9.3 分式方程(公开课) (共15张PPT)
《分式方程》_课件-完美版
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
巩固新知
1.解分式方程 x 2 3 ,去分母后的结果是( )
运用新知
例4 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一, 这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快? 追问1:工程问题中有哪几个基本量,其关系是什么?通常把工作总量看作多少? 追问2:由题意可知,甲队的工作效率是多少?若设乙队独做x天完成,则乙队的工作 效率是多少? 追问3:此题中的等量关系是什么?你能用题中的一句话或一个等式来表示吗? 追问4:工程类问题常用的等量关系是什么?
x2
x2
A.x=2+3
B.x=2(x-2)+3
C.x(x-2)=2+3(x-2) D.x=3(x-2)+2
答案:B
2.解下列方程:(1)
x
1 5
10 x2 25
7
1
6
;(2)
x2
x x2
x x2
x。
答案:(1)无解;(2)x=3。
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
此方程中含有分式,即方程的分母中含有未知数,而整式方程的左右两边都是整式。 归纳:分式方程的概念:像这样 分母中含有未知数的方程 叫分式方程。
追问:分式方程与整式方程有何区别?
小结:分式方程中含有分式,即分母中含有未知数的方程;整式方程是指方程的左右 两边都是整式,不含有分式。
《分式方程》PPT课件
(来自《典中点》)
知识点 3 分式方程的根(解)
知3-导
使得分式方程等号两端相等的未知数的值 叫做分式方程的解(也叫做分式方程的根).
知3-讲
例3 [中考·遵义]若x=3是分式方程 a 2 1 x x2
=0的根,则a的值是( A )
A.5 B.-5 C.3
D.-3
导引:把x=3代入分式方程,得到关于a的一元一次方
C.m=3
D.m=0或m=3
3
若关于x的分式方程
6
( x 1)( x 1)
m
x 1 有增
根,则它的增根是( )
A.0
B.1 C.-1 D.1和-1
(来自《典中点》)
1.分式方程的定义:分母中含有未知数的方程. 2.列分式方程的步骤:
(1)审清题意; (2)设未知数; (3)找到相等关系; (4)列分式方程.
漏乘.
(来自《点拨》)
1 解方程: (1) x 5 4; 2x 3 3 2x
3
x
(2) x2 9 x 3 1.
知2-练
(来自《点拨》)
知2-练
2
【中考·济宁】解分式方程
2 x1
x2 1 x
3
时,去分母后变形正确的为( )
A.2+(x+2)=3(x-1)
B.2-x+2=3(x-1)
C.2-(x+2)=3
38 2 2 1. 9x x
如果设小红步行的时间为x h,那么她乘公共汽 车的时间为(1-x) h, 根据等量关系(2),可得到方程
38 2 9 2 .
1 x
x
知1-导
讨论: 上面得到的方程与我们已学过的方程有什么 不同?这两个方程有哪些共同特点?
数学:9.3《分式方程》课件(沪科版七年级下)(2019年11月整理)
最新分式方程及其解法公开课精品课件
目录
• 分式方程概述 • 分式方程的基本解法 • 分式方程的特殊解法 • 分式方程的应用举例 • 分式方程的解法技巧与注意事项 • 分式方程与其他数学内容的联系
01
分式方程概述
定义与特点
01
02
定义:分式方程是未知 数在分母中的有理方程 。其一般形式为 $frac{a_1x+b_1}{c_1x+ d_1} = frac{a_2x+b_2}{c_2x+ d_2}$,其中 $a_i, b_i, c_i, d_i$ 是常数,且 $c_1$ 和 $c_2$ 不同时 为0。
关注方程的定义域
在求解过程中,要时刻关 注分式方程的定义域,确 保解在定义域范围内。
避免增根和失根
在求解过程中,要留意可 能出现的增根和失根情况 ,确保解的准确性。
分式方程与其他数学内容的
06
联系
与整式方程的联系与区别
联系
分式方程和整式方程都是代数方程,都用于描述数量之 间的关系。在某些情况下,分式方程可以转化为整式方 程进行求解。
04
分式方程的应用举例
工程问题
工作总量、工作时间、工作效率之间的关系
工作总量=工作时间×工作效率。在给定两个量的情况下,可以求解第三个量。
典型例题
一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他 任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
解题思路
解题思路
设乙的速度为x千米/时,则甲 的速度为(x+0.5)千米/时,根 据题意列出分式方程求解。
浓度问题
01
溶质、溶剂、溶液、浓度之间的关系
2024版年度分式方程的应用公开课精品课件
2024/2/2
22
分式方程与函数综合应用
2024/2/2
函数关系描述 分式方程可以用来描述函数关系,通过解析式表示出自变 量和因变量之间的关系。这种关系可以用于预测、控制和 分析实际问题。
函数图像分析 分式方程的函数图像具有独特的特点,如渐近线、拐点等。 通过分析这些特点,我们可以更深入地理解函数的性质和 变化规律。
课程目的
通过本次公开课,使学生了解分式方程 的基本概念、性质和解法,掌握分式方 程在实际问题中的应用,培养学生的逻 辑思维能力和数学素养。
2024/2/2
4
分式方程简介
01
02
03
分式方程的定义
分式方程是含有分式(即 分母中含有未知数的式子) 的方程。
2024/2/2
分式方程的特点
分式方程具有形式复杂、 解法多样等特点,需要灵 活运用各种数学知识和技 巧进行求解。
分式方程的应用
分式方程在实际生活中有 着广泛的应用,如工程问 题、经济问题、物理问题 等。
5
课程内容与安排
课程内容
本次公开课将涵盖分式方程的基本概念、性质、解法以及应用等方面。具体包 括分式方程的定义、性质、解法介绍,以及通过实例讲解分式方程在实际问题 中的应用。
课程安排
本次公开课将分为多个环节,包括理论讲解、例题演示、学生互动、课堂练习 等。通过丰富多样的教学形式,使学生更好地理解和掌握分式方程的应用。
1)$,进一步化简求解得到 $x=1$,但需要注意 $x=1$ 是原方程的增根,因此原方
程无解。
求解分式方程 $frac{2}{x+1} - frac+1)(x-2)$,然后将方程两 边乘以最简公分母,得到整 式方程 $2(x-2) - x(x+1) = (x+1)(x-2)$,进一步化简求
分式方程PPT课件(沪科版)
例3.七年级甲、乙两班师生前往郊区参加义务植树活 动,已知甲班每天比乙班多种10棵,如果分配给甲、乙 两班的植树任务分别是150棵和120棵,问两个班每天各 植树多少棵,才能同时完成任务?
这个问题中的已知量有哪些?未知量是什么? 已知量: 甲班的植树任务 乙班的植树任务 未知量: 甲班每天的植树任务 乙班每天的植树任务
2.解分式方程如何检验? 把未知数的值代入原方程(一般方法); 把未知数的值代入最简公分母(简便方法).
复习巩固
1.分式方程
x-1 1=
3 x+3
的解是
x=3
.
x+3 =3(x-1)
x+3=3x-3
2x =6
2.分式方程
x-1 1-
3 x+1
=0
的解是(
A
).
A. x=2 B. x=1 C. x=-1 D. x=-2
植树多少棵,才能同时完成任务?
解:设甲班完成任务要x天,则乙班完成任务也是要 x天,
根据题意,得
150 x
-
120
x
=10
解这个方程,得 x =3
30
x
=10
3
x
=1
经检验x =3是原分式方程的解. 50-10=40
∴
150 3
=50
答:甲班每天植树50棵, 乙班每天植树40棵,才能同时完成任务。
例3.七年级甲、乙两班师生前往郊区参加义务植树活动,已 知甲班每天比乙班多种10棵,如果分配给甲、乙两班的植树任务 分别是150棵和120棵,问两个班每天各植树多少棵,才能同时完 成任务?
倍的粗油管向油罐注油, 直至注满,注满 油的全
分式方程PPT课件(沪科版)
为什么解例2的过程没有验根环节? 因为电阻一般是正数,变分式方程为 整式方程时,两边同乘以的公分母不会为 零,故不需检验,一般情况下公式变形均 不需要检验。
学以致用
1.在公式 VP12= PV21中,P2≠0, 用P1,P2,V1表示出V2
解:方程两边乘以V1V2,约去分母,得
P1V1 = P2V2
e(m+ a) = m-a
em + ea = m-a
ea + a = m-em (e+1)a = m-em ∵e≠-1, ∴e+1≠0,
∴ a =me-+e1m
例题解析
例.若关于x的方程
x-1 x-5
=10-m 2x 无解,求m的值.
解:方程两边乘以2(x-5) ,约去分母,得
2x-2=-m.
∵无论m为何值,方程2x-2=-m都有解,
∵R1,R2都是正数, R1+R2≠0
1 R
=
1+ R1
1. R2
若已知R1,R2,求R.
解:方程两边乘以RR1R2,约去分母,得
R1R2 = RR2 + RR1
R1R2 = R(R1+R2)
∵R1,R2都是正数,∴R1+R2≠0
∴两边同除以 (R1+R2),得
R
=
R1R2 R1+R2
公式变形:把要求表示的字母看成 未知数,其它字母看成已知数,按解方 程的思想来进行解答.
A.2; B.1; C.0; D.-1.
课堂小结
(1) 本节课学习了哪些主要内容? (2) 解分式方程的一般步骤有哪些?关键是什么?
解方程的过程中要注意的问题有哪些? (3)公式变形:把要求表示的字母看成未知数,
其它字母看成已知数,按解方程的思想来进行解答.
巩固提高
《9.3分式方程》PPT课件 (1)
即:使最简公分母值为零的根
解分式方程的思路是:
分式 方程 去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程. 2、解这个整式方程. 3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,原分式方 程无解. 4、写出原方程的根.
一化二解三检验
冲刺与提高:
例题解析:解下列方程
3 2 (1) x x3
3 x (2) 1 ( x 1)(x 2) x 1
解分式方程应注意的问题:
(1)去分母时,原方程的各项不能漏乘. (2)约去分母后,分子是多项式时, 要注意添 括号.(因分数线有括号的作用) (3)增根要舍去.
巩固练习:
解下列方程:
1 2 (1) 2x x 3
x 2 ( 2) 1 x 1 3x 3
巩固练习:
2 4 (3) 2 x 1 x 1
5 1 (4) 2 2 0 x x x x
欢迎使用本课件
祝您桃李满天下
9.3分式方程
复习旧知:
分式定义:分母中含有字母的式子,且分 母不能为0.
方程的定义:含有未知数的等式叫做方程 解一元一次方程的步骤: 1、去分母.2、去括号.3、移项.4、合并同类 项.5、系数化为1.6、检验.
情境导入:一艘轮船在静水中的最大航速为 20千米/时,它沿江以最大航速顺流航行100千 米所用的时间,与以最大航速逆流航行60千米 所用的时间相等,江水的流速为多少? 分析:设江水的流速为v千米/时, 轮船顺流航行速度为 20+v 千米/时,逆流航 行速度为 20-v 千米/时,顺流航行100千米 100 所用的时间为 20 v 时,逆流航行60千米所 60 数量关系:顺速=静速+水速 用的时间为 20 v 时. 逆速=静速-水速 路程=速度×时间 100 60 等量关系:顺流与逆流航行时间相等. 20 v 20 v
分式方程ppt课件
•分式方程基本概念•分式方程解法•分式方程应用举例•分式方程与实际问题结合目•分式方程求解技巧与注意事项•分式方程练习题与答案解析录01分式方程基本概念分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程。
分母中含有未知数(或含有未知数整式的有理方程)叫做分式方程。
分式方程是指分母里含有未知数的有理方程。
分式方程与整式方程区别方程形式不同未知数位置不同分式方程是分式的形式,而整式方程是整式的形式。
解法不同02分式方程解法通过通分,将分式方程转化为整式方程。
注意去分母后,整理得到的整式方程的解需要检验,以排除增根。
适用于分子、分母均为多项式的分式方程。
去分母法通过引入新的变量,将分式方程转化为整式方程。
换元法可以简化复杂的分式方程,降低求解难度。
适用于具有特定结构的分式方程,如分子或分母含有根式、指数等。
换元法判别式法因式分解法将分式方程的分子或分母进行因式分解,从而简化方程。
因式分解法可以方便地找到分式方程的解,特别是当分子或分母含有公因式时。
适用于分子、分母均可因式分解的分式方程。
03分式方程应用举例千米,一辆汽车从甲地开千米。
问这辆汽车需要多少小时才能到达乙地?01020304利润= 售价-进价利润率= 利润÷进价×100%售价= 进价×(1 +利润率)进价= 售价÷(1 +利润率)举例:某商店以每双6.5元的价格购进一批凉鞋,售价为7.4元。
卖到还剩5双时,除成本外还获利44元。
这批凉鞋共有多少双?04分式方程与实际问题结合实际问题转化为分式方程通过分析实际问题的数量关系,建立分式方程模型。
将实际问题中的已知量和未知量用字母表示,根据问题中的等量关系列出分式方程。
注意分式方程中分母不能为0的条件,确保方程的合法性。
分式方程求解实际问题通过去分母、去括号、移项、合并同类项等步骤,将分式方程化为整式方程。
解整式方程,求得未知数的值。
检验求得的解是否符合实际问题的要求,确保解的合理性。
《分式方程》分式PPT课件 (共18张PPT)
X2-1=0
时,
3 x2 3、分式 2( x 3)与 x 2 3x 的最简公分母 是 2X(x―3) .
解分式方程
例1 解分式方程
x11 x1 2
分式方程
解: 方程的两边同乘以最简公分母2(x+1), 转 ● ● ● ● ● 化 x 1 1 得 2(x+1) · x1 2 · 2(x+1) 整式方程 ① 化简,得整式方程 2(x-1)=x+1
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 · · · · · · 程的根. · · · 使分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, · · · · 而不是分式方程的根. · · · ·
练 x(x 2) 解 : 方程两边同乘以最简公分母 , 一 2+ x -6=0 或x(x+1)-6=0 x 化简 , 得 . 练① ② 解得 x1= -3 , x2= 2 . ③ 检验:把x1= -3,代入最简公分母,
概 念 观察下列方程: 一元一次方程
1、2(x-1)=x+1;
一元二次方程
x2+x-20=0;
x+2y=1…
整式方程: 方程两边都是整式的方程.
1 x 1 1 1 1 x 1 5 x 9 x 0 ; ; 1 ; 2、 y 2 x 1 x 1 2 x 1 x 1 x 1
· · · · · · · · · x(x-2)=-3(-3-2)= 15 ≠0; 把x2= 2 ,代入最简公分母,
x 1 6 0 (填空)1、解方程: x 2 2 x 2 x
7
x(x-2)= 2(2-2) =0
《分式方程》PPT教学课文课件
【分析】这里的字母,s表示已知数据,设提速前列车的平均速
度为 /ℎ,那么提速前列车行驶s
s
所用时间为________ℎ,
s + 50
提速后列车的平均速度为______
/ℎ,
+ 50
50)所用时间为___________ℎ。
+
提速后列车行( +
根据行驶时间的等量关系可以列出方程。
解析
解: 设提速前这次列车的平均速度为 /ℎ,则提速前它行驶
所用时间为 h;提速后列车的平均速度为( + ) /ℎ ,
+50
50) 所用时间为
+
提速后它行驶( +
根据行驶时间的等量关系,得
方程两边乘( + ),得
+ 50
=
+
( + ) = ( + 50)
解:方程两边乘( − 1)( + 2),得
( + 2) − ( − 1)( + 2) = 3
解得
=1
检验,当 = 1时,( − 1)( + 2) = 0,
因此 = 1不是原方程的解。
所以,原分式方程无解。
归纳
解分式方程的一般步骤如下:
分式方程
去分母
目标
x= a
最简公分母不为0
分母)。方程①两边乘 (30 + )(30 − ) ,得到整式方程,它的解 =6。
当=6时,(30 + )(30 − ) ≠ 0,这就是说,去分母时,①两边乘了
同一个不为0的式子,因此所得整式方程的解与①的解相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x+5=10.
解得x=5.
检验:将x=5代入原分式方程,发现这时x-5 和x2-25的值都为0,相应分式无意义.所以 x=5不是原分式方程的解. 所以原分式方程无解.
增根:在去分母时,两边同乘一个含未知数的整 式,是否为0事先不知道,以致导致出现分母 为0的现象,此时得到的根叫做增根,因此,解 分式方程必须检验.
② 解得x=9
解整式方程
③ 检验:x=9时x(x-3) ≠0,x=9是原
方程的解.
检验
例2
解分式方程
x 1 x 1
3 (x 1)(x 2)
解:方程两边同乘以 (x-1)(x+2), 得
x(x+2)-1·(x-1)(x+2)=3
化简,得x+2=3.
解得 x=1. 检验:x=1时(x-1)(x+2) =0,x=1不是原方
的时间为_20_ _v 小时,逆流航行60千米所用时间
60
为_20__v 小时。
100 60 20 v 20 v
像这样,分母中含有未知数的方程 叫做分式方程.
以前学过的分母里不含有未知数的 方程叫做整式方程.
下列方程中,哪些是分式方程?哪些整式方程.
(1) x 2 x 23
4 3 7 xy
整式方程
(2) 1 3 (4) x(x 1) 1
x2 x
x
(3) 3 x x(6)2x x 1 10
2
5
(5)x 1 2 2x 1 3x 1
x
x
分式方程
(1)分式方程的特征是什么? 分式方程的特征是分母中含有未知数.
(2)如何解分式方程? 我们能不能效仿有分母的一元一次方程的解 法,想办法去掉分式方程的二解三检验
随
解方程
堂 练
(1)
3 x-1
=
4 x
习
(2) x 8 1 8 x7 7x
小 结:
1、分式方程的概念; 2、解分式方程;(一化二解三检验) 3、增根产生的原因; 4、体会数学转化的思想方法. 作业:P.109 3
下课了!
再 见!
一艘轮船在静水中的最大航速为20千米/时,
它沿江以最大航速顺流航行100千米所用时间,与
以最大航速逆流航行60千米所用时间相等,江水
的流速为多少? 分析:设江水的流速为v千米/时,填空: 轮船顺流航行速度为_20_+_v 千米/时,逆流航行 速度为_2_0-_v 千米/时,顺流航行100千米所用
100
解得v=5.
-160v=-800 V=5
检验:将v=5代入分式方程,左边=4=右边, 所以v=5是原分式方程的解.
所以江水流速为5千米/时.
解分式方程的基本思路是将分式方程化
为整式方程,具体做法是“去分母”,即方程 两边同乘最简公分母,这也是解分式方程的一 般思路和做法。
解分式方程 1 10
x 5 x2 25
程的解.原方程无解. 一化二解三检验
解分式方程的思路是:
分式 方程
去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,必须舍去.
解分式方程,如何检验?
解分式方程时应进行如下检验:将整式方程 的解代入最简公分母,如果最简公分母的值不为 0,则整式方程的解是原分式方程的解,否则, 这个解不是原分式方程的解.
解分式方程
例1 解分式方程 2 3
x3 x
解: 方程的两边同乘 x(x-3),得
①
2x=3x-9
分式方程 转 化
整式方程
回顾:1.什么是方程的解? 2.在解有分母的一元一次方程中怎么去分母?
例如: x 1 2x 1 23
下面我们一起研究下怎么样来解分式方程:
100 60 20 v 20 v
方程两边同乘最简公分母(20+v)(20-v) ,得
·····
100(20 v) 60(20 v) 2000-100v=1200+60v -100v-60v=1200-2000