煤油冷却器课程设计
《化工原理》课程设计--煤油冷却器的设计
《化工原理》课程设计任务书一、设计题目:煤油冷却器的设计二、原始数据及操作条件1、处理能力8万吨/年2、设备形式列管式3、煤油T入= 140℃,T出= 40℃4、冷水T入= 25℃,T出= 40℃5、⊿P<=105Pa6、煤油ρ=825Kg/m3,η=7.15×10-4Pa.S C V=2.22K J/Kg.℃7、λ= 0.14W/(m.℃)8、每年按330天计,24小时/天连续进行。
三、设计要求选择适宜的列管式换热器并进行核算,绘制设备条件图(1号)一份,编制一份设计说明书(打印稿),其主要内容包括:1、前言2、生产条件的确定3、换热器的设计计算4、设计结果列表5、设计结果的讨论与说明6、注明参考和使用的设计资料7、结束语《化工原理》课程设计说明书一、前言在化工、石油、动力、制冷、食品等行业中广泛使用各换热器,且它们是这些行业的通用设备,并占有十分重要的地位。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。
换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。
随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。
在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器大的机构尺寸。
列管式换热器的应用已有很悠久的历史。
在化工、石油、能源设备等部门,列管式换热器仍是主要的换热设备。
列管换热器的设计资料已较为完善,已有系列化标准。
目前我国列管换热器的设计、制造、检验、验收按“钢制管壳式(即列管式)换热器”(GB151)标准执行。
列管式换热器主要有固定管板式换热器、浮头式换热器、U型管换热器和填料函式换热器等。
固定管板式换热器有结构简单、排管多等优点。
但由于结构紧凑,固定管板式换热器的壳侧不易清洗,而且当管束和壳体之间的温差太大时,管子和管板易发生脱离,故不适用与温差大的场合。
煤油冷却器课程设计
煤油冷却器课程设计煤油冷却器是一种常见的工业设备,用于冷却高温的液体或气体。
在传热学中,煤油冷却器是一个热传导系统,其中热传导的媒介是煤油。
煤油冷却器的设计本质上是为了优化传热过程,以提高效率和可靠性。
在煤油冷却器的课程设计中,需要考虑多个因素。
首先是热负荷,即需要冷却的液体或气体的温度、压力和流量等参数。
其次是煤油的选择,包括煤油的种类、质量和流量等。
还需要考虑冷却器的结构和材料,包括管壳式和板式等不同类型,以及不同的材料如不锈钢、铜和铝等。
在实际操作中,煤油冷却器的设计要结合生产实际情况进行。
首先要确定冷却器的工作条件,包括入口和出口温度、流量和压力等。
其次要根据设计要求进行煤油的选择和计算,包括煤油的粘度、比热和热导率等。
然后要进行器件结构和材料的选择,以及进行传热计算和流体力学分析等。
最后需要进行实验验证,以确定冷却器的性能和可靠性。
在煤油冷却器的课程设计中,主要有以下步骤:1.确定设计需求和条件,包括冷却的流体参数、煤油参数、冷却器结构和材料等。
2.进行煤油选择和计算。
包括煤油的粘度、比热和热导率等参数,以及计算煤油的流量和压力损失等。
3.进行器件结构和材料的选择,包括选择管壳式或板式冷却器,以及选择不锈钢、铜或铝等材料。
4.进行传热计算和流体力学分析等,以确定器件的传热效率和流体阻力等。
5.进行实验验证,以确定冷却器的性能和可靠性。
在实际操作中,煤油冷却器的课程设计需要充分考虑生产实际情况,结合理论分析和实验验证进行,以保证器件的高效性和可靠性。
同时,还需要注意煤油的使用和管理,以确保冷却器的正常运行和安全性。
化工原理课程设计说明书-煤油冷却器的设计
课程设计任务书一、摘要换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。
换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。
在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。
换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。
根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。
由于使用条件的不同,换热器可以有各种各样的形式和结构。
在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。
衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动力。
二、关键字煤油换热器列管式换热器膨胀节固定管板式封头管板目录一、概述 (1)二、工艺流程草图及设计标准 (1)2.1工艺流程草图 (1)2.2设计标准 (2)三、换热器设计计算 (2)3.1确定设计方案 (2)3.1.1选择换热器的类型 (2)3.1.2流体溜径流速的选择 (2)3.2确定物性的参数 (3)3.3估算传热面积 (3)3.3.1热流量 (3)3.3.2平均传热温差 (3)3.3.3传热面积 (3)3.3.4冷却水用量 (4)3.4工艺结构尺寸 (4)3.4.1管径和管内流速 (4)3.4.2管程数和传热管数 (4)3.4.3平均传热温差校正及壳程数 (4)3.4.4传热管排列和分程方法 (5)3.4.5壳体内径 (5)3.4.6折流板 (5)3.4.7接管 (5)3.5换热器核算 (6)3.5.1热流量核算 (6)3.5.1.1壳程表面传热系数 (6)3.5.1.2管内表面传热系数 (7)3.5.1.3污垢热阻和管壁热阻 (7)3.5.1.4计算传热系数K C (7)3.5.1.5换热器的面积裕度 (8)3.5.2换热器内流体的流动阻力 (8)3.5.2.1管程流体阻力 (8)3.5.2.2壳程阻力 (8)四、设计结果设计一览表 (10)五、设计自我评价 (11)六、参考资料 (12)七、主要符号说明 (13)一、概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
煤油冷却器的设计 化工原理课程设计
课程设计课程名称化工原理课程设计题目名称煤油冷却器的设计专业班级食品营养与检测学生姓名学号指导教师二O O年12 月31 日目录1.设计任务 ----------------- 12. 设计计算 ----------------- 2(1)确定设计方案 ---------------------- 2(2)确定物性系数-------------------------- 2(3)计算总传热系数 ------------------- 3 (4)计算传热面积--------------------------- 4(5)工艺结构尺寸--------------------------- 4(6)换热器核算 ------------------------ 53. 换热器主要结构尺寸和计算结果表1 9煤油冷却器的设计列管式换热器【设计任务】一、设计题目列管式换热器的设计二、设计任务及操作条件(1)处理能力: M*103 t/Y(其中:M=30+学号后两位)煤油(2)设备型式: 列管式换热器(3)操作条件①煤油:入口温度110℃,出口温度60℃。
②冷却介质:循环水,入口温度29℃,出口温度39℃。
③允许压降:不大于105 Pa。
④煤油定性温度下的物性数据:定压比热容=3.297kJ/(kg.℃)导热系数=0.0279 W/(m.0C)⑤每年按330天计,每天24小时连续运行。
(4)建厂地址蚌埠地区三、设计要求试设计一台适宜的列管式换热器完成该生产任务。
【设计计算】一、确定设计方案1.选择换热器的类型两流体温度变化情况:热流体进口为温度110℃,出口温度60℃;冷流体(循环水)进口温度29℃,出口温度39℃。
该换热器用循环水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用带膨胀节的固定管板式换热器。
2.流动空间及流速的确定由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。
煤油冷却器课程设计
煤油冷却器课程设计煤油冷却器课程设计简介煤油冷却器是一种能够将热能转化为机械能的装置,主要用于农业、交通运输、建筑等行业,起到降温、润滑、提高效率的作用。
本文将介绍煤油冷却器的课程设计,主要包括课程设计的目的、内容、教学方法和评估标准。
目的通过本次课程设计,学生将能够:1.了解煤油冷却器的结构和原理,掌握其工作原理和应用场景;2.完成一个小型煤油冷却器的制作,掌握实验操作技能;3.通过分析实验结果,加深对煤油冷却器原理的理解,提高解决实际问题的能力。
内容本次课程设计将分为以下四个部分:1.课程理论讲授首先,将介绍煤油冷却器的结构特点和工作原理,对于煤油冷却器的实际应用场景进行分析和解释。
其中包括:(1)冷却器的原理和种类(2)煤油冷却器的特点和设计原则(3)冷却器的使用和维护2.实验器材准备根据所需器材、器件以及材料进行规划购买,同时并准备实验前的各种开展实验所需的仪器,如多用表、温度计、热枪等,另外仪器准备后还须复核检查是否齐全、检验所准备的器材是否正常,确保器材完整,准备工作得当。
3.实验操作在实验讲解和演示的基础上,学生将根据所提供的样品进行实际操作,测定煤油冷却器的性能参数,调整气口数量或位置、重组插片、筛网等,从而达到最佳性能。
4.结果分析和评价在实验完成后,学生需要进行数据处理和分析,通过整理实验结果,并各自自然地描述各项数据的变化表现。
在综合分析之后,画出实验数据的数据曲线,比较实验结果,识别出具体差异。
教学方法本次课程设计采用以下教学方法:1.小组合作学习会将学生分为小组,每个小组将负责实验器材的准备、实验操作、数据收集和结果分析。
此方法将鼓励学生积极参与和合作,促进团队互助合作。
2.实验操作演示老师将根据规定的操作演示其理当的操作步骤,帮助学生更快速地学习理论和品味实践。
同时还需对关键操作环节进行一些具体分析和口头指导。
3.互动讨论在学生完成了实验操作之后,将进行整个实验过程的讨论,对实际操作和数据误差进行分析和讨论。
煤油冷却器的课程设计1
煤油冷却器的课程设计1板式换热器设计任务书一、设计题目:煤油冷却器的设计二、设计任务1 、处理能力:19.8 X 104 t年煤油2 、设备型号:列管式换热器3 、操作条件:煤油:入口温度140C,出口温度40C冷却介质:循环水,入口温度30C,出口温度38C允许压降:不大于105Pa每年按330 天计建厂地址:广西三、设计要求1 、选择适宜的列管式换热器并进行核算2 、要进行工艺计算3 、要进行主体设备的设计(主要设备尺寸、横算结果等)4 、编写设计任务书5 、进行设备结构图的绘制(用420*594 图纸绘制装置图一张:一主视图,一俯视图。
一剖面图,两个局部放大图。
设备技术要求、主要参数、接管表、部件明细表、标题栏。
)化工原理课程设计说明书题目:列管式换热器的设计系别:班级:学号:姓名:指导教师:日期:2019 年1 月5 日目录、设计方案............................................ (5)1.换热器的选择..... 5 2.流动空间及流速的确定.................... 5二、物性数据.......... 5三、计算总传热系数: (6)1.热流量......... 6 2.平均传热温差..... 63.冷却水用量..6 4.总传热系数K......... 6四、计算换热面积... 7五、工艺结构尺寸... 71.管径和管内流速..7 2.管程数和传热管数............................. 73.平均传热温差校正及壳程数............. 8 4.传热管排列和分程方法..................... 8 5.壳体内径..... 8 6.折流.................. 8 7.接板管........................... 8六、换热器核算..... (9)1.热量核算.............. 9 2.热量重新核算......... 1 0 3.换热器内流体的流动阻力.............. 1 1 4.换热器主要结构尺寸和计算结果.................................................... 13 七、设计的评述..................... ................................................. 14 八、参考文献 ..................................................... 14 九、主要符号说明 ............................................. 15 十、主体设备条件图及生产工艺流程图........................................... (15)1 换热器类型的选择在本次设计任务中,两流体温度变化情况:热流体进口温度140C,出口温度40C;冷流体(循环水)进口温度30C,出口温度38C。
煤油冷却器设计化工原理课程设计
煤油冷却器设计化工原理课程设计XX大学化工原理课程设计任务书专业:高分子材料与工程班级:高分子姓名:设计日期:日设计题目:煤油冷却器设计设计条件:1.设备处理量***** kg/h。
2.煤油:入口温度150℃,出口温度60℃ 3.冷却水:入口温度30℃,出口温度40℃ 4.热损失可忽略。
两侧污垢热阻分别为RS0=0.00017m2℃/W RSi=0.00034 m2℃/W 5.壳程压降不大于30 kPa 6.初设K=290 W/m2·℃。
设计要求:1 设计满足以上条件的换热器并写出设计说明书。
2. 根据所选换热器画出设备装配图。
指导教师:第一章文献综述第一节概述一换热器的概念在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;1/ 16另一种流体则温度较低,吸收热量。
35%~40%。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。
换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。
二换热器的分类随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。
在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。
换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。
换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。
其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。
表2-1 传热器的结构分类类型特点间壁式管壳式列管式固定管板式刚性结构用于管壳温差较小的情况(一般≤50℃),管间不能清洗带膨胀节有一定的温度补偿能力,壳程只能承受低压力浮头式管内外均能承受高压,可用于高温高压场合U型管式管内外均能承受高压,管内清洗及检修困难填料函式外填料函管间容易泄漏,不宜处理易挥发、易爆炸及压力较高的介质内填料函密封性能差,只能用于压差较2/ 16小的场合釜式壳体上部有个蒸发空间用于再沸、蒸煮双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中套管式能逆流操作,用于传热面较小的冷却器、冷凝器或预热器螺旋管式沉浸式用于管内流体的冷却、冷凝或管外流体的加热喷淋式只用于管内流体的冷却或冷凝板面式板式拆洗方便,传热面能调整,主要用于粘性较大的液体间换热螺旋板式可进行严格的逆流操作,有自洁的作用,可用作回收低温热能平板式结构紧凑,拆洗方便,通道较小、易堵,要求流体干净板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触蓄热式换热过程分阶段交替进行,适用于从高温炉气中回收热能的场合第二节换热器设备应满足的基本要求完善的换热器在设计或选型时应满足以下各项基本要求。
煤油冷却器的设计
西北大学化工原理课程设计任务书设计题目煤油冷却器院系化工学院专业化学工程与工艺指导教师赵彬侠姓名张洪姣学号2008115023目录(一)设计题目(二)流程和方案的说明和论证(三)计算过程(四)流程图(五)设计感想(六)参考文献一、设计题目:根据条件设计合适的换热器(煤油冷却器的设计)设计任务及操作条件:1.煤油:入口温度150℃,出口温度50℃;运行表压1bar。
2.冷却介质:凉水塔中处理过的补给水,入口温度30℃,出口温度50℃;运行表压3bar。
二、流程和方案的说明和论证1.传热过程易采用逆流传热方式,因为逆流平均推动力大于并流;选用单壳程四管程固定式列管换热器;2.流体空间的选择:由于煤油流量为14T/h,且由于水的定性温度t=1/2(50+30)=40℃,煤油定性温T=1/2(150+50)=100℃,煤油的定性温度查得相应的物性值:煤油的粘度:μ油=0.81×10-3Pa.S 密度:ρ油=818kg/m3 C油=2.26kJ/(kg. ℃)λ油=0.135W/(m. ℃)水的粘度:μ水=0.656×10-3Pa.S 密度:ρ水=992.2kg/m3C水=4.174kJ/(kg. ℃)λ水=0.6333W/(m. ℃)高温流体一般走管程,因为高温会降低材料的许用应力,高温流体走管程可节省保温层和减少壳体厚度;腐蚀性较强的流体应该走管程,可以节省耐腐蚀材料;较脏和易结垢的流体走管程,以便于清洗和控制结垢,如必须走管程,则可采用正方形排列,并采用可拆式换热器。
且煤油为热物体,易放在管壳。
流体空间的选择还与粘度、压力降、流速、传热膜系数等因素有关。
根据上述原则及水和煤油的物性参数,最终设计煤油走管壳,水走管程。
结构与结构参数的选择a) 直径小的换热器不仅便宜,而且可以获得较好的传热膜系数与阻力系数的比值。
但管径愈小则换热器的压降愈大,在满足允许压力的前提下,一般推荐用外径为19mm ,对于易结垢的流体,为方便清洗,采用外径为25mm 的管子b) 管长 无相变的换热器时,管子较长则传热系数也增大,在相同的传热面积的情况下,采用长管流动截面积小,流速大,管程数小,从而减小了回弯次数,因而压降也较小;但是罐子过长会带来制造的麻烦,因此一般选用4—6米,对于传热面积大的,若无相变的可用8—9米。
煤油冷却器的课程设计--课程设计
x x x x x大学化工原理课程设计题目煤油冷却器的设计教学院专业班级学生姓名学生学号指导教师2012年6月8日目录第一章绪论 (1)第二章方案设计说明 (1)2.1换热器的选型 (1)2.1.1 换热器的分类 (1)2.1.2 间壁式换热器 (1)2.1.3 管壳式换热器 (1)2.1.4 换热器的选型 (2)2.2材质的选择 (2)2.3换热器其他结构设计 (2)2.3.1 管程机构 (2)2.3.2 壳程结构 (2)第三章管壳式换热器的设计计算 (3)3.1确定设计方案 (3)3.1.1 选择换热器类型 (3)3.3.2 流动空间及流苏确定 (3)3.2 确定物性参数 (3)3.3 计算总传热系数 (4)3.3.1 热流量 (4)3.3.2 平均传热温差 (4)3.3.3 冷却水用量 (4)3.3.4 总传热系数 (4)3.4 计算传热面积 (5)3.5 工艺结构尺寸 (5)3.5.1 管径和管内流速 (5)3.5.2 管程数和传热管数 (5)3.5.3 平均传热温差校正及壳程 (6)3.5.4 传热管排列和分程方法 (6)3.5.5 壳体内径 (6)3.5.6 折流板 (7)3.5.7 接管 (7)3.6 换热器核算 (7)3.6.1 热量核算 (7)3.6.2 换热器内流体的流动阻力 (9)第四章计算结果一览表 (11)课程设计心得与体会 (12)参文文献 (14)附录(1)油冷却器的设计任务书 (15)附录(2)符号说明 (16)第一章绪论工程设计是工程建设的灵魂,又是科研成果转化为现实生产力的桥梁和纽带,它决定了工业现代化水平。
设计是一项政策性很强的工作,它涉及政治、经济、技术、环保、法规等诸多方面,而且还会涉及多专业、多学科的交叉、综合和相互协调,是集体性的劳动。
先进的设计思想、科学的设计方法和优秀的设计作品是工程设计人员应坚持的设计方向和追求的目标。
而化工原理课程设计,是将所学的化工原理理论知识联系实际生产的重要环节。
化工原理课程设计_l煤油冷却器
化工原理课程设计_l煤油冷却器本设计中所用字母和符号说明:英文字母气化潜热,kJ/kg; B—折流板间距,m; R—热阻,2;m C/w C—系数,无量纲;因数;d—管径,m; Re—雷诺准数;D—换热器外壳内径,m; S—传热面积,2m;f—摩擦系数;t—冷流体温度,℃;F—系数;管心距,m;h—圆缺高度,m;T—热流体温度,℃;K—总传热系数,2;μ—流速,m/s;W/(m C)L—管长,m; W—质量流量,kg/s。
m—程数;希腊字母n—指数;α—对流传热系数,2;W/(m C)管数;?—有限差值;程数;λ—导热系数,W/(m C);N—管数;μ—黏度,Pa s?;程数;ρ—密度,kg/3m;N—折流板数;φ—校正系数。
BN—努塞尔特准数;下标μP—压力,Pa; c—冷流体;因数; h—热流体;Pr—普兰特准数; i—管内;m;m—平均;q—热通量,W/2Q—传热速率,W;o—管外;r—半径,m;s—污垢。
一、设计任务及操作条件 (3)1.1 处理能力 (3)1.2 设备型号 (3)1.3 操作条件 (3)1.4 建厂地址 (3)二、设计计算 (3)2.1确定设计方案 (3)2.1.1选择换热器的类型 (3)2.1.2 流动空间及流速的确定 (4) 2.2 确定物性数据 (4)2.3 计算总传热系数 (5)2.3.1 热流量 (5)2.3.2 平均传热温差 (5)2.3.3 冷却水用量 (5)2.3.4 假设总传热系数 (5)2.4 计算传热面积 (5)2.5 工艺结构尺寸 (5)2.5.1 管径和管内流速 (5)2.5.2 管程数和传热管数 (5)2.5.3 平均传热温度校正及壳程数 (6) 2.5.4 传热管排列和分程方法 (6) 2.5.5 壳体内径 (7)2.5.6折流板 (7)2.5.7 接管 (7)2.6 换热器核算 (7)2.6.1换热器核算 (7)2.6.2 换热器内的流动阻力 (9)三、换热器主要结构尺寸和计算结果 (10)四、参考文献 (13)五、自我评价 (14)煤油冷却器的设计一、设计任务及操作条件1.1 处理能力:19.80×410t/a煤油1.2 设备型号:列管式换热器 1.3 操作条件:①煤油:入口温度140℃,出口温度40℃②冷却介质:循环水,入口温度30℃,出口温度40℃ ③允许压降:不大于510Pa ④煤油定性温度下的物性常数20 = 825Kg/m ρ -4 = 7.1510 Pa s μ0?? 0= 2.22KJ/(Kg p c ·℃)0= 0.14W/(m λ·℃)⑤每年按330天计,每天24小时连续运行。
煤油冷却器课程设计
煤油冷却器课程设计长沙学院课程设计说明书题目煤油冷却器的设计系(部) 生环系专业(班级) 09应化2班姓名学号指导教师宋勇起止日期2020.5.28——2020.6.16化工原理课程设计任务书系主任___________ 指导教师____________ 学生__戴 姣______ 2班 编号:2.2.7一、设计题目名称:煤油冷却器的设计 二、设计条件:1.煤油:入口温度:130℃,出口温度:50℃;2.冷却介质,循环水(P 为0.3MPa ,进口温度28℃,出口温度40℃) 3.承诺压强降,不超过105Pa ;4.每年按300天计;每天24 h 连续运转。
5.处理能力65000吨/年; 6.设备型式:列管式换热器。
7.煤油定性温度下的物性数据:34c c p,c c 825kg /m ,7.1510Pa s, c 2.22kJ/kg C 0.14W /m C -==⨯⋅=⋅︒=⋅︒(),()ρμλ三、设计内容1.热量衡算及初步估算换热面积; 2. 冷却器的选型及流淌空间的选择; 3. 冷却器的校核运算; 4. 结构及附件设计运算;5.绘制带操纵点的工艺流程图(A3)及冷却器的工艺条件图(A3); 6.编写设计说明书。
四、厂址:长沙地区五、设计任务完成卧式列管冷却器的工艺设计并进行校核运算,对冷却器的有关附属设备的进行设计和选用,绘制换热器系统带操纵点的工艺流程图及设备的工艺条件图,编写设计说明书。
六、设计时刻安排三周:2020年5月28日-2020年6月16第一章长沙学院课程设计鉴定表目录第1章设计方案简介 (1)1.1 换热器概述 (1)1.2列管式换热器 (1)1.2.1 固定管板式 (1)1.2.3U形管式 (2)1.3设计方案的拟定 (3)1.4工艺流程简图(见附图) (3)第二章工艺运算和主体设备设计 (4)2.1 初选换热器类型 (4)2.2 管程安排及流速确定 (4)2.3确定物性数据 (5)2.4运算总传热系数 (5)第三章工艺结构设计 (9)3.1.管径和管内流速 (9)3.2.管程数和传热管数 (9)3.3.平均传热温差校正及壳程数 (9)第四章换热器核算 (14)第五章辅助设备的运算和选型 (20)第六章设计结果表汇 (22)参考文献 (23)化工原理课程设计之心得体会 (24)第1章设计方案简介1.1 换热器概述换热器是化工,炼油工业中普遍应用的典型的工艺设备。
煤油冷却器课程设计
煤油冷却器课程设计一、引言煤油冷却器是一种常用的热交换器,其主要功能是将高温的液体或气体通过煤油冷却器内部的管道和壳体与冷却介质(通常为水)进行换热,从而实现降温或加热的目的。
在许多工业领域,如化工、电力、钢铁等,煤油冷却器都有着广泛的应用。
本文旨在介绍煤油冷却器课程设计。
二、课程设计内容1. 煤油冷却器的原理与结构2. 煤油冷却器的性能参数及其影响因素3. 煤油冷却器的设计计算方法4. 煤油冷却器实验设计与结果分析三、煤油冷却器原理与结构1. 煤油冷却器原理:利用传导、对流和辐射三种方式将高温液体或气体传递到壳体内部,并通过内部管道将其与低温介质进行换热。
2. 煤油冷却器结构:通常由一个外壳和一个或多个管束组成。
外壳内部为冷却介质的流动通道,管束内部为高温液体或气体的流动通道。
管束和外壳之间通过密封件连接。
四、煤油冷却器性能参数及其影响因素1. 热传导系数:指单位时间内单位面积的热量传递量。
2. 换热面积:指内部管道和外壳之间的有效换热面积。
3. 流体流速:指液体或气体在管道中的流速。
4. 温度差:指高温液体或气体与低温介质之间的温度差异。
5. 影响因素:包括介质物性、管束结构、流体流量等。
五、煤油冷却器设计计算方法1. 确定换热量和换热面积;2. 计算传热系数;3. 确定壳程和管程流量;4. 计算壳程和管程压降;5. 选择管束结构及材料。
六、煤油冷却器实验设计与结果分析1. 实验目的:验证理论计算结果,分析影响换热效果的因素。
2. 实验内容:利用实验装置进行不同流量、温度差等条件下的换热实验。
3. 实验结果分析:根据实验数据分析影响换热效果的因素,并与理论计算结果进行比较。
七、总结煤油冷却器是一种重要的热交换设备,其设计涉及多个方面的知识。
通过本文的介绍,读者可以了解到煤油冷却器的原理与结构、性能参数及其影响因素、设计计算方法以及实验设计与结果分析等方面的内容。
同时,本文也为相关领域的工程师和科学家提供了参考和指导。
化工原理课程设计--煤油冷却器的设计
化工原理课程设计--煤油冷却器的设计
煤油冷却器是一种更耐用、更耐高压的流体换热器,在航空、轮渡和工业中都得到了
广泛的应用,具有容易安装、可靠性高、维护更容易等优点。
煤油冷却器的设计包括流体
的流动和传热的计算,以及冷却器的安装及其他特殊要求。
设计前首先要确定冷却器的功能需求,由质量流量和工作压力的选择决定其能力,以
决定其设计的主要参数。
在确定冷却器的性能指标之后,根据系统的复杂度,确定冷却器
的结构及各部件位置,选择使用已有规格型号的冷却器或按要求订做冷却器,确定冷却器
容积、介质、外形尺寸及其附件。
在设计煤油冷却器的过程中,最重要的是要根据冷却的性能需求,考虑安装空间的限制,采用合理的结构,以提高冷却器的效率。
一般而言,需要用计算机对冷却器的设计进
行仿真,实质上利用数值模拟和流体动力学方法,进行论证和优化设计。
在设计完成之后,还需要进行热性能试验,原则上应符合安装场合条件下外界温度、
物料温度和流体静态压力之间的变化规律,以确保冷却器的可靠性、稳定性及使用寿命。
综上所述,对煤油冷却器的设计工作需要遵照以下步骤:确定设计要求,计算参数,
分析结构,设计冷却器,仿真及有限元分析,试验证明。
以务实的态度,坚持合理的原则,从而让煤油冷却器的设计更加科学、全面。
煤油冷却器课程设计
煤油冷却器课程设计一、前言煤油冷却器是一种常见的热交换设备,用于将煤油从高温冷却到低温。
本课程设计旨在通过理论学习和实践操作,使学生对煤油冷却器的结构、工作原理和操作技能有深入的了解。
二、课程目标1.掌握煤油冷却器的基本结构和工作原理;2.理解煤油冷却器在工业生产中的应用;3.掌握煤油冷却器的操作技能和维护方法。
三、课程大纲1. 煤油冷却器概述•煤油冷却器的定义和分类;•煤油冷却器的工作原理;•煤油冷却器的常见问题和应对措施。
2. 煤油冷却器结构与组成•煤油冷却器的主体结构和内部组成;•煤油冷却器中常见的材料和制造工艺;•不同型号煤油冷却器的特点和适用范围。
3. 煤油冷却器的工作原理•煤油冷却器的工作过程解析;•煤油在煤油冷却器中的流动特点;•热量传递机制和传热效率的影响因素。
4. 煤油冷却器的操作技能•煤油冷却器的正常启停操作;•煤油冷却器的温度和压力监测;•煤油冷却器的安全措施和事故处理。
5. 煤油冷却器的维护与保养•煤油冷却器的日常维护方法和注意事项;•煤油冷却器的定期检修和保养计划;•煤油冷却器故障排查和维修常见技巧。
四、实践操作本课程设计包括实践操作环节,学生将通过模拟实验操作,深入了解煤油冷却器的实际运行情况,培养实际操作能力。
五、评价方式1.理论知识测试:对学生对课程内容的理解和掌握程度进行考核;2.实践操作评估:对学生在实践操作中的操作技能和安全意识进行评估;3.课程报告:学生撰写煤油冷却器课程设计报告。
六、教学资源和参考资料•煤油冷却器实物模型;•实验室设备和工具;•相关教材和参考资料。
七、总结本课程设计旨在通过理论学习和实践操作,使学生深入了解煤油冷却器的结构、工作原理和操作技能。
通过本课程的学习,学生可以掌握煤油冷却器的基本知识,并具备使用和维护煤油冷却器的能力。
化工原理课程设计煤油冷却器的设计
广西工学院化工原理课程设计说明书设计题目煤油冷却器的设计系别生化系专业班级学生姓名学号指导教师日期设计成绩一、化工原理课程设计任务书(换热器的设计)(一)设计题目:煤油冷却器的设计(二)设计任务与操作条件:1.处理能力:(19.8×104+5×17)吨/年煤油2.设备型式:列管式换热器3.操作条件:(1)煤油入口温度140℃,出口温度40℃;(2)冷却介质循环水,入口温度30℃,出口温度40℃;(3)允许压强降不大于105Pa;(4)煤油定性温度下的物性数据:密度为825kg/m3;粘度为:7.5×10-4Pa.S;比热容为:2.22kJ/(kg. ℃);导热系数为:0.14W/(m. ℃)(5)每年按330天计,每天24小时连续运行。
(三)设计项目1.选择适宜的列管换热器并进行核算。
2.画出工艺设备图与列管布置图。
目录一、设计任书 (1)二、工艺流程草图与说明 (5)三、工艺计算与主要设备设计 (6)1、确定设计方案 (6)1.1选择换热器的类型 (6)1.2流程安排 (6)2、确定物性数据 (6)3、估算传热面积 (7)3.1热流量 (7)3.2平均传热温差 (7)3.3传热面积 (7)3.4冷却水用量 (7)4、工艺结构尺寸 (7)4.1管径和管内流速 (7)4.2管程数和传热管数 (7)4.3平均传热温差校正与壳程数 (8)4.4传热管排列和分程方法 (8)4.5壳体内径 (8)4.6折流板 (8)4.7其他附件 (8)4.8接管 (8)5、换热器核算 (9)5.1热流量核算 (9)5.1.1壳程表面传热系数 (9)5.1.2管内表面传热系数 (9)5.1.3污垢热阻和管壁热阻 (9)5.1.4传热系数K C (10)5.1.5传热面积裕度 (10)5.2壁温核算 (10)5.3换热器内流体的流动阻力 (11)5.3.1管程流体阻力 (11)5.3.2课程阻力 (11)四、辅助设备的计算和选型 (12)五、设计结果概要 (13)六、设计评述 (15)七、附图 (16)八、参考资料 (17)九、主要符号说明 (18)二、工艺流程草图与说明工艺流程草图主要说明:由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,煤油走壳程。
煤油冷却器的设计,化工原理课程设计
目录1设计任务书 (1)1.1设计题目 (1)1.2设计任务及操作条件 (1)1.3设计已知条件 (1)1.4设计内容 (2)2设计目的及要求 (3)2.1目的 (3)2.2要求 (3)3概述及简介 (5)4设计方案简介 (6)4.1试算并初选设备规格 (6)4.2计算管程、壳程压强降 (7)5工艺计算 (8)5.1流体走法确定 (8)5.2计算和初选换热器的规格 (8)5.3核算总传热系数 (10)5.4核算压强降 (13)6辅助设计 (17)6.1换热器主要尺寸的确定 (17)6.2法兰的确定及垫片的确定 (17)6.3支座的确定 (18)6.4筒体的确定 (19)6.6拉杆及定距管的确定 (19)6.7分程隔板的确定 (20)6.8管板尺寸的确定 (20)6.9折流板的确定 (20)6.10接管尺寸的确定 (20)6.11浮头主要尺寸的确定 (21)6.12滑板结构 (21)7计算结果汇总 (23)7.1计算结果 (23)7.1计算结果 (24)8评述 (26)9重要符号说明 (28)10参考文献 (30)1设计任务书1.1设计题目煤油冷却器的设计1.2设计任务及操作条件1、设计任务①处理能力(煤油流量) 6500 kg/h②设备型式列管式换热器2、操作条件①煤油入口温度145℃,出口温度35℃②冷却介质河水入口温度25℃,出口温度35℃③管程、壳程的压强降不大于20kPa④换热器的热损失忽略3、厂址齐齐哈尔地区1.3设计已知条件1、定性温度下两流体的物性参数(1)煤油定性温度t m=90℃ 密度ρh=825kg/m3;比热容C ph=2.22kJ/(kg.℃) 导热系数λh=0.140W/(m℃)粘度μh=0.000715Pa.s(2) 河水定性温度t m=30℃ 密度ρc=995.7kg/m3比热容C pc=4.174kJ/(kg.℃) 导热系数λc=0.6176W/(m℃) 粘度μc=0.0008007Pa.s2、管内外两侧污垢热阻分别是R si=6.9157×10-4(m2℃)/WR so=1.7085×10-4 (m2℃)/W3、管壁导热系数λw=48.85 W/(m℃)1.4设计内容1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)冷却器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、辅助设备选型与计算5、设计结果汇总6、换热器装配图(1号图纸)7、设计评述8、参考资料*总传热系数K暂取为200W/m2℃。
煤油冷却器的课程设计
目录一.列管式换热器设计任务书二.列管式换热器设计书1.概述2.设计原则(1)流体通道的选择(2)流体流速的选择(3)流体两端温度的确定(4)管径、管子排列方式和壳体直径的确定(5)管程、壳程数的确定(6)折流板(7)换热器中传热与流体流动阻力计算3.列管式换热器的选用和设计的一般步骤4.初步设计方案5.工艺结构尺寸的计算(1)管径和管流速 (2) 管程数和传热管数(3)传热管的排列和分程方法(4) 壳体径(5) 折流板(6) 折流板6.换热器核算(1)热流量核算(2)核算压强降(3)管板厚度计算(4)膨胀节计算(5)零部件结构的选取三.附表表一:固定管板式换热器的基本参数表二:常用固定管板式换热器的传热系数的围表三:常用体流的污垢热阻四.参考文献五.心得体会列管式换热器设计任务书一设计题目:煤油冷却器的设计二设计任务及操作条件1.处理能力:15万吨/年煤油2设备形式:列管式换热器3.操作条件(1)煤油:入口温度130℃,出口温度50℃(2)冷却介质:自来水,入口温度25℃,出口温度45℃(3)允许压强降:不大于100kPa(4)煤油定性温度下的物性数据:密度825kg/m3,黏度7.15×10-4Pa.s,比热容2.22kJ/(kg.℃),导热系数0.14W/(m.℃) (5)每年按330天计,每天24小时连续运行三选择适宜的列管式换热器并进行核算3.1 传热计算3.2 管、壳程流体阻力计算3.3管板厚度计算3.4 U形膨胀节计算(浮头式换热器除外)3.5 管束振动3.6 管壳式换热器零部件结构四绘制换热器装配图(A1图纸)五.参考文献[1] 夏清,玉英,常贵,等. 化工原理[M]. 天津:天津大学,2001[2] 华南理工大学化工原理教研组. 化工过程及设备设计[M]. :华南理工大学,1996[3] 刁玉玮,王立业. 化工设备机械基础(第五版)[M]. :理工大学,2000[4] 理工大学化工原理教研室.化工原理课程设计[M]. :理工大学,1996[5] 崇光,晓梅. 化工工程制图[M]. :化学工业,1998[6] 娄爱娟,吴志泉. 化工设计[M].:华东理工大学,2002[7] 华东理工大学机械制图教研组. 化工制图[M]. :高等教育,1993[8] 王静康. 化工设计[M]. :化学工业出版,1998[9] 傅启民. 化工设计[M]. :中国科学技术大学,2000[10] 董大勤. 化工设备机械设计基础[M]. :化学工业,1999[11] GB 151-1999管壳式换热器[12] JB/T 4715-92 固定管板式换热器与基本参数[13] 靳明聪. 换热器[M]. :大学,1990[14] 石油机械研究所. 换热器[M]. :烃加工,1986列管式换热器设计书一.概述在不同温度的流体间传递热能的装置称为热交换器,简称热换器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安阳工学院课程设计说明书课程名称:化工原理课程设计设计题目:列管式换热器院系:化学与环境工程学院学生姓名:***学号:************专业班级:10高分子材料与工程(1)班指导教师:***2012年11月15日课程设计任务列管式换热器设计[摘要]通过对列管式换热器的设计,首先要确定设计的方案,选择合适的计算步骤。
查得计算中用到的各种数据,对该换热器的传热系数传热面积工艺结构尺寸等等要进行核算,与要设计的目标进行对照是否能满足要求,最终确定换热器的结构尺寸为设计图纸做好准备和参考,来完成本次课程设计。
[关键字] 换热器标准方案核算结构尺寸目录第一章概述 (4)第二章方案的设计与拟定 (6)第三章设计计算 (9)3.1确定设计方案 (9)3.1.1选择换热器类型 (9)3.1.2流动空间及流苏的测定 (9)3.2确定物性数据 (10)3.3计算总传热系数 (11)3.3.1壳程质量流量 (11)3.3.2热流量 (11)3.3.3平均传热温差 (11)3.3.4冷却水用量 (11)3.3.5总传热系数K (11)3.4计算传热面积 (12)3.5工艺结构尺寸 (13)3.5.1管径和管内流速 (13)3.5.2管程数和传热管数 (13)3.5.3传热管排列和分程方法 (14)3.5.4壳体内径 (14)3.5.5折流板 (14)3.5.6接管 (15)3.6换热器核算 (15)3.6.1热量核算 (15)3.6.1.1壳程对流传热系数 (15)3.6.1.2管程对流传热系数 (16)3.6.1.3传热系数K (16)3.6.1.4传热面积S (17)3.6.2换热器内流体的流动阻力 (17)3.6.2.1管程流动阻力 (17)3.6.2.2壳程流动阻力 (18)3.7换热器主要结构尺寸和计算结果 (19)第四章设计小结 (20)第五章收获与致谢 (22)第六章参考文献 (23)第一章概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。
在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,它们也是这些行业的通用设备,并占有十分重要的地位。
换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一、换热器按传热原理分类1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。
表面式换热器有管壳式、套管式和其他型式的换热器。
2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。
蓄热式换热器有旋转式、阀门切换式等。
3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。
4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。
二、换热器按用途分类1、加热器加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。
2、预热器预热器预先加热流体,为工序操作提供标准的工艺参数。
3、过热器过热器用于把流体(工艺气或蒸汽)加热到过热状态。
4、蒸发器蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。
随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。
列管式换热器是最典型的管壳式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。
第二章方案设计和拟订根据任务书给定的冷热流体的温度,来选择设计列管式换热器中的固定管板式换热器;再依据冷热流体的性质,判断其是否易结垢,来选择管程走什么,壳程走什么。
在这里,冷水走管程,热水走壳程。
从手册中查得冷热流体的物性数据,如密度,比热容,导热系数,黏度。
计算出总传热系数,再计算出传热面积。
根据管径管内流速,确定传热管数,标准传热管长为3m,算出传热管程,传热管总根数等等。
再来就校正传热温差以及壳程数。
确定传热管排列方式和分程方法。
根据设计步骤,计算出壳体内径,选择折流板,确定板间距,折流板数等,再设计壳程和管程的内径。
分别对换热器的热量,管程对流系数,传热系数,传热面积进行核算,再算出面积裕度。
最后,对传热流体的流动阻力进行计算,如果在设计范围内就能完成任务。
根据固定管板式的特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。
U形管式特点:结构简单,质量轻,适用于高温和高压的场合。
管程清洗困难,管程流体必须是洁净和不易结垢的物料。
浮头式特点:结构复杂、造价高,便于清洗和检修,完全消除温差应力,应用普遍。
我们设计的换热器的流体是冷热水,不易结垢,再根据造价低,经济的原则我们选用固定管板式换热器。
根据以下原则:(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
我们选择冷水走管程,热水走壳程。
流体流速的选择:增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。
但是流速增加,又使流体阻力增大,动力消耗就增多。
所以适宜的流速要通过经济衡算才能定出。
此外,在选择流速时,还需考虑结构上的要求。
例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。
管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。
这些也是选择流速时应予考虑的问题。
在本次设计中,根据表换热器常用流速的范围,取管内流速s m u i /1.1 。
管子的规格和排列方法:选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。
易结垢、粘度较大的液体宜采用较大的管径。
我国目前试用的列管式换热器系列标准中仅有φ25×2.5mm 及φ19×2mm 两种规格的管子。
在这里,选择 φ25×2.5mm 管子。
管长的选择是以清洗方便及合理使用管材为原则。
长管不便于清洗,且易弯曲。
一般出厂的标准钢管长为6m ,则合理的换热器管长应为1.5、2、3或6m 。
此外,管长和壳径应相适应,一般取L/D 为4~6(对直径小的换热器可大些)。
在这次设计中,管长选择3m 。
管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子。
正方形直列排列的优点是便于清洗列管的外壁,适用于壳程流体易产生污垢的场合;但其对流传热系数较正三角排列时为低。
正方形错列排列则介于上述两者之间,即对流传热系数(较直列排列的)可以适当地提高。
在这里选择三角形排列。
管子在管板上排列的间距 (指相邻两根管子的中心距),随管子与管板的连接方法不同而异。
通常,胀管法取t=(1.3~1.5)do ,且相邻两管外壁间距不应小于6mm ,即t≥(d+6)。
焊接法取t=1.25do 。
管程和壳程数的确定 当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小。
为了提高管内流速,可采用多管程。
但是程数过多,导致管程流体阻力加大,增加动力费用;同时多程会使平均温度差下降;此外多程隔板使管板上可利用的面积减少,设计时应考虑这些问题。
列管式换热器的系列标准中管程数有1、2、4和6程等四种。
采用多程时,通常应使每程的管子数大致相等。
根据计算,管程为2程,壳程为单程。
折流挡板:安装折流挡板的目的,是为了加大壳程流体的速度,使湍动程度加剧,以提高壳程对流传热系数。
最常用的为圆缺形挡板,切去的弓形高度约为外壳内径的10~40%,一般取20~25%,过高或过低都不利于传热。
两相邻挡板的距离(板间距)h为外壳内径D的(0.2~1)倍。
系列标准中采用的h值为:固定管板式的有150、300和600mm三种,板间距过小,不便于制造和检修,阻力也较大。
板间距过大,流体就难于垂直地流过管束,使对流传热系数下降。
这次设计选用圆缺形挡板。
换热器壳体的内径应等于或稍大于(对浮头式换热器而言)管板的直径。
初步设计时,可先分别选定两流体的流速,然后计算所需的管程和壳程的流通截面积,于系列标准中查出外壳的直径。
主要构件的选用:(1)封头封头有方形和圆形两种,方形用于直径小的壳体(一般小于400mm),圆形用于大直径的壳体。
(2)缓冲挡板为防止壳程流体进入换热器时对管束的冲击,可在进料管口装设缓冲挡板。
(3)导流筒壳程流体的进、出口和管板间必存在有一段流体不能流动的空间(死角),为了提高传热效果,常在管束外增设导流筒,使流体进、出壳程时必然经过这个空间。
(4)放气孔、排液孔换热器的壳体上常安有放气孔和排液孔,以排除不凝性气体和冷凝液等。
(5)接管尺寸换热器中流体进、出口的接管直径由计算得出。
最后材料选用:列管换热器的材料应根据操作压强、温度及流体的腐蚀性等来选用。
在高温下一般材料的机械性能及耐腐蚀性能要下降。
同时具有耐热性、高强度及耐腐蚀性的材料是很少的。
目前常用的金属材料有碳钢、不锈钢、低合金钢、铜和铝等;非金属材料有石墨、聚四氟乙烯和玻璃等。
不锈钢和有色金属虽然抗腐蚀性能好,但价格高且较稀缺,应尽量少用。
这里选用的材料为碳钢。
第三章设计计算3.1确定设计方案3.1.1 选择换热器的类型两流体温度变化情况:热流体进口温度℃40;冷流体(循140,出口温度℃环水)进口温度℃30,出口温度℃40。
该换热器用循环冷却水冷却,热流体为煤油,为不易结垢和清洁的流体。
冬季操作时进口温度会降低,估计该换热器的管壁温和壳体壁温之差较小,因此初步确定选用带膨胀节的固定管板式换热器。