普通高中数学会考试卷及答案

合集下载

高中会考数学试题及答案

高中会考数学试题及答案

高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 函数y=x^2+2x+1的图像是:A. 抛物线B. 直线C. 双曲线D. 圆答案:A3. 以下哪个选项是等比数列?A. 2, 4, 6, 8B. 1, 2, 4, 8C. 3, 6, 9, 12D. 5, 10, 15, 20答案:B4. 已知a=3,b=4,求a^2+b^2的值。

A. 25B. 29C. 37D. 415. 一个圆的半径为5,求该圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B6. 以下哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x答案:D7. 以下哪个选项是不等式x+2>3的解集?A. x>1B. x<1C. x>-1D. x<-1答案:A8. 一个等差数列的首项是2,公差是3,求第5项的值。

A. 17B. 14C. 11D. 8答案:A9. 以下哪个选项是方程2x-3=7的解?B. x=3C. x=1D. x=-1答案:A10. 以下哪个选项是函数y=2sin(x)的图像?A. 正弦波形B. 余弦波形C. 正切波形D. 直线答案:A二、填空题(每题4分,共20分)11. 计算(3+4i)(2-i)的结果为______。

答案:8+5i12. 已知等差数列的第3项是7,第5项是11,求公差d。

答案:213. 计算极限lim(x→0) (sin(x)/x)的值为______。

答案:114. 已知函数f(x)=x^2-4x+3,求f(2)的值。

答案:-115. 计算定积分∫(0 to 1) x^2 dx的结果为______。

答案:1/3三、解答题(每题10分,共50分)16. 求函数y=x^3-3x^2+2x的导数。

答案:y'=3x^2-6x+217. 证明函数f(x)=x^2在(0, +∞)上是增函数。

高中会考试题及答案数学

高中会考试题及答案数学

高中会考试题及答案数学一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-2x-3,那么f(-1)的值是:A. 0B. 4C. -4D. 6答案:B2. 已知等差数列的前三项为2,5,8,那么第10项的值是:A. 19B. 22C. 25D. 28答案:C3. 一个圆的直径为10cm,那么它的面积是:A. 25π cm^2B. 50π cm^2C. 100π cm^2D. 200π cm^2答案:B4. 如果a+b=7,ab=6,那么a^2+b^2的值是:A. 13B. 25C. 37D. 49答案:C5. 计算下列表达式的结果:(3x-2)(2x+3)是:A. 6x^2+7x-6B. 6x^2-7x+6C. 6x^2+7x+6D. 6x^2-7x-6答案:C6. 已知函数f(x)=x^3-3x^2+2x,求f'(x)的值:A. 3x^2-6x+2B. x^2-6x+2C. 3x^2-6xD. 3x^2-6x+1答案:A7. 一个三角形的三个内角之和是:A. 180°B. 360°C. 540°D. 720°答案:A8. 一个等腰三角形的两个底角相等,如果顶角是50°,那么每个底角的度数是:A. 65°B. 75°C. 80°D. 85°答案:B9. 一个数列的前四项为1,2,3,5,那么第五项是:A. 7B. 8C. 9D. 10答案:A10. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是2和-2,那么这个数是______。

答案:42. 计算:(2x+1)(3x-2)=______。

答案:6x^2-x-23. 一个圆的半径是5cm,那么它的周长是______。

答案:10π cm4. 已知一个等差数列的前四项为2,5,8,11,那么这个数列的公差是______。

高中数学会考试题及答案

高中数学会考试题及答案

高中数学会考试题及答案一、选择题(每题4分,共40分)1. 已知函数f(x) = 2x^2 - 4x + 1,下列关于f(x)的描述正确的是:A. f(x)是奇函数B. f(x)的图像关于直线x=1对称C. f(x)的图像开口向上D. f(x)在x=1处取得最小值答案:C2. 若a > 0,b > 0,且a + b = 1,则下列不等式中正确的是:A. ab ≤ 1/4B. ab ≤ 1/2C. ab ≤ 1/3D. ab ≤ 1/6答案:A3. 已知向量a = (3, -1),b = (1, 2),则向量a与向量b的数量积为:A. 4B. 2C. -2D. -4答案:C4. 已知圆的方程为(x-2)^2 + (y-3)^2 = 9,该圆的半径为:A. 3B. 6C. 9D. 12答案:A5. 已知等差数列{an}的首项a1 = 1,公差d = 2,则该数列的前10项和S10为:A. 100B. 110C. 120D. 130答案:C6. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的零点个数:A. 0B. 1C. 2D. 3答案:D7. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,其中a > 0,b > 0,若C的一条渐近线方程为y = 2x,则双曲线C的离心率为:A. √5B. √6C. √7D. √8答案:A8. 已知三角形ABC的三边长分别为a、b、c,且a^2 + b^2 =c^2,下列关于三角形ABC的描述正确的是:A. 三角形ABC为锐角三角形B. 三角形ABC为直角三角形C. 三角形ABC为钝角三角形D. 三角形ABC为等腰三角形答案:B9. 已知函数f(x) = sin(x) + cos(x),求f(x)的周期为:A. πB. 2πC. 4πD. 6π答案:B10. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B为:A. {1, 2}B. {2, 3}C. {3, 4}D. {1, 4}答案:B二、填空题(每题4分,共20分)11. 已知函数f(x) = 2x + 3,求f(-1)的值为:______。

高中会考试题数学及答案

高中会考试题数学及答案

高中会考试题数学及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 + 4x + 3,则f(-1)的值为:A. 0B. 2C. 4D. 6答案:B2. 已知等差数列{a_n}的前三项分别为1, 4, 7,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B3. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 若直线y = 2x + 1与直线y = -x + 3相交,则交点的横坐标为:A. -1B. 0C. 1D. 2答案:C5. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 13答案:B6. 函数y = x^3 - 3x^2 + 4x - 2的导数是:A. 3x^2 - 6x + 4B. 3x^2 - 6x + 2C. 3x^2 - 9x + 4D. 3x^2 - 9x + 2答案:A7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B8. 若sin(α) = 3/5,且α为第一象限角,则cos(α)的值为:A. 4/5B. -4/5C. 3/5D. -3/5答案:A9. 一个数列的前四项为2, 5, 8, 11,若该数列是等差数列,则第五项为:A. 14B. 15C. 16D. 17答案:A10. 已知函数f(x) = x^2 - 4x + 3,若f(x) = 0,则x的值为:A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的前三项分别为2, 6, 18,则该数列的公比为______。

答案:32. 一个矩形的长为10cm,宽为5cm,那么它的对角线长度为______。

答案:5√5 cm3. 函数y = √x的反函数是______。

答案:y = x^24. 已知一个抛物线的顶点为(2, -3),且开口向上,则它的标准方程为______。

2020年福建普通高中会考数学真题及答案(完整版)

2020年福建普通高中会考数学真题及答案(完整版)

2020年福建普通高中会考数学真题及答案(考试时间:90分钟;满分:100分)参考公式:样本数据x1,x2,…,x. 标准差其中为样本平均数 s =x 锥体体积公式V=Sh ,其中S 为底面面积,h 为高13球 表面积公式S=4πR 2,球 体积公式V=,其中R 为球 半径43πR 3柱体体积公式V=Sh ,其中S 为底面面积,h 为高 台体体积公式,其中S ',S 分别为上、下底面面积,h 为高V =13(S '+S 'S +S )h 第Ⅰ卷 (选择题45)一、选择题(本大题有15小题,每小题3分,共45分.每小题只有一个选项符合题意) 1.已知集合A={3},B={1,2,3},则A ∩B=A.{1,2,3}B.{1,3}C.{3}D. φ2.右图是某圆锥 三视图,则该圆锥底面圆 半径长是 A.1 B.2 C.3 D.103.若三个数1,3,a 成等比数列,则实数a= A.1 B.3 C.5 D.9 4.一组数据3,4,4,4,5,6 众数为 A.3 B.4 C.5 D.65.如图,在正方形上随机撒一粒黄豆,则它落到阴影部分 概率为A. B. C. D.1 14 12 346.函数y=cosx 最小正周期为 A.B. C. D. π2 π3π22π7.函数y= 定义域为1X -2A.(-∞,2)B.(2,+∞)C.(-∞,2)U(2,+∞)D. R 8.不等式2x+y-4≤0表示 平面区域是9.已知直线l 1:y=x-2,l 2:y=kx ,若l 1∥l 2,则实数k= A.-2 B.-1 C.0 D.1 10.化简+ +=MN MP QP A. B. C. D. MP NQ MQ PM 10.不等式(x+2)(x-3)<0 解集是 A.{x | x <-2,或x >3} B. {x|-2<x<3} C.< x <} {-12 13D. {x|x <,或x > -121312.化简tan(+α)=πA. sin α B.cos α C. –sin α D.tan α 13.下列函数中,在(0,+∞)上单调递减 是 A. y=x-3 B.y= C.y=x 2 D.y=2x2x14.已知a=40.5,b=42,c=log 40.5,则a ,b ,c 大小关系是 Aa < b<c B .c<b<a Cc<a < b D a<c< b 15.函数y=图象大致为 {1, |x |<2,log 2|x |, |x|≥2第Ⅱ卷 (非选择题55分)二、填空题(本大题有5小题,每小题3分,共15分)16.已知向量a=(0,2),则2a= . 17.阅读右边 程序框图,运行相应 程序,若输入 x 值为-4,则输出相应 y 值是 . 18.函数f(x)=x 2 + x 零点个数为 . 19.在△ABC 中,若AB=1,BC=2,B=60°, 则AC= .20.函数f(x)=x + (x >0) 最小值为 .1x三、解答题(本大题有5小题,共40分,解答应写出文字说明,证明过程或演算步骤) 21.(本小题满分6分)已知角α 顶点与坐标原点O 重合,始边与x 轴 非负半轴重合,在α 终边上任取点P(x ,y),它与原点 距离>0,定义:sin α = ,cos α =, tan α = (x ≠0).如r =x 2+y 2y r x r yx图,P(,)为角a 终边上g 点.22(1)求sin α,cos α 值;(2)求sin α = 值. a +π422.(本小题满分8分)如图,四棱锥P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且AD=3,PD=CD=2.(1)求四棱锥P-ABCD 体积;(2)若E,F分别是棱PC,AB 中点,则EF与平面PAD 位置关系是 ,在下面三个选项中选取一个正确序号填写在横线上,并说明理由.①EF平面PAD②EF∥平面PAD③EF与平面PAD相交.23.如图,某报告厅座位是这样排列:第一排有9个座位,从第二排起每一排都比前一排多2个座位,共有10排座位.(1)求第六排座位数;(2)某会议根据疫情防控需要,要求:同排两个人至少要间隔一个座位就坐,且前后排要错位就坐.那么该报告厅里最多可安排多少人同时参加会议?(提示:每一排从左到右都按第一、三、五、……座位就坐,其余座位不能就坐,就可保证安排参会人数最多)24.(本小题满分8分)已知圆C 方程为(x-2)2+(y-1)2=5.(1)写出圆心C 坐标与半径长;(2)若直线l过点P(0,1),试判断与圆C 位置关系,并说明理由.25.(本小题满分10分)某车间为了规定工时定额,需要确定加工零件所花费时间,为此进行了5次试验,得到零件数x i(单位:件)与加工时间y i(单位:小时) 部分数据,整理如下表根据表中数据:(1)求x3和y4值;(2)画出散点图;(3)求回归方程;并预测,加工100件零件所需要 时间是多少? y =bx +a附:①符号“∑”表示“求和”②对于一组数据(x 1,Y 1),(x 2,y 2),……,(x n ,y n ),其回归方程 斜率和截距y =bx +a 最小二乘估计分别为b =n∑i =1xi-nx·yn∑i =1x2i-nx 2,a =y -bx 。

贵州省普通高中会考数学试题及答案

贵州省普通高中会考数学试题及答案

普通高中会考数学试题1、sin150的值为 ( )(A ) 2-(B ) 2 (C ) 12- (D ) 122、设集合A={1,2,3,5,7},B={3,4,5},则A B =( )(A ) {1,2,3,4,5,7} (B ) {3,4,5} (C ){5} (D ) {1,2}3、不等式|x|<1的解集是 ( ) (A ) {x|x>1} (B ) {x|x<-1} (C ) {x|-1<x<1} (D ) {x|x<-1或x>1}4、双曲线2222143x y -=的离心率为 ( )(A ) 2 (B )54 (C ) 53 (D ) 345、已知向量a=(2,3),b=(3,-2)则a ·b= ( ) (A ) 2 (B ) -2 (C ) 1 (D ) 06、函数y=sin2x 的最小正周期是 ( ) (A ) π (B ) 2π (C ) 3π (D ) 4π7、若a<b<0,则下列不等式成立的是 ( ) (A ) 22a b < (B ) 22a b ≤ (C ) a-b>0 (D ) |a|>|b|8、已知点A (2,3),B (3,5),则直线AB 的斜率为 ( ) (A ) 2 ( B ) -2 (C ) 1 ( D ) -19、抛物线24y x =的准线方程为 ( ) (A ) x=4 ( B ) x=1 (C ) x=-1 (D ) x=210、体积为43π的球的半径为 ( ) (A ) 1 ( B ) 2 ( C ) 3 ( D ) 411、从1,2,3,4,5中任取3个数字组成没有重复数字的三位数,共有个数是 ( ) (A ) 10 ( B ) 20 ( C ) 30 (D ) 6012、圆221x y +=的圆心到直线x-y+2=0的距离为 ( ) (A )1 (B )(C )( D ) 2 二、填空题:本大题共4个小题,每小题3分,共12分,把答案填在题中的横线上。

2020年吉林普通高中会考数学真题及答案(完整版)

2020年吉林普通高中会考数学真题及答案(完整版)

2020年吉林普通高中会考数学真题及答案姓名:________ 班级:________ 成绩:________一、选择题(本大题共18小題,每小题3分,共54分.) (共18题;共54分)1. ( 3分)已知集合,,且,则()A .B .C .D .2. ( 3分)已知实数,,则大小关系为()A .B .C .D .3. ( 3分)圆( x+2)2+( y+3)2=2 圆心和半径分别是()A . (﹣2,3),1B . ( 2,﹣3),3C . (﹣2,﹣3),D . ( 2,﹣3),4. ( 3分)不等式x2+2x<对任意a,b∈( 0,+∞)恒成立,则实数x 取值范围是()A . (﹣2,0)B . (﹣∞,﹣2)∪( 0,+∞)C . (﹣4,2)D . (﹣∞,﹣4)∪( 2,+∞)5. ( 3分)椭圆+=1 焦点坐标是()A . ( 0,±)B . ( ±, 0)C . ( 0,±)D . ( ±, 0)6. (3分)已知=(2,﹣1,3),=(﹣1,4,﹣2),=(7,5,λ),若、、三向量共面,则实数λ等于()A .B .C .D .7. ( 3分)已知sin(+α)=,则cos2α等于()A .B .C . -D . -8. ( 3分)已知变量、满足,则取值范围是()A .B .C .D .9. ( 3分)如图,平面平面,过平面,外一点引直线分别交平面,平面于、两点,,,引直线分别交平面,平面于、两点,已知,则长等于()A . 9B . 10C . 8D . 710. ( 3分)关于函数f(x)=tan|x|+|tanx|有下述四个结论:①f(x)是偶函数; ②f(x)在区间上单调递减;③f(x)是周期函数; ④f(x)图象关于对称其中所有正确结论编号是()A . ①③B . ②③C . ①②D . ③④11. ( 3分)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1 中点,则下列判断错误是()A . MN与CC1垂直B . MN与AC垂直C . MN与BD平行D . MN与A1B1平行12. ( 3分)已知某几何体三视图,如图所示,则该几何体体积为()A .B .C .D .13. ( 3分)王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”()A . 充要条件B . 既不充分也不必要条件C . 充分不必要条件D . 必要不充分条件14. ( 3分)数列通项为,若要使此数列前项和最大,则值为()A . 12B . 12或13C . 13D . 1415. (3分)已知四棱锥底面是正方形,侧棱长均相等,E是线段上点(不含端点),设直线与所成角为,直线与平面所成角为,二面角平面角为,则()A .B .C .D .16. ( 3分)已知ABP 顶点A,B分别为双曲线左右焦点,顶点P在双曲线C上,则值等于()A .B .C .D .17. (3分)已知函数,数列满足,,若要使数列成等差数列,则取值集合为()A .B .C .D .18. ( 3分)一个圆锥和一个半球有公共底面,如果圆锥体积与半球体积恰好相等,则圆锥轴截面顶角余弦值是()A .B .C .D .二、填空题(本大题共4小题,每空3分,共15分.) (共4题;共15分)19. ( 6分)设等比数列{an} 前n项和为Sn ,若S10:S5=1:2,则S15:S5=________.20. ( 3分)若向量满足: ,则| |=________.21. ( 3分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB 取值范围是________22. ( 3分)已知函数,若对任意,不等式恒成立,则实数a 取值范围是________.三、解答题(本大题共3小题,共31分.) (共3题;共31分)23. (10分)已知函数,在一个周期内图象如图所示,A为图象最高点,B,C为图象与x轴交点,且△ABC为正三角形.(Ⅰ)求ω值及函数f( x)值域;(Ⅱ)若x∈[0,1],求函数f( x)值域;(Ⅲ)若,且,求f( x0+1)值.24. ( 10分)已知椭圆 + =1( a>b>0)离心率为,且过点(,).( 1)求椭圆方程;( 2)设不过原点O 直线l:y=kx+m( k≠0),与该椭圆交于P、Q两点,直线OP、OQ 斜率依次为k1、k2 ,满足4k=k1+k2 ,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你结论;若不是,请说明理由.25. ( 11分)已知函数 .(Ⅰ)求函数单调递减区间;(Ⅱ)求函数在区间上最大值及最小值.参考答案一、选择题(本大题共18小題,每小题3分,共54分.) (共18题;共54分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、二、填空题(本大题共4小题,每空3分,共15分.) (共4题;共15分)19-1、20-1、21-1、22-1、三、解答题(本大题共3小题,共31分.) (共3题;共31分) 23-124-1、24-2、25-1、全卷完 1、相信自己吧!坚持就是胜利!祝考试顺利,榜上有名! 2、愿全国所有的考生都能以平常的心态参加考试,发挥自己的水平,考上理想的学校。

2020年西藏普通高中会考数学真题及答案

2020年西藏普通高中会考数学真题及答案

2020年西藏普通高中会考数学真题及答案姓名:________ 班级:________ 成绩:________一、选择题:本大题共10小题,每小题4分,共40分。

(共10题;共40分)1. (4分)下列图形中,不是三棱柱展开图的是()A .B .C .D .2. (4分)设集合M= 则集合 =()A .B .C .D .3. (4分)如图的程序框图输出结果i=()A . 6B . 7C . 8D . 94. (4分)已知函数的最小正周期为,将的图像向左平移个单位长度,所得图像关于轴对称,则的一个值是()A .B .C .D .5. (4分)下列函数中,在定义域上既是奇函数又是减函数的为()A .B .C .D .6. (4分)如图,六边形是一个正六边形,若在正六边形内任取一点,则恰好取在图中阴影部分的概率是()A .B .C .D .7. (4分)如图,在圆O中,若弦AB=3,弦AC=5,则 · 的值是()A . -8B . -1C . 1D . 88. (4分)已知圆O:x2+y2=r2 ,点是圆O内的一点,过点P的圆O的最短弦在直线l1上,直线l2的方程为bx-ay=r2 ,那么()A . 且与圆O相交B . 且与圆O相切C . 且与圆O相离D . 且与圆O相离9. (4分)在中,内角所对的边分别是,若,,,则A . 2B . 3C . 4D . 610. (4分)成都某出租车公司用450万元资金推出速腾和捷达两款出租车,总量不超过50辆,其中每辆速腾进价为13万元,每辆捷达进价为8万元,一年的利润每辆速腾出租车为2万元,捷达出租车为1.5万元,为使该公司年利润最大,则()A . 购买8辆速腾出租车,42辆捷达出租车B . 购买9辆速腾出租车,41辆捷达出租车C . 购买10辆速腾出租车,40辆捷达出租车D . 购买11辆速腾出租车,39辆捷达出租车二、填空题:本大题共5小题,每小题4分,共20分。

安徽普通高中会考数学真题及答案

安徽普通高中会考数学真题及答案

2024年安徽普通高中会考数学真题及答案2024年安徽普通高中会考数学真题及答案一、真题部分1、在等差数列${ a_{n}}$中,已知$a_{3} + a_{7} = 22$,那么$a_{5} =$() A.$10$ B.$9$ C.$8$ D.$7$2、已知复数$z = \frac{1 + i}{1 - i}$,则$|z| =$()A.$1$B.$\sqrt{2}$C.$2$D.$2\sqrt{2}$3、已知向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,则$xy$的值为()A.$2$B.$3$C.$4$D.$5$二、答案部分1、正确答案是:A. $10$ 在等差数列${ a_{n}}$中,因为$a_{3} + a_{7} = 22$,所以$a_{5} = \frac{a_{3} + a_{7}}{2} = 10$。

因此,答案为A。

2、正确答案是:B. $\sqrt{2}$ 复数$z = \frac{1 + i}{1 - i} = \frac{(1 + i)^{2}}{(1 - i)(1 + i)} = i$,因此$|z| = 1$. 所以正确答案为B。

3、正确答案是:C.$4$ 向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,所以$\overset{\longrightarrow}{a} \cdot\overset{\longrightarrow}{b} = x + 2y = 0$,解得$xy = 4$. 因此,正确答案为C。

高中数学会考试卷

高中数学会考试卷

高中数学会考试卷第一卷(选择题共60分)一、选择题:本大题共14小题:第(1)—(10)题每小题4分,第(11)-(14)题每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={0,1,2,3,4},B={0,2,4,8},那么A∩B子集的个数是:()A、6个B、7个C、8个D、9个(2)式子4·5的值为:()A、4/5????B、5/4??? C、20?? D、1/20(3)已知sinθ=3/5,sin2θ<0,则tg(θ/2)的值是:()A、-1/2B、1/2C、1/3D、3(4)若log a(a2+1)<log a2a<0,则a的取值范围是:()A、(0,1)B、(1/2,1)C、(0,1/2)D、(1,+∞)(5)函数f(x)=π/2+arcsin2x的反函数是()A、f-1(x)=1/2sinx,x∈[0,π]?B、f-1(x)=-1/2sinx,x∈[0,π]??? C、f-1(x)=-1/2cosx,x∈[0,π] D、f-1(x)=1/2cosx,x∈[0,π](6)复数z=(+i)4(-7-7i)的辐角主值是:()A、π/12B、11π/12C、19π/12D、23π/12(7)正数等比数列a1,a2,a8的公比q≠1,则有:()A、a1+a8>a4+a5B、a1+a8<a4+a5C、a1+a8=a4+a5D、a1+a8与a4+a5大小不确定(8)已知a、b∈R,条件P:a2+b2≥2ab、条件Q:,则条件P是条件Q的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件(9)椭圆的左焦点F1,点P在椭圆上,如果线段PF1的中点M在Y轴上,那么P点到右焦点F2的距离为:()A、34/5B、16/5C、34/25D、16/25(10)已知直线l1与平面α成π/6角,直线l2与l1成π/3角,则l2与平面α所成角的范围是:()A、[0,π/3]B、[π/3,π/2] C[π/6,π/2]、D、[0,π/2](11)已知,b为常数,则a的取值范围是:()A、|a|>1B、a∈R且a≠1C、-1<a≤1D、a=0或a=1(12)如图,液体从一球形漏斗漏入一圆柱形烧杯中,开始时漏斗盛满液体,经过3分钟漏完。

高中会考试题数学及答案

高中会考试题数学及答案

高中会考试题数学及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B2. 已知集合A={1, 2, 3},集合B={2, 3, 4},则A∩B等于:A. {1, 2, 3}B. {2, 3}C. {2, 4}D. {1, 4}答案:B3. 若直线方程为y = 2x + 3,则该直线的斜率是:A. 1/2B. 2C. 3D. -2答案:B4. 计算下列极限:\[\lim_{x \to 0} \frac{\sin x}{x}\]A. 0B. 1C. -1D. ∞答案:B5. 已知函数f(x) = 2x - 1,求f(3)的值:A. 4B. 5C. 6D. 7答案:B6. 计算下列定积分:\[\int_{0}^{1} x^2 dx\]A. 1/3B. 1/2C. 2/3D. 1答案:A7. 已知向量a = (3, -2),向量b = (-1, 4),则向量a与向量b的点积为:A. -5B. -2C. -10D. 10答案:B8. 计算下列二项式展开式的第三项:\[(1 + x)^5\]A. 5x^3B. 10x^2C. 10x^3D. 5x^2答案:C9. 已知矩阵A和B,且AB = BA,下列哪个矩阵是A和B的乘积?A. ABB. BAC. A + BD. A - B答案:A10. 计算下列方程的解:\[2x^2 - 5x + 2 = 0\]A. x = 1/2 或 x = 2B. x = 1 或 x = 2C. x = 1/2 或 x = 1D. x = 2 或 x = 4答案:A二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 - 4x + 3,求该函数的顶点坐标。

答案:(2, -1)12. 计算下列三角函数值:\[\sin(30^\circ)\]答案:1/213. 已知等差数列的首项a1 = 3,公差d = 2,求第5项的值。

高二数学会考试卷和答案

高二数学会考试卷和答案

高二数学会考试卷和答案### 一、选择题(每题3分,共30分)### 1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^2 + 1 \)D. \( f(x) = \frac{1}{x} \)**答案:B**### 2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}**答案:B**### 3. 直线 \( y = 2x + 3 \) 与x轴的交点坐标是?A. (0, 3)B. (-3/2, 0)C. (3/2, 0)D. (0, -3)**答案:C**### 4. 函数 \( f(x) = \sin(x) \) 在区间[0, π]上的值域是?A. [-1, 1]B. [0, 1]C. [-1, 0]D. [0, π]**答案:B**### 5. 已知等比数列的首项为2,公比为3,其第五项的值是?A. 486B. 81C. 243D. 729**答案:D**### 6. 圆 \( x^2 + y^2 = 9 \) 与直线 \( y = x \) 的交点个数是?A. 0B. 1C. 2D. 3**答案:C**### 7. 函数 \( f(x) = x^2 - 4x + 4 \) 的最小值是?A. 0B. 1C. 4D. -4**答案:A**### 8. 已知 \( \cos(\theta) = \frac{3}{5} \),且 \( \theta \) 在第一象限,求 \( \sin(\theta) \) 的值?A. \(\frac{4}{5}\)B. \(\frac{3}{5}\)C. \(-\frac{4}{5}\)D. \(-\frac{3}{5}\)**答案:A**### 9. 已知 \( a \) 和 \( b \) 是两个不同的正数,若 \( \log_a b = \frac{1}{2} \),则 \( a \) 和 \( b \) 的关系是?A. \( a = \sqrt{b} \)B. \( a = b^2 \)C. \( b = a^2 \)D. \( b = \sqrt{a} \)**答案:C**### 10. 已知 \( \tan(\alpha) = 2 \),求 \( \sin(\alpha) \) 的值?A. \(\frac{2\sqrt{5}}{5}\)B. \(\frac{\sqrt{5}}{5}\)C. \(\frac{2}{\sqrt{5}}\)D. \(\frac{1}{\sqrt{5}}\)**答案:A**## 二、填空题(每题4分,共20分)### 11. 已知 \( \sin(\alpha) = \frac{1}{2} \),且 \( \alpha \) 在第二象限,求 \( \cos(\alpha) \) 的值。

2025届北京市春季普通高中会考高考临考冲刺数学试卷含解析

2025届北京市春季普通高中会考高考临考冲刺数学试卷含解析

2025届北京市春季普通高中会考高考临考冲刺数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知()32z i i =-,则z z ⋅=( ) A .5B .5C .13D .132.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )A .12B .13C .14D .153.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .164814.如图,在平面四边形ABCD 中,满足,AB BC CD AD ==,且10,8AB AD BD +==,沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD -体积的最大值为( )A .12B .122C .1623D .1635.下列图形中,不是三棱柱展开图的是( )A .B .C .D .6.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( ) A .方差B .中位数C .众数D .平均数7.已知函数()()3sin f x x ωϕ=+,()0,0πωϕ><<,若03f π⎛⎫-= ⎪⎝⎭,对任意x ∈R 恒有()3f x f π⎛⎫≤ ⎪⎝⎭,在区间ππ,155⎛⎫⎪⎝⎭上有且只有一个1x 使()13f x =,则ω的最大值为( ) A .1234 B .1114C .1054D .11748.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤9.已知函数()sin 3cos f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( ) A .3π-B .0C .3π D .23π 10.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以3再加1;如果它是偶数,则将它除以2;如此循环,最终都能够得到1.下图为研究“角谷猜想”的一个程序框图.若输入n 的值为10,则输出i 的值为( )A .5B .6C .7D .811.过双曲线()222210,0x y a b a b-=>>的左焦点作倾斜角为30的直线l ,若l 与y 轴的交点坐标为()0,b ,则该双曲线的标准方程可能为( )A .2212x y -=B .2213x y -=C .2214x y -=D .22132x y -=12.设α,β是方程210x x --=的两个不等实数根,记n nn a αβ=+(n *∈N ).下列两个命题( )①数列{}n a 的任意一项都是正整数; ②数列{}n a 存在某一项是5的倍数. A .①正确,②错误 B .①错误,②正确 C .①②都正确D .①②都错误二、填空题:本题共4小题,每小题5分,共20分。

高中数学会考试题及答案

高中数学会考试题及答案

高中数学会考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 圆答案:B2. 函数f(x) = 3x^2 - 5x + 2的顶点坐标是?A. (1, -2)B. (-1, 2)C. (2, -1)D. (-2, 1)答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 4}答案:B4. 已知方程x^2 + 6x + 9 = 0的根是?A. x = 0B. x = 3C. x = -3D. x = ±3答案:D二、填空题(每题5分,共20分)5. 函数y = 2x + 3的斜率是______。

答案:26. 一个等差数列的前三项是2, 5, 8,那么它的公差是______。

答案:37. 圆的方程为(x - 2)^2 + (y - 3)^2 = 9,那么它的半径是______。

答案:38. 已知向量a = (3, -4),向量b = (-2, 5),则向量a与向量b的点积是______。

答案:-29三、解答题(每题10分,共20分)9. 解方程:2x^2 - 5x + 2 = 0。

答案:x = 1/2 或 x = 210. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,求证:三角形ABC是直角三角形。

答案:根据勾股定理,如果三角形的三边长满足a^2 + b^2 = c^2,则该三角形为直角三角形。

已知a^2 + b^2 = c^2,所以三角形ABC是直角三角形。

四、证明题(每题10分,共20分)11. 证明:如果一个角的正弦值等于1/2,那么这个角是30°或150°。

答案:设这个角为α,根据正弦函数的性质,当α = 30°时,sin(30°) = 1/2;当α = 150°时,sin(150°) = 1/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档