线性代数总复习及典型例题
(完整版)线性代数复习——计算或应用题.doc
一21. 设 α1, α2, α3 线性无关,证明β112,β2α2α3 , β3 α3 α1也线性无关。
1 1 1 022.计算行列式11 0 1 。
1 0 1 10 1 1 123. 1 1 0 1 2利用逆矩阵解矩阵方程0 1 1 X -1 1 。
1 0 1 1 -124.1 a 1 2已知A 0 1 a 2 ,求 a 的值,使得 r ( A)2。
1 0 1 225. 求向量组 α11111 , α2 1 , α3 2 , α4 0 的秩和一个极大线性无关组,并111把其余向量用此极大线性无关组线性表示。
26. 求矩阵 A =21的特征值与特征向量。
1 2x 1 4 x 2 3x 3 027.讨论当 取何值时, 齐次线性方程组2 x 1 3x 2 x3 0 有非零解, 并在有非零解时求其x 1x 2 2 x 3通解。
参考答案 : 21. 如果k1 1k 22k 33O ,k 1 ( 12)k 2(23)k 3(31) O ,于是(k 1 k 3 ) 1 (k 1k 2 ) 2 (k 2 k 3 ) 3 O ,由 1 , 2 ,k 1k 3 0, 3线性无关知k 1 k 2 0,k 2k 30,此方程组只有零解 k 1 0, k 2 0, k 30 ,因此 1, 2,3 线性无关。
1 1 1 01 1 1 01 10 1 1 1 0 11 10 10 0 1 122. = =101=10 1=-01 131011 0 1 0 10 11 10 1111 110 3 00 31 1 0 11 -1 1123.0 1 1 1 1 -1 故1 0 12 -11 11 1 0 12 1-1 1 1 23 01X0 1 1 -1 1 1 11-1-11 1 -1 41 0 11 -12-1 111 -12 -1 -21 a 1 20 a0 0 1 0 1 224.A01 a2 0 1 a 2 0 1 a 2 1 01 2 1 01 20 a 0 0当 a=0 时, r (A) 2。
线性代数复习第1-6章典型例题
按最后一列展开再提取每列的公因子
-8-
Dn = ( −1) n+1 (a1 − a n )(a 2 − a n )⋯(a n−1 − a n ) ×
1 a1
2 a1
1 a2
2 a2
⋯
1
1 a n −1
2 a n −1
⋯ a n− 2
2 ⋯ a n− 2
⋮
n a1 − 2
⋮
⋮
⋮
n− 2 a n −1 ( n −1 )
n
x2 ⋯ xn a2 ⋱ an
xk yk ) = a 2 a 3 ⋯ a n (a1 − ∑ k = 2 ak
-6-
n
例9
范德蒙德(Vandermonde)行列式 行列式 范德蒙德
1 a1 Dn =
2 a1
1 a2
2 a2
⋯
1
2 a n −1
1 an
2 an
− an − an
⋯ a n −1 ⋯ ⋮
n n− 2 a 2 − 2 ⋯ a n− 2
Dn = ( a n − a1 )(a n − a 2 )⋯(a n − a n−1 ) Dn −1
Dn − 1 = (a n − 1 − a1 )(a n − 1 − a 2 ) ⋯ (a n − 1 − a n − 2 ) Dn − 2
⋯⋯
D3 = (a 3 − a1 )(a 3 − a 2 ) D2 D2 = (a 2 − a1 ) D1 = a 2 − a1
-17-
例8
设 n 阶方阵 A 满足 A2 = E ,
证明 r ( E + A) + r ( E − A) = n
证
A 2 = E ⇒ ( A + E )( A − E ) = O
《线性代数》复习要点及练习
第一章 行列式复习要点:1. 会计算逆序数,余子式,代数余子式2. 熟练掌握行列式的性质,并能利用性质计算行列式3. 掌握克莱姆法则练习题:1. 排列1 6 5 3 4 2的逆序数是( ).A. 8 B .9 C .7 D . 62122.431235-的代数余子式12A 是( ).A 2143-- B2143- C 4125--D4125-3. 排列32514的逆序数是( ).A. 3B. 4C. 5D. 64.关于行列式,下列命题错误的是( ).A. 行列式第一行乘以2,同时第二列除以2,行列式的值不变 B .互换行列式的第一行和第三行,行列式的值不变 C .互换行列式的任意两列,行列式仅仅改变符号 D . 行列式可以按任意一行展开 5. 关于行列式,下列命题正确的是( ).A. 任何一个行列式都与它的转置行列式相等B .互换行列式的任意两行所得到的行列式一定与原行列式相等C .如果行列式有一行的所有元素都是1,则这个行列式等于零D . 以上命题都不对6. 关于行列式,下列正确的是( ).A. 如果行列式有一行的所有元素都是1,则这个行列式等于零.B. 互换行列式的任意两行所得到的行列式一定与原行列式相等.C. 行列式中有两行对应成比例,则此行列式为零.D. 行列式与它的转置行列式互为相反数.7. 下列命题错误的是( ).A. 如果线性方程组的系数行列式不等于零,则该方程组有唯一解 B .如果线性方程组的系数行列式不等于零,则该方程组无解 C .如果齐次线性方程组的系数行列式等于零,则该方程组有非零解 D .如果齐次线性方程组的系数行列式不等于零,则该方程组只有零解8212431235-的余子式32M =————,代数余子式32A =—————— 9. 已知k341k 000k 1-=,则k =__________.10. 若52k 74356=,则k =__________.11. 计算行列式|12345006|=_________ 12. 计算行列式|1111123413610141020| 13.计算行列式53-120172520-23100-4-14002350D =14. 计算行列式1234248737124088D =15.计算行列式x yyxx x y y yx x y+++第二章 矩阵复习要点:1. 掌握矩阵的线性运算,矩阵乘法运算律,转置矩阵的运算律,2. 掌握矩阵的初等变换3. 掌握方阵行列式的性质,转置矩阵的性质,逆矩阵的性质4. 会求逆矩阵.了解待定系数法和伴随矩阵法,掌握用初等变换求解逆矩阵相关问题.能够证明矩阵的可逆性.5. 会用初等行变换求矩阵的秩6. 会求解矩阵方程练习题:1. 设A ,B 均为n 阶可逆阵,则下列公式成立的是( ). A T T T B A AB =)( B T T T B A B A +=+)( C 111)(---=B A AB D 111)(---+=+B A B A2. A,B 均为n 阶方阵,若要22(A B)(A B)A B +-=-不成立,需满足( ).A. A=E B .B=O C .A=B D . AB ≠BA 3. 若方阵2A A,=A 不是单位方阵,则( ).A. A 0= B . A 0≠ C .A O = D .A O ≠4.若矩阵111A 121231⎛⎫ ⎪= ⎪ ⎪λ+⎝⎭的秩为2,则λ=( ). A. 0 B . 2 C .1 D . -15.矩阵⎪⎪⎭⎫⎝⎛=32015431A 的秩是( ) 6. 110201211344⎛⎫⎪-- ⎪ ⎪-⎝⎭ 的秩是( )7. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=321212113A ,⎪⎪⎪⎭⎫ ⎝⎛---=111012111B 求AB 和BA8. 设矩阵,⎪⎪⎭⎫ ⎝⎛=1021A 求32A A ,. 9. 设矩阵521320A ,B 341201--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,求T T T(1)AB ;(2)B A;(3)A A.10.⎪⎪⎪⎭⎫⎝⎛--=210111121A ,求逆矩阵11. 223110121⎛⎫ ⎪- ⎪ ⎪-⎝⎭.,求逆矩阵 12. 求矩阵X , 使B AX =, 其中.341352,343122321⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A13. 求解矩阵方程,X A AX += 其中.010312022⎪⎪⎪⎭⎫⎝⎛=A.B AX X ,B ,A . 132231 11312221414=⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛--=使求设15. 已知n 阶方阵A 满足矩阵方程2A 3A 2E O --=,其中A 给定,E 为n 阶单位矩阵,证明A 可逆,并求1A -. 16. 设A 、B 为n 阶矩阵,2A B AB E --=,2A A =,其中E 为n 阶单位矩阵.证明:A B -为可逆矩阵,并求()1A B --.17. 设方阵A 满足22A A E O --=,证明A 及2A E +都可逆.第三章 线性方程组复习要点:1. 熟练掌握方程组解无解/有解/有唯一解/有无穷多解的充要条件2. 会求向量组的秩;能够验证向量组的线性相关性;会求向量组的极大线性无关组,并可以将其他向量用极大无关组线性表示.3. 熟练掌握基础解系的求解3. 会求解齐次线性方程组的通解,会求非齐次线性方程组的通解和特解练习题:1. 若线性方程组Ax b =的增广矩阵为B 23124010012⎛⎫ ⎪→λλ ⎪ ⎪λ-λ-⎝⎭,当常数λ=( )时,此线性方程组有唯一解.A. -1 B .0 C .1 D . 22. 已知n 元线性方程组b Ax =,其增广矩阵为B ,当( )时,线性方程组有解.A. ()n B r =B. ()n B r ≠C. ()()B r A r =D. ()()B r A r ≠3. 若线性方程组Ax b =的增广矩阵为B 23124010012⎛⎫ ⎪→λλ ⎪ ⎪λ-λ-⎝⎭,当常数λ=( )时,此线性方程组有唯一解.A. -1 B .0 C .1 D . 24. 设A 为m×n 矩阵,齐次线性方程组Ax =0仅有零解的充分必要条件是 系数矩阵的秩r (A )( )A. 小于mB. 小于nC. 等于mD. 等于n5. 已知向量组1,,m αα线性相关,则( ).A 、该向量组的任何部分组必线性相关.B 、该向量组的任何部分组必线性无关.C 、该向量组的秩小于m .D 、该向量组的最大线性无关组是唯一的.6. 如果齐次线性方程组有非零解,则它的系数行列式D _____0. ( = 或 ≠)7. 已知线性方程组Ax b =有解,若系数矩阵A 的秩r(A)=4,则增广矩阵B 的r(B)=__________.8. 若线性方程组Ax b =的增广矩阵为B 312400120012⎛⎫⎪→ ⎪ ⎪λ⎝⎭,则当常数λ=__________时,此线性方程组有无穷多解.9. 若线性方程组Ax b =的增广矩阵为B 300200a 11⎛⎫→ ⎪+⎝⎭,则当常数a =__________时,此线性方程组无解.10.λ取何值时,非齐次线性方程组 1231232123+1++x x x x x x x x x λλλλλ⎧+=⎪+=⎨⎪+=⎩(1)有唯一解(2)无解(3)有无穷多解? 取何值时,线性方程组当 11..λ ()()()()⎪⎩⎪⎨⎧=++++=+-+=+++3313123321321321x λλx x λλx x λλx λx x x λ 有唯一解、无解、无穷多解?当方程组有无穷多解时求出它的解.12.求下列方程组的通解.236222323754325432154321⎪⎩⎪⎨⎧=+++-=-+++=++++x x x x x x x x x x x x x x13. 判断下列向量组的线性相关性:(1)1234=-1,3,2,5=3-1,0-4=2,2,2,2=1,5,4,6αααα(),(,,),(),()(2)1234=1,1,3,1=10,00=2,2,7,-1=3,-1,2,4αααα(),(,,),(),() 14. 已知向量组()()()()T4T3T2T13 2 10 0 10 1 11 1 1α-====,,α,,,α,,,α,,,,求向量组的一个极大无关组,并将其余向量用此极大无关组线性表示.15. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛---140113*********12211的列向量组()54321α,α,α,α,α的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示.16. 试证若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 17. 已知向量321ααα,,线性无关,证明向量11232βααα=+-,2123312βαααβαα=--=+,也是线性无关的。
2024年考研数学一专题线性代数历年题目归纳
2024年考研数学一专题线性代数历年题目归纳线性代数是考研数学一科目中的重要内容之一,涉及到矩阵、向量、线性方程组等多个概念和方法。
了解历年考研数学一专题线性代数的题目,可以帮助考生更好地掌握该专题的重点和难点,提高解题能力。
本文将对2024年考研数学一专题线性代数历年题目进行归纳,以供考生参考。
1. 矩阵运算题矩阵的加法、减法、乘法是线性代数的基本内容,考研中常涉及到矩阵的运算性质和运算规律。
如下是一道历年考研数学一专题线性代数中的矩阵运算题目:【例题】已知矩阵A=(a_{ij})_{m×n},矩阵B=(b_{ij})_{n×p},矩阵C=(c_{ij})_{p×k},试证明:(A×B)×C=A×(B×C)。
解析:首先我们需要明确矩阵的乘法运算满足结合律。
对于(A×B)×C,先计算矩阵A和矩阵B的乘积,得到(m×p)的矩阵D。
然后将矩阵D与矩阵C相乘,得到(m×k)的矩阵E,即(A×B)×C=E。
同样地,对于A×(B×C),先计算矩阵B和矩阵C的乘积,得到(n×k)的矩阵F。
然后将矩阵A与矩阵F相乘,得到(m×k)的矩阵G,即A×(B×C)=G。
因此,(A×B)×C=E=A×(B×C)=G,即(A×B)×C=A×(B×C)。
2. 矩阵的秩题矩阵的秩是指矩阵中非零行的最大线性无关组中所含向量的个数。
在考研数学一专题线性代数中,关于矩阵的秩有很多题目,如下所示:【例题】已知矩阵A=(a_{ij})_{m×n},矩阵B=(b_{ij})_{n×p},且秩(A)=r,秩(B)=s。
试证明:1) 秩(AB)≤min{r,s};2) 如果r=s,且r=min{m,n,p},则秩(AB)=r。
线性代数第一章复习及例题
an
bn
,
T Βιβλιοθήκη b1 b2,bn
三角阵:A
a11 0
a12 a22
0 0
B
a11 a21
0 a22
an1 an2
a1n a2n
,
上三角阵;
ann
0
0
,
下三角阵 .
ann
a1
对角阵
:
a2
diag a1
a2
an
1
单位阵:I
1
.
1
2
例3 已知矩阵A=PQ,其中
1 P 2
Q 2
1
2
1
求矩阵A,A2,A100.
【分析】 计算矩阵的高次幂是一种常见题型,除用数 学归纳法外,还应根据矩阵本身的特点进行讨论. 本题的关键是注意PQ为矩阵,而QP为一数,利用 乘法结合律A2=PQ·PQ=P(QP)Q来简化计算.
解:
A
PQ
1 2
aij
, 且 AT A , 则
nn
A 2 A A A A T
B
bij
,
nn
bii
ai12
ai
2 2
ain2 i 1, 2,
,n ,
A2 O ,
bii
ai12
ai
2 2
ain2 0 i 1, 2,
,n ,
A是实矩阵, aij 0 i , j 1, 2, , n .
A0.
1 0
1 1
1 1 1 1 1 0
且矩阵X满足 AXA+BXB=AXB+BXA+I,其中I是3
阶单位矩阵,试求矩阵X.
线性代数总复习题(一)
九. 设 A、B 都是 n 阶对称阵,证明 AB 是对称阵的充分必要条件是 AB = BA . 证明:∵ A, B 都是 n 阶对称阵.
∴ AT = A , B T = B .
∴ AB 是对称阵 ⇔ ( AB ) = AB
T
⇔ B T AT = AB ⇔ BA = AB
十. 求下面矩阵的特征值和特征向量:
1. 设 D1 =
a11 a21 an1
a12 a22 an 2
a1n a2 n ann
, D2 =
an1 an −1,1 a11
an 2 an −1,2 a12
ann an −1, n a1n
,则 D1 与 D2 的关系是(
C
) .
(A) D2 = D1 分析: rn 依次与 rn −1 , rn − 2 ,
∴ i = 2 , k = 5 ;或 i = 5 , k = 2 .
. 若 i = 2 , k = 5 ,则列标排列 32145 的逆序数为 3,这一项的符号为“ − ” . 若 i = 5 , k = 2 ,则列标排列 35142 的逆序数为 6,这一项的符号为“ + ”
∴ i =5,k = 2.
(2) R ( A ) = 2 ; (3) R ( A ) = 3 . (1) R ( A ) = 1 ;
−2 3k ⎞ ⎛ 1 −2 3k ⎞ ⎛ 1 ⎟ ⎜ ⎟ ⎜ 3 ( k − 1) 解: A = ⎜ −1 2k −3 ⎟ ∼ ⎜ 0 2 ( k − 1) ⎟. ⎜ k −2 3 ⎟ ⎜ 0 0 −3 ( k + 2 )( k − 1) ⎟ ⎝ ⎠ ⎝ ⎠ ∴ (1)当 k ≠ −2 且 k ≠ 1 时, 2 ( k − 1) ≠ 0 , −3 ( k + 2 )( k − 1) ≠ 0 , R ( A ) = 3 . ⎛ 1 −2 −6 ⎞ ⎜ ⎟ (2)当 k = −2 时, A ∼ ⎜ 0 −6 −9 ⎟ , R ( A ) = 2 . ⎜0 0 0 ⎟ ⎝ ⎠ ⎛ 1 −2 3 ⎞ ⎜ ⎟ (3)当 k = 1 使, A ∼ ⎜ 0 0 0 ⎟ , R ( A ) = 1 . ⎜0 0 0⎟ ⎝ ⎠
线性代数总复习及典型例题共63页文档
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
线性代数总复习及典型例题
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留Байду номын сангаас的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
大一线性代数知识点例题
大一线性代数知识点例题1. 矩阵运算给定矩阵 A = [2 1; 3 4], B = [5 6; 7 8],计算以下运算:a) 2A + 5Bb) ABc) BA2. 矩阵消元给定矩阵 C = [1 2 3; 4 5 6; 7 8 9],通过列消元将其转化为矩阵 RREF。
3. 线性方程组求解给定线性方程组:2x + 3y - z = 14x + 2y + z = -2x - y + 2z = 3求解上述线性方程组的解集。
4. 向量空间以下向量组是否为向量空间?如果是,证明其为向量空间;如果不是,解释原因。
a) V = {(x, y) | x + y = 1},其中 x 和 y 是实数。
b) V = {(x, y) | x^2 + y^2 = 1},其中 x 和 y 是实数。
5. 线性变换给定线性变换 T:R^2 → R^3,使得 T((1, 0)) = (2, 1, 3) 和T((0, 1)) = (-1, 2, 0)。
a) 计算 T((3, 2))。
b) 判断 T 是否为一一映射。
6. 特征值和特征向量给定矩阵 D = [4 1; 2 3],求其特征值和特征向量。
7. 内积和正交性给定向量 A = (3, -1, 2) 和向量 B = (-2, 5, 1)。
a) 计算 A 和 B 的内积。
b) 判断 A 和 B 是否正交。
c) 如果 A 和 B 是正交的,计算它们的夹角。
8. 最小二乘法给定数据点 (1, 2), (2, 3), (3, 4),求使拟合的直线 y = ax + b 与这些数据点的距离最小化的最佳拟合直线。
以上是大一线性代数的一些知识点例题,通过这些例题的练习,可以加深对线性代数的理解,提升解题技巧。
希望能够为你的学习提供一些帮助。
线性代数重要知识点和典型例题答案
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TTTB A B A +=+)( TTkA kA =)( TTTA B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
线性代数重要知识点及典型例题答案
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。
推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。
③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。
推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。
④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。
化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。
线性代数复习习题(含详细解析与答案)
一、1、=-601504321。
2、设A 为4阶矩阵,且==|2|,31||A A ,=|21|T A 。
3、,,5443⨯⨯B A 则AB 是 行 列矩阵。
4、n 维空间的一组基含有 个线性无关的向量。
5、已知一个非齐次线性方程组的增广矩阵经初等变换化为⎥⎥⎥⎥⎦⎤--⎢⎢⎢⎢⎣⎡+--1211000003000102002111λλλλλ,则当λ为 时,方程组有无穷多解,其导出方程组的基础解系含 个向量,当λ为 时,方程组无解。
6、()⎪⎪⎪⎭⎫ ⎝⎛--312131= 。
7、若矩阵A 满足,1-=A A T 则矩阵A 一定是 矩阵。
8、n 阶行列式展开后,一共有 项。
9、已知,)(33⨯=ij a A ,)(*33⨯=ij A A ij A 为ij a 的代数余子式,且,1)(=A r 则=*)(A r 。
10、矩阵A 的特征方程是 。
11、设A 为3阶矩阵,且==-|2|,2||1A A ,=*||A 。
12、已知行列式,3333231232221131211=a a a a a a a a a 则=---333132312321222113111211333a a a a a a a a a a a a 。
13、,3022,1021⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=B A 则=-B A 3 。
二、1、判别向量组()1,1,4,21--=α,⎪⎭⎫ ⎝⎛---=25,2,1,32α,⎪⎭⎫ ⎝⎛--=1,21,5,63α是否线性相关。
2、xa a a a x aa a a x a a a a x3、ba a a ab a a a a b a n n n ---2121214、用初等变换法求矩阵的逆矩阵=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---145243121,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-5230121015、用克莱姆法则求下面方程组的解:⎪⎪⎩⎪⎪⎨⎧-=+-+--=++=+-=-+-4221234422243213214314321x x x x x x x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧-=-++-=----=+++=+++10225342332532134321432143214321x x x x x x x x x x x x x x x x答案: 一、1.解:令601504321-=A ,则A6012900321-29601100920-29001100020-=02010000129--=01010000158--=1000100158-=58×(-1)=-58 答案:-582. 解:|2A|=24|A|=16×31=31648131)21(||)21(||)21(|21|444=⨯=⨯=⨯=A A A T T 答案:316,4813. 解: 由矩阵的乘法A ×B=[a ij ]m ×n ×[b ij ]n ×t =[c ij ]m ×t 可知 答案:3 , 54. 答案: n5. 解:该非齐次线性方程组的未知数个数为6。
《线性代数的认识》知识点归纳与典型习题
《线性代数的认识》知识点归纳与典型习题.txt线性代数的认识知识点归纳线性代数是一门研究线性方程组、向量空间和线性变换的数学学科。
以下是线性代数的几个重要知识点归纳:1. 线性方程组:线性方程组是由一系列的线性方程组成的。
解线性方程组的方法有高斯消元法、矩阵法和行列式法等。
2. 矩阵与向量:矩阵是由若干行若干列数组成的矩形阵列,通常用括号表示。
向量是具有方向和大小的量,也可以看作是一个特殊的矩阵。
3. 行列式:行列式是矩阵的一个重要概念,可以用来计算矩阵的特征值、特征向量和逆矩阵等。
它由矩阵的元素按一定的规律组成。
4. 向量空间:向量空间是由满足一定性质的向量组成的集合。
向量空间需要满足加法封闭性、标量乘法封闭性以及向量加法和标量乘法的结合律和分配律等。
5. 线性变换:线性变换是指保持向量加法和标量乘法运算的变换。
它可以用矩阵表示,并具有一些重要的性质,如保持向量线性组合和向量数量的比例关系等。
典型题以下是线性代数的一些典型题,供研究和练:1. 计算线性方程组的解:2x + 3y - z = 1x - y + 2z = 43x + 2y - 2z = -32. 计算给定矩阵的逆矩阵。
3. 计算给定矩阵的行列式。
4. 判断给定向量组是否线性相关。
5. 求线性变换的基变换矩阵。
这些典型题涉及了线性代数的各个方面,通过解答这些题,可以加深对线性代数知识点的理解和掌握。
总结:线性代数是一门重要的数学学科,它的知识点主要包括线性方程组、矩阵与向量、行列式、向量空间和线性变换等。
通过练典型题,可以巩固和应用这些知识点,提高线性代数的研究效果。
线性代数-总复习
一、内 容 提 要
❖过度矩阵 设 a1,…, ar 及 b1,…, br 是向量空间 V 的两个基, 则
存在 r 阶矩阵 P, 使 (b1, ,br ) = (a1, ,ar )P
称此关系式为基变换公式. • 称矩阵 P 为从基 a1,…, ar 到基 b1,…, br 的过渡矩阵. • 过渡矩阵是可逆矩阵.
向量组 a1, ,am线性无关的充分必要条件是 R(a1, ,am ) = m
一、内 容 提 要
❖向量组的秩 设 A 为一向量组, A 中线性无关向量组所含向量个
数的最大值 r, 称为向量组 A 的秩, 记为 R(A).
❖向量组的最大无关组 设向量组 A 的秩为 r, 如果 a1, …, ar 为 A 中一个线
一、内 容 提 要
❖行列式的性质
性质1 行列式与它的转置行列式相等. 性质2 行列式中某一行的所有元素的公因子可以提到行列 式记号的外面. 性质3 若行列式某一行的元素都是两数之和, 则该行拆开, 原行列式可以表为相应的两个行列式之和. 性质4 对换两行, 行列式值反号. 性质5 若有两行元素对应成比例, 则行列式值为零. 性质6 把行列式某一行的各元素乘以同一数加到另一行对 应的元素上去, 行列式的值不变. • 设 A, B 为 n 阶矩阵, 则有 | AB | = | A | | B | .
0 1 0
5
7 0
则 a1,a2 ,a3 ,a4 ,a5 的秩为3, 一个最大无关组为 a1,a2 ,a4 ,
且有 a3 = 2a1 4a2 , a5 = 3a1 5a2 7a4
一、内 容 提 要
❖向量组的线性表示 若向量组 B 中的任一向量都可由向量组 A 中的向
量线性表示, 就称向量组 B 可由向量组 A 线性表示. • 向量组 B 可由向量组 A 线性表示的充要条件是
线性代数考试复习提纲、知识点、例题
线性代数考试复习提纲、知识点、例题一、行列式的计算(重点考四阶行列式)1、利用行列式的性质化成三角行列式行列式的性质可概括为五条性质、四条推论,即七种变形手段(转置、交换、倍乘、提取、拆分、合并、倍加);三个为0【两行(列)相同、成比例、一行(列)全为0】2、行列式按行(列)展开定理降阶行列式等于它的任一行(列)的各元素与其对应的代数xx 乘积之和,即1122...i i i i ni ni D a A a A a A =+++ 1,2,...,i n = 例1、计算行列式二、解矩阵方程矩阵方程的标准形式:若系数矩阵可逆,则切记不能写成或求逆矩阵的方法:1、待定系数法2、伴随矩阵法其中叫做的伴随矩阵,它是的每一行的元素的代数xx 排在相同序数的列上的矩阵。
112111222212.....................n n n n nn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭3、初等变换法例2、解矩阵方程例3、解矩阵方程 ,其中三、解齐次或非齐次线性方程组设,元齐次线性方程组有非零解元齐次线性方程组只有零解。
当时,元齐次线性方程组只有零解。
当时,元齐次线性方程组有非零解。
当时,齐次线性方程组一定有非零解。
定义:设齐次线性方程组的解满足:(1) 线性无关,(2)的每一个解都可以由线性表示。
则叫做的基础解系。
定理1、设,齐次线性方程组,若,则该方程组的基础解系一定存在,且每一个基础解系中所含解向量的个数都等于。
齐次线性方程组的通解设,元非齐次线性方程组有解。
唯一解。
无数解。
无解。
非齐次线性方程组的通解,例4、求齐次线性方程组的通解例5、求非齐次线性方程组的通解。
四、含参数的齐次或非齐次线性方程组的解的讨论例6、当为何值时,齐次线性方程组有非零解,并求解。
例7、已知线性方程组,问当为何值时,它有唯一解,无解,无穷多解,并在有无穷多解时求解。
五、向量组的线性相关性线性相关中至少存在一个向量能由其余向量线性表示。
线性代数总复习带例题
(2) 若矩阵A有一个r阶子式不为零,则R(A)≥r (3) 若矩阵A有一个r+1阶子式不为零,则R(A)≤r
• 3规定掌零握矩阵线的性秩方为程零组。的判定方法
• 对n阶方阵 A (aij ) , 若 aij 0,则R(A)=n,称A为满秩矩阵; 若 aij 0,则R(A)<n,称A为降秩矩阵。
把方程组1化成
容易求解的同
会用高斯消元法解线它简性元称方都最为简程零形组的。梯矩阵,称为最简梯矩阵,
解方程组,
即得到能直接
求出解或者能
够直接判2断其 掌握矩阵的秩的概念并求矩阵的秩
无解的同解方
程组
矩阵的初等变换
3 掌握线性方程组的判定方法
ri rj ci c j ,kri kci
L
a0 xn a1xn1 L an
本课程的内容
1
行列式
2
线性方程组
3
矩阵
4
向量空间
5
相似矩阵
6
二次型
线性方程组
本章的知识点 1.满足下列两个条件的矩阵称梯矩阵。 (1)若有零行则零行位于非零行下方;
(2)每个首非零元前面零的个数逐行增
基本思想是通
加。
过消元变形,
2.首非零元为1,且首非零元所在列的其
2 掌握行列式按行(列)展开定理
n阶行列式任一行(列)的各元素与另一行(列)的对 应元素的代数余子式乘积之和等于零,即
ai1 Aj1 ai2 Aj2 L ain Ajn 0, i j;
a1i A1 j a2i A2 j L ani Anj 0,
线性代数总结汇总+经典例题
线性代数总结汇总+经典例题(⼀)⾏列式概念和性质线性代数知识点总结1 ⾏列式1、逆序数:所有的逆序的总数2、⾏列式定义:不同⾏不同列元素乘积代数和3、⾏列式性质:(⽤于化简⾏列式)(1))⾏列互换(转置),⾏列式的值不变(2))两⾏(列)互换,⾏列式变号(3))提公因式:⾏列式的某⼀⾏(列)的所有元素都乘以同⼀数k,等于⽤数k 乘此⾏列式(4))拆列分配:⾏列式中如果某⼀⾏(列)的元素都是两组数之和,那么这个⾏列式就等于两个⾏列式之和。
(5))⼀⾏(列)乘k加到另⼀⾏(列),⾏列式的值不变。
(6))两⾏成⽐例,⾏列式的值为0。
(⼆)重要⾏列式4、上(下)三⾓(主对⾓线)⾏列式的值等于主对⾓线元素的乘积5、副对⾓线⾏列式的值等于副对⾓线元素的乘积乘6、Laplace展开式:(A 是m 阶矩阵,B 是n 阶矩阵),则7、n 阶(n≥2)范德蒙德⾏列式数学归纳法证明★8、对⾓线的元素为a,其余元素为 b 的⾏列式的值:(三)按⾏(列)展开9、按⾏展开定理:(1))任⼀⾏(列)的各元素与其对应的代数余⼦式乘积之和等于⾏列式的值(2))⾏列式中某⼀⾏(列)各个元素与另⼀⾏(列)对应元素的代数余⼦式乘积之和等于0(四)⾏列式公式10、⾏列式七⼤公式:(1)|kA|=k n|A|(2)|AB|=|A| ·|B|(3)|A T|=|A|(4)|A -1|=|A| -1(5)|A*|=|A| n-1(6))若A 的特征值λ1、λ2、,, λn ,则(7))若 A 与B 相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1 )⾮齐次线性⽅程组的系数⾏列式不为0 ,那么⽅程为唯⼀解(2))如果⾮齐次线性⽅程组⽆解或有两个不同解,则它的系数⾏列式必为0 (3))若齐次线性⽅程组的系数⾏列式不为0,则齐次线性⽅程组只有0 解;如果⽅程组有⾮零解,那么必有D=0。
2 矩阵(⼀)矩阵的运算1、矩阵乘法注意事项:(1))矩阵乘法要求前列后⾏⼀致;(2))矩阵乘法不满⾜交换律;(因式分解的公式对矩阵不适⽤,但若B=E,O,A-1,A*,f(A)时,可以⽤交换律)(3))AB=O不能推出A=O 或B=O。
线性代数大二期末考试重点复习、题目,不可不看哦!
(3)若只有当 λ1 , λ2 ,L , λm , 全为 时, ) 全为0时
λ1a1 + L + λm am + λ1b1 + L + λmbm = o 才成立
⇔ λ1 (a1 + b1 ) + λ2 (a2 + b2 ) + L + λm (am + bm = , a2 = , b1 = , b2 = 满足 a 0 0 1 0
练习: 练习:设
2 1 8 2 −3 0 A= 3 −2 5 1 0 3 7 7 −5 8 0 2 0 3
(1)判定 的列向量组的线性相关性 )判定A的列向量组的线性相关性
(2)判定 的行向量组的线性相关性 )判定A的行向量组的线性相关性 (3) 求A的秩 的秩R(A) 的秩 3 9 1 − 0 0 (4) 求A的一个最高阶子式 2 的一个最高阶子式 2 1 1 0 (5)求A的列向量组的一个最大无关组, 的列向量组的一个最大无关组, 求 的列向量组的一个最大无关组 0 1 − 2 2 并将其它向量用这个最大无关组表示 1 0 0 0 0 0 0 0 0 0 解 (1)A的列向量组的线性相关 维数<个数 ) 的列向量组的线性相关 维数< 的行向量组的线性相关性? (2)A的行向量组的线性相关性? 相关 ) 的行向量组的线性相关性 (3)R(A)=3 =
复习: 复习:最大无关组与秩
1. 最大无关组 无关性 最大性 不唯一,但所含 不唯一, 向量个数唯一 2. 秩
任r+1个线性相关 个线性相关 再添一个就线性相关 A 能由 0 线性表示 能由A
A
B ⇔ A0
简单性质
线性代数总复习
性质1
例5---相似矩阵 设3阶矩阵A、B相似,A-1的特征值分别为1,2,3, 求 (1)A的特征值; (2) 解 (1)因为A-1的特征值分别为1,2,3,所以A的特征值
分别为 (2) 因为A、B相似,所以A,B的特征值相同,所以B的 特征值分别为 所以6B-E的特征值为
3---特征向量的性质 1)方阵A的不同特征值所对应的特征向量必线性无关。
1、定义 由m×n个数
排成的m行n列数表
(i=1,2, …,m ; j=1,2, …,n)
称为一个m行n列矩阵, 简称为m×n矩阵,
矩阵的秩(续) 3、关于秩的重要结论:
例题2 ---(矩阵3)
解
例题3---(逆阵2)
解
2)
例题3---(逆阵3) 3、设方阵 A满足2A2-5A-8E = 0,证明 A-2E 可逆,
6---例8(1)---几个证明1 1、设A~B,证明: A2~B2; tA-E~tB-E, t是实数
2. 设1,2 是A的两个不同的特征值,1, 2 是相应的 特征向量, 证明:1, 2必线性无关;
3. 设1,2 是A的两个不同的特征值,1, 2 是相应的 特征向量, 证明:1 2 必不是 A的特征向量
3)正交向量组必是线性无关组。
4---n阶方阵A可对角化的条件、方法 1、一个充分必要条件: n阶方阵A可对角化 A有n个线性无关的特征向量 2、两个充分条件: 1)如果A有n个互不相同的特征值,则A必可对角化 2)如果A是实对称矩阵,则A必可用正交矩阵对角化。
3、对角化方法:
4、正交对角化
5---例6---对角化 分别求可逆矩阵P、正交矩阵Q, 将矩阵A对角化。 解 1)
向量4---例题4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若 AB E ( 或
BA E ) , 则B A1 .
3. 可逆矩阵的性质
1 若A可逆 , 则A 也可逆 , 且 A
1
1 1
A.
1
2 若A可逆 , 数 0, 则A可逆 , 且 A A1 .
1
3 若A, B为同阶可逆矩阵 , 则AB也可逆 , 且A B 1 B 1 A 1
1
(3)待定系数法 (4) 初等变换法:步骤如下
(1) 构造矩阵 ( A E ); ( 2) 对( A E )施行初等行变换 , 将A化为 单位矩阵 E后, 右边 E对应部分即为 A 1
四、分块矩阵 分块对角矩阵的性质
A1 A2 设方阵 A O 2. 如果 Ai 0 i 1, 2, O 则 1. A A A At . 1 2 At , t , 则 A 0,即矩阵 A 可逆,且
由 m n 个数 aij i 1,2, 排成的m行n列的数表 a11 a12 a a22 21 A a m 1 am 2
a1n a2 n amn
, m; j 1,2,
, n
称为m行n列矩阵,简称 m n 矩阵. 其中 m n 个数称为矩阵A的元素,数 aij 称为矩阵 A的第i 行第j 列的元素.
1 11 0 1 0 1 22 0 0
0 0 1 nn
五、矩阵的初等变换与初等矩阵 .列标 1.初等变换与初等矩阵
矩阵的初等变换包括3种:对换变换、数乘变换 和倍加变换。这三种初等变换的过程都是可逆的, 设A是一个m n 非零矩阵,那么A一定 可以通过有限次初等行变换化为行阶梯形及行最 简形,再进行初等列变换化为如下标准形:
当m = n 时,n元非齐次线性方程组 Ann x b 有惟一解的充分必要条件是系数矩阵A的行列式
A0
齐次线性方程组 Ax 0 一定有解: (1) R(A) = n (2) R(A) < n
Ax 0 只有零解
Ax 0 有非零解
并且通解中有n-r个自由未知量.
齐次线性方程组 Ax 0 的具体解法: (1)对系数矩阵施行初等行变换化为行阶梯形矩阵, 比较 R A与n之间的大小关系,从而判断方程组解 的情况:唯一解(零解),无穷解(非零解)。
12
n
2 n
1
( 1)
n ( n 1 ) 2
n
12
n
a11 D
L
a1 m M a mm * M *
a1 m M
M a m1 L * M * L a11 L
a m1 L
0 b11 L M bk 1 L
b11 L M
L
b1k M bkk
b1k M . bkk
M
a mm bk 1 L
R1 R2 A ( R1 R2 Rs1 Rs AC1C 2
1 1 1 R2 R1 C t
Ct E C t ) 1
1 1 C2 C1
Rs )1 E (C1C 2
n阶方阵A可逆的充要条件是存在有限 个初等矩阵 P1 , P2 ,
, Pl , 使得 A P1 P2 Pl .
则D等于下列两个行列式之和:
D bi 1 a n1 bi 2 an2 b in c i 1 a nn a n1
性质1.6 把行列式的某一行(列)的各元素乘以 同一数然后加到另一行(列)对应的元素上去,行 列式不变. (倍加运算) 计算行列式常用方法: (1)利用定义; (2)利用性质把行列式化为上三角形行列式, 从而算得行列式的值.
则此行列式为零. 性质1.4 如果行列式中有两行(列)对应成 比例,那么行列式为零.
性质1.5 如果行列式的某一行(列)的元素都是 两数之和,例如第i 行的元素都是两数之和
a11 D bi 1 ci 1 a n1 a 11 a 12 a12 bi 2 ci 2 an 2 a1n a 11 a1n bin cin ann a 12 ci2 an2 a1n c in a nn
二、矩阵的运算 1. 矩阵的基本运算:
加法 数与矩阵相乘 矩阵与矩阵相乘 方阵的幂 转置矩阵 对称及反对陈矩阵 方阵的行列式
2. 矩阵的运算规律:
加法: 1 交换律:A B B A;
2 结合律: A B C A B C .
第二节 行列式的性质
性质1.1 行列式与它的转置行列式相等. 性质1.2 行列式的某一行(列)中所有元素的 公因子可以提到行列式符号的外面. 行列式的某一行(列)中的所有元素都 乘以同一数 k ,等于用数 k 乘此行列式. 如果行列式中有一行(列)为零,那么行列 式为零。
性质1.3
对换行列式的两行(列),行列式变号. 如果行列式有两行(列)完全相同,
3 A B C AB AC , B C A BA CA;
方阵的幂运算: ( 1) ( 2)
Ak Al Ak l ( Ak )l Akl
k
注意: AB Ak Bk .
转置运算:
1 A
T T
A;
2 A B T AT BT ; 3 AT AT ; 4 AB T BT AT .
D a11a22a33 a12a23a31 a13a21a32 a11a 23 a 32 a12 a 21a 33 a13 a 22 a 31 .
一些常用的行列式结果:
a11 a12 0 a22 0 0 a1n a2 n ann
a11a22 ann
1 2
3. 方阵的行列式及其性质
由n阶方阵A的元素按原相对位置所构成 称为方阵A的行列式,记作 A 或 det A. 的行列式, 方阵的行列式满足下列规律: (设A、B为n阶方阵,为数) ( 1) ( 2)
AT A
A n A ;
(3) AB A B
三、逆矩阵 .列标 1. 基本概念
Er O O O m n
其中r 就是行阶梯形矩阵中非零行的行数.
注意:初等变换不改变矩阵的可逆性。 对于任何一个非零矩阵,都可以先进行初等行变换化 为行阶梯形及行最简形,再进行初等列变换化为标准形.
设A是一个mn 矩阵,对A 施行一次 初等行变换,相当于在A的左边乘以相应的m阶 初等矩阵;对A施行一次初等列变换,相当于在 A的右边乘以相应的n阶初等矩阵.
4 若A可逆 , 则A 也可逆 , 且 A
T
T 1
A .
1 T
推广 A1 A2
Am 1 Am
1
1
1
AA
1 1 2 1
.
5 若A可逆 , 则有 A A .
4. 逆矩阵的计算方法
(⑴)利用定义(一般适用于证明题)
A 2 利用公式 A ; A
A1 k k 3. A O A2
k
A11 1 A2 1 A
o
o
. 1 At
O k At
特殊地,如果 是对角矩阵
k 0 0 11 0 0 11 k 0 0 22 0 0 22 k 则 k 0 0 0 nn nn 0 当且仅当 11 , 22 , nn 都不为零时, 是可逆矩阵,且
对于n阶方阵A,如果存在一个n阶方阵B 使得
AB BA E
则称B是A的逆矩阵,并称矩阵A是可逆矩阵或满秩 矩阵,或非奇异矩阵,记为 A1 . 说明 若A是可逆矩阵,则A的逆矩阵是唯一的.
1
1 注意 不能将 A 写成 . A
设有n阶方阵 A (aij )nn , 由行列式 A 中 各元素aij 的代数余子式Aij 构成如下n阶方阵
第三节 行列式按行(列)展开
引理 一个n阶行列式,如果第i 行所有元素除 那么这个行列式等于 a ij 与它的代 a ij 外都为零, 数余子式的乘积,即 D aij Aij . 行列式的某行(列)的所有元素与其对应 的代数余子式乘积之和等于该行列式的值。 行列 式某行(列)元素与另一行(列)对应元素的代数余子 式乘积之和等于零。
A11 A12 A A 1n
A21 A22 A2 n
An1 An 2 Ann
称为矩阵A的伴随矩阵. 注意:伴随阵A* 与原矩阵A元素位置的对应关系.
2. 基本定理
设A为n阶方阵,A*为其伴随矩阵,则
AA A A A E .
1 A可逆 A 0 , 且 A A , A 其中 A 是A的伴随阵 .
第三章 线性方程组
其中 B A b
非齐次线性方程组 Ax b
(1) R A R B (2) R(A) = R(B ) R(A ) < n R(A ) = n
无解 有解:
Ax b有唯一解 ;
Ax = b 有无穷多解.
并且通解中有n-r个自由未知量.
非齐次线性方程组 Ax b 的具体解法: (1)对增广矩阵施行初等行变换化为行阶梯形矩阵, 比较 R A 、 R B 以及n之间的大小关系,从而判断 方程组解的情况:无解,唯一解,无穷解。 (2)在判断有解的情况下,继续对行阶梯形矩阵施 行初等行变换,将其化为行最简形,并写出最简形 对应的线性方程组进行求解。如果方程组有无穷多 个解,需写出通解形式。
数乘:
1 结合律 : A A ; 2分配律 : A A A; A B A B .
乘法:
1 AB C A BC ; 2 AB AB AB
(其中 为数);
行列式按行(列)展开法则是把高阶行 列式的计算化为低阶行列式计算的重要 工具.