==.故答案为:.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用轴对称的性质解决问题,属于中考常考题型.试题27答案:(1);(2)当销售单价x定为每件80元时,厂家每月获得的利润最大,最大利润是4800元.【解析】解:设y与x的函数关系式为,函数图象经过点和点,,解得:,与x的函数关系式为.由题意得:.试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,自变量x的取值范围是.,当时,w随x的增大而增大,时,w有最大值,当时,,答:当销售单价x定为每件80元时,厂家每月获得的利润最大,最大利润是4800元.【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.试题28答案:(1)详见解析;(2);(3)详见解析. 【解析】(1)如下图所示:∵AB=AC,∴∠ABC=∠ACB,∵M为BC的中点,∴AM⊥BC在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN为等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)如下图所示:设BM=CM=MN=a,∵四边形DNBC是平行四边形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由可得,解得:(负值舍去),∴;(3)∵F是AB的中点,∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.∴∠MFN=∠BDC.【点睛】本题是四边形的综合题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.试题29答案:(1);(-2,);(1,0);(2)N点的坐标为(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【解析】(1)∵,a=,则抛物线的“衍生直线”的解析式为;联立两解析式求交点,解得或,∴A(-2,),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在中,令y=0可求得x= -3或x=1,∴C(-3,0),且A(-2,),∴AC=由翻折的性质可知AN=AC=,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN=,∵OD=,∴ON=或ON=,∴N点的坐标为(0,),(0,);(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ ACK=∠ EFH,在△ ACK和△ EFH中∴△ ACK≌△ EFH,∴FH=CK=1,HE=AK=,∵抛物线的对称轴为x=-1,∴ F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=-=,即E的纵坐标为-,∴ E(-1,-);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,),∴线段AC的中点坐标为(-2.5,),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=,∴x= -4,y=-t,-t=-×(-4)+,解得t=,∴E(-1,),F(-4,);综上可知存在满足条件的点F ,此时E(-1,-)、(0,)或E(-1,),F(-4,)本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题。

2023年成都市九年级中考数学模拟试卷(一)附答案解析

2023年成都市九年级中考数学模拟试卷(一)附答案解析

2023年成都市九年级中考数学模拟试卷(一)A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如果|x﹣2|=2﹣x,那么x的取值范围是()A.x≤2B.x<2C.x≥2D.x>22.(3分)如图所示几何体的左视图是()A.B.C.D.3.(3分)下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1034.(3分)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形()A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度5.(3分)下列计算正确的是()A.2a+5b=10ab B.(﹣ab)2=a2b C.a2•a4=a8D.2a6÷a3=2a36.(3分)永宁县某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是()日期星期一星期二星期三星期四星期五星期六星期天体温(℃)36.236.236.536.336.236.436.3A.36.3和36.2B.36.2和36.3C.36.2和36.2D.36.2和36.17.(3分)如图,在△ABC中,∠BAC=70°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.40°B.50°C.60°D.70°8.(3分)若关于x 的分式方程无解,则a 的值为()A.1B.﹣1C.1或0D.1或﹣19.(3分)如图,直线l 1∥l 2∥l 3,一等腰直角三角形ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ACB =90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则的值为()A.B.C.D.10.(3分)如图是二次函数y =x 2+bx +c 的部分图象,抛物线的对称轴为直线x =1,与x 轴交于点A (﹣1,0),与y 轴交于点B .给出下列结论:①b =c ;②点B 的坐标为(0,﹣3);③抛物线与x 轴另一个交点的坐标为(3,0);④抛物线的顶点坐标为(1,﹣4);⑤函数最大值为﹣4.其中正确的个数为()A.5B.4C.3D.2二.填空题(共4小题,满分16分,每小题4分)11.(4分)分解因式:4a 3b 2﹣6a 2b 2=.12.(4分)若一次函数y =(k ﹣2)x +3﹣k 的图象不经过第四象限,则k 的取值范围是.13.(4分)如图,AB 是半圆O 的直径,AC =AD ,OC =2,∠CAB =30°,则点O 到CD 的距离OE 为.14.(4分)《孙子算经》中记载:“今有三人共车,二车空;二人共车,九人步.问人和车各几何?”其大意是:今有若干人乘车,每3人乘一车,最终剩余2辆空车,若每2人同乘一车,最终剩下9人因无车可乘而步行,问有多少人,多少辆车?设有x辆车,y个人,根据题意,可列方程组为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:(﹣1)2021+()﹣1+|﹣1+|﹣2sin60°.(2)解不等式组.16.(6分)先化简,再求值:÷(x+2﹣),其中x=.17.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了名学生;(2)将条形统计图补充完整;扇形统计图中D类学生所对应的圆心角是度;(3)为了共同进步,陈老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.18.(8分)在“停课不停学”期间,小明用电脑在线上课,图1是他的电脑液晶显示器的侧面图,显示屏AB可以绕O点旋转一定角度.研究表明:当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个18°俯角(即望向屏幕中心P的的视线EP与水平线EA的夹角∠AEP)时,对保护眼睛比较好,而且显示屏顶端A与底座C的连线AC与水平线CD垂直时(如图2)时,观看屏幕最舒适,此时测得∠BCD=30°,∠APE=90°,液晶显示屏的宽AB为32cm.(1)求眼睛E与显示屏顶端A的水平距离AE;(结果精确到1cm)(2)求显示屏顶端A与底座C的距离AC.(结果精确到1cm)(参考数据:sin18°≈0.3,cos18°≈0.9,≈1.4,≈1.7)19.(10分)如图,在直角坐标平面中,点A(2,m)和点B(6,2)同在一个反比例函数的图象上.(1)求直线AB的表达式;(2)求△AOB的面积及点A到OB的距离AH.20.(10分)已知:AB与⊙O相切于点B,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BC,BD.(1)如图1,求证:∠ABC=∠ADB;(2)如图2,BE是⊙O的直径,EF是⊙O的弦,EF交OD于点G,并且∠A=∠E,求证:=;(3)如图3,在(2)的条件下,点H在上,连接EH,FH,DF,若DF=,EH=3,FH=5,求AB的长.B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)若m﹣n=3,mn=5,则m+n的值为.22.(4分)一元二次方程x2﹣x+(b+1)=0无实数根,则b的取值范围为.23.(4分)如图,正六边形的边长为1cm,分别以它的所有顶点为圆心,1cm为半径作圆弧,则阴影部分图形的周长和为cm.(结果保留π)24.(4分)如图,直线y=kx与反比例函数y=的图象交于A,B两点,与函数y=(0<b<a)在第一象限的图象交于点C,AC=3BC,过点B分别作x轴,y轴的平行线交函数y=在第一象限的图象于点E,D,连接AE交x轴于点G,连接AD交y轴于点F,连接FG,若△AFG的面积为1,则的值为,a+b的值为.25.(4分)在菱形ABCD中,∠D=60°,CD=4,以A为圆心,2为半径作⊙A,交对角线AC于点E,点F为⊙A上一动点,连接CF,点G为CF中点,连接BG,取BG中点H,连接AH,则AH的最大值为.二.解答题(共3小题,满分30分)26.(8分)“武汉加油!中国加油!”疫情牵动万人心,每个人都在为抗击疫情而努力.某厂改造了10条口罩生产线,每条生产线每天可生产口罩500个.如果每增加一条生产线,每条生产线就会比原来少生产20个口罩.设增加x条生产线后,每条生产线每天可生产口罩y个.(1)直接写出y与x之间的函数关系式;(2)若每天共生产口罩6000个,在投入人力物力尽可能少的情况下,应该增加几条生产线?(3)设该厂每天可以生产的口罩w个,请求出w与x的函数关系式,并求出增加多少条生产线时,每天生产的口罩数量最多,最多为多少个?27.(10分)在矩形ABCD中,AB=2BC.点E是直线AB上的一点,点F是直线BC上的一点,且满足AE =2CF,连接EF交AC于点G.(1)tan∠CAB=;(2)如图1,当点E在AB上,点F在线段BC的延长线上时,①求证:EG=FG;②求证:CG=BE;(3)如图2,当点E在BA的延长线上,点F在线段BC上时,AC与DF相交于点H.①EG=FG这个结论是否仍然成立?请直接写出你的结论;②当CF=1,BF=2时,请直接写出GH的长.28.(12分)如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m 的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如果|x﹣2|=2﹣x,那么x的取值范围是()A.x≤2B.x<2C.x≥2D.x>2【答案】A【解析】因为|x﹣2|=2﹣x,由负数的绝对值等于它的相反数,0的绝对值是0可得,x﹣2≤0,即x≤2,故选:A.2.(3分)如图所示几何体的左视图是()A.B.C.D.【答案】C【解析】从左边看,是一列两个矩形.故选:C.3.(3分)下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×103【答案】A【解析】数字2034000科学记数法可表示为2.034×106.故选:A.4.(3分)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形()A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度【答案】C【解析】将△ABC各点的纵坐标保持不变,横坐标都减去3,所得图形与原图形相比向左平移了3个单位.故选:C.5.(3分)下列计算正确的是()A.2a+5b=10ab B.(﹣ab)2=a2b C.a2•a4=a8D.2a6÷a3=2a3【答案】D【解析】2a+5b不能合并同类项,故A不符合题意;(﹣ab)2=a2b2,故B不符合题意;a2•a4=a6,故C不符合题意;2a6÷a3=2a3,故D符合题意;故选:D.6.(3分)永宁县某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是()日期星期一星期二星期三星期四星期五星期六星期天体温(℃)36.236.236.536.336.236.436.3A.36.3和36.2B.36.2和36.3C.36.2和36.2D.36.2和36.1【答案】B【解析】将这组数据重新排列为36.2、36.2、36.2、36.3、36.3、36.4、36.5,所以这组数据的众数为36.2,中位数为36.3,故选:B.7.(3分)如图,在△ABC中,∠BAC=70°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.40°B.50°C.60°D.70°【答案】A【解析】由作图可知:MN垂直平分线段AC,可得DA=DC,则∠DAC=∠C=30°,故∠BAD=70°﹣30°=40°,故选:A.8.(3分)若关于x的分式方程无解,则a的值为()A.1B.﹣1C.1或0D.1或﹣1【答案】D【解析】去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,当a﹣1=0,即a=1时,方程无解;当a ﹣1≠0,即a ≠1时,解得:x =,由分式方程无解,得到=﹣1,即a =﹣1,综上,a 的值为1或﹣1,故选:D .9.(3分)如图,直线l 1∥l 2∥l 3,一等腰直角三角形ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ACB =90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则的值为()A.B.C.D.【答案】A【解析】方法1,如图,作BF ⊥l 3,AE ⊥l 3,∵∠ACB =90°,∴∠BCF +∠ACE =90°,∵∠BCF +∠CBF =90°,∴∠ACE =∠CBF ,在△ACE 和△CBF 中,,∴△ACE ≌△CBF ,∴CE =BF =3,CF =AE =4,∵l 1与l 2的距离为1,l 2与l 3的距离为3,∴AG =1,BG =EF =CF +CE =7∴AB ==5,∵l 2∥l 3,∴=∴DG =CE =,∴BD =BG ﹣DG =7﹣=,∴=.方法2、过点A 作AE ⊥l 3于E ,交l 2于G ,∵l 1∥l 2∥l 3,∴=,∴CD =3AD ,设AD =a ,则CD =3a ,AC =CD +AD =4a ,∵BC =AC ,∴BC =4a ,在Rt△BCD 中,根据勾股定理得,BD ==5a ,在Rt△ABC 中,AB =AC =4a ,∴,故选:A .10.(3分)如图是二次函数y =x 2+bx +c 的部分图象,抛物线的对称轴为直线x =1,与x 轴交于点A (﹣1,0),与y 轴交于点B .给出下列结论:①b =c ;②点B 的坐标为(0,﹣3);③抛物线与x 轴另一个交点的坐标为(3,0);④抛物线的顶点坐标为(1,﹣4);⑤函数最大值为﹣4.其中正确的个数为()A.5B.4C.3D.2【解析】∵二次函数y=x2+bx+c的对称轴为直线x=1,与x轴交于点A(﹣1,0),∴,抛物线与x轴另一个交点的坐标为(3,0),故③正确,符合题意;解得,∴b≠c,故①错误,不符合题意;函数解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点B的坐标为(0,﹣3),故②正确,符合题意;抛物线的顶点坐标为(1,﹣4),故④正确,符合题意;函数图象开口向上,当x=1时,取得最小值﹣4,故⑤错误,不符合题意;故选:C.二.填空题(共4小题,满分16分,每小题4分)11.(4分)分解因式:4a3b2﹣6a2b2=________.【答案】2a2b2(2a﹣3).【解析】4a3b2﹣6a2b2=2a2b2(2a﹣3).12.(4分)若一次函数y=(k﹣2)x+3﹣k的图象不经过第四象限,则k的取值范围是________.【答案】2<k≤3.【解析】当一次函数y=(k﹣2)x+3﹣k的图象经过第一、三象限时,,∴k=3;当一次函数y=(k﹣2)x+3﹣k的图象经过第一、二、三象限时,,∴2<k<3.综上,k的取值范围是2<k≤3.13.(4分)如图,AB是半圆O的直径,AC=AD,OC=2,∠CAB=30°,则点O到CD的距离OE为________.【答案】.【解析】∵AC=AD,∠A=30°,∴∠ACD=∠ADC=75°,∴∠OCA=∠A=30°,∴∠OCD=45°,即△OCE是等腰直角三角形,在等腰Rt△OCE中,OC=2;因此OE=.14.(4分)《孙子算经》中记载:“今有三人共车,二车空;二人共车,九人步.问人和车各几何?”其大意是:今有若干人乘车,每3人乘一车,最终剩余2辆空车,若每2人同乘一车,最终剩下9人因无车可乘而步行,问有多少人,多少辆车?设有x辆车,y个人,根据题意,可列方程组为________.【答案】.【解析】依题意,得:.三.解答题(共6小题,满分54分)15.(12分)(1)计算:(﹣1)2021+()﹣1+|﹣1+|﹣2sin60°.(2)解不等式组.【答案】见解析【解析】(1)原式=﹣1+2+﹣1﹣2×=﹣=0;(2),解不等式①得:x>1,解不等式②得:x>3,∴不等式组的解集是x>3.16.(6分)先化简,再求值:÷(x+2﹣),其中x=.【答案】见解析【解析】原式=÷=•=,当x=时,原式==.17.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了________名学生;(2)将条形统计图补充完整;扇形统计图中D类学生所对应的圆心角是________度;(3)为了共同进步,陈老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【答案】见解析【解析】(1)陈老师一共调查学生:(2+1)÷15%=20(名);故答案为:20.(2)C类学生人数:20×25%=5(名),C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),×360°=36°,补充条形统计图如图,故答案为:36;(3)列表如下,A类学生中的两名女生分别记为A1和A2,女A1女A2男A男D女A1男D女A2男D男A男D女D女A1女D女A2女D男A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为=.18.(8分)在“停课不停学”期间,小明用电脑在线上课,图1是他的电脑液晶显示器的侧面图,显示屏AB可以绕O点旋转一定角度.研究表明:当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个18°俯角(即望向屏幕中心P的的视线EP与水平线EA的夹角∠AEP)时,对保护眼睛比较好,而且显示屏顶端A与底座C的连线AC与水平线CD垂直时(如图2)时,观看屏幕最舒适,此时测得∠BCD=30°,∠APE=90°,液晶显示屏的宽AB为32cm.(1)求眼睛E与显示屏顶端A的水平距离AE;(结果精确到1cm)(2)求显示屏顶端A与底座C的距离AC.(结果精确到1cm)(参考数据:sin18°≈0.3,cos18°≈0.9,≈1.4,≈1.7)【答案】见解析【解析】(1)由已知得AP=BP=AB=16cm,在Rt△APE中,∵sin∠AEP=,∴AE==≈≈53,答:眼睛E与显示屏顶端A的水平距离AE约为53cm;(2)如图,过点B作BF⊥AC于点F,∵∠EAB+∠BAF=90°,∠EAB+∠AEP=90°,∴∠BAF=∠AEP=18°,在Rt△ABF中,AF=AB•cos∠BAF=32×cos18°≈32×0.9≈28.8,BF=AB•sin∠BAF=32×sin18°≈32×0.3≈9.6,∵BF∥CD,∴∠CBF=∠BCD=30°,∴CF=BF•tan∠CBF=9.6×tan30°=9.6×≈5.44,∴AC=AF+CF=28.8+5.44≈34(cm).答:显示屏顶端A与底座C的距离AC约为34cm.19.(10分)如图,在直角坐标平面中,点A(2,m)和点B(6,2)同在一个反比例函数的图象上.(1)求直线AB的表达式;(2)求△AOB的面积及点A到OB的距离AH.【答案】见解析【解析】(1)设反比例函数为y=,∵点A(2,m)和点B(6,2)在y=的图象上∴k=2m=6×2解得m=6,,∴点A的坐标为(2,6),设直线AB的表达式为y=ax+b,把A(2,6)和B(6,2)代入得,解得,∴直线AB的表达式为y=﹣x+8;(2)设直线AB与x轴的交点为C,在直线AB 为y =﹣x +8中,令y =0,则x =8,∴C (8,0),∴S △AOB =S △AOC ﹣S △BOC =﹣=16,∵B (6,2),∴OB ==2,∵S △AOB =OB •AH =16,∴AH ==.20.(10分)已知:AB 与⊙O 相切于点B ,连接AO 交⊙O 于点C ,延长AO 交⊙O 于点D ,连接BC ,BD .(1)如图1,求证:∠ABC =∠ADB ;(2)如图2,BE 是⊙O 的直径,EF 是⊙O 的弦,EF 交OD 于点G ,并且∠A =∠E ,求证:=;(3)如图3,在(2)的条件下,点H 在上,连接EH ,FH ,DF ,若DF =,EH =3,FH =5,求AB 的长.【答案】见解析【解析】(1)证明:连接OB ,如图1所示:∵AB 与⊙O 相切于点B ,∴AB ⊥OB ,∴∠OBA =90°,∵CD 是⊙O 的直径,∴∠CBD =90°,∴∠CBD =∠OBA ,∴∠CBD﹣∠OBC=∠OBA﹣∠OBC,即∠OBD=∠ABC,∵OB=OD,∴∠OBD=∠ADB,∴∠ABC=∠ADB;(2)证明:∵∠A+∠AOB=90°,∠A=∠E,∠EOG=∠AOB,∴∠E+∠EOG=90°,∴∠EGO=90°,∴OD⊥EF,∴=;(3)解:连接DH、DE,过点D作DM⊥FH于M,DN⊥HE交HE的延长线于N,如图3所示:∵=,∴DE=DF=,∠DHE=∠DHF,∴DN=DM,∴Rt△DEN≌Rt△DFM(HL),∴EN=FM,∵∠N=∠DMH=90°,∠DHE=∠DHF,DH=DH,∴△DHN≌△DHM(AAS),∴HN=HM,设EN=t,则FM=t,∴3+t=5﹣t,解得:t=,∴EN=,∴HN=4,在Rt△DEN中,DN===4,在Rt△DHN中,tan∠DHN===,∴∠DHN=30°,∴∠DBE=30°,∴∠ADB=∠ABC=∠DBE=30°,∴∠BCD=90°﹣∠ADB=60°,∴∠A=∠BCD﹣∠ABC=30°=∠ADB,∴AB=BD,∵BE是⊙O的直径,∴∠BDE=90°,在Rt△BDE中,tan∠DBE=,∴BD====,∴AB=BD=.B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)若m﹣n=3,mn=5,则m+n的值为________.【答案】.【解析】根据(m+n)2=(m﹣n)2+4mn,把m﹣n=3,mn=1,得,(m+n)2=9+20=29;所以m+n=.22.(4分)一元二次方程x2﹣x+(b+1)=0无实数根,则b的取值范围为________.【答案】b>﹣.【解析】∵一元二次方程x2﹣x+(b+1)=0无实数根,∴Δ=(﹣)2﹣4×1×(b+1)<0,解得:b>﹣,23.(4分)如图,正六边形的边长为1cm,分别以它的所有顶点为圆心,1cm为半径作圆弧,则阴影部分图形的周长和为________cm.(结果保留π)【答案】2π.【解析】正六边形的每一个内角为=120°,由圆的对称性可得,阴影部分的周长正好是半径为1cm的圆的周长,半径为1cm的圆的周长为2π×1=2πcm,24.(4分)如图,直线y=kx与反比例函数y=的图象交于A,B两点,与函数y=(0<b<a)在第一象限的图象交于点C,AC=3BC,过点B分别作x轴,y轴的平行线交函数y=在第一象限的图象于点E,D,连接AE交x轴于点G,连接AD交y轴于点F,连接FG,若△AFG的面积为1,则的值为________,a+b的值为________.【答案】,【解析】∵OA=OB,AC=3BC,故点C是OB的中点,设点B的坐标为(m,),则点A(﹣m,﹣),则点C的坐标为(m,),则b=m•=a,即,则点E、D坐标分别为(m,)、(m,),由点A、E的坐标得,直线AE的表达式为y=+,设直线AE交y轴于点H,令y=+=0,解得x=﹣m,令x=0,则y=,故点G 、H 的坐标分别为(﹣m ,0)、(0,),同理可得,点F 的坐标为(0,﹣),则△AFG 的面积=S △HFA ﹣S △HFG =HF ×(x G ﹣x A )=×(+﹣)×(﹣m +m )=1,解得a =,而b =a ,∴a +b =;25.(4分)在菱形ABCD 中,∠D =60°,CD =4,以A 为圆心,2为半径作⊙A ,交对角线AC 于点E ,点F 为⊙A 上一动点,连接CF ,点G 为CF 中点,连接BG ,取BG 中点H ,连接AH ,则AH 的最大值为________.【答案】+.【解析】如图,连接BE ,AF ,EG ,取BE 的中点J ,连接HJ ,AJ .∵AE =EC ,CG =GF ,∴EG =AF =1,∵BH =HG ,BJ =JE ,∴JH =EG =,∵四边形ABCD 是菱形,∴∠ABC =∠D =60°,BC =BA ,∴△ABC 是等边三角形,∵CE =EA ,∴BE ⊥AC ,∴BE =AE =2,∴JE =BJ =,∴AJ ==,∵AH ≤AJ +JH ,∴AH ≤+,∴AH 的最大值为+.二.解答题(共3小题,满分30分)26.(8分)“武汉加油!中国加油!”疫情牵动万人心,每个人都在为抗击疫情而努力.某厂改造了10条口罩生产线,每条生产线每天可生产口罩500个.如果每增加一条生产线,每条生产线就会比原来少生产20个口罩.设增加x 条生产线后,每条生产线每天可生产口罩y 个.(1)直接写出y 与x 之间的函数关系式;(2)若每天共生产口罩6000个,在投入人力物力尽可能少的情况下,应该增加几条生产线?(3)设该厂每天可以生产的口罩w 个,请求出w 与x 的函数关系式,并求出增加多少条生产线时,每天生产的口罩数量最多,最多为多少个?【答案】见解析【解析】(1)由题意可知该函数关系为一次函数,其解析式为:y =500﹣20x ;∴y 与x 之间的函数关系式为y =500﹣20x (0≤x ≤25,且x 为整数);(2)由题意得:(10+x )(500﹣20x )=6000,整理得:x 2﹣15x +50=0,解得:x 1=5,x 2=10,∵尽可能投入少,∴x 2=10舍去.答:应该增加5条生产线.(3)w =(10+x )(500﹣20x )=﹣20x 2+300x +5000=﹣20(x ﹣7.5)2+6125,∵a =﹣20<0,开口向下,∴当x=7.5时,w最大,又∵x为整数,∴当x=7或8时,w最大,最大值为6120.答:当增加7或8条生产线时,每天生产的口罩数量最多,为6120个.27.(10分)在矩形ABCD中,AB=2BC.点E是直线AB上的一点,点F是直线BC上的一点,且满足AE =2CF,连接EF交AC于点G.(1)tan∠CAB=;(2)如图1,当点E在AB上,点F在线段BC的延长线上时,①求证:EG=FG;②求证:CG=BE;(3)如图2,当点E在BA的延长线上,点F在线段BC上时,AC与DF相交于点H.①EG=FG这个结论是否仍然成立?请直接写出你的结论;②当CF=1,BF=2时,请直接写出GH的长.【答案】见解析【解析】(1)∵矩形ABCD中,∠ABC=90°,AB=2BC,∴tan∠CAB==,故答案为:;(2)①证明:过点E作EH⊥AB,交AC于点H,则∠AEH=90°.∵四边形ABCD是矩形,∴∠B=∠AEH=90°.∴EH∥BF,∴∠EHG=∠FCG,∠HEG=∠CFG,在Rt△ABC和Rt△AEH中,∵AB=2BC,∴tan∠CAB===,∴AE=2EH,∵AE=2CF,∴EH=CF,∴△EHG≌△FCG(ASA),∴EG=FG.②证明:设EH=x,则AE=2x,Rt△AEH中,根据勾股定理得,AH==x,∵EH∥BF,∴=,∴=,∴CH=BE,∵△EHG≌△FCG,∴HG=CG,∴CG=BE.(3)①成立;过点F作FP∥AB交AC于P,如图3所示:则FP∥CD,∠CFP=∠ABC=90°,∴∠CPF=∠CAB,在Rt△CFP和Rt△ABC中,AB=2BC,∴tan∠CPF==tan∠CAB=,∴PF=2CF,∵AE=2CF,∴AE=PF,在△PFG和△AEG中,,∴△PFG≌△AEG(ASA),∴EG=FG;②解:如图3,∵△AEG≌△PFG(AAS),∴AG=PG,∵BF=2,CF=1,∴BC=3,CD=AB=2BC=6,∴AC===3,∵FP∥AB,∴△CPF∽△CAB,∴,∴PC=AC=,PA=AC﹣PC=2,∴AG=PG=PA=,∵FP∥CD,∴△PFH∽△CDH,∴,∴PH=PC=,∴GH=PG+PH=+=.28.(12分)如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m 的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.【答案】见解析【解析】(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+6,得:,解得:,∴抛物线的解析式为y=﹣2x2+4x+6.(2)过点P作PF∥y轴,交BC于点F,如图1所示.当x=0时,y=﹣2x2+4x+6=6,∴点C的坐标为(0,6).设直线BC的解析式为y=kx+c,将B(3,0)、C(0,6)代入y=kx+c,得:,解得:,∴直线BC的解析式为y=﹣2x+6.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),∴PF=﹣2m2+4m+6﹣(﹣2m+6)=﹣2m2+6m,∴S=PF•OB=﹣3m2+9m=﹣3(m﹣)2+,∴当m=时,△PBC面积取最大值,最大值为.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴0<m<3.综上所述,S关于m的函数表达式为=﹣3m2+9m(0<m<3),S的最大值为.(3)存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似.如图2,∠CMN=90°,当点M位于点C上方,过点M作MD⊥y轴于点D,∵∠CDM=∠CMN=90°,∠DCM=∠NCM,∴△MCD∽△NCM,若△CMN与△OBC相似,则△MCD与△OBC相似,设M(a,﹣2a2+4a+6),C(0,6),∴DC=﹣2a2+4a,DM=a,当时,△COB∽△CDM∽△CMN,∴,解得,a=1,∴M(1,8),此时ND=DM=,∴N(0,),当时,△COB∽△MDC∽△NMC,∴,解得a=,∴M(,),此时N(0,).如图3,当点M位于点C的下方,过点M作ME⊥y轴于点E,设M(a,﹣2a2+4a+6),C(0,6),∴EC=2a2﹣4a,EM=a,同理可得:或=2,△CMN与△OBC相似,解得a=或a=3,∴M(,)或M(3,0),此时N点坐标为(0,)或(0,﹣).综合以上得,存在M(1,8),N(0,)或M(,),N(0,)或M(,),N(0,)或M(3,0),N(0,﹣),使得∠CMN=90°,且△CMN与△OBC相似.。

成都市初三中考数学模拟试题(1)

成都市初三中考数学模拟试题(1)

初三数学辅导中考数学模拟试题(1)一、选择题(每小题3分,共30分)1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0 C.2210x x ++=D.220x x -++=2、给出下列命题:其中,真命题的个数是( )(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形; (3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. A.4 B.3 C.2 D.1 3、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =-A .①②B .②③C .②④D .①③4、在△ABC 中,90C ∠= ,若4BC =,2sin 3A =,则AC 的长是( )A.6B.25C.35D.2135、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=的图像上,则( )A. y 1>y 2 >y 3 B.y 3> y 2 >y 1 C.y 2 >y 1 >y 3 D. y 1 >y 3> y 2 6、如图,EF 是圆O 的直径,5cm OE =,弦8cm M N =,则E ,F 两点到直线MN 距离的和等于( ) A.12cm B.6cmC.8cm D.3cm7、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( )A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0)8、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的FOK M G EHN (第6题图)图象大致为( )y y y二、填空题:1、如图,有一块边长为4的正方形塑料摸板A B C D ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 . 2、在Rt △ABC 中,90C ∠=,D 为B C 上一点,30DAC ∠= ,2B D =,23AB =,则A C 的长是.三、解答下列各题:1、城市规划期间,欲拆除一电线杆AB (如图所示),已知距电线杆AB 水平距离14米的D 处有一大坝,背水坡CD 的坡度2:1i =,坝高CF 为2米,在坝顶C 处测得杆顶A 的仰角为30.D ,E 之间是宽为2米的人行道.试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心,以AB 长为半径的圆形区域为危险区域).(3 1.732≈,2 1.414≈)OOA .OB. OC.OyxD .ADCB( 第2题图)2、如图,在直角坐标系中,O 为原点.点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数12y x=的图象经过点A .(1)求点A 的坐标;(2)如果经过点A 的一次函数图象与y 轴的正半轴交于点B ,且O B A B =,求这个一次函数的解析式.一、填空题:1.已知22222()()60a b a b +-+-=, 则=+22b a ______.22、如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、交AB 于点N ,交CB的延长线于点P ,若MN =1,PN =3,则DM 的长为 。

(四川成都卷)2023年中考数学第一次模拟考试(参考答案)

(四川成都卷)2023年中考数学第一次模拟考试(参考答案)

2023年中考第一次模拟考试(四川成都卷)数学·参考答案A 卷一、选择题1 2 3 4 5 6 7 8 AACDCBAB二、填空题9. (1)(1)a a a +- 10. y 2>y 1>y 3 11.42°12.24 13.三、解答题14.【解析】(1)原式91323=-+63=(2)148x y x y +=⎧⎨+=-⎩①②,②-①得:39x =-, 解得:3x =-,把3x =-代入①得:31y -+=, 解得:4y =,则方程组的解为34x y =-⎧⎨=⎩.15. 【解析】(1)解:根据题意可列表或树状图如下: 第一次第二次 12341 (1,2) (1,3) (1,4)2 (2,1) (2,3) (2,4)3 (3,1) (3,2) (3,4) 4(4,1)(4,2)(4,3)从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P(和为奇数)23 =;(2)不公平.∵小明先挑选的概率是P(和为奇数)23=,小亮先挑选的概率是P(和为偶数)13=,2133≠,∴不公平.16. 【解析】(1)由题意可知,CD=20m,∠ACD=60°,∠BCD=45°,在Rt△ACD中,∠ACD=60°,CD=20m,∴tan203AD ACD CD=∠=(m),在Rt△BCD中,∠BCD=45°,CD=20m,∴BD=CD=20m,∴(20203)AB AD BD=+=+m,答:AB的长度为(20203)+m;(2)该车的速度为(20203)69.1+÷≈(米/秒),则该车的速度约为9.1米/秒.17. 【解析】(1)证明:如图,连接OC.∵AB为⊙O的直径,AC为弦,∴∠ACB=90°,即∠OCB+∠ACO=90°.∵OA=OC,∴∠ACO=∠A.∵∠BCD=∠A,∴∠ACO=∠BCD.∴∠OCB+∠BCD=90°,即∠OCD=90°.∴CD⊥OC.∵OC为⊙O的半径,∴CD是⊙O的切线.(2)解:∵∠BCD =∠A ,cos ∠BCD =920, ∴cos A =cos ∠BCD =920. 在Rt △ABC 中, ∵cos ACA AB=∴AB =cos AC A=2.7920=2.720=69⨯. ∴OC =OE =12AB =3. 在Rt △ODC 中, ∵222OD OC DC =+,∴2222345OD OC DC =++=. ∴DE =OD ﹣OE =5﹣3=2.18. 【解析】(1)∵点A (-1,6)在一次函数12y x b =-+上, ∴-2⨯(-1)+b =6.解得,4b =. ∵点A (-1,6)在反比例函数2ky x=上,∴166k =-⨯=-. (2)设()0E a ,.∵点()2B m -,在函数26y x=-上,∴-2m =-6.解得,3m =.∴B (3,-2).∵132AEB S =△,∴()11322B A CE x x -=.∴()1133122CE +=.∴134CE =.∴4-a=134,解得,a=34.∴304E ⎛⎫⎪⎝⎭,. (3)观察图象:∵反比例函数26y x=-的两个分支在第二、四象限,一次函数124y x =-+的图象经过第三、一、四象限, ∴在第二象限内,当12y y >时,有x <-1;在第一、四象限内,当12y y >时,有0<x <3.故答案为:1x <-或03x <<.B 卷一、填空题 19. 8 20.732a ≤< 21.13- 22.﹣3. 23.①②③ 二、解答题24.【解析】(1)分两种情况, ①当1≤x ≤20时,()()1102010502y m n x x ⎛⎫=-=+--+ ⎪⎝⎭21155002x x =-++,②当21≤x ≤30时,()()42010101050y m n x x ⎛⎫=-=+--+ ⎪⎝⎭21000420x =-,综上:()()21155001202{210004202130x x x y x x-++≤≤=-≤≤;(2)①当1≤x ≤20时,()221112251550015222y x x x =-++=--+,∵102a =-<,∴当x =15时,y 最大=1225=612.52, ②21≤x ≤30时,由21000420y x=-知,y 随x 的增大而减小, ∴当x =21时,y 最大=2100042058021-=, ∵580<612.5,∴基地负责人向“精准扶贫”捐了612.5元.25. 【解析】(1)∵抛物线y =ax 2+bx +8(a ≠0)过点A (﹣2,0)和点B (8,0), ∴428064880a b a b -+=⎧⎨++=⎩,解得123a b ⎧=-⎪⎨⎪=⎩. ∴抛物线解析式为:21382y x x =++; (2)当x =0时,y =8,∴C (0,8),∵B (8,0),设直线BC 解析式为y kx b =+',则880b k b '=⎧⎨+'=⎩,解得81b k '=⎧⎨=-⎩∴直线BC 解析式为:y =﹣x +8, ∵111084022ABC S AB OC ∆=⋅⋅=⨯⨯=,∴3245PBC ABC S S ∆∆==,过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F ,设21(,38)2P t t t -++,∴F (t ,﹣t +8),∴2142PF t t =-+,∴1242PBC S PF OB ∆=⋅=, 即211(4)82422t t ⨯-+⨯=,∴t 1=2,t 2=6,∴P 1(2,12),P 2(6,8);(3)存在,∵C (0,8),B (8,0),∠COB =90°,∴△OBC 为等腰直角三角形, 抛物线21382y x x =++的对称轴为33122()2b x a =-==⨯-,∴点E 的横坐标为3, 又∵点E 在直线BC 上,∴点E 的纵坐标为5,∴E (3,5), 设21(3,),(,38)2M m N n n n ++,①当MN =EM ,∠EMN =90°,△NME ∽△COB ,则2531382m n n n m -=-⎧⎪⎨-++=⎪⎩,解得68n m =⎧⎨=⎩或20n m =-⎧⎨=⎩(舍去),∴此时点M 的坐标为(3,8),②当ME =EN ,当∠MEN =90°时, 则25313852m n n n -=-⎧⎪⎨-++=⎪⎩,解得:515315m n ⎧=+⎪⎨=+⎪⎩或515315m n ⎧=-⎪⎨=-⎪⎩(舍去),∴此时点M 的坐标为(3,515)+;③当MN =EN ,∠MNE =90°时,此时△MNE 与△COB 相似, 此时的点M 与点E 关于①的结果(3,8)对称,设M (3,m ),则m ﹣8=8﹣5,解得m =11,∴M (3,11); 此时点M 的坐标为(3,11);故在射线ED 上存在点M ,使得以点M ,N ,E 为顶点的三角形与△OBC 相似,点M 的坐标为:(3,8)或(3,515)或(3,11).26. 【解析】(1)如图1,过点B作BH⊥CD于点H,则四边形ADHB是矩形,∵AB=10,CD=15,∴CH=5,又∵BH=AD=10,∴BC=2222+=+=;BH CH10555(2)过点G作MN⊥AB,如图2,∥,∵AB CD∴MN⊥CD,∵DG⊥EF,∴∠EMG=∠GND=90°,∴∠MEG+∠MGE=90°,∵∠EGM+∠DGN=90°,∴∠GEM=∠DGN,∵EG=DG,∴△EMG≌△GND(AAS),∴MG=DN,设DN=a,GN=b,则MG=a,ME=b,∵点E从点B向点A以每秒2个单位的速度运动,同时点F从点D向点C以每秒3个单位的速度运动,∴BE=2t,AE=10﹣2t,DF=3t,CF=15﹣3t,∵AM=DN,AD=MN,∴a+b=10,a﹣b=10﹣2t,解得a=10﹣t,b=t,∵DG⊥EF,GN⊥DF,∴∠DNG=∠FNG=90°,∴∠GDN+∠DFG=∠GDN+∠DGN=90°,∴∠DFG=∠DGN,∴△DGN∽△GFN,∴GN NF DN GN=,∴GN2=DN•NF,∴NF=2210GN tDN t=-,又∵DF=DN+NF,∴3t=10﹣t+210tt-,解得t=55±,又∵0≤t≤5,∴t=5﹣5,∴AE=10﹣2t=25.(3)如图3,连接BD,交EF于点K,∵BE DF∥,∴△BEK∽△DFK,∴2233 BK BE tDK DF t===,又∵AB=AD=10,∴BD2=2,∴DK=362 5BD=取DK的中点,连接OG,∵DG⊥EF,∴△DGK为直角三角形,∴OG=132 2DK=∴点G在以O为圆心,r=2连接OC,OG,由图可知CG≥OC﹣OG,当点G在线段OC上时取等号,∵AD=AB,∠A=90°,∴∠ADB=45°,∴∠ODC=45°,过点O作OH⊥DC于点H,又∵OD=2CD=15,∴OH=DH=3,∴CH=12,∴OC22317OH CH+则CG的最小值为3172,当O,G,C三点共线时,过点O作直线OR⊥DG交CD于点S,∵OD=OG,∴R为DG的中点,又DG⊥GF,∴OS∥GF,∴点S是DF的中点,OC SC OG SF=,∴DS=SF=32t,SC=15﹣32t,31531723322tt-=,∴t2344-,即当t 2344-时,CG取得最小值为31732。

初中数学四川省成都市中考模拟数学考试题含答案(word版).docx

初中数学四川省成都市中考模拟数学考试题含答案(word版).docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.试题2:2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.试题3:如图所示的正六棱柱的主视图是()评卷人得分A.B.C. D.试题4:在平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.试题5:下列计算正确的是()A. B.C. D.试题6:如图,已知,添加以下条件,不能判定的是()A.B. C. D.试题7:如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃ C.中位数是24℃ D.平均数是26℃试题8:分式方程的解是()A. B. C. D.试题9:如图,在中,,的半径为3,则图中阴影部分的面积是()A. B. C. D.试题10:关于二次函数,下列说法正确的是()A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧C.当时,的值随值的增大而减小 D.的最小值为-3试题11:等腰三角形的一个底角为,则它的顶角的度数为.试题12:在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色兵乓球的个数是.试题13:已知,且,则的值为.试题14:如图,在矩形中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交于点.若,,则矩形的对角线的长为.试题15:.试题16:化简.试题17:若关于的一元二次方程有两个不相等的实数根,求的取值范围.试题18:为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为,表中的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.试题19:由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.(参考数据:,,,,,)试题20:如图,在平面直角坐标系中,一次函数的图象经过点,与反比例函数的图象交于.(1)求一次函数和反比例函数的表达式;(2)设是直线上一点,过作轴,交反比例函数的图象于点,若为顶点的四边形为平行四边形,求点的坐标.试题21:如图,在中,,平分交于点,为上一点,经过点,的分别交,于点,,连接交于点.(1)求证:是的切线;(2)设,,试用含的代数式表示线段的长;(3)若,,求的长.试题22:.已知,,则代数式的值为 .试题23:汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .试题24:已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律, .试题25:如图,在菱形中,,分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值为 .试题26:.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”当双曲线的眸径为6时,的值为 .试题27:为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当和时,与的函数关系式;(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?试题28:.在中,,,,过点作直线,将绕点顺时针得到(点,的对应点分别为,)射线,分别交直线于点,.(1)如图1,当与重合时,求的度数;(2)如图2,设与的交点为,当为的中点时,求线段的长;(3)在旋转过程时,当点分别在,的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.试题29:.如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为、是抛物线上位于对称轴右侧的一点,若,且与面积相等,求点的坐标;(3)若在轴上有且仅有一点,使,求的值.试题1答案:D试题2答案:B试题3答案:A试题4答案:C试题5答案:D试题6答案:C试题7答案:B试题8答案:A试题9答案:C试题10答案:D试题11答案:试题12答案:6试题13答案:12试题14答案:试题15答案:解:原式试题16答案:解:原式试题17答案:解:由题知:.原方程有两个不相等的实数根,,.试题18答案:解:(1)120,45%;(2)比较满意;(人)图略;(3)(人).答:该景区服务工作平均每天得到1980人的肯定.试题19答案:解:由题知:,,.在中,,,(海里). 在中,,,(海里). 答:还需要航行的距离的长为20.4海里.试题20答案:解:(1)一次函数的图象经过点,,,.一次函数与反比例函数交于.,,,.(2)设,.当且时,四边形是平行四边形.即:且,解得:或,的坐标为或.试题21答案:试题22答案: 0.36试题23答案: .试题24答案:试题25答案:试题26答案:试题27答案:.解:(1)(2)设甲种花卉种植为,则乙种花卉种植..当时,.当时,元.当时,.当时,元.,当时,总费用最低,最低为119000元.此时乙种花卉种植面积为.答:应分配甲种花卉种植面积为,乙种花卉种植面积为,才能使种植总费用最少,最少总费用为119000元.试题28答案:解:(1)由旋转的性质得:.,,,,,. (2)为的中点,.由旋转的性质得:,.,.,,.(3),最小,即最小,.法一:(几何法)取中点,则..当最小时,最小,,即与重合时,最小.,,,.法二:(代数法)设,.由射影定理得:,当最小,即最小,.当时,“”成立,.试题29答案:解:(1)由题可得:解得,,.二次函数解析式为:.(2)作轴,轴,垂足分别为,则.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方时,直线与关于对称.,,.,,.综上所述,点坐标为;.(3)由题意可得:.,,,即.,,.设的中点为,点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.轴,为的中点,.,,,,即,.,.。

成都市中考数学模拟试题(含详细解析)

成都市中考数学模拟试题(含详细解析)
C.三棱柱D.三棱锥
10.如图,在所标识的角中,下列说法不正确的是( )
A. 和 互为补角B. 和 是同位角
C. 和 是内错角D. 和 是对顶角
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
11.在一个不透明的袋子中装有 个红球和 个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是________.
4.若∠1=18°18′,∠2=18.18°,则∠1与∠2的大小关系是()
A.∠1=∠2B.∠1>∠2C.∠1<∠2D.无法确定
5.如图,四边形ABCD是菱形,∠C=60°,AB=2,扇形ABE,点D在弧AE上,EB与DC交于点F,F为DC的中点,则图中阴影部分的面积是().
A. B. C. D.
6.在平面直角坐标系中,点P 关于 轴对称的点是()
根据图中信息,解答下列问题:
(1)在这次调查活动中,采取的调查方式是_(填写“全面调查”或“抽样调查”), _.
(2)从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“ ”范围的概率是;
(3)若该市有 名初中生,请你估计该市每日线上学习时长在“ ”范围的初中生有_名.
22.某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价 (元/千克)与采购量 (千克)之间的函数关系图象如图中折线 所示(不包括端点 ).
7.C
【解析】
【分析】
先将分母有理化,再交叉相乘得出答案.
【详解】
解:得 ,即4x+2x﹣4=x﹣1,故选:C.
【点睛】
本题考查了分式的化简,熟悉运算法则是解决本题的关键.
8.C
【解析】
【详解】

【3套试卷】成都市中考模拟考试数学精选

【3套试卷】成都市中考模拟考试数学精选

中考第一次模拟考试数学试卷含答案(1)一.选择题(共10小题)1.有理数﹣2的绝对值是()A.2 B.﹣2 C.D.2.下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9C.(xy2)3=x3y6D.x10÷x5=x23.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.92°B.98°C.102°D.108°4.下列说法正确的是()A.了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,S>S,则甲的成绩比乙稳定C.一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件5.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A.B.C.D.=6.已知关于x的不等式组只有2个整数解,则m的取值范围为()A.m>4 B.4<m<5 C.4≤m<5 D.4<m≤57.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.9.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②4a+2b+c>0;③5a﹣b+c=0;④若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,其中正确的结论有()A.①②③④B.①②③⑤C.②③④⑤D.①②④⑤10.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5二.填空题(共6小题)11.要使二次根式有意义,则x的取值范围是.12.地球与月球的平均距离大约384000km,用科学记数法表示这个距离为km.13.分解因式:x3﹣4x=.14.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形(阴影部分),则此扇形的面积为m2.15.如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.16.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y =3,y=x+2,y=﹣x+4.如图所示,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线y=(x﹣a)2+b经过B、C两点,顶点D在正方形内部.(1)写出点M(2,3)任意两条特征线为;(2)若点D有一条特征线是y=x+1,则此抛物线的解析式为.三.解答题(共10小题)17.计算:18.先化简,再求值:,其中x的值是方程x2+2x=0的根.19.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若BA⊥AC,试判断四边形AFBD的形状,并证明你的结论.20.为调查我市民上班时最常用的交通工具的情况随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车;E.其他”中选择最常用的一项.将所有调查结果整理后绘制成如下不完整计图,请结合统计图回答下列问题:(1)本次一共调查了名市民;扇形统计图中B项对应的圆心角是度;(2)补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.21.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.22.某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在水平地面上BD 上,在C点测得点A的仰角为30°,斜面EC的坡度为1:,测得B、E间距离为10米,立柱AB高30米,求立柱CD的高(结果保留根号).23.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a)、B两点,点C在第四象限,CA∥y轴,且CB⊥AB.(1)求反比例函数的解析式及点B的坐标:(2)求tan C的值和△ABC的面积.24.如图所示,AB是⊙O的直径,G为弦AE的中点,OG的延长线交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.(1)求证:BC是⊙O的切线:(2)⊙O的半径为10,tan A=,求BF的长.25.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想﹣﹣转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m 的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.26.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.参考答案与试题解析一.选择题(共10小题)1.有理数﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣2|=2.故选:A.2.下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9C.(xy2)3=x3y6D.x10÷x5=x2【分析】根据同底数幂的乘除法,完全平方公式,以及合并同类项的法则解答即可.【解答】解:A、原式不能合并,错误;B、(x+3)2=x2+6x+9,错误;C、(xy2)3=x3y6,正确;D、x10÷x5=x5,错误;故选:C.3.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.92°B.98°C.102°D.108°【分析】依据l1∥l2,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°﹣∠3﹣∠4=98°.【解答】解:如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣52°﹣30°=98°,故选:B.4.下列说法正确的是()A.了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,S>S,则甲的成绩比乙稳定C.一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件【分析】根据抽样调查和全面调查的概念、方差的意义、利列表法和树状图法求随机事件的概率及不可能事件的概念逐一求解可得.【解答】解:A.了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;B.甲乙两人跳绳各10次,其成绩的平均数相等,S>S,则乙的成绩比甲稳定,此选项错误;C.一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是,此选项错误;D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确;故选:D.5.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A.B.C.D.=【分析】设有x人,物品的价格为y元,根据所花总钱数不变列出方程即可.【解答】解:设有x人,物品的价格为y元,根据题意,可列方程:,故选:A.6.已知关于x的不等式组只有2个整数解,则m的取值范围为()A.m>4 B.4<m<5 C.4≤m<5 D.4<m≤5【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【解答】解:由①得:x<m,由②得:x>2,则不等式组的解集是:2<x<m.不等式组有2个整数解,则整数解是3,4.则4<m≤5.故选:D.7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是不轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:C.8.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.【分析】由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S=,根据△DA′E∽△DAB知()2=,据此求解可得.△ABC【解答】解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.9.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②4a+2b+c>0;③5a﹣b+c=0;④若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,其中正确的结论有()A.①②③④B.①②③⑤C.②③④⑤D.①②④⑤【分析】①抛物线对称轴在y轴左侧,则ab同号,而c<0,即可求解;②x=2时,y=4a+2b+c>0,即可求解;③5a﹣b+c=5a﹣4a﹣5a≠0,即可求解;④y=a(x+5)(x﹣1)+1,相当于由原抛物线y=ax2+bx+c向上平移了1个单位,即可求解;⑤若方程|ax2+bx+c|=1,即:若方程ax2+bx+c=±1,当ax2+bx+c﹣1=0时,由韦达定理得:其两个根的和为﹣4,即可求解.【解答】解:二次函数表达式为:y=a(x+2)2﹣9a=ax2+4ax﹣5a=a(x+5)(x﹣1),①抛物线对称轴在y轴左侧,则ab同号,而c<0,则abc<0,故正确;②函数在y轴右侧的交点为x=1,x=2时,y=4a+2b+c>0,故正确;③5a﹣b+c=5a﹣4a﹣5a≠0,故错误;④y=a(x+5)(x﹣1)+1,相当于由原抛物线y=ax2+bx+c向上平移了1个单位,故有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确;⑤若方程|ax2+bx+c|=1,即:若方程ax2+bx+c=±1,当ax2+bx+c﹣1=0时,用韦达定理得:其两个根的和为﹣4,同理当ax2+bx+c+1=0时,其两个根的和也为﹣4,故正确.故选:D.10.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【解答】解:过点D做DF⊥BC于F由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=1,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D、C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=故选:C.二.填空题(共6小题)11.要使二次根式有意义,则x的取值范围是x≥3 .【分析】直接利用二次根式的定义得出答案.【解答】解:二次根式有意义,故x﹣3≥0,则x的取值范围是:x≥3.故答案为:x≥3.12.地球与月球的平均距离大约384000km,用科学记数法表示这个距离为 3.84×105km.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】解:384 000=3.84×105km.故答案为3.84×105.13.分解因式:x3﹣4x=x(x+2)(x﹣2).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).14.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形(阴影部分),则此扇形的面积为m2.【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.【解答】解:连接AC,∵从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2),故答案为:.15.如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是4.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴==2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为:4.16.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y =3,y=x+2,y=﹣x+4.如图所示,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线y=(x﹣a)2+b经过B、C两点,顶点D在正方形内部.(1)写出点M(2,3)任意两条特征线为y=3,y=x+1 ;(2)若点D有一条特征线是y=x+1,则此抛物线的解析式为y=(x﹣2)2+3 .【分析】(1)根据特征线直接求出点D的特征线;(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式.【解答】解:(1)∵点M(2,3),∴点M(2,3)是x=2,y=3,y=x+1,y=﹣x+5,故答案为y=3,y=x+1;(2)点D有一条特征线是y=x+1,∴b﹣a=1,∴b=a+1∵抛物线解析式为y=(x﹣a)2+b,∴y=(x﹣a)2+a+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(a,b),∴B(2a,2a),∴(2a﹣a)2+b=2a,将b=a+1代入得到a=2,b=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3.故答案为y=(x﹣2)2+3.三.解答题(共10小题)17.计算:【分析】直接利用二次根式的性质以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=3+4+1﹣1=7.18.先化简,再求值:,其中x的值是方程x2+2x=0的根.【分析】根据分式的运算法则进行化简,然后解方程求出x的值,最后将x的值代入原式即可求出答案.【解答】解:原式==x﹣1,又∵x2+2x=0得x1=0,x2=﹣2,当x=0时,分式无意义,∴当x=﹣2时,原式=﹣319.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若BA⊥AC,试判断四边形AFBD的形状,并证明你的结论.【分析】(1)首先推知△AFE≌△DCE(AAS),则其对应边相等AF=CD,结合已知条件AF =BD得到:BD=CD,即D是BC的中点;(2)四边形AFBD是菱形.连接FD.构造平行四边形AFDC.根据对角线相互垂直的平行四边形是菱形证得结论:四边形AFBD是菱形.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.∵E为AD的中点,∴AE=DE.∴有,∴△AFE≌△DCE(AAS).∴AF=CD.∵AF=BD,∴BD=CD,即D是BC的中点;(2)四边形AFBD是菱形.理由如下:连接FD.∵AF∥BD且AF=BD,∴四边形AFBD是平行四边形.同理可证四边形AFDC是平行四边形.∴FD∥AC.∵BA⊥AC,∴BA⊥FD.∴四边形AFBD是菱形.20.为调查我市民上班时最常用的交通工具的情况随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车;E.其他”中选择最常用的一项.将所有调查结果整理后绘制成如下不完整计图,请结合统计图回答下列问题:(1)本次一共调查了2000 名市民;扇形统计图中B项对应的圆心角是54 度;(2)补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.【分析】(1)根据D组的人数以及百分比,即可得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)由各选项人数和等于总人数求出C选项的人数,从而补全图形;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.【解答】解:(1)本次调查的总人数为500÷25%=2000人,扇形统计图中,B项对应的扇形圆心角是360°×=54°,故答案为:2000,54;(2)选择公交车人数为800人,补全条形统计图如图所示(3)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)由表可知共有16种等可能结果,其中甲、乙两人恰好选择同一种交通工具上班的结果有4种,所以甲、乙两人恰好选择同一种交通工具上班的概率为.21.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.22.某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在水平地面上BD 上,在C点测得点A的仰角为30°,斜面EC的坡度为1:,测得B、E间距离为10米,立柱AB高30米,求立柱CD的高(结果保留根号).【分析】作CH⊥AB于H,得到BD=CH,设CD=x米,根据正切的定义分别用x表示出HC、ED,根据正切的定义列出方程,解方程即可.【解答】解:作CH⊥AB于H,如图所示:则四边形HBDC为矩形,∴BD=CH,BH=DC,由题意得,∠ACH=30°,设BH=DC=x米,则AH=(30﹣x)米,在Rt△AHC中,由得米,∵斜面EC的坡度为1:,∴米,∴有,解得,答:立柱CD的高为米.23.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a)、B两点,点C在第四象限,CA∥y轴,且CB⊥AB.(1)求反比例函数的解析式及点B的坐标:(2)求tan C的值和△ABC的面积.【分析】(1)先利用正比例函数解析式确定A(1,2),再把A点坐标代入y=中求出k得到反比例函数解析式为y=,然后根据中心对称求得B点坐标;(2)作BD⊥AC于D,如图,利用等角的余角相等得到∠C=∠ABD,然后在在Rt△ABD 中利用正切的定义即可求得tan C的值,根据勾股定理求得AB,通过证明△ADO~△ABC,根据相似三角形的性质即可求得△ABC的面积.【解答】解:(1)∵点A(1,a)在y=2x上,∴a=2,∴A(1,2),把A(1,2)代入得k=2∴反比例函数的解析式为,∵A、B两点关于原点成中心对称,∴B(﹣1,﹣2);(2)如图所示,作BH⊥AC于H,设AC交x轴于点D,∵∠ABC=90°,∠BHC=90°∴∠C=∠ABH∵CA∥y轴,BH∥x轴∴∠AOD=∠ABH=∠C,∴,∵A(1,2),B(﹣1,﹣2),∴AH=4,BH=2,∴,S△AOD=1,∵∠AOD=∠C,∠ADO=∠ABC=90°,∴△ADO~△ABC∴有,即,解得S△ABC=5.24.如图所示,AB是⊙O的直径,G为弦AE的中点,OG的延长线交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.(1)求证:BC是⊙O的切线:(2)⊙O的半径为10,tan A=,求BF的长.【分析】(1)根据等腰三角形的性质得到∠ODB=∠OBD,∠CFB=∠CBF,由垂径定理得到OD⊥AE,推出CB⊥OB,于是得到BC是⊙O的切线;(2)连接AD,根据圆周角定理得到∠ADB=90°,根据三角函数的定义得到OG=6,AG =8,由勾股定理得到,在Rt△ADF中,根据射影定理得到GF=2,,于是得到结论.【解答】解:(1)∵OD=OB,FC=BC,∴∠ODB=∠OBD,∠CFB=∠CBF,∵G为弦AE的中点,且OD为半径,∴OD⊥AE,∴∠ODB+∠DFG=∠ODB+∠CFB=90°,∴∠OBD+∠CBF=90°,即CB⊥OB,∴BC是⊙O的切线;(2)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵⊙O的半径OA为10,,∴OG=6,AG=8,∴,∴,在Rt△ADF中,由射影定理得GF=2,,∴BF=BD﹣DF=6.25.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想﹣﹣转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=﹣2 ,x3= 1 ;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m 的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.26.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,利用平行四边形对角线互相平分可得出点P、E的坐标,进而可得出点M的坐标;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的表达式为y=﹣x2+2x+3.(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1.当x=0时,y=﹣x2+2x+3=3,∴点C的坐标为(0,3).若四边形CDPM是平行四边形,则CE=PE,DE=ME,∵点C的横坐标为0,点E的横坐标为1,∴点P的横坐标t=1×2﹣0=2,∴点P的坐标为(2,3),∴点E的坐标为(1,3),∴点M的坐标为(1,6).故在直线l上存在点M,使得四边形CDPM是平行四边形,点M的坐标为(1,6).(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x+3.∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+.②∵﹣<0,∴当t=时,S取最大值,最大值为.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC==3,∴P点到直线BC的距离的最大值为=,此时点P的坐标为(,).中考第一次模拟考试数学试题含答案一、选择题(共8小题,每小题3分,共24分)1.在数1,2,3和4中,是方程x2+x-6=0的根的为()A.1B.2C.3D.42.桌上倒扣着形状,大小,背面图案都相同的10张扑克牌,其中6张梅花、4张红桃,则()A.从中随机抽取1张,抽到梅花的可能性更大B.从中随机抽取1张,抽到梅花和红桃的可能性一样大C.从中随机抽取6张必有2张红桃D.从中随机抽取5张,可能都是红桃3.抛物线y=2(x-3)2-7的顶点坐标是()A.(3,7)B.(- 3,7)C. (3,-7)D. (- 3,- 7)4.在○O中,弦AB的长为8,00的半径为5,则圆心0到AB的距离为()A.4B.3C.2D.15.在平面直角坐标系中,有A(3,- 2),B(- 3,- 2),C(2,2),D(- 3,2)四点.其中关于原点对称的两点为()A.点A和点BB.点B和点CC.点C和点DD.点D和点A6.方程x2-x+2=0的根的情况是()A.两实数根的积为2B.两实数根的和为1C.没有实数根D.有两个不相等的实数根7.将抛物线y=-(x+1)2向右平移3个单位,再向卫平移2个单位后得到的抛物线的解析式为()A. y=-(x+4)2+2 B .y=-(x+4)2-2 C. y=-(x-2)2-2 D. y=-(x-2)2+28.如图,点O1是OABC的外心,以AB为直径作○O恰好经过点O1.若AC=2.BC=4,则A O1的长是()A.3B.C.2D.2二、填空题(共5个小题,每小题3分,共15分)11.掷一枚质地不均勾的骰子,做了大量的重复试验,发现“朝上一面为3点"出现的频率越来越稳定于0.3.那么,掷一次该骰子,“朝上一面为3点”的概率为______.12.如图.AB是○O的直径.点C,D在○O上.若∠CAB=40°.则∠ADC的度数为______ .12题图14题图15题图13.圆心角为125°的扇形的弧长是12. 5π。

2024年四川省成都市九年级中考数学模拟试题

2024年四川省成都市九年级中考数学模拟试题

2024年四川省成都市九年级中考数学模拟试题一、单选题1.2--的倒数是( )A .12B .12-C .2D .2-2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯B .5410⨯C .6410⨯D .60.410⨯ 3.如图所示的正六棱柱的主视图是( )A .B .C .D . 4.下列计算正确的是( )A .224x x x +=B .()222x y x y -=- C .()326=x y x y D .220x x -+= 5.某快递公司今年一月份完成投递的快递总件数为10万件,二月份、三月份每月投递的件数逐月增加,第一季度总投递件数为33.1万件,问:二、三月份平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程( ).A .()2101331x +=.B .()()210110133.1x x +++=C .()21010133.1x ++= D .()()210101101331x x ++++=. 6.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃ 7.分式方程1112x x x ++=-的解是( ) A .x =1 B .x =−1 C .3x = D .3x =-8.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3二、填空题9.把3222a ab a b +-分解因式的结果是.10.函数y x 的取值范围是.11.小华为了测量所住楼房的高度,他请来同学帮忙,在阳光下测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为米.12.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=OC=1,则半径OB 的长为.13.如图,在ABC V 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ';③以点M '为圆心,以MN 长为半径作弧,在BAC ∠内部交前面的弧于点N ':④过点N '作射线DN '交BC 于点E .若BDE V 与四边形ACED 的面积比为4:21,则BE CE的值为.三、解答题14.(1)()02202422sin 60π-+︒+; (2)解不等式组()315227x x x ->⎧⎪⎨+<+⎪⎩①②. 15.根据“五项管理”文件精神,某学校优化学校作业管理,探索减负增效新举措,学校就学生做作业时间进行问卷调查,将收集信息进行统计分成A 、B 、C 、D 四个层级,其中A :90分钟以上;B :60~90分钟;C :30~60分钟;D :30分钟以下.并将结果绘制成两幅不完整的统计图,请你根据统计信息解答下列问题:(1)接受问卷调查的学生共有____________人;(2)求扇形统计图中“D ”等级的扇形的圆心角的度数,并补全条形统计图;(3)全校约有学生1500人,估计“A ”层级的学生约有多少人?(4)学校从“A ”层级的的3名女生和2名男生中随机抽取2人参加现场深入调研,则恰好抽到1名男生和1名女生的概率是多少?16.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4 km 至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求B ,C 两地的距离.17.如图1,一次函数312y x =-+的图象与反比例函数(0)k y k x=>的图象相交于A ,B 两点(A 在B 的左侧),与x 轴和y 轴分别交于E ,F 两点.(1)当9k =时,求A ,B 两点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P ,使PAB ∆是以点B 为直角顶点的直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由;(3)如图2,连接AO 并延长交反比例函数(0)k y k x =>图象的另一支于点C ,连接BC 交y 轴于点G .若2BG CG=,求反比例函数的表达式. 18.如图1,AB 是O e 的直径,点D 在AB 的延长线上,点C ,E 是O e 上的两点,,CE CB BCD CAE =∠=∠,延长AE 交BC 的延长线于点F .(1)求证:CD 是O e 的切线;(2)若2,4BD CD ==,求直径AB 的长;(3)如图2,在(2)的条件下,连接OF ,求tan BOF ∠的值. 19.在Rt ABC △中,90ABC ∠=︒,AB BC =,M 是BC 边上一点,连接AM .(1)如图1,N 是AB 延长线上一点,CN 与AM 垂直.求证:BM BN =;(2)如图2,过点B 作BP AM ⊥,P 为垂足,连接CP 并延长交AB 于点Q ,求证:CP BQ BM PQ ⋅=⋅;20.如图1,抛物线24y ax bx =++交x 轴于(40)A -,,(30)B ,两点,与y 轴交于点C ,连接AC ,BC .点P 是第二象限内抛物线上的一个动点,点P 的横坐标为t ,过点P 作PM x ⊥轴,垂足为M ,PM 交AC 于点Q .(1)求此抛物线的表达式;(2)过点P作PN AC,垂足为N,请用含t的代数式表示线段PN的长,并求出当t为何值时PN有最大值,最大值是多少?。

【3套试卷】成都市中考第一次模拟考试数学精选含答案

【3套试卷】成都市中考第一次模拟考试数学精选含答案

中考第一次模拟考试数学试题含答案(1)一.填空题(满分18分,每小题3分)1.|x﹣3|=3﹣x,则x的取值范围是.2.一个多边形的每个外角都等于72°,则这个多边形的边数为.3.将数12000000科学记数法表示为.4.在函数y=中,自变量x的取值范围是.5.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于.6.已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2018个三角形的周长为.二.选择题(满分32分,每小题4分)7.在2,﹣4,0,﹣1这四个数中,最小的数是()A.2 B.﹣4 C.0 D.﹣18.如图所示的几何体的俯视图是()A.B.C.D.9.下列各式中,运算正确的是()A.a6÷a3=a2B.C.D.10.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°11.下列各命题是真命题的是()A.平行四边形对角线互相垂直B.矩形的四条边相等C.菱形的对角线相等D.正方形既是矩形,又是菱形12.若数组2,2,x,3,4的平均数为3,则这组数中的()A.x=3 B.中位数为3 C.众数为3 D.中位数为x 13.已知|a+b﹣1|+=0,则(b﹣a)2019的值为()A.1 B.﹣1 C.2019 D.﹣201914.下列选项中,矩形具有的性质是()A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角三.解答题15.(6分)已知:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.16.(6分)已知:AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.17.(8分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?18.(6分)为了美化环境,建设宜居城市,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)试求出y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉的种植面积的2倍.①试求种植总费用W元与种植面积x(m2)之间的函数关系式;②应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用W最少?最少总费用为多少元?19.(7分)如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y 轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交x轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.20.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.21.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?22.(9分)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.23.(12分)如图,分别延长▱ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.参考答案一.填空题1.解:3﹣x≥0,∴x≤3;故答案为x≤3;2.解:多边形的边数是:360÷72=5.故答案为:5.3.解:12 000 000=1.2×107,故答案是:1.2×107,4.解:由题意,得2x+1≠0,解得x≠﹣.故答案为:x≠﹣.5.解:作DG⊥AC,垂足为G.∵DE∥AB,∴∠BAD=∠ADE,∵∠DAE=∠ADE=15°,∴∠DAE=∠ADE=∠BAD=15°,∴∠DEG=15°×2=30°,∴ED=AE=8,∴在Rt△DEG中,DG=DE=4,∴DF=DG=4.故答案为:4.6.解:设第n个三角形的周长为∁,n∵C1=1,C2=C1=,C3=C2=,C4=C3=,…,∴∁n=()n﹣1,∴C2018=()2017.故答案为:()2017.二.选择题(共8小题,满分32分,每小题4分)7.解:根据有理数比较大小的方法,可得﹣4<﹣1<0<2,∴在2,﹣4,0,﹣1这四个数中,最小的数是﹣4.故选:B.8.解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.9.解:A、a6÷a3=a3,故本选项错误;B、=2,故本选项错误;C、1÷()﹣1=1÷=,故本选项正确;D、(a3b)2=a6b2,故本选项错误.故选:C.10.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.11.解:A、平行四边形对角线互相平分但不一定垂直,故错误,是假命题;B、矩形的四边不一定相等,故错误,是假命题;C、菱形的对角线垂直但不一定相等,故错误,是假命题;D、正方形既是矩形,又是菱形,正确,是真命题;故选:D.12.解:根据平均数的定义可知,x=3×5﹣2﹣2﹣4﹣3=4,这组数据从小到大的顺序排列后,处于中间位置的数是3,那么由中位数的定义和众数的定义可知,这组数据的中位数是3,故选:B.13.解:∵|a+b﹣1|+=0,∴,解得:,则原式=﹣1,故选:B.14.解:∵矩形的对边平行且相等,对角线互相平分且相等,∴选项C正确故选:C.三.解答题15.解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x ﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.16.证明:∵AD是△ABC的中线,∴BD=CD,在△ACD和△EBD中,,∴△ACD ≌△EBD (SAS ).17.解:设矩形的长为x 步,则宽为(60﹣x )步,依题意得:x (60﹣x )=864,整理得:x 2﹣60x +864=0,解得:x =36或x =24(不合题意,舍去),∴60﹣x =60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.18.解:(1)当0≤x ≤300时,设y =k 1x ,根据题意得300k 1=39000,解得k 1=130,即y =130x ;当x >300时,设y =k 2x +b ,根据题意得,解得,即y =80x +15000,∴y =; (2)①当200≤x ≤300时,w =130x +100(1200﹣x )=30x +120000;当x >300时,w =80x +15000+100(1200﹣x )=﹣20x +135000;②设甲种花卉种植为 am 2,则乙种花卉种植(1200﹣a )m 2, ∴,∴200≤a ≤800当a =200 时.W min =126000 元当a =800时,W min =119000 元∵119000<126000∴当a =800时,总费用最少,最少总费用为119000元. 此时乙种花卉种植面积为1200﹣800=400m 2.答:应该分配甲、乙两种花卉的种植面积分别是800m 2 和400m 2,才能使种植总费用最少,最少总费用为119000元.19.(1)解:∵一次函数y =x ﹣3的图象与x 轴、y 轴分别交于点A 、B 两点,∴A(3,0),B(0,﹣3),∵点B关于x轴的对称点是C,∴C(0,3),∵二次函数y=﹣x2+bx+c的图象经过点A、点C,∴∴b=2,c=3,∴二次函数的解析式为:y=﹣x2+2x+3.(2)∵A(3,0),C(0,3),平移线段AC,点A的对应为点D,点C的对应点为E,设E(m,m﹣3),则D(m+3,m﹣6),∵D落在二次函数在第四象限的图象上,∴﹣(m+3)2+2(m+3)+3=m﹣6,m 1=1,m2=﹣6(舍去),∴D(4,﹣5),(3)∵C(0,3),D(4,﹣5),∴解得,∴直线CD的解析式为y=﹣2x+3,令y=0,则x=,∴M(,0),∵一次函数y=x﹣3的图象与x轴交于A(3,0),C(0,3),∴AO=3,OC=3,∴∠OAC=45°,过点P作PF⊥AC,点P作PN⊥OA交AC于点E,连PC,∴△PEF和△AEN都是等腰直角三角形,设P(m,﹣m2+2m+3),E(m,﹣m+3),∴PE=PN﹣EN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴EN=﹣m+3,AE=,FE=,∴CF=AC﹣AE﹣EF=,①当△COM∽△CF P,,∴,=0,舍去,,解得m1②当△COM∽△PFC时,,∴,解得m=0(舍去),,1综合可得P点的横坐标为或.20.解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.21.解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为:144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.22.(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP≌△CBP(SAS),∴∠CDP=∠CBP,∵∠BCD=90°,∴∠CBP+∠BEC=90°,∵OD=OE,∴∠ODE=∠OED,∠OED=∠BEC,∴∠BEC=∠OED=∠ODE,∴∠CDP+∠ODE=90°,∴∠ODP=90°,∴DP是⊙O的切线;(2)∵∠CDP=∠CBE,∴tan,∴CE=,∴DE=2,∵∠EDF=90°,∴EF是⊙O的直径,∴∠F+∠DEF=90°,∴∠F=∠CDP,在Rt△DEF中,,∴DF=4,∴==2,∴,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴,设PE=x,则PD=2x,∴,解得x=,∴OP=OE+EP=.23.证明:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ADC=∠ABC∴∠ADF=∠CBE,且∠E=∠F,AD=BC ∴△ADF≌△CBE(AAS)∴AF=CE,DF=BE∴AB+BE=CD+DF∴AE=CF,且AF=CE∴四边形AECF是平行四边形中考模拟考试数学试卷数学试卷考试时间:120分钟 满分:120分一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分) 1.已知四个数:9,227,π,()03-,其中无理数是( ) A.9 B.227 C.π D .()03-2.如图是由6个大小相同的小正方体搭成的几何体,这个几何体的左视图是( )A. B. C. D. 3.下列计算正确的是( )A.22242a a -=B.233a a a +=C.233a a a ⋅=D.232422a a a ÷=4.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法为( )A.63.153610⨯B.73.153610⨯C.63.153610⨯D.80.3153610⨯5.如图,AB 是O ⊙的直径,点C 和点D 是O ⊙上位于直径AB 两侧的点,连接AC ,AD ,BD ,CD ,若O ⊙的半径是13,24BD =,则sin ACD ∠的值是( )A.1213B.125C.512D.5136.如图,矩形ABCD 的顶点A ,C 在反比例函数()0,0k y k x x=>>的图象上,若点A 的坐标为()3,4,2AB =,AD x ∥轴,则点C 的坐标为( )A.()6,2B.38,2⎛⎫ ⎪⎝⎭C.()4,3D.()12,17.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x 个,根据题意,所列方程正确的是( )A.30030052x x -=+B.30030052x x -=C.30030052x x -=D.30030052x x-=+ 8.如图,在距离铁轨200米处的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A 处时,恰好位于B 处的北偏东60︒方向上,10秒钟后,动车车头到达C 处,恰好位于B 处西北方向上,则这时段动车的平均速度是( )米/秒.A.()2031/m s +B.()2031/m s -C.200/m sD.300/m s9.如图,ABCDEF 为O ⊙的内接正六边形,AB a =则图中阴影部分的面积是( )A.26a πB.236a π⎛- ⎝⎭ 23 D.233a π⎛- ⎝⎭10.为配合某市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?( )A.140元B.150元C.160元D.200元二、填空题(每小题3分,共18分)11.若分式293x x --的值是0,则x 的值是____________. 2.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋楼的影长为90m ,那么这栋楼的高度为__________m .13.不等式组31025143x x x x +≤+⎧⎪+⎨->⎪⎩的解集是____________. 14.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若2DQ QC =,3BC =,则平行四边形ABCD 周长为____________.15.一条公路旁依次有A ,B ,C 三个村庄,甲乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲乙之间的距离()s km 与骑行时间()t h 之间的函数关系如图所示,下列结论: ①A ,B 两村相距10km ; ②2出发1.25h 后两人相遇;③3甲每小时比乙多骑行8km ; ④4相遇后,乙又骑行了15min 时两人相距2km . 其中正确的有_____________________.(填序号)16.如图,ABC △是等边三角形,点D 为BC 边上一点,122BD DC ==,以点D 为顶点作正方形DEFG ,且DE BC =,连接AE ,AG .若将正方形DEFG 绕点D 旋转一周,当AE 取最大值时AG 的长为__________.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:()1014sin 602019232-⎛⎫︒+--+- ⎪⎝⎭ 18.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检査,并且每个小区不重复检查.(1)甲组抽到A 小区的概率是___________;(2)请用列表或画树状图的方法求甲组抽到A 小区,同时乙组抽到C 小区的概率. 19.如图,将平行四边形纸片ABCD 沿一条直线折叠,使点A 与点C 重合,点D 落在点G 处,折痕为EF ,交边AB 于点E ,交边CD 于点F .求证:(1)ECB FCG ∠=∠;(2)EBC FGC △≌△.四、解答题(每小题8分,共16分)20.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x 小时,将做家务的总时间分为五个类别:1(0)0A x ≤<,2(10)0B x ≤<,3(20)0C x ≤<,4(30)0D x ≤<,4(0)E x ≥.并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了___________名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m 的值是___________,类别D 所对应的扇形圆心角的度数是___________度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.21.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的54,已知甲玩具的进货单价比乙玩具的进货单价多1元. (1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?五、解答题(本题10分)22.如图,在Rt ABC △中,90ACB ∠=︒,D 为AB 的中点,以CD 为直径的O ⊙分别交AC ,BC 于点E ,F 两点,过点F 作FG AB ⊥于点G .(1)试判断FG 与O ⊙的位置关系,并说明理由.(2)若3AC =, 2.5CD =,则FG 的长为__________.六、解答题(本题10分)23.如图,在平面直角坐标系中,已知矩形AOBC 的顶点C 的坐标是()2,4,动点P 从点A 出发,沿线段AO 向终点O 运动,同时动点Q 从点B 出发,沿线段BC 向终点C 运动.点P 、Q 的运动速度均为每秒1个单位,过点P 作PE AO ⊥交AB 于点E ,一点到达,另一点即停.设点P 的运动时间为t 秒()0t >.(1)填空:用含t 的代数式表示下列各式AP =__________,CQ =__________.(2)①当12PE =时,求点Q 到直线PE 的距离. ②当点Q 到直线PE 的距离等于12时,直接写出t 的值. (3)在动点P 、Q 运动的过程中,点H 是矩形AOBC (包括边界)内一点,且以B 、Q 、E 、H 为顶点的四边形是菱形,直接写出点H 的横坐标.七、解答题(本题12分)24.在ABC △中,90BAC ∠=︒,AB AC =,点D 是边BC 上一动点,连接AD ,过点A 作AE AD ⊥,且AE AD =,连接CE .(1)如图,求证:ABD ACE △≌△;(2)若AF 平分DAE ∠交直线BC 于点F .①如图,当点F 在线段BC 上,猜想线段BD ,DF ,FC 之间的数量关系,并证明; ②若3BD =,4CF =,直接写出AD 的长.八、解答题(本题12分)25.如图,抛物线22y ax bx =++交x 轴于点()3,0A -和点()1,0B ,交y 轴于点C .已知点D 的坐标为()1,0-,点P 为第二象限内抛物线上的一个动点,连接AP 、PC 、CD . (1)求这个抛物线的表达式.(2)当四边形ADCP 面积等于4时,求点P 的坐标.(3)①点M 在平面内,当CDM △是以CM 为斜边的等腰直角三角形时,直接写出满足条件的所有点M 的坐标;②在①的条件下,点N 在抛物线对称轴上,当45MNC ∠=︒时,直接写出满足条件的所有点N 的坐标.2019-2020学年度九年级(下)第一次质量监测数学试卷 答案考试时间:120分钟 满分:120分一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分) 题号 1 2 3 4 5 6 7 8 9 10 选项CDCBDACABB二、填空题(每小题3分,共18分)题号 11 12 13 14 15 16 答案3-5415x < 1512348三、解答题(第17小题6分,第18、19小题各8分,共22分)17.1 18.14,11219.证明略四、解答题(每小题8分,共16分) 20.(1)50 (2)图略 (3)32, 57.6 (4)大约448人21.(1)甲进价为6元,乙进价为5元 (2)112件五、解答题(本题10分) (1)相切,证明略 (2)65六、解答题(本题10分) 23.(1)t ,4t - (2)2 (3)74t =或94t =(4)1013,10-七、解答题(本题12分) 24.(1)证明略 (2)222BD CE DF +=(3)八、解答题(本题12分) 25.(1)224233y x x =--+(2)81,3⎛⎫- ⎪⎝⎭,()2,2-(3)①()1,1-,()3,1-②(1,-,(-,()1,5-中考模拟考试数学试卷一、选择题:1. 下列各组二次根式中,属同类二次根式的是( ) 【A】【B【C【D2. 已知关于x 的方程()2421x k x k -++=有两个相等的实数根,k 的值是( ) 【A 】2 【B 】-10 【C 】2或-10 【D 】2或103. 已知反比例函数21k y x=+的图像经过点()2-1,,下列判断正确的是( ) 【A 】y 随x 的增大而减小 【B 】y 随x 的增大而增大【C 】在各自象限内,y 随x 的增大而增大 【D 】在各自象限内,y 随x 的增大而减小 4. 某初级中学提倡篮球运动,将投篮命中率作为考查学生体育成绩的一个项目,为了制定切合本校学生实际的合格标准,从各年级随机抽取50名学生进行10次投篮命中次数的测试,结果如下表所示, 次数 0 1 2 3 4 5 6 7 8 9 10 人数 1 8 10 7 6 6 5 4 1 2 0 则测试数据的中位数与众数分别为() 【A 】3次、2次 【B 】25人、10人 【C 】3.5次 、2次 【D 】2次、3次5. 下列关于正n 边形说法错误的是( ) 【A 】它是轴对称图形 【B 】它是中心对称图形【C 】正多边形的一个外角的大小等于该正多边形中心角的大小【D 】它对角线的条数是()32n n - 条6. 下列命题中,能判断是正方形的是( ) 【A 】对角线互相垂直且相等的四边形 【B 】对角线互相垂直的矩形 【C 】四个角相等的平行四边形 【D 】对角线平分一组对角的菱形 二、填空题:7. ()2---2⎡⎤⎣⎦ = .8.6x -的解为 .9. 不等式组426103730x x x x >-⎧⎨+>-⎩的解集为 .10. 322x y x -=-的定义域为 . 11. 计算:()()2332-32x x + = .12. 如果抛物线()2211y m x m =++-的顶点是坐标轴的原点,那么m 的值为 . 13. 把分别写有“20”“19”“中考”“数学”的四张卡片,字面朝下随意放在桌面上,现把这四张卡片排成一行,从左到右恰好排成“2019中考数学”或者“中考数学2019”的概率是 . 14. 如果一次函数()0y kx b k =+≠ 图像与直线132y x =+平行,且点()1-2y , 和()23y , 都在此一次函数图像上,那么1y 2y .(填“f ”或“p ”) 15. 如图,已知点O 是△ABC 内一点,点D 、E 分别在边AB 和AC 上,且13AD AB = ,DE BC ∥,OB m =u u u r u r ,OC n =u u u r r ,那么向量DE u u u r用向量m u r 、n r 表示为 .16. 已知,D 、E 、F 分别是ABC ∆的边BC 、CA 、AB 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试题二A 卷(共100分)一、选择题(每小题3分,共30分)1.下列一元二次方程中,没有实数根的是( )A .2210x x +-= B .22220x x ++= C .2210x x ++= D .220x x -++=2.如图,将三角尺(ABC 其中60,90)ABC C ∠=∠=绕B 点按顺时针方向转动一个角度到11A BC ∆的位置,使得点1,,A B C 在同一条直线上,那么这个角度等于( ) A .120 B .90 C .60 D .303.在成都市二环路在某段时间内的车流量为30.6万辆,用科学记数法表示为( ) A .430.610⨯辆 B .33.0610⨯辆 C .43.0610⨯辆 D .53.0610⨯辆 4.顺次连接等腰梯形四边中点所得的四边形一定是( ) A .矩形 B .正方形 C .菱形D .直角梯形5.下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+ ②3(0)y x x=-< ③21y x =+ ④23y x =- A .①② B .②③ C .②④ D .①③6.在△ABC 中,90C ∠=,若4BC =,2sin 3A =,则AC 的长是( )A .6B .25C .35D .2137.若点123(2,),(1,),(1,)A y B y C y --在反比例函数1y x=-的图像上,则( )A . 123y y y >>B .321y y y >>C .213y y y >>D .132y y y >>8.如图,EF 是圆O 的直径,5cm OE =,弦8cm MN =,则E ,F 两点到直线MN 距离的和等于( )A .12cmB .6cmC .8cmD .3cm9.反比例函数k y x=的图象如左图所示,则二次函数221y kx k x =--的图象大致为 ( ) y y y y10.如图,在ABC ∆中2,90,18,cos ,3ACB AB B ∠===把ABC ∆绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E 处,则线段AE 的长为 ( ) A .6 5 B .7 5 C .8 5 D .95 二、填空题(每小题4分,共16分)11.2008年8月5日,奥运火炬在成都传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,65,80,70,95,100,则这组数据的中位数是 . 12.方程2(34)34x x -=-的根是.13.如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两OOAOB . OC OyxD_ C _1_ A _1_ A_ B_ C(第2题图)FOK M G EHN (第8题图)10题(第13题图)条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 . 14.在Rt ABC ∆中,90,C D ∠=为BC 上一点,30,2,DAC BD AB ∠===则AC 的长是 . 三.解答题(共6小题,满分54分) 15.解答下列各题(每小题6分,共12分) (1)0(2)2cos30|32|-+-(2)解方程:2430x x +-=.16.(6分)求不等式组的整数解:3(21)4213212x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩,①. ②≤17.(8分)把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。

(1)如果从中抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字。

当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢。

现请你利用数状图或列表法分析游戏规则对双方是否公平?并说明理由。

18.(8分)城市规划期间,欲拆除一电线杆AB (如图所示),已知距电线杆AB 水平距离14米的D 处有一大坝,背水坡CD 的坡度2:1i =,坝高CF 为2米,在坝顶C 处测得杆顶A的仰角为30.,D E 之间是宽为2米的人行道.试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心,以AB 长为半径的圆形区域为危险区域). 1.732≈ 1.414≈)19.(10分)如图,在直角坐标系中,O 为原点.点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数12y x=的图象经过点A . (1)求点A 的坐标;(2)如果经过点A 的一次函数图象与y 轴的正半轴交于点B ,且OB AB =,求这个一次函数的解析式.30人行道BE D A( 第14题图)20.(10分)如图,已知//,ED BC EAB BCF ∠=∠. (1)四边形ABCD 为平行四边形;(2)求证:2OB OE OF =⋅;(3)连接,BD 若,OBC ODC ∠=∠求证,四边形ABCD 为菱形.B 卷(共50分)一、填空题(每小题4分,共20分)21.已知22222()()60a b a b +-+-=, 则=+22b a ______.22.如图:正方形ABCD 中,过点D 作DP 交AC 于点,M 交AB 于点,N 交CB 的延长线于点,P 若1,MN =3,PN =则DM 的长为 .23.如果m 是从0,1,2,3四个数中任取的一个数,n 是从0,1,2三个数中任取的一个数,那么关于x 的一元二次方程2220x mx n -+=有实数根的概率为 . 24.如图O 的直径EF 为10,cm 弦,AB CD 分别为6,8,cm cm 且////AB EF CD .则图中阴影部分面积之和为 .25.如图,PT 是O 的切线,T 为切点,PA 是割线,交O 于,A B 两点,与直径CT 交于点D .已知2,3,4,CD AD BD ===则PB =_______.26.(8分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案? (3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?27.(10分)已知,如图,AB 是O 的直径,AD 是弦,C 是弧AB 的中点,连结BC 并延长与AD 的延长线相交E DCBFAO24题图第19题图PN MDCBA22题图 25题图于点,,P BE DC ⊥垂足为,//,E DF EB 交AB 于点,,F FH BD ⊥垂足为,4,3H BC CP ==. 求(1)BD 和DH 的长;(2)BE BF ⋅的值.28.(12分) 如图所示,在平面直角坐标系中,以点(2,3)M 为圆心,5为半径的圆交x 轴于,A B 两点,过点M 作x 轴的垂线,垂足为D ;过点B 作M 的切线,与直线MD 交于N 点。

(1)求点,B N 的坐标以及直线BN 的解析式;(2)求过,,A N B 三点(对称轴与y 轴平行)的抛物线的解析式;(3)设(2)中的抛物线与y 轴交于点,P 以点,,D B P 三点为顶点作平行四边形,请你求出第四个顶点Q 的坐标,并判断Q 是否在(2)中的抛物线上PCEBOHFDAADO BMN xy2010级中考数学模拟试题答案一.选择题1.C2.A3.D4.C5.C6.B7.C8.B9.C 10.B 二、填空题:(每小题4分,共16分) 11、75 12、34,3521==x x13、16 14、3 三、15、(1)3-3 (2)-1,4317、(1)31(2)P (小李)=32,P (小王)=31, 3231≠不公平 18、AB ≈10.66m,BE=12m,BE>AB,无危险,不需封人行道。

五、19、(1)设A (m,3m ) (2)设一次函数:y=kx+b ∴B (0,b )(b>0) ∵A 在y=x 12上 ∵OB=AB ∴b=310,B(0,310) ∴3mm=12,m=±2 y=31034+x ∵A 在第一象限 ∴m=2,A(2,6)20、 (1) ∵DE ∥BC ∴∠D=∠BCF ∵∠EAB=∠BCF ∴∠EAB=∠D ∴AB ∥CD ∵DE ∥BCEDC BA∴四边形ABCD 为平行四边形 (2)∵DE ∥BC ∴OAOCOE OB =∵AB ∥CD∴OBOF OA OC = ∴OBOFOA OB =∴OF OE OB •=2(3)连结BD,交AC 于点H,连结OD ∵DE ∥BCE OBC ∠=∠∴ ODC OBC ∠=∠DOEDOF EODC ∠=∠∠=∠∴ODF ∆∴∽OED ∆ODOB OE OF OB OF OE OD ODOFOE OD =∴•=•=∴=∴22 DH BH ABCD =中平行四边形B D OH ⊥∴∴四边形ABCD 为菱形B 卷(共50分)一、填空题:(每小题4分,共20分) 21. 3 22. 2 23.4324.π225 25、20 二、(共8分)EDC BFAOH26.(1)解:设今年三月份甲种电脑每台售价x 元100000800001000x x =+ 解得:4000x =经检验:4000x =是原方程的根,所以甲种电脑今年每台售价4000元. (2)设购进甲种电脑x 台,4800035003000(15)50000x x +-≤≤ 解得610x ≤≤因为x 的正整数解为6,7,8,9,10,所以共有5种进货方案 (3)设总获利为W 元,(40003500)(38003000)(15)(300)1200015W x a x a x a =-+---=-+-当300a =时,(2)中所有方案获利相同.此时,购买甲种电脑6台,乙种电脑9台时对公司更有利(利润相同,成本最低).三、(共10分)27. 已知,如图,AB 是⊙O 的直径,AD 是弦,C 是弧AB 的中点,连结BC 并延长与AD 的延长线相交与点P ,BE ⊥DC ,垂足为E ,DF ∥EB ,交AB 与点F ,FH ⊥BD ,垂足为H ,BC=4,CP=3. 求(1)BD 和DH 的长,(2)BE ·BF 的值(1) 107,528==DH BD (2) BE ·BF 598=PCEBOH FDA四、(共12分)28.1、B (-2,0);N (2,)316- 直线BN :3834--=x y 2、434312--=x x y 3、)4,0();4,4();4,4(321Q Q Q --- 2Q 在抛物线上。

相关文档
最新文档