椭圆的简单性质
椭圆的简单几何性质
椭圆的简单几何性质
1. 椭圆是一个由平面上所有离两个固定点(称为焦点)距离之和等于常数的点构成的几何图形。
2. 椭圆的长轴和短轴分别为椭圆的两条相互垂直的轴,长轴的长度是椭圆的两个焦点之间的距离,而短轴的长度是椭圆的两个焦点到中心点的距离。
3. 任意一条椭圆轴与椭圆相交的点称为端点,一个椭圆有四个端点。
4. 椭圆上任意一点到两个焦点距离之和等于常数,这个常数称为椭圆的长轴的长度。
5. 椭圆的离心率是一个非负实数,等于椭圆的长轴与短轴之差的一半除以椭圆长轴的长度。
6. 椭圆的面积等于长轴和短轴所围成矩形的面积的1/4乘以π。
椭圆的简单几何性质
2.2 椭圆2.2.2椭圆的简单几何性质 第一课时 椭圆的简单几何性质【学习目标】1、理解椭圆的范围、对称性、顶点、长轴长及短轴长;2、掌握椭圆的离心率及c b a ,,的几何意义。
【重难点】重点:椭圆的简单几何性质 难点:求椭圆的离心率 【学习过程】复习引入:1、椭圆的定义我们把平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹叫做椭圆。
这两个定点21,F F 叫做椭圆的焦点,两焦点21,F F 间的距离||21F F 叫做椭圆的焦距。
2、椭圆的标准方程焦点在x 轴上:12222=+b y a x )0(>>b a 焦点在y 轴上:12222=+ay b x )0(>>b a3、重要结论:222c b a +=知识点一:椭圆的简单几何性质 1、范围由图形及椭圆的标准方程12222=+b y a x 可知,122≤a x 且122≤by ,即⎩⎨⎧≤≤-≤≤-by b ax a 故椭圆12222=+by a x 位于直线a x ±=和b y ±=所形成的矩形框里。
2、对称性观察椭圆的形状,可以发现椭圆既是轴对称图形,又是中心对称图形。
在椭圆12222=+by a x 中,用y -代替y ,方程不变,所以椭圆关于x 轴对称;用x -代替x ,方程不变,所以椭圆关于y 轴对称;用x -代替x ,用y -代替y ,方程不变,所以椭圆关于原点对称。
结论:椭圆关于x 轴和y 轴都对称,所以x 轴、y 轴叫做椭圆的对称轴;对称轴的交点原点,叫做椭圆的对称中心。
3、顶点椭圆与对称轴的交点,叫做椭圆的顶点。
显然12222=+by a x 有四个顶点,其中在x 轴上有)0,(),0,(21a A a A -,在y 轴上有),0(),,0(21b B b B -。
线段2121,B B A A 分别叫做椭圆的长轴和短轴,它们的长分别和a 2和b 2,b a ,分别叫做椭圆的长半轴长和短半轴长。
椭圆的简单几何性质
10 , 求m 的值。 5
解:依题意, m 0, m 5 ,但椭圆的焦点位置没有确定,应分类讨论: ①焦点在 x 轴上,即 0 m 5 时,有 a
5, b m , c 5 m ,
5m ∴ 5
2 ,得 m 3 ; 5
m , b 5, c m 5 ,
b b 1, b a, 椭圆越圆; 0, b 0, 椭圆越扁。 a a
c 解:如图,在Rt B2 F2O中, cos B2 F2O , a
c c 越大,B2 F2O越小,椭圆越扁; 越小,B2 F2O越大,椭圆越圆。 a a
练习
为
1、若椭圆的焦距长等于它的短轴长,则其离心率
观察图形并思考: x2 y2 椭圆 2 2 1( a b 0) a b
长半轴为 a
半焦距为 c
思考:保持长半轴 a 不变,改变椭圆的半焦距 c , 扁平 我们可以发现,c 越接近 a ,椭圆越________ c a 这样,我们就可以利用__和__这两个量来刻 画椭圆的扁平程度
2 离心率对椭圆形状的影响:
②当焦点在 y 轴上,即 m 5 时,有 a ∴
m5 10 25 m . 5 3 m 25 综上知: m 3 或 m . 3
标准方程
范围 对称性 顶点坐标 焦点坐标
x
x y 2 1(a b 0) 2 a b
2
2
y
o
x
a
≤
x≤ a , b ≤ y ≤ b
A
C
F1
O
F2
x
D B 2b 2 称为椭圆的通径。椭圆的通径长: a 2 2 x y 推导:以椭圆 2 2 1为例。 a b 设直线AB过点F1且垂直于x 轴,且与椭圆交于A 、B 两点,
椭圆的简单几何性质
1.椭圆的对称性
y
F
1
O
F
2
x
椭圆关于x轴对称
二、新课探究:
A1 F
1
1.椭圆的对称性
y
O
F
2
x
A2
椭圆关于原点对称
二、新课探究:
1.椭圆的对称性
Y P(x,y)
以焦点在X轴上的为例:
P1(-x,y)
O
X
P 2 x, y
P3(-x,-y)
二、新课探究:
2、椭圆的顶点
B2 (0,b)
一、复习回顾:
3.椭圆中a,b,c的关系:
若点M运动到y轴上时:
y
M
| MF1 | = | MFOF1 | = | OF2 | c
x
F1
O
| MO | = a c b
2 2
a2=b2+c2
二、新课探究:
y
1.椭圆的对称性
F
1
O
F
2
x
椭圆关于y轴对称
二、新课探究:
根据前面所学有关知识画出下列图形
x y 1 (1) 25 16
y
4 B2 3 2 1
2 2
x2 y2 1 (2) 25 4
y
4 3 B 2 2 1
A1
A2 x
A1
A2 x
-5 -4 -3 -2 -1 -1 -2 -3 -4
123 4 5
B1
-5 -4 -3 -2 -1 -1 1 2 3 4 5 -2 -3 B1 -4
2.2.2 椭圆的简单几何性质
第一课时 椭圆的简单几何性质
一、复习回顾:
1、椭圆的定义:
3.2.2 椭圆的简单几何性质
椭圆的离心率 e= .
范围: 0<e<1
e越接近1,c越接近a, = 2 − 2 越小,因
此椭圆越扁平;
e越接近0,c越接近0, = 2 − 2 越大,因
此椭圆越接近于圆;
当且仅当a=b时,c=0,这时两个焦点重合,
图形变为圆,方程为 2 + 2 = 2 .
典型例题
典型例题
例2 动点M(x,y)与定点F(4,0)的距离和M到定直线l:x=
4
比是常数 ,求动点M的轨迹.
5
25
的距离的
4
轨迹方程
轨迹上任意的点 M 的坐标(x , y)所满足的条件
点M所满足的条件
点M与定点F(4,0)的距离和M到定
25
4
直线l:x= 的距离的比是常数
4
转化
5
两点间距离和点到直线的距离
6 − 91 = 0内切,求动圆圆心的轨迹方程,并说明它是什么曲线?
圆 2 + 2 + 6 + 5 = 0
圆心1 (− 3,0),半径r1=2
椭圆的一个焦点F1上,片门位于另一个焦点F2上.由椭圆一个焦点F1发出的光线,
经过旋转椭圆面反射后集中到另一个焦点F2.已知 ⊥ 1 2 , 1 = 2.8cm,
1 2 = 4.5cm.试建立适当的平面直角坐标系,求截口BAC所在椭圆的方程.
椭圆的方程
求a,b
建立关于a,b的方程
典型例题
2
4.12
+
2
3⋅4 2
= 1.
方
程
思
想
典型例题
例1 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲
2.2.2 椭圆的简单几何性质 2
2
20 ,离心率是
3 5
,
a 10 3 5 c
2
c a
2
c 6 10
2
a
6
2
8
2
2 2
b 8
当焦点在 x 轴时,椭圆的标准方程是
x
y
1
当焦点在 y 轴时,椭圆的标准方程是
100 2 y
64 2 x
1
100
64
焦点坐标
半轴长 离心率
a, b, c 的关系
( c , 0 )、( c , 0 )
长半轴长为 短半轴长为
e c a
( 0 , c )、( 0 , c )
同左 同左 同左
a, b, (a b 0)
( 0 e 1)
a2=b2+c2
练习6.已知椭圆方程为 6 x y 6 则
y b
2 2
1( a b 0 )
从图形上看,椭圆关于x轴、y轴、原点对称。 如何从方程来分析这些对称性呢? (1)把y换成-y方程不变,椭圆关于x轴对称; (2)把x换成-x方程不变,椭圆关于y轴对称;
(3)把x换成-x,同时把y换成-y方程不变, 椭圆 关于原点成中心对称。
P 2 ( x, y)
*顶点:椭圆与它的对称轴的 四个交点,叫做椭圆的顶点。 这四个顶点的坐标是什么?
A1 ( a , 0 )、A B 1 ( 0 , b )、B
2 2
y
B2
A1
b
a
A2
( a ,0 ) (0, b )
o
B1
c
x
*长轴、短轴:线段A1A2、
椭圆的简单几何性质
活页规范训练
焦点的位置 范围
顶点 轴长
焦点在x轴上
__-__a_≤_x_≤__a_ _且__-__b_≤__y≤__b__
_A_1_(_-__a_,__0_)、__A__2(_a_,__0_) _B_1_(_0_,__-__b_)、__B__2(_0_,__b_)
焦点在y轴上 __-__b_≤_x_≤__b_ _且__-__a_≤__y≤__a__
y2 3.42
1.
例6.点M(x,y)与定点F(c,0)的距离和它到
定直线
l:x
a2 的距离的比是常数
c
c (a a
c
0)
,求
点M的轨迹
.
解:设 d是点M到直线 l的距离,则 l '
y
l
由题意知
|
MF d
|
c a
即
(x c)2 y2
|
a2 c
x
|
c a
.
.M d
..
F’O F
x
化简 (a2 c2)x2 a2 y2 a2(a2 c2) .
b
a
oc
F2
B1 (0,-b)
A2(a,0)
a、b分别叫做椭圆的长半 轴长和短半轴长。
名师点睛
1.椭圆几何性质的应用 (1)椭圆的焦点决定椭圆的位置,范围决定椭圆的大小, 离心率决定了椭圆的扁圆程度,对称性是椭圆的重要特征, 顶点是椭圆与对称轴的交点,是椭圆重要的特殊点;若已 知椭圆的标准方程,则根据a、b的值可确定其性质. (2)明确a,b的几何意义,a是长半轴长,b是短半轴长,不 要与长轴长、短轴长混淆,由c2=a2-b2,可得“已知椭 圆的四个顶点,求焦点”的几何作图法,只要以短轴的端 点B1(或B2)为圆心,以a为半径作弧交长轴于两点,这两点 就是焦点.
3.1.2椭圆的简单几何性质课件(人教版)
x2 a2
y2 b2
1,
(4)
由此可知,点M的轨迹是椭圆,方程(1)是椭圆
的参数方程,在椭圆的参数方程(1)中,常数a、
b分别是椭圆的长半轴长和短半轴长.
6、椭圆的参数方程
椭圆 x2 a2
y2 b2
1 (a
b
0),的参数方程是
x
y
a cos b sin
(为参数)
7、椭圆的焦半径公式
P(x0,y0)是椭圆
c2
b2,就可化
成:x a
2 2
y2 b2
(1 a
b 0).
这是椭圆的标准方程,所以点M的轨迹是长轴、 短轴长分别为2a、2b的椭圆.
5、椭圆的第二定义
平面内点M与一个定点的距离和它到一定直线的
距离的比是常数:e c (0<e<1)时,这个 a
点M的轨迹是椭圆,定点是椭圆的焦点,定直线 叫做椭圆的准线,常数e是椭圆的离心率.
长、离心率、焦点和顶点的坐标,并用描点法
画出它的图形.
解:把已知方程化成标准方程: x 2 52
y2 42
1,
这里,a 5,b 4,所以:c 25 16 3,
因此,椭圆的长轴和短轴的长分别是:2a 10
和 2b 8,离心率 e c 3,两个焦点分别是 a5
F1 ( 3,0)和F2 (3,0),椭圆的四个顶点是 A(1 5,0)、A(2 5,0),B(1 0, 4)和B(2 0,4).
练习
一、选择题
1、椭圆短轴长是2,长轴是短轴的2倍,则椭圆
的中心到其准线的距离是(D )
A、8 5 5
B、 4 5 5
C、8 3 3
D、 4 3 3
2、椭圆 9x2 25 y 2 225 上有一点P,它到右准
椭圆知识点与性质大全
椭圆与方程【知识梳理】 1、椭圆的定义平面内,到两定点1F 、2F 的距离之和为定长()1222,0a F F a a <>的点的轨迹称为椭圆,其中两定点1F 、2F 称为椭圆的焦点,定长2a 称为椭圆的长轴长,线段12F F 的长称为椭圆的焦距。
此定义为椭圆的第一定义。
2、椭圆的简单性质3、焦半径椭圆上任意一点P 到椭圆焦点F 的距离称为焦半径,且[],PF a c a c ∈-+,特别地,若00(,)P x y 为椭圆()222210x y a b a b +=>>上的任意一点,1(,0)F c -,2(,0)F c 为椭圆的左右焦点,则10||PF a ex =+,20||PF a ex =-,其中c e a =.4、通径过椭圆()222210x y a b a b+=>>焦点F 作垂直于长轴的直线,交椭圆于A 、B 两点,称线段AB 为椭圆的通径,且22b AB a =。
P 为椭圆()222210x y a b a b+=>>上的任意一点,1(,0)F c -,2(,0)F c 为椭圆的左右焦点,称12PF F ∆为椭圆的焦点三角形,其周长为:1222F PF C a c ∆=+,若12F PF θ∠=,则焦点三角形的面积为:122tan 2F PF S b θ∆=.6、过焦点三角形直线l 过椭圆()222210x y a b a b +=>>的左焦点1F ,与椭圆交于11(,)A x y 、22(,)B x y 两点,称2ABF ∆为椭圆的过焦点三角形,其周长为:24ABF C a ∆=,面积为212y y c S ABF -=∆.7、点与椭圆的位置关系()00,P x y 为平面内的任意一点,椭圆方程为22221(0)x y a b a b+=>>:若2200221x y a b +=,则P 在椭圆上;若2200221x y a b +>,则P 在椭圆外;若2200221x y a b+<,则P 在椭圆内。
3.1.2椭圆的简单几何性质
OF
y1 c
1 c2 ,即 b2
2
c
1 c ,a2 2
c2
1 2
c2
,解得
e
c a
6. 3
综上所述,可得 2 e 6 .故选:A
2
3
5.直线 x-y+1=0 被椭圆 x2 +y2=1 所截得的弦长|AB|等于( )
3
A. 3 2 2
B. 2 C. 2 2
D. 3 2
【答案】A
x y 1 0,
()
A. 3 2
B. 2 2
C. 5 3
D. 6 3
【答案】B 【解析】由题意:椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点, 所以 b=c.
则 a b2 c2 2c , 所以离心率 e c 2 .
a2 故选:B
2.已知圆 M
: x2
y2
2mx 3 0m 0
的半径为 2 ,椭圆C :
则
x1+x2=-
4 3
,
故 AB
的中点横坐标
x0=
x1
2
x2
=- 2 3
.
纵坐标
y0=x0+1=-
2 3
+1=
1 3
.
例题分析2
已知椭圆的离心率为
1 2
,焦点是(-3,0)和(3,0),则椭圆方程为(
)
A. x2 + y2 =1 36 27
B. x2 + y2 =1 63
C. x2 + y2 =1 27 36
x2 a2
y2 3
1 的左焦点为
F c,0 ,若垂直于 x 轴且经过 F 点的直线l 与圆 M 相切,则椭圆C 的长轴长为( )
A. 3 2
1.椭圆的几何性质(简单性质)
e =
c a
a2=b2+c2
已知椭圆方程为16x =400, 例1、已知椭圆方程为16x2+25y2=400,则 它的长轴长是: 10 ;短轴长是 短轴长是: 8 ; 它的长轴长是 短轴长是
焦距是: 焦距是
6
;离心率等于 离心率等于: 离心率等于
焦点坐标是: 焦点坐标是
(±3, 0) ;顶点坐标是 (±5, 0) (0, ±4) ; 顶点坐标是: 顶点坐标是
x2 y2 + = 1 的两个焦点为 1 、F2 ,过左焦点作 的两个焦点为F 椭圆 45 20
直线与椭圆交于A, 两点, 的面积为20, 直线与椭圆交于 ,B 两点,若△ AB F2 的面积为 , 求直线的方程。 求直线的方程。
y
(x1 , y1) A
o
(x2 , y2) B F1 F2
x
作业
1.已知椭圆的中心在原点,焦点在坐标轴上,长 已知椭圆的中心在原点,焦点在坐标轴上, 已知椭圆的中心在原点 轴是短轴的三倍,且椭圆经过点P( , ), ),求 轴是短轴的三倍,且椭圆经过点 (3,0),求 椭圆的方程. 椭圆的方程 2 2 x + 2 y = 4 的左焦点作倾斜角为 30 0 2.过椭圆 过椭圆 的直线AB, 求线段AB的长度 的长度. 的直线 , 求线段 的长度
B2
A1
b F1
a F2
A2
o c
B1
3、椭圆的顶点 、
x a
2 2
y2 + = 1( a > b > 0 ) 2 b
顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。 顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。 长轴、短轴:线段 长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短 轴。 a、b分别叫做椭圆的长半轴长和短半轴长。 a、b分别叫做椭圆的长半轴长和短半轴长。 分别叫做椭圆的长半轴长和短半轴长 y
椭圆的简单几何性质(讲课)
1.范 围:
(0,b)
从图形上看: a x a, b y b.
从 方程 上看:
x2 a2
1
y2 b2
1
x2
a2
a
x
a;
y2 b2
1
x2 a2
1
y2
b2
b
y
b
故 整个 椭圆 位 于y b, x a所 围成 的矩 形 内.
y
y2 b2
1(a
b
0)
x2 b2
y2 a2
1(a
b
0)
范 围 a x a,b y b b x b,a y a
对称性 顶点坐标 焦点坐标 半轴长
关于x轴、y轴成轴对称;关于原点成中心对称。
(a,0) ,(0,b) (b,0) , (0,a)
复习:
1.椭圆的定义:
到两定点F1、F2的距离之和为常数(大于|F1F2 |)的
动点的轨迹叫做椭圆.
| PF1 | | PF2 | 2a(2a | F1F2 |)
2.椭圆的标准方程是:
当焦点在X轴上时
x2 y2 a2 b2 1(a b 0)
当焦点在Y轴上时
y2 x2 a2 b2 1(a b 0)
顶点:椭圆与它的对称轴
B2 (0,b)
的四个交点,叫做椭圆的
顶点. 长轴、短轴:线段A1A2、 B1B2分别叫做椭圆的长轴
A1
(-a,0) F1
和短轴.
a、b分别叫做椭圆的长半 轴长和短半轴长.
b
a
椭圆的简单几何性质课件培训讲解
03
CHAPTER
椭圆的面积与周长
椭圆的面积
1 2
椭圆面积
椭圆的面积可以通过其长半轴和短半轴的长度计 算得出,公式为$S = pi ab$,其中$a$是长半轴 长度,$b$是短半轴长度。
面积计算
在已知椭圆的长半轴和短半轴长度的情况下,可 以直接代入公式计算出椭圆的面积。
3
面积与长、短半轴关系
椭圆的面积与其长半轴和短半轴的长度密切相关, 当长半轴和短半轴长度发生变化时,椭圆的面积 也会相应地发生变化。
转换的意义
在实际应用中,经常需要在直角坐标系和极坐标系之间进行转换。例如,在物理学、工程学和天文学等领域中, 许多问题可以通过极坐标或直角坐标方便地描述和解决。因此,掌握这两种坐标之间的转换方法对于解决实际问 题非常重要。
06
CHAPTER
椭圆的几何性质在生活中的 应用
地球轨道的椭圆性质
总结词
地球的轨道是椭圆形的,这是天文学和地理学中一个重要的 知识点。
椭圆的简单几何性质课件培训 讲解
目录
CONTENTS
• 椭圆的定义与性质 • 椭圆的焦点与离心率 • 椭圆的面积与周长 • 椭圆的切线与切点性质 • 椭圆的对称性与极坐标表示 • 椭圆的几何性质在生活中的应用
01
CHAPTER
椭圆的定义与性质
椭圆的定义
椭圆是平面内与两个定点F1、 F2的距离之和等于常数(大于
工程设计中的椭圆应用
总结词
在工程设计中,椭圆也有着广泛的应用。
详细描述
例如桥梁、建筑和机械零件的设计中,经常需要使用到椭圆的几何性质。特别是 在结构稳定性和力学分析方面,椭圆的几何性质发挥了重要的作用。
THANKS
椭圆性质
椭圆的离心率.∵a>c>0,∴0<ea<1.
(1)当e越接近1时,c越接近a,从而b a2 c2
越小,因此椭圆越扁;
y
O
x
4.离心率 椭圆的焦距与长轴长的比
e
c
,叫做
椭圆的离心率.∵a>c>0,∴0<ea<1.
(1)当e越接近1时,c越接近a,从而b a2 c2 越小,因此椭圆越扁;
A1 b a A2 F1 O c F2 x
B1
3.顶点 线段A1A2、B1B2分别叫做椭圆的长轴和 短轴. 长轴的长等于2a. 短轴的长等于2b.
a叫做椭圆的长半轴长.
y
b叫做椭圆的短半轴长.
B2
|B1F1|=|B1F2|=|B2F1| =|B2F2|=a.
A1 b a A2 F1 O c F2 x
2.1.2椭圆的简单 几何性质
§2.1 椭 圆
1.在平面内到两定点F1、椭圆
.这两定点叫做椭圆
的 焦点 ,两焦点间的距离叫 焦距 .
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0, 且a,c为常数;(1)若 a>c ,则集合P
,
10 2 A.
3
5 1 B.
3
C. 5 1 2
D. 10 2 2
3. 综合练习:
1. 以 正 方 形ABCD的 相 对 顶 点A、C为
焦点的椭圆,恰好过正方形四边的中
点,则该椭圆的离心率为( D )
,
10 2 A.
3
5 1 B.
3
C. 5 1 2
D. 10 2 2
例2 求适合下列条件的椭圆的标准方程:
椭圆的简单几何性质课件
∴椭圆的长轴长 2a=m2 ,短轴长 2b=m1 ,
焦点坐标为-2m3,0,2m3,0,
顶点坐标为m1 ,0,-m1 ,0,0,-21m,0,21m.
3
离心率
e=ac=21m=
3 2.
m
小结 已知椭圆的方程讨论其性质时,应先将方程化成标 准形式,不确定的要分类讨论,找准 a 与 b,才能正确地写 出焦点坐标、顶点坐标等.
直线 PF1 的方程为 x=-c, 代入方程xa22+by22=1,得 y=±ba2,∴P-c,ba2.
又 PF2∥AB,∴△PF1F2∽△AOB.
∴||FP1FF12||=||AOOB||,∴2ba2c=ba,∴b=2c. ∴b2=4c2,∴a2-c2=4c2,∴ac22=15.
∴e2=15,即
e=
55,所以椭圆的离心率为
5 5.
小结 求椭圆离心率的方法: ①直接求出 a 和 c,再求 e=ac,也可利用 e=
1-ba22求解.
②若 a 和 c 不能直接求出,则看是否可利用条件得到 a 和 c 的齐次等式关系,然后整理成ac的形式,并将其视为整体,
就变成了关于离心率 e 的方程,进而求解.
探究点三 求椭圆的离心率
例 3 如图所示,椭圆的中心在原点,焦点 F1,F2 在 x 轴上,A,B 是椭圆的顶点,P 是椭圆上一点,且 PF1⊥x 轴,PF2∥AB, 求此椭圆的离心率. 解 设椭圆的方程为xa22+by22=1 (a>b>0).
如题图所示,则有 F1(-c,0),F2(c,0),A(0,b),B(a,0),
探究点二 由椭圆的几何性质求方程
例2
椭圆过点(3,0),离心率
e=
6,求椭圆的标准方程. 3
椭圆的简单几何性质 课件
据椭圆定义得|BF1|+|BF2|=2a,
即 c+ 3c=所2以a,
c= 3-1. a
所以椭圆的离心率为 e= 3-1.
【方法技巧】求椭圆离心率及范围的两种方法 (1)直接法:若已知a,c可直接利用 e 求c解.若已知a,b或b,c
a
可借助于a2=b2+c2求出c或a,再代入公式e c 求解.
的距离为 1 |OF1|,则椭圆的离心率为( )
2
A. 1
B. 3 1
C. 2
D. 2 1
3
2
(3)已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直
线交椭圆于A,B两点,若△ABF2是正三角形,求该椭圆的离心
率.
【解题探究】1.题(1)由条件 3DF1 DA能得2D到F2什么结 论? 2.题(2)求解离心率的关键是什么? 3.题(3)当椭圆中涉及其他平面几何图形时,一般要注意什 么?
所以|AF1|= 3c,
所以2a=|AF1|+|AF2|= 3 1 c,
所以 e 3 1.
(3)不妨设椭圆的焦点在x轴上,因为 AB⊥F1F2,且△ABF2为正三角形,所以 在Rt△AF1F2中,∠AF2F1=30°,令|AF1| =x,则|AF2|=2x, 所以 F1F2 AF2 2 AF1 2 3x 2c, 再由椭圆的定义,可知|AF1|+|AF2|=2a=3x, 所以 e 2c 3x 3 .
【探究提示】1.将向量的等量关系转化为坐标间的关系,取
D(0,b)得3(-c,-b)=(-a,-b)+2(c,-b). 2.由题意求a,c的值或构造a,c的关系式,求 的c 值.
a
3.当椭圆中涉及其他平面几何图形时,注意利用平面图形的几
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的简单性质(一)
【学习目标】
1.熟悉椭圆的几何性质(对称性、范围、顶点、离心率);
2.掌握标准方程中的a,b,c,e的几何意义,a,b,c,e之间的相互关系. 【学习重点】
利用椭圆的标准方程和图形来研究椭圆的几何性质
【学习难点】
椭圆的集合性质的实际应用,关键是注意数形结合,方程的思想及等价转化思想.
【课前预习案】
【复习巩固】
【课堂探究案】
1.椭圆的对称性
在
22
22
1(0)
x y
a b
a b
+=>>之中,
把换成,方程不变,说明:椭圆关于轴对称
把换成,方程不变,说明:椭圆关于轴对称
把换成、换成,方程不变,说明:椭圆关于点对称
故:坐标轴是椭圆的,原点是椭圆的,
2.椭圆的范围
由22221(0)x y a b a b +=>>,知:22
2211x y a b
≤≤和,即:x a y b ≤≤和 说明:椭圆上所有的点都位于直线,x a y b =±=±所围成的矩形之中。
3.椭圆的顶点
在22
221(0)x y a b a b
+=>>之中, 令0,x y ==得 ,说明椭圆与y 轴的交点 令0,y ==得x ,说明椭圆与x 轴的交点 称为椭圆的顶点,四个顶点分别为: 。
说明:这四个特殊点,可以确定椭圆的具体位置。
,a b 分别叫做椭圆的 和 。
它们反映了参数,a b 的几何意义。
4.椭圆的离心率
我们规定: 叫做椭圆的离心率,用e 表示,即
(0,1)c
e a
=∈。
显然01e <<,越接近1,椭圆就越 ,越接近0,椭圆就越 。
当b c 0a ==时,,这时两个焦点重合,图形变为 ,它的方程为 。
讨论:,a c 的大小如何反映着椭圆的扁圆程度? 小组合作完成下列表格:
探究二:求椭圆400251622=+y x 的长轴和短轴的长、离心率、焦点和顶点的坐标,并画出它的简图.
探究三:求适合下列条件的椭圆的标准方程. ⑴长轴在x 轴上,长轴长为12,离心率为3
2; ⑵经过点(-6,0)和(0,8).
方法总结:数形结合思想的应用 1.离心率为
2
3
,且过点(2,0)的椭圆的标准方程是( ) A.1422=+y x B.1422
=+y x 或14
22
=+y x
C.142
2
=+y x D.14
22
=+y x 或11642
2=+y x
2.下列关于椭圆22
1169
x y +
=的说法正确的有( )
①椭圆的长轴长为8,短轴长为6,焦距为②椭圆的离心率为e =
③该椭圆比22
1167
x y +
=更接近圆. ( ) A 、①② B 、①③ C 、①②③ D 、②③
3.求下列椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、并用描点法画出它的图形.
(1)25x 2+4y 2-100=0; (2)x 2 +4y 2-1=0; (3)16x 2+25y 2=400 4.若椭圆的长轴长不大于短轴长的2倍,求椭圆的离心率.
5.若椭圆
13622=+m y x 的焦点在x 轴上,离心率e =3
2,求m. 6.椭圆的一个焦点到长轴两端点的距离之比为1:4,短轴长为8,求椭圆的标准方程.。