七年级线段和角的有关计算
浙教版数学七年级上册专项突破四 与线段、角有关的计算(含答案)
则张师傅此次散步的时间是________分钟.
【解析】
分钟每分钟走6°,时针每分钟走
1 2
°.设张师傅此次
散步的时间是x分钟.由题意,得6x-
1 2
x=120×2,解得x=
480 11
,
∴张师傅此次散步的时间是41810分钟.
【答案】
480 11
【答案】 60
抓重点
9.(2021秋·杭州市钱塘区期末)已知线段AB=24 cm, D是线段AB的中点,直线AB上有一点C,且CD=3BC, 则线段CD=________cm.
【答案】 9 或 18
抓重点
10.(2021秋·舟山市定海区期末)张师傅晚上出门散步,出门时6点
多一点,他看到手表上的分针与时针的夹角恰好为120°,回来时
13.(2021秋·湖州市长兴县期末)已知∠AOB=160°,∠COE是直角,OF平分 ∠AOE. (1)如图①,若∠COF=32°,则∠BOE=________.
抓重点
(2)如图①,若∠COF=m°,则∠BOE=____________.∠BOE与∠COF之间 的数量关系为__________________. (3)在已知条件不变的前提下,当∠COE绕点O按逆时针方向转动到如图②所示 的位置时,(2)中∠BOE与∠COF之间的数量关系是否仍然成立?请说明理由.
三、解答题抓重点
11.(2020秋·湖州市安吉县期末)如图,已知线段CD,延
长线段CD到点B,使DB=
1 2
CB,延长DC到点A,使AC
=2DB.若AB=8 cm,求CD与AD的长.
【解析】∵DB=12CB,∴CD=DB. ∵AC=2DB,∴AC=BC=12AB. ∵AB=8 cm,∴CD=14AB=2 cm,AD=34AB=6 cm.
人教版2024新版七年级数学上册第六章知识梳理2:直线、射线、线段与角
如果两个角的和等于180°,就是
角
说这两个角互为补角,即其中一个 若∠1+∠2=180°,则∠1、∠2互为补角.
角是另一个角的补角.
补角
性质:1.同角的补角相等. ∵∠1+∠2=180°,∠1+∠3=180°,∴∠2=∠3.
点M在点A的北偏东45°方向,在点C北偏西40°方向.
思维导图
直线、射线、线段与角
直线 射线 线段
两点确定一条直线. 特征:无端点、无限延伸、无法测量. 表示方法:两个大写字母或一个小写字母.
特征:1个端点,向一方无限延伸.
表示方法:两个大写字母,端点在前或一个小写字母.
特征:2个端点,不能延伸,能测量. 表示方法:两个大写字母或一个小写字母. 两点之间线段最短. 比较方法:度量法和叠合法. 线段中点:把一条线段分成两条相等的线段.
方位角
2.等角的补角相等. ∵∠1+∠2=180°,∠3+∠4=180°,且∠1=∠3, ∴∠2=∠4.
考点三 角
方位角
45°
A
45°
O 3km
60° B
M
40°
C
方位角确定点的位置
方法1:利用方位角和观测点到点的距离来定位. 点B在点O南偏东60°方向,且相距3km.
方法2:利用两个方位角来确定,即找到两个合 适的观测点然后按照指定的方位角画出射线,交 点即为所要确定的点的位置.
思维导图
角
定义:有共同端点的两条射线组成的图形. 表示方法:三个大写字母,端点在中间;数字或希腊字母;
单独一个角可用一个小写字母表示. 度量单位:度、分、秒:1°=60′,1′=60″. 分类:周角、平角、直角、钝角、锐角. 比较方法:度量法和叠合法. 角的计算. 角平分线:一条射线把一个角分成两个相等的角. 余角、补角.
七年级数学上册线段和角的定值问题课堂学案及配套作业(解析版)
专题19线段和角的定值问题(解析版)第一部分教学案类型一线段中的定值问题1.(2019秋•北仑区期末)如图,C为射线AB上一点,AB=30,AC比BC的14多5,P、Q两点分别从A、B两点同时出发,分别以2个单位/秒和1个单位/秒的速度在射线AB上沿AB方向运动,当点P运动到点B时,两点同时停止运动,运动时间为t(s),M为BP的中点,N为MQ的中点,以下结论:①BC=2AC;②AB=4NQ;③当BP=12BQ时,t=12;④M,N两点之间的距离是定值.其中正确的结论(填写序号)思路引领:根据线段中点的定义和线段的和差关系即可得到结论.解:∵AB=30,AC比BC的14多5,∴BC=20,AC=10,∴BC=2AC;故①正确;∵P,Q两点分别从A,B两点同时出发,分别以2个单位/秒和1个单位/秒的速度,∴BP=30﹣2t,BQ=t,∵M为BP的中点,N为MQ∴PM=12BP=15﹣t,MQ=MB+BQ=15,NQ=12MQ=7.5,∴AB=4NQ;故②正确;∵BP=30−2t,BQ=t,BP=12 BQ,∴30−2t=t2,解得:t=12,故③正确,∵BP=30﹣2t,BQ=t,∴BM=12PB=15﹣t,∴MQ=BM+BQ=15﹣t+t=15,∴MN=12MQ=152,∴MN的值与t无关是定值,故答案为:①②③④.总结提升:本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.2.(2020秋•东西湖区期末)如图,已知直线l上有两条可以左右移动的线段:AB=a,CD=b,且a,b满足|a﹣2|+(b﹣6)2=0.M为线段AB的中点,N为线段CD中点.(1)求线段AB、CD的长;(2)若线段AB以每秒2个单位长度的速度向右运动,同时线段CD以每秒1个单位长的速度也向右运动,在运动前A点表示的数为﹣2.BC=6,设运动时间为t秒,求t为何值时,MN=4;(3)若将线段CD固定不动,线段AB以每秒2个单位长度的速度向右运动,在运动前AD=36,在线段AB向右运动的某一个时间段内,始终有MN+BC为定值,求出这个定值,并求出t的取值范围.思路引领:(1)根据非负数的性质即可得到结论;(2)t秒后点M表示的数是﹣1+2t,点N表示的数是9+t,然后根据MN=4列出方程可得答案;(3)根据题意分类讨论得到结果.解:(1)∵|a﹣2|+(b﹣6)2=0,∴a﹣2=0,b﹣6=0,∴a=2,b=6,∴AB=2,CD=6;(2)∵运动前A点表示的数为﹣2,BC=6,∴点B表示的数是0,点C、D表示的数分别是6和12,∵M为线段AB的中点,N为线段CD中点,∴点M、N表示的数分别是﹣1和9,t秒后点M表示的数是﹣1+2t,点N表示的数是9+t,∴|(﹣1+2t)﹣(9+t)|=4,解得t=14或6,答:t=14秒或6秒时,MN=4;(3)运动t秒后,MN=|32﹣2t|,BC=|28﹣2t|,当0≤t<14时,MN+BC=32﹣2t+28﹣2t=60﹣4t,当14≤t≤16时,MN+BC=32﹣2t+2t﹣28=4,当t >16时,MN +BC =2t ﹣32+2t ﹣28=4t ﹣60, ∴当14≤t ≤16时,MN +BC 为定值.总结提升:本题主要考查了非负数的性质,一元一次方程的应用以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.3.(2020秋•遵化市期末)如图,已知线段AB =m ,CD =n ,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若|m ﹣12|+(6﹣n )2=0. (1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,BC =4,求线段MN 的长;(3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA−PB PC是定值,②PA+PB PC是定值,请选择你认为正确的一个并加以说明.思路引领:(1)先由|m ﹣12|+(6﹣n )2=0,根据非负数的性质求出n =6,m =12,即可得到AB =12,CD =6;(2)需要分类讨论:①如图1,当点C 在点B 的右侧时,根据“M 、N 分别为线段AC 、BD 的中点”,先计算出AM 、DN 的长度,然后计算MN =AD ﹣AM ﹣DN ;②如图2,当点C 位于点B 的左侧时,利用线段间的和差关系求得MN 的长度;(3)计算①或②的值是一个常数的,就是符合题意的结论. 解:(1)∵|m ﹣12|+(6﹣n )2=0, ∴|m ﹣12|=﹣(6﹣n )2, ∴m ﹣12=0,6﹣n =0, ∴n =6,m =12, ∴AB =12,CD =6;(2)如图1,∵M 、N 分别为线段AC 、BD 的中点, ∴AM =12AC =12(AB +BC )=8, DN =12BD =12(CD +BC )=5, ∴MN =AD ﹣AM ﹣DN =9;如图2,∵M 、N 分别为线段AC 、BD 的中点,∴AM =12AC =12(AB ﹣BC )=4, DN =12BD =12(CD ﹣BC )=1,∴MN =AD ﹣AM ﹣DN =12+6﹣4﹣4﹣1=9;(3)②正确.理由如下: ∵PA+PB PC =(PC+AC)+(PC−CB)PC=2PC PC=2,∴②PA+PBPC 是定值2.总结提升:本题考查了一元一次方程的应用,比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.4.(2018秋•江夏区期末)已知,如图所示,一条直线上依次有A 、B 、C 三个点. (1)若BC =10,AC =3AB 的长;(2)若点D 是射线CB 上一点,点M 为BD 中点,点N 为CD 中点,求BC MN的值;(3)当点P 在线段BC 的延长线上运动时,点E 是AP 的中点,点F 是BC 的中点(E ,F 不重合).下列结论中:①EF AC+BP是定值;②EFAC−BP是定值,其中只有一个结论正确,请选择正确结论并求出其值.思路引领:(1)由AC =AB +BC =3AB 可得;(2)分三种情况:①D 在BC 之间时②D 在AB 之间时③D 在A 点左侧时;(3)分三种情况讨论:①F 、E 在BC 之间,F 在E 左侧②F 在BC 之间,E 在CP 之间③F 、E 在BC 之间,F 在E 右侧;解:(1)∵BC =10,AC =AB +BC =3AB ,∴AB=5;(2)∵点M为BD中点,点N为CD中点,∴BM=BD,DN=NC,①D在BC之间时:BC=BD+CD=2MD+2DN=2MN,∴BCMN=2;②D在AB之间时:BC=DC﹣DB=2DN﹣2MB=2(BN+2MB)﹣2MB=2BN+2MB=2MN,∴BCMN=2;③D在A点左侧时:BC=DN﹣NB=MN+DM﹣NB=MN+MB﹣NB=MN+MN+NB﹣NB=2MN,∴BCMN=2;故BCMN=2;(3)点E是AP的中点,点F是BC的中点.∴AE=EP,BF=CF,①F、E在BC之间,F在E左侧,EF=FC﹣EC=12BC﹣AC+AE=12(AC﹣AB)﹣AC+AE=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC﹣2AE+AB,∴EFAC−BP =−12.②F在BC之间,E在CP之间,EF=12BC+CE=12BC+AE﹣AC=12(AC﹣AB)+AE﹣AC=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC+AB﹣2AE,∴EFAC−BP =−12.③F、E在BC之间,F在E右侧,EF=CE﹣CF=CE−12BC=AC﹣AE−12BC=AC﹣AE−12(AC﹣AB)=12AC﹣AE+12AB,BP=AP﹣AB=2AE﹣AB,∴AC﹣BP=AC+AB﹣2AE,∴EFAC−BP =12,∴只能是②EFAC−BP 是定值,定值为12.总结提升:本题考查线段之间量的关系,结合图形,能够考虑到所有分类是解题的关键.5.(越秀区期末)已知线段AB=8(点A在点B的左侧)(1)若在直线AB上取一点C AC=3CB,点D是CB的中点,求AD的长;(2)若M是线段AB的中点,点P是线段AB延长线上任意一点,请说明P A+PB﹣2PM是一个定值.思路引领:(1)①当点C在线段AB上时,如图1,②当点C在线段AB的延长线上时,如图2,③当点C在BA的延长线上时,明显,次情况不存在;列方程即可得到结论;(2)如图3,设BP=x,则P A=AB+BP=8+x,PM=12AB+BP=4+x,代入P A+PB﹣2PM即可得到结论.解:(1)①当点C在线段AB上时,如图1,∵AC=3BC,设BC=x,则AC=3x,∵AB=AC+BC,∴8=3x+x,∴x=2,∴BC=2,AC=6,∵点D是CB的中点,∴CD=BD=12BC=1,∴AD=AC+CD=6+1=7;②当点C在线段AB的延长线上时,如图2,设BC=x,AC=3BC=3x,∵AB=AC﹣BC=2x=8,∴x=4,∴BC=4,AC=12,AB=8,∵点D是CB的中点,∴BD=CD=12BC=2,∴AD=AB+BD=8+2=10;③当点C在BA的延长线上时,明显,次情况不存在;综上所述,AD的长为7或10;(2)如图3,设BP=x,则P A=AB+BP=8+x,PM=12AB+BP=4+x,∴P A+PB﹣2PM=8+x+x﹣2(4+x)=0,∴P A+PB﹣2PM是一个定值0.总结提升:本题考查了两点间的距离,线段中点的定义,正确的作出图形是解题的关键.6.(2020秋•奉化区校级期末)如图,已知直线l有两条可以左右移动的线段:AB=m,CD=n,且m,n 满足|m﹣4|+(n﹣8)2=0.(1)求线段AB,CD的长;(2)线段AB的中点为M,线段CD中点为N,线段AB以每秒4个单位长度向右运动,线段CD以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC的长;(3)将线段CD固定不动,线段AB以每秒4个单位速度向右运动,M、N分别为AB、CD中点,BC=24,在线段AB向右运动的某一个时间段t内,始终有MN+AD为定值.求出这个定值,并直接写出t在哪一个时间段内.思路引领:(1)根据非负数的性质即可得到结论;(2)若6秒后,M’在点N’左边时,若6秒后,M’在点N’右边时,根据题意列方程即可得到结论;(3)根据题意分类讨论于是得到结果.解:(1)∵|m﹣4|+(n﹣8)2=0,∴m﹣4=0,n﹣8=0,∴m=4,n=8,∴AB=4,CD=8;(2)若6秒后,M’在点N’左边时,由MN+NN’=MM’+M’N’,即2+4+BC+6×1=6×4+4,解得BC=16,若6秒后,M’在点N’右边时,则MM’=MN+NN’+M’N’,即6×4=2+BC+4+6×1+4,解得BC=8,(3)运动t秒后MN=|30﹣4t|,AD=|36﹣4t|,当0≤t<7.5时,MN+AD=66﹣8t,当7.5≤t≤9时,MN+AD=6,当t≥9时,MN+AD=8t﹣66,∴当7.5≤t≤9时,MN+AD为定值.总结提升:本题主要考查了非负数的性质,一元一次方程的应用以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.7.(2022秋•平南县月考)如图AB=48,C为线段AB的延长线上一点,M,N分别是AC,BC的中点.(1)若BC=10,求MN的长;(2)若BC的长度为不定值,其它条件不变,MN的长还是定值吗?若是,请求出MN的长;若不是,请说明理由.思路引领:(1)根据线段中点的性质,可得CM,CN的长,根据线段的和差,可得答案;(2)根据线段中点的性质,可得CM,CN的长,根据线段的和差,可得答案.解:(1)由已知得AC=AB+BC=58.由M,N分别是AC,BC的中点,得CM=29,NC=5.由线段的和差,得MN=CM﹣NC=29+5=24;(2)若BC的长度为不定值,其它条件不变,MN的长是定值.由M,N分别是AC,BC的中点,得CM=12(AB+BC),CN=12BC,MN=CM﹣NC=12(AB+BC)−12BC=12AB=24.总结提升:本题考查了两点间的距离,利用线段中点的性质得出MC,NC的长是解题关键,又利用了线段的和差.类型二角中的定值问题8.(2017秋•宁海县期末)如图,已知在同一平面内OA⊥OB,OC是OA绕点O顺时针方向旋转α(α<90°)度得到,OD平分∠BOC,OE平分∠AOC.(1)若α=60即∠AOC=60°时,则∠BOC=°,∠DOE=°.(2)在α的变化过程中,∠DOE的度数是一个定值吗?若是定值,请求出这个值;若不是定值,请说明理由.思路引领:(1)先得到∠BOC=∠AOB+∠AOC=150°,再根据角平分线的定义得到∠DOC=75°,∠EOC=30°,然后计算∠DOC﹣∠EOC得到∠DOE的度数;(2)根据角平分线的定义∠DOC=12∠BOC=45°+12α,∠EOC=12∠AOC=12α,所以∠DOE=∠DOC﹣∠EOC=45°,从而可判断∠DOE的度数是一个定值.解:(1)∵OA⊥OB,∴∠AOB=90°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,∵OD平分∠BOC,∴∠DOC=12∠BOC=75°,∵OE平分∠AOC,∴∠EOC=12∠AOC=30°,∴∠DOE=∠DOC﹣∠EOC=75°﹣30°=45°;故答案为150°;45°;(2)在α的变化过程中,∠DOE的度数是一个定值,为45°.∵OD平分∠BOC,∴∠DOC=12∠BOC=12(90°+α)=45°+12α∵OE平分∠AOC,∴∠EOC=12∠AOC=12α,∴∠DOE=∠DOC﹣∠EOC=45°+12α−12α=45°,即∠DOE的度数是一个定值.总结提升:本题考查了角度的计算:会利用几何图形计算角度的和与差.也考查了角平分线的定义.9.(2020秋•平山区校级期中)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,∠AOE﹣∠BOF=;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.思路引领:(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可.解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12×110°=55°,∠BOF=12∠BOD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣2035°.故答案为:35°;(2)∠AOE﹣∠BOF的值是定值.由题意∠BOC=3t°,则∠AOC=∠AOB+3t°=110°+3t°,∠BOD=∠COD+3t°=40°+3t°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12(110°+3t°)=55°+32t°,∠BOF=12∠BOD=12(40°+3t°)=20°+32t°,∴∠AOE﹣∠BOF=(55°+32t°)−(20°+32t°)=35°,∴∠AOE﹣∠BOF的值是定值,定值为35°.总结提升:本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.10.(2019秋•沙坪坝区校级期中)如图,已知∠AOC=80°,∠BOD=30°,若OM平分∠AOB,ON平分∠COD.(1)如图1,当OC 与OB 重合时,求∠MON 的度数;(2)如图2,当∠BOD 从图1位置开始绕点O 顺时针旋转m (0<m <90)时,∠BOM ﹣∠DON 的值是否为定值?若是定值,求出∠BOM ﹣∠DON 的值;若不是定值,请说明理由;(3)如图2,当∠BOD 从图1位置开始绕点O 顺时针旋转m (30<m <70)时,满足∠AOD +∠MON =7∠BOD ,求m 的值.思路引领:(1)由角平分线的定义求∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD ,然后求∠MON ;(2)用含有m 的式子表示∠AOM 、∠BOD 和∠AOD ,然后利用角的和差关系求∠BOM ﹣∠DON ; (3)分别用含有m AOD 、∠MON 和∠BOD ,然后根据已知条件列出方程,从而得到m 的值.解:(1)∵OM 平分∠AOB ,ON 平分∠COD ,∴∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD , ∵∠AOB =80°,∠COD =30°, ∴∠MOC =40°,∠NOC =15°,∴∠MON =∠MOC +∠NOC =40°+15°=55°; (2)∠BOM ﹣∠DON 为定值25°,理由如下: 由题意可知:∠AOD =∠AOB +∠COD +m =110°+m ,由(1)可知:∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD ,∴∠BOM =∠AOM =∠12(∠AOC +m )=12(80°+m ),∠DON =12(∠BOD +m )=12(30°+m ),∴∠BOM﹣∠DON=12(80°+m)−12(30°+m)=25°,∴∠BOM﹣∠DON的值为25°;(3)由(2)知:∠AOD=110°+m,∠AOM=12(80°+m),∠DON=12(30°+m),∴∠MON=∠AOD﹣∠AOM﹣∠DON=110°+m−12(80°+m)−12(30°+m)=55°,∵∠AOD+∠MON=7∠BOD,∠BOD=30°,∴110°+m+55°=7×30°,∴m=45°.总结提升:本题考查了角平分线的定义和图形的旋转,探究角与角之间的关系时,要注意先理清楚所求角与已知角的和差关系,然后再逐步求解.11.(2022秋•沁阳市期末)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,∠AOE﹣∠BOF=;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=17°时,t=秒.思路引领:(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF=(3t+17)°,故3t+17=20+32t,解方程即可求出t的值.解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12×110°=55°,∠BOF=12∠BOD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣20°=35°.故答案为:35°;(2)∠AOE﹣∠BOF的值是定值.由题意∠BOC=3t°,则∠AOC=∠AOB+3t°=110°+3t°,∠BOD=∠COD+3t°=40°+3t°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12(110°+3t°)=55°+32t°,∠BOF=12∠BOD=12(40°+3t°)=20°+32t°,∴∠AOE﹣∠BOF=(55°+32t°)−(20°+32t°)=35°,∴∠AOE﹣∠BOF的值是定值,定值为35°;(3)根据题意得∠BOF=(3t+17)°,∴3t+17=20+32 t,解得t=2.故答案为2.总结提升:本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.12.(2017秋•宿豫区期末)如图,将两块直角三角尺的60°角和90°角的顶点A叠放在一起.将三角尺ADE绕点A旋转,旋转过程中三角尺ADE的边AD始终在∠BAC的内部在旋转过程中,探索:(1)∠BAE与∠CAD的度数有何数量关系,并说明理由;(2)试说明∠CAE﹣∠BAD=30°;(3)作∠BAD和∠CAE的平分线AM、AN,在旋转过程中∠MAN的值是否发生变化?若不变,请求出这个定值;若变化,请求出变化范围.思路引领:(1)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,根据角的和差即可得到结论;(2)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,列方程即可得到结论;(3)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,根据角平分线的定义和角的和差即可得到结论.解:(1)∠BAE+∠CAD=150°,理由:∵∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,∴∠BAE=∠BAD+∠CAD+∠CAE=60°+90°﹣∠CAD,∴∠BAE+∠CAD=150°;(2)∵∠BAD+∠CAD=60CAE+∠CAD=90°,∴∠CAD=60°﹣∠BAD,∠CAD=90°﹣∠CAE,∴60°﹣∠BAD=90°﹣∠CAE,∴∠CAE﹣∠BAD=90°﹣60°=30°;(3)在旋转过程中∠MAN的值不会发生变化,如图,∵∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,∴∠BAD=60°﹣∠CAD,∠CAE=90°﹣∠CAD,∵AM,AN分别是∠∠BAD和∠CAE的平分线,∴∠MAD=12∠BAD=30°−12∠CAD,∠NAC=12∠CAE=45°−12∠CAD,∵∠MAN=∠MAD+∠CAD+∠NAC=30°−12∠CAD+∠CAD+45°−12∠CAD=75°.总结提升:本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.13.(2022秋•晋州市期中)如图所示,以直线AB上的一点O为端点,在直线AB的上方作射线OP,使∠BOP=68°,将一块直角三角尺(∠MON=90°)的直角顶点放在点O处,且直角三角尺在直线AB的上方.设∠BOM=n°(0<n<90).(1)当n=30时,求∠PON的大小;(2)当OP恰好平分∠MON时,求n的值;(3)当n≠68时,嘉嘉认为∠AON与∠POM的差为定值,淇淇认为∠AON与∠POM的和为定值,且二人求得的定值相同,均为22°,老师说,要使两人的说法都正确,需要对n分别附加条件.请你补充这个条件:当n满足时,∠AON POM=22°;当n满足时,∠AON+∠POM=22°.思路引领:(1)根据角的和差关系可得答案;(2)根据角平分线的定义与角的和差关系可得答案;(3)分两种情况:OM在OP的左侧和右侧时,根据角的和差关系可得结论.解:(1)当n=30°时,∠BOM=30°,∵∠POB=68°,∴∠POM=68°﹣30°=38°,∵∠MON=90°,∴∠PON=90°﹣38°=52°;(2)∵OP恰好平分∠MON,∠MON=90°,∴∠POM=45°,∵∠POB=68°,∴n=68﹣45=23;(3)当0<n<68时,如图1,∠AON﹣∠POM=22°,理由如下:∵∠POB=68°,∴∠POM=68°﹣n°,∵∠MON=90°,∴∠AON=180°﹣90°﹣n°﹣n°,∴∠AON﹣∠POM=(90°﹣n°)﹣(68°﹣n°)=22°;当68<n<90时,如图2,理由如下:∵∠POB=68°,∴∠POM=n°﹣68°,∵∠MON=90°,∴∠AON=180°﹣90°﹣n°=90°﹣n°,∴∠AON+∠POM=(90°﹣n°)+(n°﹣68°)=22°;故答案为:0<n<68,68<n<90.总结提升:本题考查了角的和差,平角的定义,角平分线的定义,熟练掌握角的和与差关系,角平分线的定义的应用,分情况讨论是解题关键.14.(2021秋•迁安市期末)如图1,把∠APB放置在量角器上,P与量角器的中心重合,射线P A、PB分别对准刻度117°和153°,将射线P A绕点P逆时针旋转90°得到射线PC.(1)∠APB=度;(2)求出∠CPB的度数;(3)小红在图1的基础上,在∠CPB内部任意做一条射线PD,并分别做出了∠CPD和∠BPD的平分线PE和PF,如图2,发现PD在∠CPB内部的不同位置,∠EPF的度数都是一个定值,请你求出这个定值.思路引领:(1)∠APB=153°﹣117°;(2)根据∠CPB=∠APB+∠APC,可得∠CPB的度数;(3)根据角平分线的定义得到∠EPD=12∠CPD,∠FPD=12∠BPD,再根据角的和差可得答案.解:(1)由图可得,∠APB=153°﹣117°=36°.故答案为:36;(2)由题意得,∠APC=90°,∴∠CPB=∠APB+∠APC=36°+90°=126°.答:∠CPB的度数是126°;(3)∵∠CPD和∠BPD的平分线是PE和PF,∴∠EPD=12∠CPD,∠FPD=12∠BPD,∴∠EPF =∠EPD +∠FPD =12∠CPD +12∠BPD =12∠CPB =63°.∴当PD 在∠CPB 内部的不同位置时,∠EPF 的度数都是一个定值是63°. 总结提升:本题考查角的计算,熟练掌握角平分线的定义和角的和差是解题关键. 15.(2022秋•硚口区期末)∠AOB 与它的补角的差正好等于∠AOB 的一半 (1)求∠AOB 的度数;(2)如图1,过点O 作射线OC ,使∠AOC =4∠BOC ,OD 是∠BOC 的平分线,求∠AOD 的度数; (3)如图2,射线OM 与OB 重合,射线ON 在∠AOB 外部,且∠MON =40°,现将∠MON 绕O 顺时针旋转n °,0<n <50,若在此过程中,OP 平分∠AOM ,OQ 平分∠BON ,试问∠AOP−∠BOQ∠POQ的值是定值吗?若是,请求出来,若不是,请说明理由.思路引领:(1)设∠AOB =x °,根据题意列方程即可得到结论;(2)①当OC 在∠AOB 的内部时,②当OC 在∠AOB 外部时,根据角的和差和角平分线的定义即可得到结论;(3)根据角的和差和角平分线的定义即可得到结论. 解:(1)设∠AOB =x °,依题意得:x ﹣(180﹣x )=12x ∴x =120答:∠AOB 的度数是120°(2)①当OC 在∠AOB 的内部时,∠AOD =∠AOC +∠COD 设∠BOC =y °,则∠AOC =4y °, ∴y +4y =120,y =24,∴∠AOC =96°,∠BOC =24°, ∴OD 平分∠BOC , ∴∠COD =12∠BOC =12°, ∴∠AOD =96°+12°=108°,②当OC 在∠AOB 外部时,同理可求∠AOD =140°, ∴∠AOD 的度数为108°或140°; (3)∵∠MON 绕O 顺时针旋转n °, ∴∠AOM =(120+n )° ∵OP 平分∠AOM , ∴∠AOP =(120+n 2)°∵OQ 平分∠BON , ∴∠MOQ =∠BOQ =(40+n 2)°,∴∠POQ =120+40+n ﹣∠AOP ﹣∠NOQ , =160+n −120+n 2−40+n 2=160+n −160+2n2=80°, ∴∠AOP ﹣∠BOQ =120+n 2−40+n2=40°, ∴∠AOP−∠BOQ∠POQ=4080=12.总结提升:本题考查了角的计算,余角和补角的定义,解题时注意方程思想和分类思想的灵活运用. 16.(2019秋•莆田期末)定义:若α﹣β=90°,且90°<α<180°,则我们称β是α的差余角.例如:若α=110°,则α的差余角β=20°.(1)如图1,点O 在直线AB 上,射线OE 是∠BOC 的角平分线,若∠COE 是∠AOC 的差余角,求∠BOE 的度数;(2)如图2,点O 在直线AB 上,若∠BOC 是∠AOE 的差余角,那么∠BOC 与∠BOE 有什么数量关系; (3)如图3,点O 在直线AB 上,若∠COE 是∠AOC 的差余角,且OE 与OC 在直线AB 的同侧,∠AOC−∠BOC∠COE请你探究是否为定值?若是,请求出定值;若不是,请说明理由.思路引领:(1)根据角平分线的定义得到∠COE =∠BOE =12∠BOC ,根据题意得到∠AOC ﹣∠COE =∠AOC −12∠BOC =90°,于是得到结论;α (2)根据角的和差即可得到结论;(3)如图3,由∠COE 是∠AOC 的差余角,得到∠AOC =90°+∠COE ,∠BOC =90°﹣∠COE ,如图4,由∠COE 是∠AOC 的差余角,得到∠AOC =90°+∠COE ,于是得到结论. 解:(1)∵OE 是∠BOC 的角平分线, ∴∠COE =∠BOE =12∠BOC , ∵∠COE 是∠AOC 的差余角,∴∠AOC ﹣∠COE =∠AOC −12∠BOC =90°, ∵∠AOC +∠BOC =180°, ∴∠BOC =60°, ∴∠BOE =30°;(2)∵∠BOC 是∠AOE 的差余角,∴∠AOE ﹣∠BOC =∠AOC +∠COE ﹣∠COE ﹣∠BOE =∠AOC ﹣∠BOE =90°, ∵∠AOC +∠BOC =180°, ∴∠BOC +∠BOE =90°;(3)答:是,理由:如图3,∵∠COE 是∠AOC 的差余角, ∴∠AOC ﹣∠COE =∠AOE =90°,∴∠AOC =90°+∠COE ,∠BOC =90°﹣∠COE , ∴∠AOC−∠BOC∠COE=90°+∠COE−90°+∠COE∠COE=2(定值);如图4,∵∠COE 是∠AOC 的差余角, ∴∠AOC ﹣∠COE =90°, ∴∠AOC =90°+∠COE ,∵∠BOC =180°﹣∠AOC =180°﹣(90°+∠COE )=90°﹣∠COE , ∴∠AOC−∠BOC∠COE=90°+∠COE−90°+∠COE∠COE=2(定值),综上所述,∠AOC−∠BOC∠COE为定值.总结提升:本题考查了余角和补角,角的和差的计算,正确的理解题意是解题的关键.17.(2018秋•荔城区期末)如图∠AOB=120°,把三角板60°的角的顶点放在O处.转动三角板(其中OC边始终在∠AOB内部),OE始终平分∠AOD.(1)【特殊发现】如图1,若OC边与OA边重合时,求出∠COE与∠BOD的度数.(2)【类比探究】如图2,当三角板绕O点旋转的过程中(其中OC边始终在∠AOB内部),∠COE与∠BOD的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)【拓展延伸】如图3,在转动三角板的过程中(其中OC边始终在∠AOB内部),若OP平分∠COB,请画出图形,直接写出∠EOP的度数(无需证明)思路引领:(1)∵OC边与OA边重合,如图1,根据角的和差和角平分线的定义即可得到结论;(2)①0°≤∠AOC<60°时,如图2,②当60°≤∠AOC≤120°时,如图3,根据角的和差和角平分线的定义即可得到结论;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BOD=β,②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,根据角的和差和角平分线的定义即可得到结论;.解:(1)∵OC边与OA边重合,如图1,∴∠AOD=60°,∠BOD=∠AOB﹣∠AOD=120°﹣60°=60°,∵OE平分∠AOD,∴∠COE=12∠AOD=30°;(2)①0°≤∠AOC<60°时,如图2,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠COD﹣∠EOD=60°−12∠AOD,∵∠DOB=∠AOB﹣∠AOD=120°﹣∠AOD,∴∠COE:∠BOD=1 2;②当60°≤∠AOC≤1203,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠EOD﹣∠COD=12∠AOD﹣60°,∵∠DOB=∠AOD﹣∠AOB=∠AOD﹣120°,∴∠COE:∠BOD=1 2;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BODD=β,∵∠AOB=120°,∠COD=60°,∴α+β=60°,∴∠AOD=60°+α,∠BOC=60°+β,∵OE始终平分∠AOD,OP平分∠COB,∴∠AOE=12∠AOD=30°+12α,∠BOP=12∠BOC=30°+12β,∴∠POE=∠AOB﹣∠AOE﹣∠BOP=120°﹣(30°+12α)﹣(30°+12β)=30°;②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,∵∠AOB=120°,∠COD=60°,∴∠BOC=120°﹣∠AOC=60°﹣∠BOD,∴120°﹣α=60°﹣β,∴α﹣β=60°,∴∠AOD=120°+β,∠BOC=60°﹣β,∵OE始终平分∠AOD,OP平分∠COB,∴∠DOE=12∠AOD=60°+12β,∠BOP=12∠BOC=30°−12β,∴∠POE=∠DOE﹣∠BOD﹣∠BOP=(60°+12α)﹣β﹣(30°−12β)=30°;综上所述,∠POE=30°.总结提升:本题考查了角的计算,角平分线的定义,分类讨论是解题的关键.第二部分 配套作业1.(2022秋•成都期末)已知点O 为数轴原点,点A 在数轴上对应的数为a ,点B 对应的数为b ,A 、B 之间的距离记作AB ,且|a +4|+(b ﹣10)2=0.(1)求线段AB 的长;(2)设点P 在数轴上对应的数为x ,当P A +PB =20时,求x 的值;(3)如图,M 、N 两点分别从O 、B 出发以v 1、v 2的速度同时沿数轴负方向运动(M 在线段AO 上,N 在线段BO 上),P 是线段AN 的中点,若M 、N 运动到任一时刻时,总有PM 为定值,下列结论:①v 2v 1的值不变;②v 1+v 2的值不变.其中只有一个结论是正确的,请你找出正确的结论并求值.思路引领:(1)根据非负数的和为0,各项都为0即可求解; (2)应考虑到A 、B 、P 三点之间的位置关系的多种可能解题;(3)设运动时间为t ,首先得到PM =AP ﹣AM =3−12v 2t +v 1t ,由M 、N 运动到任一时刻时,总有PM 为定值,得到PM =3,t =1时,t =2时,于是得到结论. 解:(1)∵|a +4|+(b ﹣10)2=0, ∴a =﹣4,b =10,∴AB =|a ﹣b |=14,即线段AB 14;(2)如图1,当P 在点A 左侧时.P A +PB =(﹣4﹣x )+(﹣x +10)=20,即﹣2x +6=20,解得 x =﹣7; 如图2,当点P 在点B 的右侧时,P A +PB =(x +4)+(x ﹣10)=20,即2x ﹣6=20,解得 x =13; 如图3,当点P 在点A 与B 之间时,P A +PB =x +4+10﹣x =20,不存在这样的x 的值, 综上所述,x 的值是﹣7或13;(3)①v 2v 1的值不变.如图4,设运动时间为t ,理由如下:∵PM =AP ﹣AM=12AN ﹣(OA ﹣OM ) =12(AB ﹣BN )﹣OA +OM =12(14﹣v 2t )﹣4+v 1t =3−12v 2t +v 1t ,∵M 、N 运动到任一时刻时,总有PM 为定值, 而t =0时,PM =3, t =1时,PM =3−12v 2+v 1, t =2时,PM =3﹣v 2+2v 1, ∴3﹣v 2+2v 1=3−12v 2+v 1=3, ∴v 1v 2=12,即:v 2v 1的值不变,值为2.总结提升:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.(2022秋•江岸区校级月考)已知:如图,一条直线上依次有A 、B 、C 三点. (1)若BC =60,AC =3AB ,求AB 的长;(2)若点D 是射线CB 上一点,点M 为BD 的中点,点N 为CD 的中点,求BC MN的值;(3)当点P 在线段BC 的延长线上运动时,点E 是AP 中点,点F 是BC 中点,下列结论中: ①AC+BP EF是定值;②|AC−BPEF|是定值.其中只有一个结论是正确的,请选择正确结论并求出其值.思路引领:(1)由AC=AB+BC=3AB可得;(2)分三种情况:①D在BC之间时②D在AB之间时③D在A点左侧时;(3)分三种情况讨论:①F、E在BC之间,F在E左侧②F在BC之间,E在CP之间③F、E在BC之间,F在E右侧;解:(1)∵BC=60,AC=AB+BC=3AB,∴AB=30;(2)∵点M为BD中点,点N为CD中点,∴BM=BD,DN=NC,①D在BC之间时:BC=BD+CD=2MD+2DN=2∴BCMN=2;②D在AB之间时:BC=DC﹣DB=2DN﹣2MB=2(BN+2MB)﹣2MB=2BN+2MB=2MN,∴BCMN=2;③D在A点左侧时:BC=DN+NB=MN+DN﹣NB=MN+MB﹣NB=MN+MN+NB﹣NB=2MN,∴BCMN=2;故BCMN=2;(3)点E是AP的中点,点F是BC的中点.∴AE=EP,BF=CF,①EF=FC﹣EC=12BC﹣AC+AE=12(AC﹣AB)﹣AC+AE=AE−12AB=12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC﹣2AE+AB,∴|AC−BPEF|=2.②EF=12BC+CE=12BC+AE﹣AC=12(AC﹣AB)+AE﹣AC=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC+AB﹣2AE,∴|AC−BPEF|=2.③EF=CE﹣CF=CE−12BC=AC﹣AE−12BC=AC﹣AE−12(AC﹣AB)=12AC﹣AE+12AB,BP=AP﹣AB=2AE﹣AB,∴AC﹣BP=AC+AB﹣2AE,∴|AC−BPEF|=2.总结提升:本题考查线段之间量的关系,结合图形,能够考虑到所有分类是解题的关键.3.(2016秋•启东市校级月考)如图,线段AB=24,动点P从A出发,以2个单位/秒的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM;(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动,N为BP的中点,下列两个结论:①MN长度不变;②MN+PN的值不变.选出一个正确的结论,并求其值.思路引领:(1)分两种情况讨论,①点P在点B左边,②点P在点B右边,分别求出t的值即可.(2)AM=x,BM=24﹣x,PB=24﹣2x,表示出2BM﹣BP后,化简即可得出结论.(3)P A=2x,AM=PM=x,PB=2x﹣24,PN=12PB=x﹣12,分别表示出MN,MN+PN的长度,即可作出判断.解:(1)如图1,设出发x秒后PB=2AM,当点P在点B左边时,P A=2x,PB=24﹣2x,AM=x,由题意得,24﹣2x=2x,解得:x=6;当点P在点B右边时,P′A=2x,P′B=2x﹣24,AM=x,由题意得:2x﹣24=2x,方程无解;综上可得:出发6秒后PB=2AM.(2)∵AM=x,BM=24﹣x,PB=24﹣2x,∴2BM﹣BP=2(24﹣x)﹣(24﹣2x)=24;(3)选①;如图2,∵P A=2x,AM=PM=x,PB=2x﹣24,PN=12PB=x﹣12,∴①MN=PM﹣PN=x﹣(x﹣12)=12(定值);②MN+PN=12+x﹣12=x(变化).总结提升:本题考查了两点间的距离,解答本题的关键是用含时间的式子表示出各线段的长度,有一定难度.4.(2022秋•高新区期中)如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.思路引领:(1)由题意表示:AP=2t,则PB=12﹣2t,根据PB=2AM列方程即可;(2)把BM=12﹣t和BP=12﹣2t代入2BM﹣BP中计算即可;(3)分别代入求MN和MA+PN的值,发现①正确;②不正确.解:(1)如图1,由题意得:AP=2t,则PB=|12﹣2t|,∵M为AP的中点,∴AM=t,由PB=2AM得:|12﹣2t|=2t,即12﹣2t=2t或2t﹣12=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=12BP=12(2t﹣12)=t﹣6,①MN=P A﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.总结提升:本题考查了两点间的距离,解答本题的关键是用含时间的式子表示出各线段的长度,有一定难度.5.(2021秋•双流区期末)如图,已知直线l上有两条可以左右移动的线段:AB=m,CD=n,且m,n满足|m﹣4|+(n﹣8)2=0,点M,N分别为AB,CD中点.(1)求线段AB,CD的长;(2)线段AB以每秒4个单位长度向右运动,线段CD以每秒1个单位长度也向右运动.若运动6秒后,MN=4,求此时线段BC的长;(3)若BC=24,将线段CD固定不动,线段AB以每秒4个单位速度向右运动,在线段AB向右运动的某一个时间段t内,始终有MN+AD为定值.求出这个定值,并直接写出t在哪一个时间段内.思路引领:(1)根据非负数的性质即可得到结论;(2)若6秒后,M’在点N’左边时,若6秒后,M’在点N’右边时,根据题意列方程即可得到结论;(3)根据题意分类讨论于是得到结果.解:(1)∵|m﹣4|+(n﹣8)2=∴m﹣4=0,n﹣8=0,∴m=4,n=8,∴AB=4,CD=8;(2)若6秒后,M′在点N′左边时,由MN+NN′=MM′+M′N′,即2+4+BC+6×1=6×4+4,解得BC=16,若6秒后,M′在点N′右边时,则MM′=MN+NN′+M′N′,即6×4=2+BC+4+6×1+4,解得BC=8.综上,BC=16或8;(3)运动t秒后MN=|30﹣4t|,AD=|36﹣4t|,当0≤t<7.5时,MN+AD=66﹣8t,当7.5≤t≤9时,MN+AD=6,当t≥9时,MN+AD=8t﹣66,∴当7.5≤t≤9时,MN+AD为定值.总结提升:本题主要考查了非负数的性质以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.6.(2021秋•洛川县校级期末)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图①,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)当∠COD从图①所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10);在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.思路引领:(1AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义得∠AOE=12∠AOC=12(110°+3t°)、∠BOF=12∠BOD=12(40°+3t°),最后根据∠AOE﹣∠BOF求解可得;解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOB=12×110°=55°,∠BOF=12∠COD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣20°=35°;(2)∠AOE﹣∠BOF的值是定值,如图2,由题意∠BOC=3t°,则∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,∵OE平分∠AOC,OF平分∠BOD,。
线段和角度的计算
线段和角度的计算线段和角度是几何学中基础而重要的概念,对于几何学的研究和实际应用具有重要的意义。
本文将介绍线段和角度的计算方法,并且提供一些实例来帮助读者更好地理解。
一、线段的计算线段是几何学中最基础的图形,其长度的计算是几何学中最常见的问题之一。
计算线段的长度需要知道线段的两个端点的坐标,然后根据坐标计算两个点之间的距离即可。
假设线段的两个端点的坐标分别为A(x1, y1)和B(x2, y2),则线段AB的长度可以使用以下公式计算:AB = √[(x2-x1)^2 + (y2-y1)^2]其中√代表求平方根。
举例来说,如果线段的一个端点坐标为A(2, 3),另一个端点坐标为B(5, 7),则线段AB的长度可以计算如下:AB = √[(5-2)^2 + (7-3)^2]= √[3^2 + 4^2]= √[9 + 16]= √25= 5因此,线段AB的长度为5。
二、角度的计算角度是描述两条相交线之间关系的概念,它是几何学中重要的衡量单位。
计算角度需要知道角的顶点和两条边的坐标,然后通过计算得出角的度数。
假设角的顶点坐标为O(x0, y0),边OA的坐标为A(x1, y1),边OB 的坐标为B(x2, y2),则角AOB的度数可以使用以下公式计算:θ = arccos[(OA·OB)/(|OA|·|OB|)]其中arccos代表反余弦函数,|OA|和|OB|代表OA和OB的长度,·表示点乘运算(坐标相乘后相加)。
举例来说,如果角AOB的顶点坐标为O(0, 0),边OA的坐标为A(1, 2),边OB的坐标为B(3, 4),则角AOB的度数可以计算如下:θ = arccos[((1-0)(3-0) + (2-0)(4-0))/((√[(1-0)^2 + (2-0)^2])*(√[(3-0)^2 + (4-0)^2]))]= arccos[(3+8)/(√(1+4) * √(9+16))]= arccos[11/(√5 * √25)]≈ arccos(0.9806)≈ 0.1944 radians因此,角AOB的度数约为0.1944弧度。
人教版2024新版七年级数学上册第六章方法模型:线段与角度计算中的分类讨论与转化法
∠∠
∠∠ ∠ ∠
角内射线位置不确定
∠∠
∠AOC
∠AO C
分线.则∠
解答
转化为
动态问题
1
∠
∠AOC
) )
∠AOC
从一个位置开始旋转射线
2 ∠
1
∠AOB°
2 ×
旋转过程中出现平角,
°
往往是两种情况的分界点
°
角度计算
分类讨论
×
2 8
÷
3 5
“转化法”
2 5
×
3 8
转化法
读题
分针的速度为 °每分钟,
求它们从相距 °到相距
°
所用的时间
12
11
1
10
°
9
°
°,一小格为 °
°每分钟;
7
(
°
°
转化为行程问题
分钟
4
6
5
追及问题
分针的速度为: °每分钟;
时针的速度为:
°
°÷
3
8
一大格为
°
2
°的角?
钟表上的数学问题
°
°)÷
°
分钟
转化法
读题
分析
解答
反思
例 钟面上的角的问题.
AB=6cm
无图的几何问题
点在直线上运动
做出图形
考虑与定点
的位置关系
做出对应图形
分类讨论
分类讨论
分类讨论
分类讨论
例
读题
已知∠AOB=130°,射线
专题训练—线段、角度、动角问题北师大版数学七年级上册
线段、角度相关计算及动角问题一、线段的计算(方程思想)例1、如图,C,D是线段AB上的两点,已知M,N分别为AC,DB的中点,AB=18cm,且AC:CD:DB=1:2:3,求线段MN的长.变式1-1、如图所示.点C,B是线段AD上的两点,AC:CB:BD=3:1:4,点E,F分别是AB,CD的中点,且EF=14,求AB,CD的长.变式1-2、如图所示,线段AB上有两点M,N,AM:MB=5:11,AN:NB=5:7,MN=1.5,求AB长度.二、线段的计算(分类讨论思想)例1、在直线l 上有A 、B 、C 三个点,已知BC =3AB ,点D 是AC 中点,且BD =6cm ,求线段BC 的长.变式1-1、画直线l ,并在直线l 上任取三个点A 、B 、C ,使AB =10,BC =4,分别画线段AB 、BC 的中点E 、F ,求线段EF 的长.变式1-2、已知线段AB =14,在AB 上有四个点C ,D ,M ,N ,且AC :CD :DB =1:2:4,AM =12AC ,DN =16DB ,计算线段MN 的长.三、线段的计算(含参问题)例1、如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.(2)如图2,若C为线段AB上任意一点,满足AC+CB=acm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上的一点,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由.变式1-1、已知点C,线段AB.(1)如图,若点C在线段AB上,且AC=12,BC=8,点M、N分别是AC、BC的中点,则线段MN的长度是;(2)若把(1)中点C在线段AB上,且AC=12,BC=8,改为点C是线段AB上任意一点,且AC=a,BC=b,其他条件不变,请求出线段MN的长度(用含a、b的式子表示);(3)若把(2)中点C是线段AB上任意一点,改为点C是直线AB上任意一点,其他条件不变,则线段MN的长度会变化吗?若有变化,求出结果.变式1-2、已知线段AB=m(m为常数),点C为直线AB上一点,点P、Q分别在线段BC、AC 上,且满足CQ=2AQ,CP=2BP.(1)如图,若AB=6,当点C恰好在线段AB中点时,则PQ=;(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ 与1的大小关系,并说明理由.四、线段的计算(动点问题)【例8】如图,AB=10cm,C是线段AB上一个动点,沿A→B→A以2cm/s的速度往返运动一次,D是线段BC的中点,设点C的运动时间为t秒(0≤t≤10).(1)当t=2时,求线段CD的长.(2)当t=6时,求线段AC的长.(3)求运动过程中线段AC的长.(用含t的代数式表示)(4)在运动过程中,设AC的中点为E,线段DE的长是否发生变化?若不变,直接写出DE的长;若发生变化,请说明理由.变式1-1、(1)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,求线段MN的长度;(2)已知点C在线段BA的延长线上,点M,N分别是AC,BC的中点,设BC﹣AC=a,请根据题意画出图形并求MN的长度;(3)在(1)的条件下,动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?变式1-2、如图,直线l上有A,B两点,AB=12cm,点O是线段AB上的一点,OA=2OB.(1)OA=cm,OB=cm;(2)若点C是线段AB上一点(点C不与点AB重合),且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为t(s),当点P与点Q重合时,P,Q两点停止运动.求当t为何值时,2OP﹣OQ=4(cm);五、钟面角的计算分针:1小时转( )度 1分钟转( )度时针:1小时转( )度 1分钟转( )度例1、如图,八点三十分时针与分针所成的角是()A.75°B.65°C.55°D.45°变式1-1、11点40分,时钟的时针与分针的夹角为()A.140°B.130°C.120°D.110°变式1-2、当时钟指向上午10:10分,时针与分针的夹角是多少度()A.115°B.120°C.105°D.90°变式1-3、下列时刻中的时针与分针所成的角最大的是()A.1:00B.3:03C.5:05D.10:10六、度分秒的换算度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.将高级单位转化为低级单位时,乘以60,将低级单位转化为高级单位时,除以60.例1、35.48°=度分秒.变式1-1、35.15°=°′″;12°15′36″=°.变式1-2、计算:65°19′48″+35°17′6″=(将计算结果换算成度).变式1-3、计算:18°13′×5﹣49°28′52″÷4。
七年级线段和角的有关计算
线段和角是几何中的基本概念,它们在解决实际问题中起到了至关重要的作用。
在七年级的学习中,我们将学习如何计算线段的长度和角的度数。
本文将详细介绍线段和角的有关计算知识,包括线段的计算方法、角的计算方法,以及一些实际问题的解决方法。
一、线段的计算方法线段是连接两个点的直线部分,它具有长度。
在计算线段的长度时,我们需要了解两个点的坐标,并且应用勾股定理。
勾股定理表述如下:在直角三角形中,直角边的平方等于两直角边的平方之和。
根据勾股定理,我们可以求得两点之间的距离。
例如,有一个线段AB,它的两个端点的坐标分别为A(x1,y1)和B(x2,y2)。
我们可以通过以下公式计算AB的长度:AB=√[(x2-x1)²+(y2-y1)²]这个公式非常简单,只需要知道两个点的坐标,即可计算出线段的长度。
下面,我们来看一个实际问题的例子。
例题:在平面直角坐标系中,有两点A(2,3)和B(5,6),求线段AB的长度。
解答:根据上面的公式,我们可以求得线段AB的长度:AB=√[(5-2)²+(6-3)²]=√[3²+3²]=√[18]≈4.24所以,线段AB的长度约为4.24二、角的计算方法角是由两条线段的交汇形成的。
在计算角的度数时,我们需要了解两条线段的向量,并且应用向量的运算。
对于两个向量u=(x1,y1)和v=(x2,y2),它们的夹角θ可以通过以下公式计算:cosθ = (x1 * x2 + y1 * y2) / (√[x1² + y1²] * √[x2² + y2²])最终的角度可以通过反余弦函数来求得:θ = arccos(cosθ)这个公式非常实用,只需要知道两个向量的坐标,即可计算出角的度数。
下面,我们来看一个实际问题的例子。
例题:在平面直角坐标系中,有两条线段AB和AC,它们的坐标分别为A(1,2)、B(4,6)和C(7,3),求角BAC的度数。
北师大版数学七年级上册《与线段、角有关的计算问题》课外培优课件
(1)【解析】因为 OB 是∠ AOC 的平分线, OD 是∠ COE 的平
分线,所以∠ BOC =∠ AOB =22°,∠ COD =∠ DOE =54°.
所以∠ BOD =∠ BOC +∠ COD =22°+54°=76°.故答案为
76.
返回目录
数学 七年级上册 BS版
(2)若∠ AOE =α,则∠ BOD =
返回目录
数学 七九年级上册 BS版
0 12
B级课前能预力习训练
数学 七年级上册 BS版
9. 已知∠ AOB =70°,∠ BOC =50°, OD 平分∠ AOB , OE 平分∠ BOC ,则∠ DOE 的度数是 10°或60° .
【解析】①如图1,当∠ BOC 在∠ AOB 内部时,
因为 OD 平分∠ AOB , OE 平分∠ BOC ,
所以∠
DOB
=
1 2
∠
AOB
=35°,∠
EOB
=
1 2
∠
BOC
=25°.
所以∠ DOE =∠ DOB -∠ EOB =35°-25°=10°. 图1
返回目录
数学 七年级上册 BS版
②如图2,当∠ BOC 在∠ AOB 外部时,
因为 OD 平分∠ AOB , OE 平分∠ BOC ,
所以∠
DOB
=
1 2
∠
AOB
=35°,∠
EOB
=
1 2
∠
BOC
=25°.
所以∠ DOE =∠ DOB +∠ EOB =35°+25°=60°.
故答案为10°或60°.
图2
返回目录
数学 七年级上册 BS版
复习提分拔尖特训(与线段、角有关的计算与综合)课件+2024-2025学年北师大版数学七年级上册
4
5
6
7
8
9
10
(3)请求出点 P 出发多少秒后追上点 Q ?
【解】当点 P 追上点 Q 时,依题
意有3 t = t +40,
解得 t =20.
因此,点 P 出发20 s后追上点 Q .
返回
1
2
3
4
5
6
7
8
9
10
(4)请计算出点 P 出发多少秒后,与点 Q 的距离是20 cm?
【解】当点 P 在点 Q 的左侧时,
所以∠ BOD = ∠ BOC = x =24°.
所以∠ DOE =∠ DOB +∠ BOE =24°+12°=36°.
1
2
3
4
5
6
7
8
9
10
返回
8. 已知∠ AOB =37°,∠ AOC =2∠ AOB ,求∠ BOC
的度数.
【解】因为∠ AOB =37°,∠ AOC =2∠ AOB ,
所以∠ AOC =2∠ AOB =2×37°=74°.
北师版 七年级上
复习提分拔尖特训
与线段、角有关的计算与综合
类型1 与线段有关的计算与综合
(1)与线段和差有关的计算
1. 如图, AB =2, AC =6,延长 BC 到点 D ,使 BD =4
BC ,求 AD 的长.
【解】因为 AB =2, AC =6,所以 BC = AC - AB =4.
因为 BD =4 BC ,所以 BD =16.
所以∠ BOD =2∠ BOC .
因为 OE 平分∠ AOC ,所以∠ AOE =∠ EOC .
返回
1
2
2024七年级数学上册第4章几何图形初步练素养计算线段角的常见应用课件新版沪科版
1
2
3
4
5
6
7
8
题型2
分类讨论思想在解角平分线问题中的应用
7. 已知射线 OC 是∠ AOB 的平分线,射线 OD 是∠ AOC 的
三等分线,且∠ AOB =60°,求∠ COD 的度数.
1
2
3
4
5
6
7
8
【解】因为 OC 平分∠ AOB ,∠ AOB =60°,所以∠
= ( BP - AP )= AB . 综上, MN = AB . 所以线段 MN
的长度与点 P 在直线 AB 上的位置无关.
1
2
3
4
5
6
7
8
题型3
方程思想在解线段中点问题中的应用
4. 如图,点 C , D , E 将线段 AB 分成1∶2∶3∶4的四部分,
M , P , Q , N 分别是 AC , CD , DE , EB 的中点,且
1
2
3
4
5
6
7
8
【解】分两种情况:如图③,设∠ BOC = x °,
则∠ AOC =
°,所以 x + x =80,解得 x =50,所
以∠ AOC =50°× =30°;如图④,设∠ BOC = y°,
则∠ AOC = °,所以 y + y +80=360,解得 y =
类题目要从角平分线找角的数量关系,利用图形中相等角
的位置关系,结合角的和差关系求解.
应用1
期末复习专题08 线段与角有关动点的计算问题(解析版)
期末复习专题08 线段与角有关动点的计算问题考点一 有关线段的中点计算问题考点二 有关角的平分线计算问题考点三 线段上动点计算问题 考点四 角上动点计算问题考点一 有关线段的中点计算问题故选:D .【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.2.(2022·新疆·乌鲁木齐八一中学七年级期中)如图,数轴上M ,N ,P ,Q 四点对应的数都是整数,且M 为线段NQ 的中点,P 为线段NM 的中点.若点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,则数轴上的原点是( )A .点MB .点NC .点PD .点Q【答案】D 【分析】由已知条件可知2QN QM =,因为点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,依此可得到数轴上的原点.【详解】解:∵点M 为线段NQ 的中点,∴2QN QM =,∵点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,∴数轴上的原点是Q .故选:D .【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.(2022·云南·楚雄市中山镇初级中学七年级期末)C 为直线AB 上一点,且线段3cm AB =,5cm =BC ,则AC 的长度是 ________.【答案】8cm 或2cm【分析】分A 、C 在点B 异侧和A 、C 在点B 同侧两种情况,分别作出图形,根据线段的和差计算即可.【详解】解:如图1,当A 、C 在点B 异侧时,358cm AC AB BC =+=+=,如图2,当点A 、C 在点B 同侧时,532cm AC BC AB =-=-=,即AC 的长度是8cm 或2cm ,故答案为:8cm 或2cm .【点睛】本题考查了线段的和差计算,注意分类讨论思想的应用.4.(2022·全国·七年级专题练习)如图,M 是AB 的中点,N 是BC 的中点,7cm AB =,2cm BN =,则BC =________cm ,MC =______cm .AB=,点C线段(1)如图,已知线段8cmQ 点M 是AC 中点,12MC AC \=,M Q 为AC 的中点,N 为BC 的中点,1CM AC \=,1CN BC =,(1)若点C 为图1中线段AB 的“优点”6()AC AC BC =<(2)若点D 也是图1中线段AB 的“优点”(不同于点C )(填“=”或“¹”)[解决问题]∵点D是线段AB的“优点”,考点二有关角的平分线计算问题【点睛】本题主要考查了角平分线有关的计算以及几何图形中角的计算,解题关键是根据题意作出图形,运用分类讨论的思想分析问题.2.(2022·浙江台州·七年级期末)直线AB ,CD 相交于点O ,OE 是BOD Ð的角平分线,若3AOE BOC Ð=Ð,则EOC Ð的度数为( )A .36°B .72°C .108°D .144°【答案】C 【分析】根据OE 是BOD Ð的角平分线,得出DOE BOE Ð=Ð,根据3AOE AOD DOE BOC Ð=Ð+Ð=Ð,得出2DOE BOC Ð=Ð,求出36BOC Ð=°,即可得出272BOE BOC Ð=Ð=°,即可得出答案.【详解】解:∵OE 是BOD Ð的角平分线,∴DOE BOE Ð=Ð,∵3AOE AOD DOE BOC Ð=Ð+Ð=Ð,又∵AOD BOC Ð=Ð,∴3BOC DOE BOC Ð+Ð=Ð,∴2DOE BOC Ð=Ð,∴2BOE DOE BOC Ð=Ð=Ð,∵180DOE BOE BOC Ð+Ð+Ð=°,∴22180BOC BOC BOC Ð+Ð+Ð=°,解得:36BOC Ð=°,272BOE BOC \Ð=Ð=°,∴108EOC BOE BOC Ð=Ð+Ð=°,故C 正确.故选:C .【点睛】本题主要考查了角平分线的定义,根据已知条件得出2DOE BOC Ð=Ð,是解题的关键.3.(2022·全国·七年级课时练习)如图,AB 、CD 交于点O ,若170=°∠,射线OE 平分∠AOC ,那么∠EOD =__________度.【答案】42°##42度【分析】先由对顶角相等求出【详解】解:∵∠AOC =∠∴∠BOD =70°,∵:2:3BOE EOD ÐÐ=,Ð,OD(1)如图1,OE平分AOB(2)如图2,OE、OD分别平分ÐÐ(3)若OE、OD分别平分AOC 接填空).则EOD EOC Ð=Ð1122AOC =Ð-Ð1(2AOB BOC =Ð+Ð45=°;则1(2EOD AOC Ð=Ð1(360)2AOB °=-Ð1(36090)2°°=-(1)如图1,过点O 作射线OE ,使OE 为AOD Ð的角平分线,当Ð=COE (2)如图2,过点O 作射线OE ,当OE 恰好为AOC Ð的角平分线时,另作射线求EOF Ð的度数;(3)过点O 作射线OE ,当OC 恰好为AOE Ð的角平分线时,另作射线OF ,时,求BOD Ð的度数.考点三线段上动点计算问题考点四 角上动点计算问题1.(2022·河北·石家庄外国语学校七年级期中)如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ¢V ,点B ¢恰好落在CA 的延长线上,60BAC Ð=°,90C Ð=°,则旋转角BAB Т为( )A .60°B .100°C .120°D .150°【答案】C 【分析】直接根据180BAB BAC ¢Ð=°-Ð即可得出答案.【详解】解:∵将直角三角板ABC 绕顶点A 顺时针旋转到AB C ¢V ,点B ¢恰好落在CA 的延长线上,60BAC Ð=°,∴180********BAB BAC ¢Ð=°-Ð=°-°=°,故选:C .【点睛】本题考查了旋转角,题目比较简单,属于基础题.2.(2022·陕西·西安辅轮中学七年级期末)已知:O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .Ð=°Q,POB68\Ð=°-°,68POM nÐ=°Q,MON90\Ð=°-°-°=°-°,1809090AON n n\Ð-Ð=°-°-°-°=°;AON POM n n(90)(68)22当6890<<时,如图2,理由如下:nQ,Ð=°68POB\Ð=°-°,POM n68Q,Ð=°90MON\Ð=°-°-°=°-°,AON n n1809090\Ð+Ð=°-°+°-°=°;(90)(68)22AON POM n n故答案为:068n<<,6890<<.n【点睛】本题主要考查角的加减运算,能够熟练根据要求列角的等量关系是解题关键.。
考点08 线段与角的计算专项练习(解析版)
人教版2020——2021年七年级上册新题线段与角的计算专项练习1.(2020秋•福田区校级期中)如图,P是线段AB上任一点,AB=12厘米,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2厘米/秒,D点的运动速度为3厘米/秒,运动的时间为t秒.(1)若AP=8厘米.①运动1秒后,求CD的长;②当D在线段PB运动上时,试说明AC=2CD;(2)如果t=2秒时,CD=1厘米,直接写出AP的值是9或11厘米.【分析】(1)①先求出PB、CP与DB的长度,然后利用CD=CP+PB﹣DB即可求出答案.②用t表示出AC、DP、CD的长度即可求证AC=2CD;(2)当t=2时,求出CP、DB的长度,由于没有说明D点在C点的左边还是右边,故需要分情况讨论.【解答】解:(1)①由题意可知:CP=2×1=2(cm),DB=3×1=3(cm),∵AP=8cm,AB=12cm,∴PB=AB﹣AP=4(cm),∴CD=CP+PB﹣DB=2+4﹣3=3(cm),②∵AP=8,AB=12,∴BP=4,AC=8﹣2t,∴DP=4﹣3t,∴CD=DP+CP=2t+4﹣3t=4﹣t,1∴AC=2CD;(2)当t=2时,CP=2×2=4(cm),DB=3×2=6(cm),当点D在C的右边时,如图所示:由于CD=1cm,∴CB=CD+DB=7(cm),∴AC=AB﹣CB=5(cm),∴AP=AC+CP=9(cm),当点D在C的左边时,如图所示:∴AD=AB﹣DB=6(cm),∴AP=AD+CD+CP=11(cm),综上所述,AP=9或11,故答案为:9或11.2.(2020秋•聊城期中)如图所示,BC=6cm,BD=7cm,D是AC的中点,求AD的长.【分析】由点D是AC的中点,于是得到AD=CD=1cm,根据线段的和差即可得到结论.【解答】解:∵BC=6cm,BD=7cm,.2∴CD=BD﹣BC=1cm;∵点D是AC的中点,∴AD=CD=1cm.3.(2020秋•聊城期中)在平面内有三点A,B,C,(1)当A,B,C三点不共线时,如图,画直线AC,线段BC,射线AB,在线段AB上任取一点D(不同于点A,B),连接CD,并数一数,此时图中共有多少条线段.(2)当A,B,C三点共线时,若AB=25cm,BC=16cm,点E,F分别是线段AB,BC的中点,求线段EF的长.(画出图形并写出计算过程)【分析】(1)根据直线,射线,线段的概念,利用直尺即可作出图形;(2)根据线段的定义即可求解.【解答】解:(1)作图如下:此时图中共有6条线段;(2)解:有两种情况:①当点C在线段AB的延长线上时,如图1:因为E,F分别是AB,BC的中点,AB=25cm,BC=16cm,所以,3所以EF=EB+BF=+8=20.5(cm);②当点C在线段AB上时,如图2:根据题意,如图2,,,所以EF=BE﹣BF=12.5﹣8=4.5(cm),综上可知,线段EF的长度为20.5cm或4.5cm.4.(2020秋•香洲区校级期中)如图,点B是线段AC上一点,且AB=21cm,BC=AB.(1)试求出线段AC的长;(2)如果点O是线段AC的中点,请求线段OB的长.【分析】(1)由B在线段AC上可知AC=AB+BC,把AB=21cm,BC=AB代入即可得到答案;(2)根据O是线段AC的中点及AC的长可求出CO的长,由OB=CO﹣BC即可得出答案.【解答】解:(1)∵AB=21cm,BC=AB=7cm,∴AC=AB+BC=21+7=28(cm);(2)由(1)知:AC=28cm,∵点O是线段AC的中点,∴CO=AC=×28=14(cm),∴OB=CO﹣BC=14﹣7=7(cm).45.(2020秋•振兴区校级期中)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?你能用一句简洁的话描述你发现的结论吗?【分析】(1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN 即可求出MN的长度即可,(2)当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=(AC+BC)=7cm;(2)MN=a,∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=(AC+BC)=a;结论:无论点C在线段上移动到哪里,MN始终长为AB的一半.566.(2020秋•锦江区校级期中)如图,线段AB =8cm ,C 是线段AB 上一点,M 是AB 的中点,N 是AC 的中点.(1)AC =3cm ,求线段CM 、NM 的长;(2)若线段AC =m ,线段BC =n ,求MN 的长度(m <n 用含m ,n 的代数式表示).【分析】(1)求出AM 长,代入CM =AM ﹣AC 求出即可;分别求出AN 、AM 长,代入MN =AM ﹣AN 求出即可;【解答】解:(1)∵AB =8cm ,M 是AB 的中点,∴AM =AB =4cm ,∵AC =3cm ,∴CM =AM ﹣AC =4﹣3=1(cm );∵AB =8cm ,AC =3cm ,M 是AB 的中点,N 是AC 的中点,∴AM =AB =4cm ,AN =AC =1.5cm ,∴MN =AM ﹣AN =4﹣1.5=2.5(cm );(2)∵AC =m ,BC =n ,∴AB =AC +BC =m +n ,∵M 是AB 的中点,N 是AC 的中点,∴AM =AB =(m +n ),AN =AC =m ,∴MN =AM ﹣AN =(m +n )﹣m =n .7.(2020秋•铁西区期中)如图,已知点C ,D 在线段AB 上,且AC :CD :DB =2:5:3,AC =4cm,若点M是线段AD的中点,求线段BM的长.【分析】设AC=2xcm,CD=5xcm,BD=3xcm,由AC=4cm,得到2x=4,求得x=2,于是得到AC=2×2=4(cm),CD=5×2=10(cm),DB=3×2=6(cm),根据线段中点的定义得到结论.【解答】解:设AC=2xcm,CD=5xcm,BD=3xcm,∵AC=4cm,∴2x=4,解得:x=2,∴AC=2×2=4(cm),CD=5×2=10(cm),DB=3×2=6(cm),∴AD=AC+CD=4+10=14(cm),∵点M是线段AD的中点,∴DM=AD=14=7(cm),∴BM=BD+DM=6+7=13(cm).8.(2020秋•锦江区校级期中)(1)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,求线段MN的长度;(2)已知点C在线段BA的延长线上,点M,N分别是AC,BC的中点,设BC﹣AC=a,请根据题意画出图形并求MN的长度;(3)在(1)的条件下,动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?7【分析】(1)根据中点的定义、线段的和差,可得答案;(2)根据中点的定义、线段的和差,可得答案;(3)根据线段中点的性质,可得方程,根据解方程,可得答案.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)如图,∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CN﹣CM=(BC﹣AC)=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.9.(2020春•泰山区期末)如图,点B,D都在线段AC上,AB=12,点D是线段AB的中点,BD=3BC,求AC的长.8【分析】首先根据AB=12,点D是线段AB的中点,求出线段BD的长度是多少;然后根据BD=3BC,求出线段BC的长度是多少,进而求出AC的长是多少即可.【解答】解:∵AB=12,点D是线段AB的中点,∴BD=12÷2=6;∵BD=3BC,∴BC=6÷3=2,∴AC=AB+BC=12+2=14.10.(2020春•延庆区期中)已知:点M是直线AB上的点,线段AB=12,AM=2,点N是线段MB的中点,画出图形并求线段MN的长.【分析】本题主要考查两点间的距离,可分两种情况:①点M在点A左侧,②点M在点A右侧,结合中点的定义计算可求解.【解答】解:由于点M的位置不确定,所以需要分类讨论:①点M在点A左侧,如图1:∵AB=12,AM=2,∴MB=AB+AM=12+2=14,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=14,∴MN=×14=7;9②点M在点A右侧,如图2:∵AB=12,AM=2,∴MB=AB﹣AM=12﹣2=10,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=10,∴MN=×10=5,综上所述,MN的长度为5或7.11.(2020秋•锦江区校级期中)已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD,求∠BOD 的度数.【分析】根据角的和差、角平分线的定义,可得出答案.【解答】解:∵∠AOB=30°,∠COB=20°,10∴∠AOC=∠AOB+∠BOC=30°+20°=50°,∵OC平分∠AOD,∴∠AOC=∠COD=50°,∴∠BOD=∠BOC+∠COD=20°+50°=70°.12.(2019秋•两江新区期末)如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.【分析】设∠BOE=α°,通过互余、互补关系及角平分线的性质,用含α的代数式表示∠BOC与∠FOD,得方程求解即可.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,11∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.13.(2020秋•郁南县校级月考)将一副三角板中的含有60°角的三角板的顶点和另一块的45°角的顶点重合于一点O,绕着点O旋转60°的三角板,拼成如图的情况(OB在∠COD内部),请回答问题:(1)如图1放置,将含有60°角的一边与45°角的一边重合,求出此时∠AOD的度数.(2)绕着点O,转动三角板AOB,恰好是OB平分∠COD,此时∠AOD的度数应该是多少?(3)是否存在这种情况,∠AOC的度数恰好等于∠BOD度数的3倍.如果存在,请求出∠AOD的度数,如果不存在请说明理由.【分析】)(1)根据题意即可得到结论;(2)根据角平分线的定义得到∠BOD=∠COD=22.5°,于是得到结论;(3)设∠BOC=x,然后表示出∠AOC和∠BOD,再列出方程求解即可.12【解答】解:(1)由三角板知,∠AOB=60°,∠COD=45°,∴∠AOD=45°+60°=105°;(2)∵OB平分∠COD,∴∠BOD=,∴∠AOD=∠AOB+∠BOD=60°+22.5°=82.5°;(3)设∠BOC=x,则∠AOC=60°﹣x,∠BOD=45°﹣x,∵∠AOC=3∠BOD,∴60°﹣x=3(45°﹣x),解得x=37.5°,此时,∠AOD=∠COD+∠AOC=45°+(60°﹣37.5°)=45°+22.5°=67.5°.14.(2020秋•南岗区校级月考)已知:∠AOB和∠COD是直角.(1)如图1,当射线OB在∠COD内部时,请探究∠AOD和∠BOC之间的关系;(2)如图2,当射线OA,射线OB都在∠COD外部时,过点O作射线OE,射线OF,满足∠BOE=∠BOC,∠DOF=∠AOD,求∠EOF的度数;(3)如图3,在(2)的条件下,在平面内是否存在射线OG,使得∠GOF:∠GOE=2:3,若不存在,请说明理由,若存在,求出∠GOF的度数.13【分析】(1)根据已知条件,∠AOB和∠COD是直角,可得出∠BOD和∠AOC与∠BOC的关系式,再根据∠AOC与∠AOB和∠BOD列出等量关系,即可得出答案;(2)根据已知条件∠BOE=∠BOC,可设∠BOE=a,则∠BOC=3a,再根据周角的关系可得到∠AOD 的等量关系,再根据∠DOF=∠AOD,可得到∠AOF的等量关系式,由∠BOE、∠AOB和∠∠AOF 可列出等量关系,即可得到答案;(3)分两种情况,①当射线OG在∠EOF内部时,由∠GOF:∠GOE=2:3,可得出结果,当射线OG 在∠EOF外部时,由∠GOF:∠GOE=2:3,可得出结果.【解答】(1)∠AOD+∠BOC=180°.证明:∵∠AOB和∠COD是直角,∴∠AOB=∠COD=90°,∵∠BOD+∠BOC=∠COD,∴∠BOD=90°﹣∠BOC,同理:∠AOC=90°﹣∠BOC,∴∠AOD=∠AOB+∠BOD=90°+90°﹣∠BOC=180°﹣∠BOC,∴∠AOD+∠BOC=180°;(2)解:设∠BOE=a,则∠BOC=3a,14∵∠BOE+∠EOC=∠BOC,∴∠EOC=∠BOC﹣∠BOE=2a,∵∠AOD+∠COD+∠BOC+∠AOB=360°,∴∠AOD=360°﹣∠COD﹣∠BOC﹣∠AOB=360°﹣90°﹣3a﹣90°=180°﹣3a,∵∠DOF=∠AOD,∴∠DOF=(180°﹣3a)=120°﹣2a,∴∠AOF=∠AOD=(180°﹣3a)=60°﹣a,∴∠EOF=∠BOE+∠AOB+∠AOF=a+90°+60°﹣a=150°,∠EOF的度数为150°;(3)①当射线OG在∠EOF内部时,∴∠GOF:∠GOE=2:3,∴∠GOF=(∠GOF+∠GOE)=∠EOF=150°=60°;②当射线OG在∠EOF外部时,∵∠GOF:∠GOE=2:3,∴∠GOF=(∠GOF+∠GOE)=∠EOF=(∠DOF+∠COD+∠EOC)15=(120°﹣2a+90°+2a)=84°.综上所述,∠GOF的度数是60°或84°.15.(2019秋•岳阳楼区校级期末)如图1,已知∠AOB的内部有一条射线OC,OM、ON分别平分∠AOC 和∠BOC.(1)若∠AOB=120°,∠BOC=40°,求∠MON的度数.(2)若去掉(1)中的条件∠BOC=40°,只保留∠AOB=120°,求∠MON的度数.(3)若将∠AOB内部的射线OC旋转到∠AOB的外部,如图2,∠AOB=120°,求∠MON的度数,并请用一句话或一个式子概括你发现的∠MON与∠AOB的数量关系.【分析】(1)先利用角平分线的性质得到∠MOC=∠AOC,∠NOC=∠BOC,再利用∠MON=∠COM+∠CON计算;(2)根据角平分线的性质解答即可;(3)先利用角平分线的性质得到∠CON=∠AOC,∠COM=∠BOC,再利用∠MON=∠COM﹣∠CON计算,即可解答.【解答】解:(1)∵∠AOB=120°,∠BOC=40°,∴∠AOC=∠AOB﹣∠BOC=120°﹣40°=80°,∵OM、ON分别平分∠AOC和∠BOC,16∴∠MOC=,,∴∠MON=∠MOC+∠NOC=40°+20°=60°;(2)如图1,∵OM、ON分别平分∠AOC和∠BOC,∴∠MOC=,,∵∠AOC+∠BOC=∠AOB,∠AOB=120°,∴∠MON=∠MOC+∠NOC====60°;(3)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,所以∠MON=∠COM﹣∠CON=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)==×120°=60°,.16.(2019秋•西城区期末)对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON 内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.17(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是OB2;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.【分析】(1)由∠MON内含对称的定义可求解;(2)由∠MON内含对称的定义可得10°≤(x+10)°≤30°,可求解;(3)分两种情况讨论,利用∠MON内含对称的定义列出不等式,即可求解.【解答】解:(1)∵∠AOB1在∠MON的外部,∴射线OA、OB1组成的∠AOB1的平分线在∠MON的外部,∴OB1不是与射线OA关于∠MON内含对称的射线,∵∠B2OM=15°,∠AOM=10°,∴∠AOB2=25°,∴射线OA、OB2组成的∠AOB2的平分线在∠MON的内部,18∴OB2是与射线OA关于∠MON内含对称的射线,故答案为:OB2;(2)由(1)可知,当OC在直线OA的下方时,才有可能存在射线OA与射线OC关于∠MON内含对称,∵∠COM=x°,∠AOM=10°,∠MON=20°,∴∠AOC=(x+10)°,∠AON=30°,∵射线OA与射线OC关于∠MON内含对称,∴10°≤(x+10)°≤30°,∴10≤x≤50;(3)∵∠AOE=∠EOH=2∠FOH=20°,∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,若射线OE与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴20≤t≤30;若射线OF与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.17.(2019秋•渝中区校级期末)如图所示,AB为一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE:∠BOD=2:5,∠COE=80°,求∠EOB的度数.19【分析】设∠DOE=2x,根据题意得到∠BOE=3x,∠AOC=∠COD=80°﹣2x,再根据平角为180度,得到2×(80°﹣2x)+5x=180°,解得x=20°,即可得到∠BOE的度数.【解答】解:如图,设∠DOE=2x,∵∠DOE:∠BOD=2:5,∴∠BOE=3x,又∵OC是∠AOD的平分线,∠COE=80°,∴∠AOC=∠COD=80°﹣2x2×(80°﹣2x)+5x=180°,解得x=20°∴∠BOE=3x=3×20°=60°.故答案为:60°.18.(2019秋•龙岗区校级期末)如图所示,已知OB,OC是∠AOD内部的两条射线,OM平分∠AOB,ON 平分∠COD.(1)若∠BOC=25°,∠MOB=15°,∠NOD=10°,求∠AOD的大小;(2)若∠AOD=75°,∠MON=55°,求∠BOC的大小;(3)若∠AOD=α,∠MON=β,求∠BOC的大小(用含α,β的式子表示).【分析】(1)利用角平分线的定义可得∠AOB=2∠MOB=30°,∠COD=2∠NOD=20°,然后利用∠AOD=∠AOB+∠BOC+∠COD,可得结果;20(2)由角的加减可得∠AOM+∠DON的度数,从而求得∠BOM+∠CON,再利用∠BOC=∠MON﹣(∠BOM+∠CON)可得结果;(3)由OM与ON分别为角平分线,利用角平分线的定义得到两对角相等,根据∠BOC=∠MON﹣∠BOM﹣∠CON,等量代换即可表示出∠BOC的大小.【解答】解:(1)∵OM平分∠AOB,ON平分∠COD∴∠AOB=2∠MOB=30°,∠COD=2∠NOD=20°∴∠AOD=∠AOB+∠BOC+∠COD=30°+25°+20°=75°(2)∵∠AOD=75°,∠MON=55°,∴∠AOM+∠DON=∠AOD﹣∠MON=20°,∵∠BOM+∠CON=∠AOM+∠DON=20°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=55°﹣20°=35°,(3)∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM=∠AOB,∠CON=∠DON=∠COD,∵∠BOC=∠MON﹣∠BOM﹣∠CON=∠MON﹣∠AOB﹣∠COD=∠MON﹣(∠AOB+∠COD)=∠MON﹣(∠AOD﹣∠BOC)=β﹣(α﹣∠BOC)=β﹣α+∠BOC,∴∠BOC=2β﹣α.19.(2020春•道里区期末)如图,∠AOC=80°,OB是∠AOC的平分线,OD是∠COE的平分线.21(1)求∠BOC的度数;(2)若∠DOE=30°,求∠BOE的度数.【分析】(1)根据角平分线定义得出∠BOC=∠AOC,代入求出即可;(2)根据角平分线定义求出∠BOC和∠COE,再代入∠BOE=∠BOC+∠COE求出即可.【解答】解:(1)∵∠AOC=80°,OB是∠AOC的平分线,∴∠BOC=∠AOC=×80°=40°;(2)∵OB是∠AOC的平分线,OD是∠COE的平分线,∠AOC=80°,∠DOE=30°,∴∠BOC=∠AOC=40°,∠COE=2∠DOE=60°,∴∠BOE=∠BOC+∠COE=40°+60°=100°.20.(2020春•南岗区期末)已知,在∠AOB内部作射线OC,OD平分∠BOC,∠AOD+∠COD=120°.(1)如图1,求∠AOB的度数;(2)如图2,在∠AOB的外部和∠BOD的内部分别作射线OE、OF,已知∠COD=2∠BOF+∠BOE,求证:OF平分∠DOE;(3)如图3,在(2)的条件下,在∠COD内部作射线OM,当∠BOM=4∠COM,∠BOE=∠AOC 时,求∠MOF的度数.22【分析】(1)根据OD平分∠BOC,得∠BOD=∠COD,再由∠AOD+∠COD=120°,得∠AOD+∠BOD =120°,即∠AOB=120°;(2)根据OD平分∠BOC,得∠BOD=∠COD,再由∠COD=2∠BOF+∠BOE,得∠BOD=2∠BOF+∠BOE,可得∠DOF=∠BOD﹣∠BOF=2∠BOF+∠BOE﹣∠BOF=∠BOF+∠BOE=∠EOF,即可得出结论;(3)设∠AOC=10α,则∠BOE=11α,由∠AOB=120°得∠BOC=∠AOB﹣∠AOC=120°﹣10α,根据OD平分∠BOC,得∠COD=∠BOD=∠BOC=60°﹣5α,再由∠BOM=4∠COM,得∠COM=∠BOC=(120°﹣10α)=24°﹣2α,可得∠DOM=∠COD﹣∠COM=36°﹣3α,∠DOE=∠BOD+∠BOE=60°+6α,根据OF平分∠DOE可得∠DOF=∠DOE=(60°+6α)=30°+3α,由∠MOF =∠DOM+∠DOF可得结果.【解答】(1)解:∵OD平分∠BOC,∴∠BOD=∠COD,∵∠AOD+∠COD=120°,∴∠AOD+∠BOD=120°,即∠AOB=120°;(2)证明:∵OD平分∠BOC,∴∠BOD=∠COD,∵∠COD=2∠BOF+∠BOE,23∴∠BOD=2∠BOF+∠BOE,∴∠DOF=∠BOD﹣∠BOF=2∠BOF+∠BOE﹣∠BOF=∠BOF+∠BOE=∠EOF,∴OF平分∠DOE;(3)解:设∠AOC=10α,则∠BOE=11α,∵∠AOB=120°,∴∠BOC=∠AOB﹣∠AOC=120°﹣10α,∵OD平分∠BOC,∴∠COD=∠BOD=∠BOC=60°﹣5α,∵∠BOM=4∠COM,∴∠COM=∠BOC=(120°﹣10α)=24°﹣2α,∴∠DOM=∠COD﹣∠COM=(60°﹣5α)﹣(24°﹣2α)=36°﹣3α,∴∠DOE=∠BOD+∠BOE=(60°﹣5α)+11α=60°+6α,∵OF平分∠DOE,∴∠DOF=∠DOE=(60°+6α)=30°+3α,∴∠MOF=∠DOM+∠DOF=(36°﹣3α)+(30°+3α)=66°.21.(2020春•南岗区期末)如图,已知,∠AOB=120°,在∠AOB内画射线OC,∠AOC=40°.(1)如图1,求∠BOC的度数;(2)如图2,OD平分∠AOC,OE平分∠BOC,求∠DOE的度数.24【分析】(1)利用两个角的和进行计算即可;(2)根据角平分线的意义和等式的性质,得出∠DOE═∠AOB即可.【解答】解:(1)∵∠AOB=120°,∠AOC=40°,∴∠BOC=∠AOB﹣∠AOC=120°﹣40°=80°;(2)∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC,∵OE平分∠BOC,∴∠BOE=∠COE=∠BOC;∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=×120°=60°.25。
专题六线段和角的有关计算北师大版七年级数学上册
解:设原定时间是x h . 因为24 min =0.4 h,15 min=0.25 h, 所以15 ×(x - 0.4) = 12 × (x + 0.25 ). 解得x =3. 所以路程为15×( 3-0.4)=39 (km). 答:原定时间是3 h,出发地距该地的路程为 39 km.
应用四:工程问题 4. 政府准备修建一条公路,若由甲工程队单独修建 需3个月完成,每月耗资12万元;若由乙工程队单 独修建需6个月完成,每月耗资5万元. (1)甲、乙两工程队合作修建需几个月完成?
(I)(2)班有61名学生,他该选择哪个方案?
解:(Ⅰ) ∵方案一:61×20×0.8=976(元), 方案二:(61-7)×0.9×20=972(元), ∴选择方案二.
(II)(1)班班长思考一会儿说∶“我们班无论选 择哪种方案要付的钱是一样的.”问你知道(1)班有 多少人吗?
假设(1)班有x人. 根据题意得 x×20×0.8=(x-7)×0.9×20. 解得x=63. 答:(1)班有63人.
•
4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。
•
5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。
•
6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
(2)合作修建共耗资多少万元?
(12+5)×2=34(万元). 答:合作修建共耗资34万元.
应用五:数字问题 5. 一个两位数,十位上的数字比个位上的数字小4, 如果把十位上的数与个位上的数对调后,那么所得 的两位数比原来的两位数的2倍小12,求原来的两 位数.
七年级数学上册难点突破17线段中点或角的计数问题试题含解析新版北师大版
七年级数学上册难点突破:专题17 线段中点或角的计数问题一、线段中点问题类型一、与线段中点有关的计算1.如图,点C 在线段AB 上,AC =8 cm ,CB =6 cm ,点M ,N 分别是线段AC ,BC 的中点.(1)求线段MN 的长.(2)若C 为线段AB 上任一点,满足AC +CB =a cm ,其他条件不变,你能猜想MN 的长度吗?并说明理由.(第1题)解:(1)因为点M ,N 分别是线段AC ,BC 的中点,所以CM =12AC =12×8=4(cm ),CN =12BC =12×6=3(cm ). 所以MN =CM +CN =4+3=7(cm ).(2)MN =12a cm . 理由如下:同(1)可得CM =12AC ,CN =12BC , 所以MN =CM +CN =12AC +12BC =12(AC +BC)=12a cm .二、与线段中点有关的说明题2.画线段MN =3 cm ,在线段MN 上取一点Q ,使MQ =NQ ;延长线段MN 到点A ,使AN =12MN ;延长线段N M 到点B ,使BN =3BM.(1)求线段BM 的长;(2)求线段AN 的长;(3)试说明点Q 是哪些线段的中点.解:如图.(第2题)(1)因为BN =3BM ,所以BM =12MN. 因为MN =3 cm ,所以BM =12×3=1.5(cm ). (2)因为AN =12MN ,MN =3 cm , 所以AN =1.5 cm .(3)因为MN =3 cm ,MQ =NQ ,所以MQ =NQ =1.5 cm .所以BQ =BM +MQ =1.5+1.5=3(cm ),AQ =AN +NQ =3 cm .所以BQ =QA.所以点Q 是线段MN 的中点,也是线段AB 的中点.二、线段分点问题类型一、与线段分点有关的计算(设参法)3.如图,B ,C 两点把线段AD 分成2∶4∶3的三部分,M 是线段AD 的中点,CD =6 cm ,求线段MC 的长.(第3题)解:设AB =2k cm ,则BC =4k cm ,CD =3k cm ,AD =2k +4k +3k =9k(cm ).因为CD =6 cm ,即3k =6,所以k =2.所以AD =18 cm .又因为M 是线段AD 的中点,所以MD =12AD =12×18=9(cm ). 所以MC =MD -CD =9-6=3(cm ).类型二、线段分点与方程的结合4.A ,B 两点在数轴上的位置如图所示,O 为原点,A ,B 两点分别以1个单位长度/s ,4个单位长度/s 的速度同时向左运动.(1)几秒后,原点恰好在A ,B 两点正中间?(2)几秒后,恰好有OA∶OB=1∶2?(第4题)解:(1)设运动时间为x s ,依题意得x +3=12-4x ,解得x =1.8.所以1.8 s 后,原点恰好在A ,B 两点正中间.(2)设运动时间为t s .①点B 在原点右侧:12-4t =2(t +3),即t =1;②点B 在原点左侧:4t -12=2(t +3),即t =9.所以1 s 或9 s 后,恰好有OA∶OB=1∶2.三、线段条数的计数问题1.先阅读文字,再解答问题.(第1题)如图,在一条直线上取两点,可以得到1条线段,在一条直线上取三点可以得到3条线段,其中以A 1为端点的向右的线段有2条,以A 2为端点的向右的线段有1条,所以共有2+1=3(条).(1)在一条直线上取四个点,以A 1为端点的向右的线段有______条,以A 2为端点的向右的线段有______条,以A 3为端点的向右的线段有______条,共有______+______+______=______(条).(2)在一条直线上取五个点,以A 1为端点的向右的线段有______条,以A 2为端点的向右的线段有________条,以A 3为端点的向右的线段有________条,以A 4为端点的向右的线段有______条,共有________+________+________+________=______(条).(3)在一条直线上取n 个点(n≥2),共有________条线段.(4)乘火车从A 站出发,沿途经过5个车站方可到达B 站,那么A ,B 两站之间最多有多少种不同的票价?需要安排多少种不同的车票?(只考虑硬座情况)解:(1)3;2;1;3;2;1;6(2)4;3;2;1;4;3;2;1;10(3)n (n -1)2(4)从A 站出发,沿途经过5个车站到达B 站,类似于一条直线上有7个点,此时共有线段7×(7-1)2=21(条),即A ,B 两站之间最多有21种不同的票价.因为来往两站的车票起点与终点不同,所以A ,B 两站之间需要安排21×2=42(种)不同的车票.四、平面内直线相交所得交点与平面的计数问题2.为了探究同一平面内的几条直线相交最多能产生多少个交点,能把平面最多分成几部分,我们从最简单的情形入手,如图.(第2题)列表如下:(1)当直线条数为5时,最多有________个交点,可写成和的形式为________;把平面最多分成______部分,可写成和的形式为________.(2)当直线条数为10时,最多有________个交点,把平面最多分成________部分.(3)当直线条数为n 时,最多有多少个交点?把平面最多分成多少部分?解:(1)10;1+2+3+4;16;1+1+2+3+4+5 (2)45;56 (3)当直线条数为n 时,最多有1+2+3+…+(n -1)=n (n -1)2个交点; 把平面最多分成1+1+2+3+…+n =⎣⎢⎡⎦⎥⎤n (n +1)2+1部分.五、关于角的个数的计数问题3.有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,如图,如果过角的顶点A ,(1)在角的内部作一条射线,那么图中一共有几个角?(2)在角的内部作两条射线,那么图中一共有几个角?(3)在角的内部作三条射线,那么图中一共有几个角?(4)在角的内部作n 条射线,那么图中一共有几个角?(第3题)解:(1)如题图①,已知∠BAC,如果在其内部作一条射线,显然这条射线就会和∠BAC的两条边都组成一个角,这样一共就有1+2=3(个)角.(2)题图①中有1+2=3(个)角,如果再在题图①的角的内部增加一条射线,即为题图②,显然这条射线就会和图中的三条射线再组成三个角,即题图②中一共有1+2+3=6(个)角.(3)如题图③,在角的内部作三条射线,即在题图②中再增加一条射线,同样这条射线就会和图中的四条射线再组成四个角,即题图③中一共有1+2+3+4=10(个)角.(4)综上所述,如果在一个角的内部作n条射线,则图中一共有1+2+3+…+n+(n+1)=(n+1)(n+2)(个)角.2。
线段与角的运算
线段与角的运算线段与角是数学中常见的概念,它们在几何学以及其他领域中都有广泛的应用。
线段的运算主要包括长度的求解和线段间的比较,而角的运算则涉及角度的度量和角的运算法则。
一、线段的运算1. 长度的求解线段的长度可以通过两点间的距离公式来求解,该公式可以用勾股定理进行推导。
设线段的两个端点分别为A(x1, y1)和B(x2, y2),则线段AB的长度为:AB = √((x2 - x1)^2 + (y2 - y1)^2)以一条线段AB为例,若A(2, 3)和B(6, 7)是该线段的两个端点,则线段AB的长度为:AB = √((6 - 2)^2 + (7 - 3)^2) = √(4^2 + 4^2) = √322. 线段间的比较在线段比较中常用的是通过长度的大小来进行比较。
如果有线段AB和线段CD,若AB的长度大于CD的长度,则可以表示为AB > CD;若AB的长度小于CD的长度,则可以表示为AB < CD;若AB 的长度等于CD的长度,则可以表示为AB = CD。
二、角的运算1. 角度的度量角常用度或弧度来度量,其中一圆周对应的角称为一周角,记作360°或2π弧度。
根据角度的度量,我们可以进行角的各种运算。
2. 角的运算法则(1)角的加法两个角的和等于它们的顶点在同一直线上的另一角的度数。
例如,若角AOC = 70°,角COB = 50°,则角AOB = 120°。
(2)角的减法两个角的差等于它们的顶点在同一直线上的另一角的度数。
例如,若角AOC = 70°,角AOB = 40°,则角COB = 30°。
(3)角的乘法两个角的乘积等于它们的顶点在同一直线上的另一角的度数。
例如,若角AOB = 40°,角BOC = 30°,则角AOC = 70°。
(4)角的除法两个角的商等于它们的顶点在同一直线上的另一角的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段和角的有关计算
一、课前热身,引入课题
问题1:已知线段AB =5cm ,C 为线段AB 上一点,且BC =3cm ,则线段AC = cm 。
问题2:已知线段AB =5cm ,C 为直线AB 上一点,且BC =3cm ,则线段AC = cm 。
问题3:已知∠AOB =50°, OC 为∠AOB 内一射线,且∠BOC=30°,则∠AOC = °。
问题4:已知∠AOB =50°,∠BOC=30°,则∠AOC = °。
二、问题探究,探寻规律
例1 如图,已知线段AB=10cm ,C 为线段AB 上一点,M 、N 分别为AC 、BC 的中点,
(1) 若BC =4cm ,求MN 的长,
(2) 若C 为线段AB 上任一点,你能求MN 的长吗?请写出结论,并说明理由。
例2 如图,已知∠AOB =90°,OM ,ON 分别平分∠AOC 和∠BOC ,
(1) 若∠AOC =30°,求∠MON 的度数, (2) 若∠BOC =50°,求∠MON 的度数,
(3) 由(1)(2)你发现了什么,请写出结论,并说明理由。
例3 如图,已知线段AB=10cm ,C 为线段AB 延长线上一点,M 、N 分别为AC 、BC 的中点,
(1) 若BC =4cm ,求MN 的长, (2) 若BC =6cm ,求MN 的长,
(3) 若C 为线段AB 延长线上任一点,你能求MN 的长吗?若能,请求出MN 的长,并说明理由。
A
B
例4 如图,已知∠AOB =90°,OM ,ON 分别平分∠AOC 和∠BOC ,
(1) 若∠AOC =40°,求∠MON 的度数, (2) 若∠AOC =α,求∠MON 的度数, (3) 若∠BOC =β,求∠MON 的度数, (4) 由(1)(2)(3)的结果,你发现了什么规律,请写出结论,并
说明理由。
三、拓展提高、应用规律
例5 已知∠AOB =α,过O 任作一射线OC ,OM 平分∠AOC ,ON 平分∠BOC , (1) 如图,当OC 在∠AOB 内部时,试探寻∠MON 与α的关系;
(2) 当OC 在∠AOB 外部时,其它条件不变,上述关系是否成立?画出相应图形,并说明理由。
复习参考题
1.如图,AB:BC:CD =2:3:4,如果AB 中点M 和CD 中点N 的距离是24cm ,求AB ,BC ,CD 的长度
2.已知:如图,O 是直线AB 上一点,∠AOC=∠BOD ,射线OE 平分∠BOC ,∠EOD=42︒,求∠EOC 的大小
B
A O A M
B
C N
D C D E
3.1 2
AOB AOC AOD AOC BOC BOD
∠∠∠∠∠=∠如图,已知是的余角,是的补角,且,
AOC BOD
∠∠
求、的度数。
4.已知如图,AB=10,点C为线段AB上一点,点D、E分别为线段AB、AC的中点,ED=1,求线段AC的长。
E D C B
A
5.如右图,已知:C,D是AB上两点,且AB=20cm,CD=6cm,M是AD的中点,N是BC的中点,则线段MN的长为。
6.如图,从点O引出6条射线OA,OB,OC,OD,OE,OF,
且∠AOB=100︒,OF平分∠BOC,∠AOE=∠DOE,∠EOF=140︒,
求∠COD度数。
O A
B
C
D
7.如线段AB 和CD 的公共部分为BD ,且BD =3
1AB =5
1
CD ,线段AB 、CD 的中点E 、F 的距离为6cm ,求AB 、CD 的长.
8.点A 、B 在数轴上的位置如图所示,点P 是数轴上的一动点
(1)若PB=2,则点P 表示的数是 _____________;
(2)若点P 是AB 的三等分点,则点P 表示的数是 __________________
(3)是否存在点P ,使PA+PB 的值最小?若存在,则点P 在数轴的什么位置?PA+PB 的最小值是多少?
答____________________________________________________________; (4)若PB=2且点M 是AP 的中点,求线段AM 的长。
.
A
C
B D E F。