七年级上册 数学 第一章 知识点整理

合集下载

七年级上册数学书第一章知识点

七年级上册数学书第一章知识点

七年级上册数学书第一章知识点七年级上册数学书第一章知识点. 一、正数与负.. 1.在实际中表示意义相反的.上升5米记为5米.-8米则表示下降8米.. 2.正数:大于0的数.. 3.负数:在正数的前面加上“-〞.. 4.0的含义.. ①既不是正数也不是负数.. ②0在计数时表示没有,比如0元.. ③0表示某种量的基准,比如0℃表示温度的基.. 5.有理数的分.. 分数概.. (1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数.. (2)无限不循环小数不属于有理数,如:π=3.141592...2.010010001.... “非〞的概.. 非负数:正数和.非正分数:负分.. 非正数:负数和.非负分数:正分.. 非负整数:正整数和.. 非正整数:负整数和..二、数.. 1.三要素:原点、正方向、单位长度。

通常原点用“O〞表示,向右的方向为正方向,单位长度为1.. 2.如何画数.. ①画直线(一般画成水平的),定原点,标出原点“O〞.. ②取原点向右的方向为正方向,并标出箭头.. ③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点.. 3.数轴上的点与有理数.. (1)数轴上的点与有理数一一对.(2)左边的数右边的.. 三、相反.. ①只有符号不同的两个数,叫做互为相反数。

0的相反数是0.. ②a的相反数-.. ③a与b互为相反数:a+b=.. ④a-b的相反数是:-a+b或b-.. ⑤a+b的相反数是:-a-.. ⑥求一个数的相反数方法:在这个数的前面加“-〞号.. ⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等..四、绝对.. 1.几何意义:从数轴上表示a的点到原点的距离即为|a.. 2.①一个正数的绝对值等于它本身.当a是正数时,|a|=a.. ②一个负数的绝对值等于它的相反数.当a是负数时,|a|=-a.. ③0的绝对值等于0.当a=0时,|a|=0.. 3.互为相反数的两个数的绝对值相等.. 五、有理数的大小比.. 1.正数0负数.. 2.两个负数比.. ①右边的点表示的数比左边的点表示的数大.. ②绝对值大的反而小.. 六、有理数的运.. 1.有理数的加法.. 加法一般步骤.. ①确定符号:同号取相同的符号.. 异号取绝对值大的加数的符号.. ②确定绝对值:同号将绝对值相加.. 异号用较大的绝对值减去较小的绝对值.. 互为相反数的两个数相加得0。

新人教版七年级上册数学第一单元知识点归纳总结

新人教版七年级上册数学第一单元知识点归纳总结

新人教版七年级上册数学第一单元知识点
归纳总结
1. 自然数与整数:
- 自然数:1, 2, 3, 4, ...
- 整数:... -3, -2, -1, 0, 1, 2, 3, ...
2. 整式与代数式:
- 整式:由数字与字母通过运算符号组成的表达式,如3x + 4y。

- 代数式:由数字与字母组成的表达式,如x + 2。

3. 数轴与坐标:
- 数轴:用来表示有序数的直线。

0点位于数轴的中心,正数
向右延伸,负数向左延伸。

- 坐标:有序数在数轴上的位置。

4. 平行线与垂线:
- 平行线:在同一个平面内,永不相交的两条直线。

- 垂线:与另一条直线交点处呈直角的直线。

5. 解方程:
- 解方程是指找出方程中的未知数的值,使得等式成立。

- 方程的解是使方程成立的值。

6. 解不等式:
- 解不等式是指找出使得不等式成立的值。

- 不等式的解是满足不等式条件的值。

7. 测量与估算:
- 测量是通过使用合适的单位和测量工具来确定物体的长度、面积、体积等。

- 估算是通过近似计算来确定一个大致的数值。

8. 三角形与四边形:
- 三角形:具有三条边的图形。

- 四边形:具有四条边的图形。

以上是新人教版七年级上册数学第一单元的知识点归纳总结。

---
注:本文档内容整理自教材内容,确保准确性。

七年级上册数学第一单元知识点总结

七年级上册数学第一单元知识点总结

七年级上册数学第一单元知识点总结
七年级上册数学第一单元主要涉及以下知识点:
1. 整数概念与大小比较:介绍了整数的定义、绝对值的概念,以及不同整数之间的大小比较规则。

2. 整数的加减法运算:介绍了整数的加减法运算法则,包括同号相加取符号、异号相加取绝对值大的符号等。

3. 整数乘法与除法运算:介绍了整数的乘法与除法运算法则,包括同号相乘为正、异号相乘为负等。

4. 整数混合运算:通过混合运算的题目,培养整数的综合运算能力。

5. 绝对值与坐标轴:通过绝对值的概念与坐标轴的引入,进一步讨论整数的大小比较与整数的加减法运算。

6. 实际问题的整数运算:通过实际生活中的问题,引导学生运用整数的概念与运算法则解决实际问题。

7. 数学语言与符号的正确使用:训练学生正确使用数学语言与符号,提高数学表达和交流能力。

以上是七年级上册数学第一单元的主要知识点总结,通过对这些知识点的学习与理解,学生可以掌握整数的概念、运算法则,并能够运用到实际生活中的问题解决中。

(完整版)人教版七年级数学上册知识点归纳

(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

七年级上数学各章知识点第一章

七年级上数学各章知识点第一章

第一章:有理数
1.1自然数和整数的平方根
-平方根的定义和性质
-平方数
-二次方程
-平方跟的概念和计算方法
1.2有理数
-有理数的定义和性质
-有理数的加减运算和乘除运算
-有理数的比较和排序
-有理数的绝对值
-小数和有理数的表示方法
-实数的概念和实数在数轴上的表示1.3数轴及其应用
-数轴的定义和性质
-有理数和实数在数轴上的表示
-数轴上的有理数运算
-数轴上的加法和减法
-数轴上的乘法和除法
-数轴上的相反数和绝对值
1.4运算律的应用
-结合律、交换律和分配律的定义和性质
-运算律在有理数计算中的应用
-有理数运算中的应用问题
1.5有理数的乘方
-乘方及其运算法则
-幂次运算法则
-乘方的应用和问题
-有理数的开方
-有理数乘方的应用和问题
1.6有理数应用问题
-有理数的应用问题:交通运输、财务管理等实例
-有理数的实际应用问题解决方法和步骤
总结:第一章主要介绍了有理数的概念和基本性质,包括平方根、加减乘除运算、比较和排序、绝对值、小数表示、实数的概念和数轴表示等内容。

此外,还学习了运算律的应用和有理数的乘方运算,以及有理数的应用问题解决方法。

通过这一章的学习,学生可以掌握有理数的基本运算和应用,为后续数学学习打下坚实基础。

七年级上册数学知识点归纳

七年级上册数学知识点归纳

七年级上册数学知识点归纳七年级数学知识点第一章:有理数的运算:本章主要介绍概念知识,用图形或符号来区分分数之间的关系。

定义如下:1、有理数的概念:正整数、0、负整数、正分数、负分数统称为有理数;数轴与原点:用一条直线上的点表示数,这条直线就叫做数轴,在这条直线上任取一个点表示0,这个点叫做原点,在原点的左边或原点下边的点到原点的距离用负数表示,在原点的右边或上边的数到原点的距离用正数表示,在数轴上与原点距离相反相等的两个点代表的两个数为相反数,在数轴上表示的点a到原点的距离叫这个数的绝对值。

2、有理数的加减法:同号的两个数相加,符号不变,绝对值相加;绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,并用较大的数的绝对值减较小的数的绝对值,互为相反数的两个数相加得0;一个有理数减去另一个有理数,相当于加这个数的相反数;3、有理数的乘除法:同号两个数相乘,同号得正,异号得负,乘法的积为他们的绝对值相乘,除法为被除数乘以除数的倒数,除数不能为0;乘积是1的两个数互为倒数,0没有倒数;整数的乘法交换率和结合率同样适用于有理数;求n个相同因数的积的运算叫乘方,乘方的结果叫做幂,在a的n次方中a叫做底数,n叫做指数,写作a∧n;4.有理数的混合运算:先乘法,后乘除,最后加减;同级操作,从左至右;如果有括号,先做括号内的运算,然后依次按照括号、中括号、大括号进行。

5、科学记数法:把一个大于10的数表示成a×10∧n的形式叫做科学计数法,其中a大于或等于1且小于10,n为正整数。

第二章:代数式的加减:代数式的加减是合并相似项的计算;在一个公式中,字母相同且相同字母索引相同的项称为相似项,几个常数项也是相似项;将多项式中的相似项合并成一项称为合并相似项。

相似项合并后,得到的项的系数为合并前相似项的系数之和,字母及其索引保持不变。

一般是几个整数相加。

如果有括号,先去掉括号,再合并相似项。

如果括号外的因子为正,则原括号中项目的符号与去掉括号后的原符号相同。

七年级上册数学知识点整理

七年级上册数学知识点整理

七年级上册数学知识点整理人教版七年级上册数学知识点整理第一章有理数1.1.1 正数和负数①大于零的数叫做正数,小于零的数叫做负数。

② 1 是最小的自然数。

③ 0 是正数和负数的分界线。

④ 0 既不是正数也不是负数。

⑤在一些问题中,表示什么都没有,在另一些问题中,可视为标准量。

⑥相反意义的量必须包含两层意思,一是具有相反的意义;二是具有一定的量,但这个量可以不必要相等。

1.2.1 有理数①整数和分数统称为有理数。

②有理数的分类:有理数整数有理数整数正整数分数有限小数无限循环小数负整数分数正分数负分数1.2.2 数轴①规定了原点、正方向和单位长度的直线叫做数轴。

②数轴的三要素:原点、正方向、单位长度。

③数轴上的数从左至右依次增大。

即右边的点表示的数总比左边的点表示的数大。

④所有的有理数都可以用数轴上的点表示,但并不是所有数轴上的点都表示有理数。

1.2.3 相反数①只有符号不同的两个数叫做互为相反数。

② 0 的相反数是 0.③相反数的定义分析:1.相反数是成对出现的;2.互为相反数的两个数除了符号不同外,其余部分都相同;3.互为相反数的两个数可视为在原点两侧,到原点距离相同的两个点所表示的数。

1.2.4 绝对值①数轴上表示数 a 的点与原点的距离叫做 a 的绝对值,记作 |a|,读作 a 的绝对值。

②一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.a,a>0 丨a丨= a,a=0 -a,a<0 丨a丨= -a③正数大于负数,正数大于负数的绝对值。

④两个负数比较大小,绝对值大的反而小。

1.3.1 有理数的加法①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加和为 0.③一个数同 0 相加,仍得这个数。

④有理数的加法交换律:两个数相加,交换加数的位置,和不变。

七年级数学上册:全册各章知识点总结

七年级数学上册:全册各章知识点总结

第一章有理数一、有理数:1.定义:凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.有理数的分类:3.注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

4.自然数Û0和正整数a>0 Ûa是正数;a<0 Ûa是负数;a≥0 Ûa是正数或0 Ûa是非负数;a≤0 Ûa是负数或0 Ûa是非正数.二、数轴1.定义:数轴是规定了原点、正方向、单位长度的一条直线。

三、相反数1.只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。

2.注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3.相反数的和为0 Ûa+b=0 Ûa、b互为相反数。

4.相反数的商为-1。

5.相反数的绝对值相等。

四、绝对值1.正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2、绝对值可表示为:4.|a|是重要的非负数,即|a|≥0;五、有理数比大小1.正数永远比0大,负数永远比0小;2.正数大于一切负数;3.两个负数比较,绝对值大的反而小;4.数轴上的两个数,右边的数总比左边的数大;5.-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

六、倒数1.定义:乘积为1的两个数互为倒数;2.注意:(1)0没有倒数(2)若ab=1Ûa、b互为倒数(3)若ab=-1Ûa、b互为负倒数2.等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.七、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。

七年级数学上册书本知识点归纳整理

七年级数学上册书本知识点归纳整理

七年级数学上册书本知识点归纳整理人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。

第一章有理数一、知识框架二、知识概念1.有理数:(1)凡能写成(p,q为整数且p≠0)形式的数,都是有理数正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0⇔a+b=0⇔a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大的数-小的数>0,小的数-大的数<0。

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是1;若ab=1⇔a、b互为倒数;若ab=-1⇔a、b互为负倒数。

7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。

8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。

人教版七年级上册数学知识点汇总

人教版七年级上册数学知识点汇总

第一章有理数1. 正数和负数•正数:大于0的数。

•负数:在正数前面加上符号“-”的数。

•0的意义:不仅表示没有,还可以表示某种量的基准。

•相反意义的量:用正数和负数表示具有相反意义的量,如收入与支出、前进与后退等。

2. 有理数的分类•整数:正整数、0、负整数。

•分数:正分数、负分数。

•有理数:整数和分数的统称。

3. 数轴•定义:规定了原点、正方向和单位长度的直线。

•点与有理数的关系:任意一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数。

4. 相反数•定义:只有符号不同的两个数。

•性质:任何一个数都有相反数,且只有一个;正数的相反数是负数,负数的相反数是正数;0的相反数是0。

5. 绝对值•定义:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数。

•性质:绝对值表示数轴上某点到原点的距离。

6. 有理数的大小比较•利用数轴:数轴上右边的数大于左边的数。

•利用法则:同为正数或负数时,绝对值大的数分别更大或更小;正数大于0,负数小于0。

7. 有理数的运算•加法:同号相加取同号,异号相加取绝对值较大数的符号并相减。

•减法:减去一个数等于加上这个数的相反数。

•乘法:同号得正,异号得负,并把绝对值相乘。

•除法:除以一个数等于乘以这个数的倒数。

•乘方:求几个相同因数的积的运算。

第二章整式的加减1. 用字母表示数•代数式:用字母和数通过有限次的加、减、乘、乘方运算得到的式子。

•单项式:数与字母的乘积组成的式子。

•多项式:几个单项式的和。

2. 整式的加减•去括号:括号前是正数,去括号后各项符号不变;括号前是负数,去括号后各项符号改变。

•合并同类项:把多项式中的同类项合并成一项。

第三章一元一次方程1. 定义•一元一次方程:只含有一个未知数,且未知数的次数是1的整式方程。

2. 标准形式•ax+b=0(其中a、b是已知数,且a≠0)。

3. 解法步骤•整理方程•去分母(如果有的话)•去括号•移项•合并同类项•系数化为1•检验解的正确性第四章图形的初步认识1. 直线、射线、线段•直线:没有端点,无限长,不可度量。

七年级数学上册第一单元知识点

七年级数学上册第一单元知识点

七年级数学上册第一单元知识点一、数的基本概念与运算1. 自然数与整数- 自然数:用于计数的数,包括0和正整数。

- 整数:包括自然数、负整数和0。

2. 有理数- 有理数:可以表示为两个整数的比的数,形式为a/b,其中a和b是整数,b≠0。

- 包括整数、分数、小数。

3. 绝对值- 绝对值:表示一个数与0的距离,用符号“| |”表示。

- 例如:|-3| = 3,|3| = 3。

4. 有理数的加法、减法、乘法和除法- 加法:同号相加,取相同的符号;异号相加,取绝对值较大的数的符号,结果为两者之差的绝对值。

- 减法:减去一个数等于加上它的相反数。

- 乘法:同号得正,异号得负,绝对值相乘。

- 除法:除以一个数等于乘以它的倒数。

5. 有理数的比较大小- 正数大于0,0大于所有负数。

- 两个负数比较大小,绝对值大的反而小。

二、代数表达式与方程1. 代数表达式- 代数表达式:由数字、字母(代表未知数)和运算符(加、减、乘、除)组成的式子。

- 例如:3x + 2y、4a - 5b。

2. 单项式与多项式- 单项式:只含有一个项的代数式,例如:7x、-4。

- 多项式:含有多个项的代数式,例如:2x^2 + 3x - 5。

3. 一元一次方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。

- 一般形式:ax + b = 0,其中a和b是常数,a≠0。

- 解法:通过移项和化简,求得未知数x的值。

4. 代数方程的解- 解:使方程左右两边相等的未知数的值。

- 求解一元一次方程的步骤:移项、合并同类项、系数化为1。

三、几何图形的初步认识1. 点、线、面- 点:没有大小,只有位置。

- 线:由无数个点组成,有长度,没有宽度。

- 面:由无数条线组成,有长度和宽度。

2. 直线、射线、线段- 直线:无限延伸的线,没有端点。

- 射线:有一个端点,向一个方向无限延伸。

- 线段:有两个端点,长度有限。

3. 角的概念- 角:由两条射线的一个公共端点(顶点)组成。

七年级上册数学第一单元知识点归纳(6篇)

七年级上册数学第一单元知识点归纳(6篇)

七年级上册数学第一单元知识点归纳(6篇)1.七年级上册数学第一单元知识点归纳篇一一、相反的方向:东——西南——北东北——西南东南——西北1、早上起来,面对太阳,前面是(东),后面是(西),左面是(北),右面是(南)。

2、面对傍晚的太阳,你的前面是(西),后面是(东),左面是(南),右面是(北)。

3、面对北面,你的前面是(北),后面是(南),左面是(西),右面是(东)。

4、面对南面,你的前面是(南),后面是(北),左面是(东),右面是(西)。

二、混合计算混合运算,先乘除,后加减,有括号的要先算括号里面的。

只有加、减法或只有乘、除法,都要从左到右按顺序计算。

1、想好先解决什么问题,再解决什么问题。

2、可以画图帮助分析。

3、可以分布计算,也可以列综合算式。

2.七年级上册数学第一单元知识点归纳篇二1、认识时间(1)钟面上有时针和分针,走得快的,较长的是分针;走得慢的,较短的是时针;(2)钟面上有12个大格,60个小格,1个大格有5个小格。

时针走1大格是1小时,分针走1大格是5分钟。

(3)时针走1大格分针要走一圈,所以1时=60分;(4)半小时=30分,一刻钟=15分钟(5)时间的读与写:如3:30,可以读作3时30分,也可以读作3点半;8时零5分应写作8:05。

2、运用知识解决问题(1)要按着时间的先后顺序安排事件,时间上不能重复。

(2)问过几分钟后是几时,先要读出现在是几时,再推算过几分钟后是几时几分。

(3)时针和分针能形成直角的时刻是3时和9时。

3.七年级上册数学第一单元知识点归纳篇三1、建立观察角度(1)通过观察活动,体验站在不同的位置观察物体,看到的形状可能是不同的。

(2)能辨认从不同的角度观察到的简单物体的形状,发展空间观念。

2、轴对称(1)通过欣赏图片,感知现实世界中普遍存在的轴对称现象。

(2)通过"折一折""剪一剪""说一说"等活动,体会轴对称图形的特征(能找到一条恰当的直线即对称轴,对称轴两边的部分形状相同、大小相同、位置相同、方向相反即能够完全重合)。

七年级数学上册第一单元的必背知识点

七年级数学上册第一单元的必背知识点

七年级数学上册第一单元的必背知识点一、有理数1. 定义:有理数是可以表示为两个整数之比的数,包括整数 (正整数、0、负整数)和分数(正分数、负分数)。

0既不是正数也不是负数,它是正数与负数的分界。

2. 分类:正数:大于0的数。

负数:在正数前面加上“-”号的数。

整数:正整数、0、负整数的统称。

分数:正分数、负分数的统称。

二、数轴1. 定义:数轴是规定了原点、正方向和单位长度的一条直线。

2. 三要素:原点:表示数0的点。

正方向:通常规定向右为正方向。

单位长度:用于衡量数轴上点之间的距离。

3. 数轴上的点与有理数:所有的有理数都可以用数轴上的点来表示,但数轴上的点不一定都表示有理数(还可能表示无理数)。

三、相反数1. 定义:只有符号不同的两个数叫做互为相反数。

例如,5和-5是相反数。

0的相反数还是0。

2. 性质:相反数的和为0。

相反数的绝对值相等。

四、绝对值1. 定义:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

2. 性质:一个正数的绝对值是它本身。

一个负数的绝对值是它的相反数。

0的绝对值是0。

五、有理数的运算法则1. 加法:同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

2. 减法:减去一个数,等于加上这个数的相反数。

3. 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。

乘积是1的两个数互为倒数。

4. 除法:除以一个不等于0的数,等于乘这个数的倒数。

0除以任何一个不等于0的数,都得0。

六、乘方1. 定义:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

2. 性质:负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何次幂都是0(0的0次幂在数学中是未定义的,但在此处可视为特殊情况)。

七、科学记数法1. 定义:把一个绝对值大于10(或小于1且非0)的数表示成a ×10^n的形式(其中1≤|a|<10,n为整数),这种记数法叫做科学记数法。

七年级上册数学每章知识点

七年级上册数学每章知识点

七年级上册数学每章知识点本文章为七年级上册数学每章的知识点总结,帮助学生更好地掌握和理解数学知识。

第一章:集合与运算1. 集合的定义和表示方法2. 集合的分类:空集、单元素集、多元素集3. 集合的常见运算:并集、交集、补集、差集第二章:整数1. 整数的定义:正整数、零、负整数2. 整数的大小和比较3. 整数的加减法:同号相加、异号相减4. 整数的乘法:符号规律、绝对值的乘积5. 整数的除法:除数为正整数、除数为负整数、商的符号规律第三章:代数式1. 代数式的定义和表示方法2. 代数式的值:给定代数式和变量的值,求代数式的值3. 代数式的等价变形:化简、展开、配方法、分配律、合并同类项第四章:方程与不等式1. 方程的定义和表示方法2. 方程的解:解代数方程、几何方程的问题3. 不等式的定义和表示方法4. 不等式的解:解一元一次不等式、实际问题的解法第五章:初中数学常用公式与运算技巧1. 同底数幂的乘除法:指数的加减法2. 指数为0、1的规律3. 平方、立方及其根的运算4. 两项之积等于零的性质5. 四则运算的优先级第六章:几何图形的认识和初步应用1. 点、线、线段、射线的定义和表示方法2. 角的定义和分类:锐角、直角、钝角3. 三角形的定义和分类:等边三角形、等腰三角形、直角三角形、一般三角形4. 三角形的周长和面积的计算:海伦公式5. 矩形、平行四边形、梯形的定义和性质第七章:数据的收集和整理1. 数据的来源和分类:调查、统计、文献、实验2. 数据的整理方法:频数表、频率表、统计图表以上便是七年级上册数学每章知识点的总结,其中知识点还包括了一些例题和详细步骤。

在学习的过程中,同学们还需不断进行巩固和练习,加深对数学知识的理解和掌握。

希望本文可以帮助大家更好地学习数学,取得好成绩。

人教版数学七年级上册知识点汇总

人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)第一章:数的认识1.1 整数1.1.1 整数的定义与性质- 整数包括正整数、0 和负整数。

- 整数具有加法、减法、乘法和除法等基本运算性质。

1.1.2 整数的分类- 自然数:正整数和0。

- 整数:包括自然数、负整数和0。

1.2 分数1.2.1 分数的定义与性质- 分数是整数比上整数,形式为 a/b,其中 a 和 b 是整数,b 不为0。

- 分数具有加法、减法、乘法和除法等基本运算性质。

1.2.2 分数的分类- 正分数:分子大于分母的分数。

- 负分数:分子小于分母的分数。

- 零分数:分子等于分母的分数。

1.3 小数1.3.1 小数的定义与性质- 小数是十进制数的一种,由整数部分和小数部分组成,用小数点分隔。

- 小数具有加法、减法、乘法和除法等基本运算性质。

1.3.2 小数的分类- 有限小数:小数部分有限的小数。

- 无限小数:小数部分无限的小数。

第二章:代数式2.1 代数式的定义与性质2.1.1 代数式的定义- 代数式是由数字、变量和运算符组成的表达式。

2.1.2 代数式的性质- 代数式具有加法、减法、乘法和除法等基本运算性质。

2.2 变量2.2.1 变量的定义与性质- 变量是代数式中的未知数,用字母表示。

- 变量可以取不同的数值。

2.3 代数式的运算2.3.1 代数式的加减法- 同类项:变量和它们的指数相同的代数式。

- 代数式的加减法:同类项之间进行加减运算。

2.3.2 代数式的乘除法- 代数式的乘除法:将代数式与数字相乘或相除。

第三章:一元一次方程3.1 一元一次方程的定义与性质3.1.1 一元一次方程的定义- 一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是常数,x 是变量。

3.1.2 一元一次方程的性质- 一元一次方程的解是使方程成立的变量 x 的值。

3.2 一元一次方程的解法3.2.1 解法概述- 一元一次方程的解法有代入法、移项法、消元法等。

七年级数学上册第一章知识点总结

七年级数学上册第一章知识点总结

七年级数学上册第一章知识点总结第一章:常数、变量和代数表达式1.常数:不变化的数值,如2、3、-5等。

2.变量:表示未知数的字母,如x、y、a等,可以表示任何值。

3.代数表达式:由常数、变量和运算符(如加减乘除)组成的表达式。

例如,2x+3、4y-7等。

4.同类项:指具有相同变量指数的代数式中的项。

例如,在2x+3y+4z中,2x、3y和4z都是同类项。

5.代数式的简化:合并同类项并进行合适的运算,简化代数式。

例如,将3x+2x简化为5x。

第二章:正数和负数1.数轴:用于表示数值的直线,通常在左侧用负数表示,右侧用正数表示。

2.正数:大于0的数,表示向右移动。

3.负数:小于0的数,表示向左移动。

4.绝对值:一个数字的距离原点的距离,永远是非负数。

如|-5|=5。

5.数的相反数:与某个数绝对值相等但符号相反的数。

如,5的相反数是-5,-3的相反数是3。

6.加法规则:-正数加正数,结果为正数,例如2+3=5。

-负数加负数,结果为负数,例如-2+(-3)=-5。

-正数加负数,结果的符号由两个数的大小决定,取绝对值较大的符号,例如3+(-2)=1。

-负数加正数,结果的符号由两个数的大小决定,取绝对值较大的符号,例如-2+3=1。

7.减法规则:减去一个数等价于加上它的相反数,例如7-5=7+(-5)=2。

8.同号相减:减去两个相同符号的数,结果的符号与数的绝对值有关,取绝对值较大的符号,例如7-5=2,-7-(-5)=-2。

第三章:有理数1.有理数:整数和分数的集合。

包括正整数、负整数、零以及正分数和负分数。

2.整数:包括正整数、负整数和零。

3.分数:由一个整数除以另一个非零整数得到的数。

分子表示数的一部分,分母表示总体的几等分。

4.真分数:分子小于分母的分数,如1/2、2/3等。

5.假分数:分子大于等于分母的分数,如3/2、5/4等。

6.相反数的绝对值相等:一个数的相反数的绝对值与原数的绝对值相等,例如|-5|=5。

七年级数学上册知识点总结第一章

七年级数学上册知识点总结第一章

七年级数学上册知识点总结第一章第一章:整数的认识一、整数的概念整数是由自然数,负的自然数及零组成的集合,包括正整数、负整数和零。

整数的特点是可以进行加法、减法运算,并且加法运算封闭,即两个整数相加的结果还是一个整数。

二、整数的表示方法1. 整数可以用数轴表示,数轴上的0点表示整数0,正方向表示正整数,负方向表示负整数。

2. 整数还可以用进位制表示,根据位权大小,将整数表达为十进制形式。

三、整数的比较1. 当两个正整数进行比较时,数愈大,其数值愈大。

2. 当两个负整数进行比较时,数愈小,其数值愈大。

3. 正整数大于负整数。

四、整数的加法1. 两个正整数相加,结果仍然为正整数。

2. 两个负整数相加,结果仍然为负整数。

3. 正整数加负整数,结果为两个数的差的绝对值,符号由绝对值较大的数决定。

五、整数的减法1. 正整数减去正整数,结果可能为正整数、零或负整数。

2. 负整数减去负整数,结果可能为负整数、零或正整数。

3. 正整数与负整数相减,可以转换为两个整数的加法。

六、整数的乘法1. 两个正整数相乘,结果仍然为正整数。

2. 两个负整数相乘,结果为正整数。

3. 正整数乘以负整数,结果为负整数。

4. 0与任何整数相乘,结果都为0。

七、整数的除法1. 两个正整数相除,结果可能为正整数、零或小数。

2. 两个负整数相除,结果可能为正整数、零或小数。

3. 正整数除以负整数,结果可能为正整数、零或小数。

4. 负整数除以正整数,结果可能为负整数、零或小数。

5. 0除以任何一个整数,结果为0。

八、整数的知识点总结1. 整数的概念及表示方法。

2. 整数的比较方法。

3. 整数的加法和减法运算规则。

4. 整数的乘法和除法运算规则。

5. 整数的运算规律和性质。

6. 整数在实际生活中的应用。

以上是关于七年级数学上册第一章整数的知识点总结。

整数在数学中具有很重要的地位,是很多数学概念和运算的基础。

希望同学们通过学习整数的相关概念和运算规则,能够掌握整数的基本特性和运算方法,为后续的学习打下坚实的基础。

七年级数学上册知识点总结第一章

七年级数学上册知识点总结第一章

七年级数学上册知识点总结第一章第一章有理数一.正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数留意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(假如出推断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简洁推断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与削减;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,削减降低了的数一般记为负数。

3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

留意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;p不是有理数;(2)有理数的分类: ①按正、负分类:②按有理数的意义来分:总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数? 0和正整数;a0 ? a是正数;a0 ? a是负数;a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数
1、正负数的概念:
正数就是大家小学学过的自然数+小数;在正数前面加“-”(负)的数叫做负数。

2、0既不是正数,也不是负数。

(0是正负数的分界线)
3、“-”(负号):表示相反意义的概念。

例如:增加记为“+”,则减少记为“-”。

(“+”通常省略不写)
4、整数和分数统称为有理数。

(π和无限不循环小数不是有理数)。

5、整数包括:正整数、0、负整数。

6、分数包括:正分数、负分数。

7、数轴三要素:原点、正方向、单位长度。

每一个数在数轴上都能找到它对应的位置。

8、一般地,设a是一个正数,则数轴上表示a的点要在数轴的_____边,与原点的距离是_____个单位长度;表示数-a的点在原点的_____边,它与原点的距离是_____个单位长度。

9、一般地,设a是一个正数,数轴上与原点的距离是a的点有____个,他们分别在原点的左右两边,表示为____和____。

10、只有______不同的两个数互为相反数,互为相反数的两个数到原点的距离______。

11、a的相反数记为____,容易看出,在任何一个数前面添上“-”号,新的数就表示原数的相反数。

12、_____的相反数是它本身。

13、如果a与b互为相反数,则a+b=____,a=___。

14、简单理解,一个数变相反数就是把这个数前面的符号变相反就行了。

即:
-(-5)=______ -(+5)=______
15、一般地,数轴上表示数a的点与_______的距离叫做数a的绝对值,记作
v1.0 可编辑可修改
|a|。

这里,a可以是任何数,显然,我们容易发现,正数的绝对值是_______,0的绝对值是______,负数的绝对值是__________。

所以,
16、由绝对值的定义不难的出,互为相反数的两个数,它们的绝对值_____,反过来|a|=5表示数a到原点的距离为5,显然这样的点左右两侧各有一个,也就是说|a|=5时,a=______。

|a|=0时,a=______。

17、不难发现,数a的绝对值|a|____0,即绝对值具有非负性。

18、比大小:
(1)数轴法:数轴上的点,越靠_____越大,
(2)过渡法:正数____0,0_____负数,正数_____负数。

(3)绝对值:两个负数比大小,绝对值___的反而小。

19、有理数的加法:先定符号,再算绝对值
(1)同号相加一边倒(正数加正数还是_____,负数加负数还是______),
(2)异号相加“大”减“小”(“大”减“小”指的是这些数的________)
符号跟着大的跑。

(3)绝对值相等“零”正好。

(4)“0+”“+0”不用管,照着原数抄下来。

(0在加法运算中不起作用)20、加法交换律:a+b=_________
加法结合律:(a+b)+c=_________
21、有理数的减法:减去一个数等于加上这个数的相反数,特别的,0减去一个数等于这个数的______。

引入相反数后,加减混合运算可以统一为加法运算,即:a+b-c=a+b+(-c)。

(推广:数可以带着它自身前面的符号到处跑。

)22、在数轴上,点A,B分别表示数a,b,则A,B之间的距离等于大数减小数,可记作|a-b|。

23、有理数的乘法:先定符号,再算绝对值
(1)两数相乘,同号得____,异号得____,先定符号,再把绝对值乘积算出来。

(2)任何数和0相乘都得0。

(3)几个不是0的数相乘,负数的个数是偶数个时,结果是______,负数的个数是奇数个时,结果是______。

24、乘积是1的两个数互为倒数。

____没有倒数,_______的倒数是它本身。

25、乘法交换律:ab=______
乘法结合律: (ab)c=_________
乘法分配律:a(b+c)=________________
字母与字母相乘:a×b=_________=___________
字母与数字相乘:2×a=_________=___________
(数字与字母之间要省略乘号必须把数字写前面)
26、除以一个不为0的数,等于乘以这个数的______。

即: a÷b=a×_____
27、有理数的加减乘除混合运算中:有括号先算括号,之后算乘除,最后算加减
28、一般地,n个相同的因式a相乘,记作_______,读作_______________。

求n个相同因数相乘的积的运算,叫做______,乘方的结果叫做_____,在
a n中,a叫做_______,n叫做_________。

29、负数的奇次幂是_______,负数的偶次幂是________。

正数的任何次幂都是___________,0的任何正整数次幂都是_________。

特别的,(-1)2017=__________ -12017=_________
(-1)2016=__________ -12016=_________
30、有理数的混合运算:
(1)先乘方,再乘除,最后加减
(2)同级运算,从左到右。

(3)如有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。

31、把一个大于10的数表示成a×10n的形式(其中a大于或等于___且小于____,n是正整数),使用科学记数法。

法则:用科学记数法表示一个n位数,其中10的指数是________。

32、近似数:四舍五入
(1)精确到百分位=精确到
(2)保留两位有效数字(从数值的左边第一个不为0的数字起,一直数到这个数字结束,中间的数字叫这个值的有效数字)。

相关文档
最新文档