71 对于矩阵 (1)用幂法计算A的主特征值和对应的特征向量。
第7章矩阵特征值和特征向量的数值解
3 2.689 319 6.737 850 6.747 559 0.398 562 0.998 561 1.000 000
4 1.595 686 2.379 870 2.381 309 0.670 088 0.999 396 1.000 000
5 2.680 956 6.772 616 6.723 220 0.398 761 0.999 910 1.000 000
的常用方法是迭代每一步对向量 u (k ) 规范化。引入函数 max( u (k ) ),它表示取
向 量 u (k ) 中 按模 最大 的分 量,例 如, u (k ) =(2,-5,4)T,则 max( u (k ) )=-5,这 样
u(k) ma x(u
(k
)
)
的最大分量为
1,即完成了规范化。
7.1 幂法
(6) if mk m0 或 mk m0 (1 mk ) then 输
出 mk , vi (i 1,2,, n), 停止计算; (7) m0 mk ; k k 1; 返回第 3 步。
例 7.1.1 试用幂法求矩阵
7 3 - 2
A
3
4
-
1
- 2 -1 3
按模最大的特征值和相应的特征向量 ( 105 ) 。
k
u(k)
v(k)
0
0.4
0.5
0.6
0.666 667 0.833 33 1.000 00
1 2.833 335 7.000 06 7.166 673 0.395 349 0.976 744 1.000 00
2 1.604 652 2.372 096 2.395 352 0.669 902 0.990 291 1.000 000
幂法(指数迭代法)
幂法(指数迭代法) 幂法是通过迭代来计算矩阵的主特征值(按模最⼤的特征值)与其对应特征向量的⽅法,适合于⽤于⼤型稀疏矩阵。
基本定义 设A=(a ij)∈R n×n,其特征值为λi,对应特征向量x i(i=1,...,n),即Ax i=λi x i(i=1,...,n),且{x1,...,x n}线性⽆关。
任取⼀个⾮零向量v0∈R n,且v0≠0,构造⼀个关于矩阵A的乘幂的向量序列:v k=Av k−1=A2v k−2=A3v k−3=...=A k v0 称v k为迭代向量。
设特征值λi的前r个为绝对值最⼤的特征值(ppt中分为λ1强占优和⾮强占优,感觉没必要),即有:|λ1|=|λ2|=...=|λr|>|λr+1|≥...≥|λn| 由于{x1,...,x n} 线性⽆关,所以构成R n的⼀个基,于是v0能被表达为:v0=n∑i=1αi x i(且设α1...αr⾮全零) 由Ax i=λi x i:v k=Av k−1=...=A k v0=n∑i=1A kαi x i=n∑i=1λk iαi x i=λk1(r∑i=1αi x i+εk) 其中:εk=n∑i=r+1(λiλ1)kαix i 因为λ1最⼤,所以有|λiλ1|<1 (i=r+1,...,n),从⽽有:limk→∞(λiλ1)k=0 (i=r+1,...,n) 所以有:limk→∞εk=0limk→∞v k=limk→∞λk1(r∑i=1αi x i+εk)=limk→∞λk1(r∑i=1αi x i) 因为在上式中(r∑i=1αi x i)是固定项,可以看出,迭代到后期,v k+1和v k的各个元素有固定⽐值λ1,即:limk→∞(v k+1)i(v k)i=λ1 这样,收敛到主特征值后,还可另外计算它对应的⼀个特征向量(其实就是构成v0的前r项之和,⽽且只能算⼀个):lim k→∞v kλk1=r∑i=1αi x i 其中收敛速度由⽐值|λr+1λ1|决定,越⼩收敛越快。
(完整word版)数值计算方法期末复习答案终结版
一、 名词解释1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差,简称误差。
2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能表示其精确程度。
如果近似值*x 的误差限是1102n -⨯,则称*x 准确到小数点后n 位,并从第一个不是零的数字到这一位的所有数字均称为有效数字。
3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。
4。
向量范数:设对任意向量n x R ∈,按一定的规则有一实数与之对应,记为||||x ,若||||x 满足 (1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 的范数。
5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 的近似的方法。
6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值*x 的相对误差,记为*()r e x ,即**()()r e x e x x=7。
矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A .若||||A 满足 (1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ;(3)对任意两个n 阶方阵A ,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B称||||A 为矩阵A 的范数.8. 算子范数:设A 为n 阶方阵,||||•是n R 中的向量范数,则0||||||||||||maxx Ax A x ≠=是一种矩阵范数,称其为由向量范数||||•诱导出的矩阵范数,也称算子范数.9。
七、矩阵特征值的乘幂方法和反乘幂方法
1、用幂法计算矩阵A的主特征值和对应的特征向量。
function [k,lambda,Vk,Wc]=mifa(A,V0,jd,max1)lambda=0;k=1;Wc=1;jd=jd*0.1;state=1;V=V0;while((k<=max1)&(state==1))Vk=A*V;[m j]=max(abs(Vk));mk=m*sign(Vk(j));tzw=abs(lambda-mk);Vk=(1/mk)*Vk;txw=norm(V-Vk);Wc=max(txw,tzw);V=Vk;lambda=mk;state=0;if(Wc>jd)state=1;endk=k+1;endif(Wc<=jd)disp('迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:')elsedisp('迭代次数k已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc如下:')endVk=V;k=k-1;Wc;>> A=[1 -1;2 4];>> V0=[1,1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:k =33lambda =3.0000Vk =-0.50001.0000Wc =8.6919e-007>> [V,D]=eig(A)V =-0.7071 0.44720.7071 -0.8944D =2 00 3>> Dzd=max(diag(D))Dzd =3>> wuD=abs(Dzd-lambda)wuD =1.7384e-006>> wuV=V(:,2)./VkwuV =-0.8944-0.8944>> A=[1 2 3;2 1 3;3 3 6];>> V0=[1 1 1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:k =3lambda =9Vk =0.50000.50001.0000Wc =>> [V,D]=eig(A)V =0.7071 0.5774 0.4082-0.7071 0.5774 0.40820 -0.5774 0.8165D =-1.0000 0 00 -0.0000 00 0 9.0000>> Dzd=max(diag(D))Dzd =9>> wuD=abs(Dzd-lambda)wuD =>> wuV=V(:,2)./VkwuV =1.15471.1547-0.5774>> A=[1 2 2;1 -1 1;4 -12 1];>> V0=[1 1 1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc如下:k =100lambda =-0.0909Vk =1.00001.00001.0000Wc =1.9582>> [V,D]=eig(A)V =0.9045 -0.7255 -0.72550.3015 -0.2176 - 0.0725i -0.2176 + 0.0725i-0.3015 0.5804 - 0.2902i 0.5804 + 0.2902iD =1.0000 0 00 -0.0000 + 1.0000i 00 0 -0.0000 - 1.0000i>> Dzd=max(diag(D))Dzd =1.0000>> wuD=abs(Dzd-lambda)wuD =1.0909>> wuV=V(:,2)./VkwuV =-0.7255-0.2176 - 0.0725i0.5804 - 0.2902i(4)>> A=[-4 14 0;-5 13 0;-1 0 2];>> V0=[1 1 1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:k =22lambda =6.0000Vk =1.00000.7143-0.2500Wc =8.1744e-007>> [V,D]=eig(A)V =0 0.7974 0.66670 0.5696 0.33331.0000 -0.1994 -0.6667D =2.0000 0 00 6.0000 00 0 3.0000>> Dzd=max(diag(D))Dzd =6.0000>> wuD=abs(Dzd-lambda)wuD =8.1744e-007>> wuV=V(:,2)./VkwuV =0.79740.79740.79742、用原点位移反幂法计算矩阵A的特征值和对应的特征向量。
幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量(DOC)
数值计算解矩阵的按模最大最小特征值及对应的特征向量一.幂法1. 幂法简介:当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。
矩阵A 需要满足的条件为: (1) 的特征值为A i n λλλλ,0||...||||21≥≥≥>(2) 存在n 个线性无关的特征向量,设为n x x x ,...,,21 1.1计算过程:i ni i i u xx αα,1)0()0(∑==,有对任意向量不全为0,则有1111112211211111111011)()(...u u a u a u λu λαu αA x A Ax x k n n k n k k ni ik i i ni i i k )(k (k))(k αλλλλλα++++=+=+++≈⎥⎦⎤⎢⎣⎡+++======∑∑ 可见,当||12λλ越小时,收敛越快;且当k 充分大时,有1)1111)11111λαλαλ=⇒⎪⎩⎪⎨⎧==+++(k )(k k(k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。
2 算法实现.,, 3,,1 , ).5()5(,,,,||).4();max(,).3()(max(;0,1).2(,).1()()()(停机否则输出失败信息转置若转否则输出若计算最大迭代次数,误差限,初始向量输入矩阵βλβεβλβλε←+←<<-←←=←←k k N k y x Ay x x abs x y k N x A k k k3 matlab 程序代码function [t,y]=lpowerA,x0,eps,N) % t 为所求特征值,y是对应特征向量k=1;z=0; % z 相当于λy=x0./max(abs(x0)); % 规范化初始向量x=A*y; % 迭代格式b=max(x); % b 相当于βif abs(z-b)<eps % 判断第一次迭代后是否满足要求t=max(x);return;endwhile abs(z-b)>eps && k<Nk=k+1;z=b;y=x./max(abs(x));x=A*y;b=max(x);end[m,index]=max(abs(x)); % 这两步保证取出来的按模最大特征值t=x(index); % 是原值,而非其绝对值。
矩阵的特征值与特征向量
矩阵的特征值与特征向量矩阵是线性代数中一个重要的概念,而矩阵的特征值与特征向量则是矩阵理论中的基本概念之一,它们在科学计算、物理学、工程学等领域都有着广泛的应用。
本文将对矩阵的特征值与特征向量进行详细的介绍。
一、特征值与特征向量的定义在矩阵理论中,给定一个n阶方阵A,如果存在一个非零n维向量x,使得Ax与x线性相关,即满足下式:Ax = λx其中,λ为非零常数,称为矩阵A的特征值;而向量x称为矩阵A 对应于特征值λ的特征向量。
从定义中可以看出,特征向量并不唯一,一个特征值可以对应多个特征向量,且特征值和特征向量是成对存在的。
二、求解特征值与特征向量的方法求解一个矩阵的特征值与特征向量可以使用多种方法,其中比较常用的有特征值问题的特征多项式法和幂法。
1. 特征多项式法特征多项式法是一种较为直观的方法,其基本思想是通过解矩阵的特征方程来求解特征值。
对于一个n阶方阵A,其特征方程可以表示为:|A-λI| = 0其中,I是n阶单位矩阵,λ是一个未知量。
解特征方程可以得到矩阵A的所有特征值。
解特征方程得到特征值后,再带入Ax = λx中,可以求解对应的特征向量。
2. 幂法幂法是一种迭代的方法,通过不断迭代矩阵的幂次来逼近特征值和特征向量。
算法的基本思想是:(1)选择一个任意的非零向量x0;(2)计算x1 = Ax0;(3)计算x2 = Ax1;......(4)迭代到某一步,得到xk与x(k-1)之间的变化很小时,停止迭代。
在迭代过程中,向量x逐渐趋近于特征向量,而矩阵B = A^k中的最大特征值则逐渐趋近于特征值,因此可以通过幂法来估计特征值与特征向量。
三、特征值与特征向量的性质矩阵的特征值和特征向量具有多个重要性质。
1. 特征值的性质(1)特征值的个数等于矩阵的阶数n;(2)特征值的和等于矩阵的迹(即主对角线上元素之和);(3)特征值的积等于矩阵的行列式;(4)特征值具有可交换性,即两个矩阵AB和BA具有相同的特征值。
第四章矩阵特征值与特征向量的计算
λ2 − λ0 0.1 1 r= = = . λ1 − λ0 3.1 31
15
原点移位法使用简便, 原点移位法使用简便 不足之处在于λ0的选取十 分困难, 通常需要对特征值的分布有一大概的了解, 分困难 通常需要对特征值的分布有一大概的了解 并通过计算不断进行修改. 才能粗略地估计λ0, 并通过计算不断进行修改
B=A-λ0I -
为代选择参数. 其中λ0为代选择参数 设A的特征值为λ1, λ2, …, λn, 的特征值为 而且A, 则B的特征值为λ1-λ0, λ2-λ0, …, λn-λ0, 而且 B 的特征值为 的特征向量相同. 的特征向量相同
13
仍设A有主特征值 仍设 有主特征值λ1, 且 λ1 > λ2 ≥ L,
7
幂法的计算公式 任取初始向量x 任取初始向量 (0)=y(0)≠0, 对k=1, 2, …, 构造向量序列 {x(k)}, {y(k)}
x ( k ) = Ay ( k − 1 ) (k ) α k = max ( x ) (k ) x (k ) y = αk α k ≈ λ1
比值越接近1, 收敛速度越慢, 比值越接近0, 收敛越快. 比值越接近 收敛速度越慢 比值越接近 收敛越快 若A的主特征值λ1为实的m重根 即λ1= λ2=…= λm, 的 为实的 重根, 重根 又设A有 个线性 且 | λ1 |> |λm+1 | ≥ |λm+2 | ≥ … ≥ | λn |, 又设 有n个线性 无关的特征向量, 此时幂法仍然适用 幂法仍然适用. 无关的特征向量 此时幂法仍然适用
(α k +1 − α k ) ˆ αk = αk − α k + 2 − 2α k +1 + α k
矩阵特征值与特征向量的计算与应用
添加标题
矩阵特征值与特征向量的计算:Octave提供了计算矩阵特征值和特征向量的函数,如 `eig()`和`svd()`等,可以方便地进行矩阵分解和特征值计算。
添加标题
数值计算环境:Octave具有友好的用户界面和交互式命令行,支持脚本编写和函数封 装,方便用户进行数值计算和分析。
添加标题
应用领域:Octave广泛应用于科学计算、数据分析、控制系统等领域,尤其在处理大 规模矩阵运算和数值分析方面具有优势。
雅可比法
定义:雅可比法是一种求解矩阵特征值和特征向量的方法,通过迭代的方式逐步逼近矩阵的特 征向量。
适用范围:适用于实对称矩阵和非实对称矩阵。
计算步骤:通过迭代公式逐步计算特征向量,直到收敛。
优缺点:雅可比法具有简单易行、收敛速度快等优点,但需要选择合适的初始向量和迭代参数, 否则可能无法收敛或收敛到非特征向量。
矩阵特征值与特征向 量的计算与应用
XX,a click to unlimited possibilities
汇报人:XX
目录 /目录
01
点击此处添加 目录标题
04
矩阵特征值与 特征向量的计 算方法
02
矩阵特征值与 特征向量的基 本概念
05
矩阵特征值与 特征向量的应 用实例
03
矩阵特征值与 特征向量的应 用场景
06
矩阵特征值与 特征向量的计 算工具与软件
01 添加章节标题
02
矩阵特征值与特征向量 的基本概念
特征值与特征向量的定义
特征值:矩阵A中与单 位向量相乘后得到一个 与原向量共线的向量
特征向量:矩阵A中与 特征值对应的向量
特征值与特征向量的性质
特征值和特征向量是矩阵的重要属性,它们描述了矩阵对向量空间的作用。
数值方法课程设计幂法反幂法计算矩阵特征值和特征向量-附Matlab程序
矩阵的特征值与特征向量的计算摘要物理,力学,工程技术中的很多问题在数学上都归结于求矩阵特征值的问题,例如振动问题(桥梁的振动,机械的振动,电磁振动等)、物理学中某些临界值的确定问题以及理论物理中的一些问题。
矩阵特征值的计算在矩阵计算中是一个很重要的部分,本文使用幂法和反幂法分别求矩阵的按模最大,按模最小特征向量及对应的特征值。
幂法是一种计算矩阵主特征值的一种迭代法,它最大的优点是方法简单,对于稀疏矩阵比较合适,但有时收敛速度很慢。
其基本思想是任取一个非零的初始向量。
由所求矩阵构造一向量序列。
再通过所构造的向量序列求出特征值和特征向量。
反幂法用来计算矩阵按模最小特征向量及其特征值,及计算对应于一个给定近似特征值的特征向量。
本文中主要使用反幂法计算一个矩阵的按模最小特征向量及其对应的特征值。
计算矩阵按模最小特征向量的基本思想是将其转化为求逆矩阵的按模最大特征向量。
然后通过这个按模最大的特征向量反推出原矩阵的按模最小特征向量。
关键词:矩阵;特征值;特征向量;冥法;反冥法THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIXABSTRACTPhysics, mechanics, engineering technology in a lot of problems in mathematics are attributed to matrix eigenvalue problem, such as vibration (vibration of the bridge, mechanical vibration, electromagnetic vibration, etc.) in physics, some critical values determine problems and theoretical physics in some of the problems. Matrix eigenvalue calculation is a very important part in matrix computation. In this paper, we use the power method and inverse power method to calculate the maximum of the matrix, according to the minimum characteristic vector and the corresponding characteristic value.Power method is an iterative method to calculate the eigenvalues of a matrix. It has the advantage that the method is simple and suitable for sparse matrices, but sometimes the convergence rate is very slow. The basic idea is to take a non - zero initial vector. Construct a vector sequence from the matrix of the matrix. Then the eigenvalues and eigenvectors are obtained by using the constructed vector sequence.The inverse power method is used to calculate the minimum feature vectors and their eigenvalues of the matrix, and to calculate the eigenvalues of the matrix. In this paper, we use the inverse power method to calculate the minimum eigenvalue of a matrix and its corresponding eigenvalues. The basic idea of calculating the minimum characteristic vector of a matrix is to transform it to the maximumc haracteristic vector of the modulus of the inverse matrix. Then, according to the model, the minimum feature vector of the original matrix is introduced.Key words: Matrix ;Eigenvalue ;Eigenvector ;Iteration methods;目录1引言 (1)2相关定理。
数值分析习题集及答案
数值分析习题集及答案数值分析习题集(适合课程《数值⽅法A》和《数值⽅法B》)长沙理⼯⼤学第⼀章绪论1.设x>0,x的相对误差为δ,求的误差.2.设x的相对误差为2%,求的相对误差.3.下列各数都是经过四舍五⼊得到的近似数,即误差限不超过最后⼀位的半个单位,试指出它们是⼏位有效数字:4.利⽤公式求下列各近似值的误差限:其中均为第3题所给的数.5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少?6.设按递推公式( n=1,2,…)计算到.若取≈(五位有效数字),试问计算将有多⼤误差?7.求⽅程的两个根,使它⾄少具有四位有效数字(≈.8.当N充分⼤时,怎样求?9.正⽅形的边长⼤约为100㎝,应怎样测量才能使其⾯积误差不超过1㎝?10.设假定g是准确的,⽽对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,⽽相对误差却减⼩.11.序列满⾜递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多⼤?这个计算过程稳定吗?12.计算,取,利⽤下列等式计算,哪⼀个得到的结果最好?13.,求f(30)的值.若开平⽅⽤六位函数表,问求对数时误差有多⼤?若改⽤另⼀等价公式计算,求对数时误差有多⼤?14.试⽤消元法解⽅程组假定只⽤三位数计算,问结果是否可靠?15.已知三⾓形⾯积其中c为弧度,,且测量a ,b ,c的误差分别为证明⾯积的误差满⾜第⼆章插值法1.根据定义的范德蒙⾏列式,令证明是n次多项式,它的根是,且.2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的⼆次插值多项式.3.4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究⽤线性插值求cos x 近似值时的总误差界.5.设,k=0,1,2,3,求.6.设为互异节点(j=0,1,…,n),求证:i)ii)7.设且,求证8.在上给出的等距节点函数表,若⽤⼆次插值求的近似值,要使截断误差不超过,问使⽤函数表的步长应取多少?9.若,求及.10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数).11.证明.12.证明13.证明14.若有个不同实根,证明15.证明阶均差有下列性质:i)若,则;ii)若,则.16.,求及.17.证明两点三次埃尔⽶特插值余项是并由此求出分段三次埃尔⽶特插值的误差限.18.求⼀个次数不⾼于4次的多项式,使它满⾜并由此求出分段三次埃尔⽶特插值的误差限.19.试求出⼀个最⾼次数不⾼于4次的函数多项式,以便使它能够满⾜以下边界条件,,.20.设,把分为等分,试构造⼀个台阶形的零次分段插值函数并证明当时,在上⼀致收敛到.21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误差.22.求在上的分段线性插值函数,并估计误差.23.求在上的分段埃尔⽶特插值,并估计误差.i)ii)25.若,是三次样条函数,证明i);ii)若,式中为插值节点,且,则.26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可⽤式的表达式).第三章函数逼近与计算1.(a)利⽤区间变换推出区间为的伯恩斯坦多项式.(b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做⽐较.2.求证:(a)当时,. (b)当时,.3.在次数不超过6的多项式中,求在的最佳⼀致逼近多项式.4.假设在上连续,求的零次最佳⼀致逼近多项式.5.选取常数,使达到极⼩,⼜问这个解是否唯⼀?6.求在上的最佳⼀次逼近多项式,并估计误差.7.求在上的最佳⼀次逼近多项式.8.如何选取,使在上与零偏差最⼩?是否唯⼀?9.设,在上求三次最佳逼近多项式.10.令,求.11.试证是在上带权的正交多项式.12.在上利⽤插值极⼩化求1的三次近似最佳逼近多项式.13.设在上的插值极⼩化近似最佳逼近多项式为,若有界,证明对任何,存在常数、,使14.设在上,试将降低到3次多项式并估计误差.15.在上利⽤幂级数项数求的3次逼近多项式,使误差不超过.16.是上的连续奇(偶)函数,证明不管是奇数或偶数,的最佳逼近多项式也是奇(偶)函数.17.求、使为最⼩.并与1题及6题的⼀次逼近多项式误差作⽐较.18.、,定义问它们是否构成内积?19.⽤许⽡兹不等式估计的上界,并⽤积分中值定理估计同⼀积分的上下界,并⽐较其结果.20.选择,使下列积分取得最⼩值:.21.设空间,分别在、上求出⼀个元素,使得其为的最佳平⽅逼近,并⽐较其结果.22.在上,求在上的最佳平⽅逼近.23.是第⼆类切⽐雪夫多项式,证明它有递推关系.24.将在上按勒让德多项式及切⽐雪夫多项式展开,求三次最佳平⽅逼近多项式并画出误差图形,再计算均⽅误差.25.把在上展成切⽐雪夫级数.29.编出⽤正交多项式做最⼩⼆乘拟合的程序框图.30.编出改进FFT算法的程序框图.31.现给出⼀张记录,试⽤改进FFT算法求出序列的离散频谱第四章数值积分与数值微分1.确定下列求积公式中的待定参数,使其代数精度尽量⾼,并指明所构造出的求积公式所具有的代数精度:(1);(2);(3);(4).2.分别⽤梯形公式和⾟普森公式计算下列积分:(1); (2);(3); (4).3.直接验证柯特斯公式具有5次代数精度.4.⽤⾟普森公式求积分并计算误差.5.推导下列三种矩形求积公式:(1);(2);(3).6.证明梯形公式和⾟普森公式当时收敛到积分.7.⽤复化梯形公式求积分,问要将积分区间分成多少等分,才能保证误差不超过(设不计舍⼊误差)?8.⽤龙贝格⽅法计算积分,要求误差不超过.9.卫星轨道是⼀个椭圆,椭圆周长的计算公式是,这⾥是椭圆的半长轴,是地球中⼼与轨道中⼼(椭圆中⼼)的距离,记为近地点距离,为远地点距离,公⾥为地球半径,则.我国第⼀颗⼈造卫星近地点距离公⾥,远地点距离公⾥,试求卫星轨道的周长.10.证明等式试依据的值,⽤外推算法求的近似值.11.⽤下列⽅法计算积分并⽐较结果.(1)龙贝格⽅法;(2)三点及五点⾼斯公式;(3)将积分区间分为四等分,⽤复化两点⾼斯公式.第五章常微分⽅程数值解法1. 就初值问题分别导出尤拉⽅法和改进的尤拉⽅法的近似解的表达式,并与准确解相⽐较。
用幂法求解矩阵特征值和特征向量
x= -0.3930 -0.9774 0.2921 1.0000 第五题 A=[-1 2 1; 2 -4 1; 1 1 -6 ]; v0=[1 1 1]'; tol=1e-4; [lda,x]=mifa(A,v0,tol) lda = -6.4209
第4页
数值分析实验指导
x= -0.0463 -0.3746 000
( 1, 0, 1, 0, 0, 1 )T 105
1 21.30525 6 1.62139 x1 0.8724,0.5401,0.9973,0.5644,0.4972,1.0 T
第1页
数值分析实验指导
2 1 1 2 1 (3) A= 1 2 1 1 2 1 1 2 T 0 104 取 =( 1, 1, 1, 1, 1 ) 参考结果: 3.7321 3 4 2 1 1 3 1 5 (4) A= 3 1 6 2 4 5 2 1 T 2 取 0 =( 1, 1, 1, 1 ) , 10 。
第3页
数值分析实验指导
x= 0.5000 -0.8660 1.0000 -0.8660 0.5000 第四题 A=[2 1 3 4; 1 -3 1 5; 3 1 6 -2; 4 5 -2 -1 ]; v0=[1 1 1 1]'; tol=1e-2; [lda,x]=mifa(A,v0,tol) lda = -8.0136
下面再考虑主特征值 1 的的计算,用 (vk )i 表示 vk 的第 i 个分量,则
( x ) ( k 1 )i (vk 1 )i 1 1 1 i , (vk )i 1 ( x1 )i ( k )i
故
用幂法求矩阵的按模最大特征值例题
用幂法求矩阵的按模最大特征值例题上线性代数中,矩阵的特征值和特征向量是非常重要的概念。
特征值可以用于描述矩阵的特性和行为,而特征向量则可以帮助我们理解矩阵的变换规律。
而求解矩阵的特征值和特征向量是线性代数中的一个重要问题,其中幂法是一种常用的数值方法。
幂法是一种迭代算法,用于计算矩阵的按模最大特征值和对应的特征向量。
其基本思想是通过矩阵的幂次来逼近特征向量,从而得到特征值的近似值。
接下来,我们将通过一个具体的例题来介绍如何使用幂法求解矩阵的按模最大特征值。
例题:考虑矩阵\[A = \begin{bmatrix} 4 1 \\ 2 3 \end{bmatrix}\]我们的目标是使用幂法求解矩阵A的按模最大特征值和对应的特征向量。
步骤如下:1. 选择一个初始向量\(\mathbf{v}_0\),并将其归一化得到单位向量\(\mathbf{q}_0\)。
通常可以选择\(\mathbf{v}_0 = [1, 1]^T\)作为初始向量。
2. 计算矩阵A与单位向量\(\mathbf{q}_0\)的乘积:\(\mathbf{z}_1 = A\mathbf{q}_0\)。
3. 根据\(\mathbf{z}_1\)更新单位向量\(\mathbf{q}_1\):\(\mathbf{q}_1 = \frac{\mathbf{z}_1}{||\mathbf{z}_1||}\)。
4. 重复步骤2和步骤3,直到收敛或达到预定迭代次数。
接下来,我们通过代码来实现这个幂法求解矩阵的按模最大特征值的过程:```pythonimport numpy as np# 定义矩阵AA = np.array([[4, 1], [2, 3]])# 设定初始向量v = np.array([1, 1])# 设定迭代次数max_iter = 1000tolerance = 1e-6# 进行幂法迭代for i in range(max_iter):z = np.dot(A, v)v = z / np.linalg.norm(z)eigenvalue = np.dot(np.dot(v, A), v)if i > 0 and np.abs(eigenvalue - old_eigenvalue) < tolerance: breakold_eigenvalue = eigenvalueprint("按模最大特征值:", eigenvalue)print("对应的特征向量:", v)```通过运行上面的代码,我们可以得到矩阵A的按模最大特征值和对应的特征向量。
特征向量和特征值的求法
特征向量和特征值的求法在线性代数中,特征向量和特征值是非常重要的概念。
它们在矩阵的分析和应用中有着广泛的应用。
本文将介绍特征向量和特征值的定义、求法以及它们的应用。
特征向量和特征值的定义对于一个n阶方阵A,如果存在一个非零向量x,使得Ax=kx,其中k为一个常数,那么x就是A的一个特征向量,k就是A的对应的特征值。
特征向量和特征值是成对出现的,一个特征向量对应一个特征值。
特征向量和特征值的求法求解特征向量和特征值的方法有很多种,下面介绍两种常用的方法。
方法一:特征多项式法对于一个n阶方阵A,其特征多项式为f(λ)=|A-λI|,其中I为n阶单位矩阵。
求解特征值就是求解f(λ)=0的根。
求解特征向量就是将特征值代入(A-λI)x=0中,解出x。
方法二:幂法幂法是一种迭代方法,用于求解矩阵的最大特征值和对应的特征向量。
具体步骤如下:1. 任意选择一个非零向量x0作为初始向量。
2. 迭代计算xk+1=Axk/||Axk||,其中||Axk||为Axk的模长。
3. 当xk+1与xk的差距小于某个阈值时,停止迭代。
此时xk+1就是A的最大特征值对应的特征向量。
特征向量和特征值的应用特征向量和特征值在矩阵的分析和应用中有着广泛的应用。
下面介绍几个常见的应用。
1. 矩阵的对角化对于一个n阶方阵A,如果存在n个线性无关的特征向量,那么A 可以对角化,即存在一个对角矩阵D和一个可逆矩阵P,使得A=PDP^-1。
对角化后的矩阵D的对角线上的元素就是A的特征值。
2. 矩阵的相似性如果存在一个可逆矩阵P,使得A=PBP^-1,那么A和B是相似的。
相似的矩阵具有相同的特征值,但不一定具有相同的特征向量。
3. 矩阵的谱半径矩阵的谱半径是指矩阵的所有特征值的模长的最大值。
谱半径在控制论、信号处理等领域有着广泛的应用。
总结本文介绍了特征向量和特征值的定义、求法以及应用。
特征向量和特征值在矩阵的分析和应用中有着广泛的应用,掌握它们的求法和应用可以帮助我们更好地理解和应用线性代数的知识。
求矩阵的特征值与特征向量
(0) T
迭代条件:
y ( k ) y ( k 1)
1
计算结果:
1 mk
u1 y
k k x( k ) Ax( k 1) 11 u1 2k u 2 2 n nun )
k k 2 n k 1 1u1 2 u u n 2 n 1 1
xHale Waihona Puke k )5.1.2 幂法的计算公式
分三种情况讨论: (1) 1 为实根,
且 1 2
x 1 x
( k 1) i (k ) i
, u1 x
1 2
(k )
(2) 1 为实根, 且 1 2 及 2 3
xi( k 2 ) 1 ( k ) x i ( k 1) (k ) u1 x 1 x
给出初值x(0),按迭代公式计算:x(k+1)=Ax(k) 根据迭代序列各分量的变化情况求根:
若各分量单调变化(相邻两个向量的各分量之比 趋向于常数c),则按情况一处理。
若奇序列、偶序列的各个分量比趋于常数,则按 情况二处理。 若序列的各分量表现为其它情况,则结束。
5.1.3 幂法的实际计算公式
Ax( k 1) x( k ) , k 0,1,
实际计算公式:
(1)先对A作LU分解;( LU分解的要点: ??) (2)再解方程组: ( k 1) (k )
数值分析习题集及答案
数值分析习题集(适合课程《数值方法A 》和《数值方法B 》)长沙理工大学第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好?13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令 证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. ,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:7. 设[]2(),f x Ca b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2nn y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数). 11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使14. 设在[]1,1-上234511315165()128243843840x x x x x xϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005. 16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+.27.用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图.31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x 第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
matlab幂法求特征值和特征向量方法实现和函数表示
matlab幂法求特征值和特征向量方法实现和函数表示1. 引言在数值分析中,求解特征值和特征向量是一项重要而且经常出现的任务。
特征值和特征向量在矩阵和线性代数中有着广泛的应用,涉及到许多领域,如机器学习、信号处理、结构动力学等。
在matlab中,幂法是一种常用的求解特征值和特征向量的方法,同时也有对应的函数可以实现这一过程。
2. 幂法的原理幂法是一种迭代方法,它利用矩阵的特征值和特征向量的性质,通过不断地迭代计算,逼近矩阵的主特征值和对应的特征向量。
具体来说,假设A是一个n阶矩阵,它的特征值λ1>λ2≥...≥λn,并且对应着线性无关的特征向量v1,v2,...,vn。
如果选择一个任意的非零初始向量x0,并进行以下迭代计算:```x(k+1) = Ax(k) / ||Ax(k)||```其中,||.||表示向量的模长。
不断迭代计算后,x(k)将收敛到矩阵A的主特征向量v1上,并且相应的特征值即为A的主特征值λ1。
3. matlab实现幂法求解特征值和特征向量在matlab中,幂法的实现也非常简单。
可以使用自带的eig函数,该函数可以直接求解矩阵的特征值和特征向量。
使用方法如下:```[V,D] = eig(A)```其中,A为待求解的矩阵,V为特征向量矩阵,D为特征值矩阵。
利用eig函数,即可一步到位地求解矩阵的特征值和特征向量,非常简单方便。
4. 函数表示幂法求解特征值和特征向量的过程可以表示为一个matlab函数。
通过封装相关的迭代算法和收敛判据,可以方便地实现幂法的函数表示。
可以定义一个名为powerMethod的函数:```matlabfunction [lambda, v] = powerMethod(A, x0, maxIter, tol)% 初始化k = 1;x = x0;% 迭代计算while k <= maxItery = A * x;lambda = norm(y, inf);x = y / lambda;% 检查收敛性if norm(A * x - lambda * x) < tolbreak;endk = k + 1;endv = x;end```利用这个函数,就可以自己实现幂法求解特征值和特征向量的过程。
矩阵特征值与特征向量的计算
第九章矩阵特征值与特征向量的计算教学目的与要求:掌握用幂法和反幂法求矩阵特征值与特征向量的方法,了解 Jacobi 方法的适用范围和使用方法。
重点和难点:幂法和反幂法■ 教学内容:§1 幂法和反幂法一、幂法幂法的基本思想是给定初始向量(00≠x , 由迭代公式产生向量序列(1( (0,1, 2, +==L k k x Ax k {}(k x :上述向量称为迭代向量。
(1(0(22(0( (0 ⎧=⎪=⎪⎪⎨⎪=⎪⎪⎩LLLLk k x Ax x A x x A x 于是由上式得(1 ( 1(01111( λ++++k i u ======∑∑nnk k k k i i i i i i x Ax A x A a u a 11121112211[]λλλλλ+++⎛⎞⎛⎞=+++⎜⎟⎜⎟⎝⎠⎝⎠L k k k n n n a u a u a u设 ,由10a ≠1(2,3, , i i n λλ>=L 得 1 1lim 0λλ+→∞⎛⎞=⎜⎟⎝⎠k i i i k a u ,于是 121lim 0λλ+→∞=⎛⎞=⎜⎟⎝⎠∑k ni i i k i a u故只要 k 充分大,就有 (1111111121[]λλλ+++=⎛⎞=+≈⎜⎟⎝⎠∑nk k k i i i i 1λx a u a u a u 因此, 可以近似作为与(1 +k x 1λ相应的特征向量。
下面我们通过特征向量来计算特征值1λ。
用 ( k i x 表示的第 i 个分量,由于( k x (1 1111(111( ( λλ++≈k k i i k k i i x a x a u u ,所以 (11( (1,2, , λ+≈=L k i k ix i n x 上式这种由已知非零向量及矩阵 (0x A 的乘幂构造向量序列 kA {}( k x 用来计算矩阵 A 按模最大的特征值1λ与对应的特征向量的方法称为幂法。
例 1 用幂法的规范运算求矩阵的按模最大的特征值及对应的特征向量。
(完整word版)幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量(word文档良心出品)
数值计算解矩阵的按模最大最小特征值及对应的特征向量一.幂法1. 幂法简介:当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。
矩阵A 需要满足的条件为: (1) 的特征值为A i n λλλλ,0||...||||21≥≥≥>(2) 存在n 个线性无关的特征向量,设为n x x x ,...,,211.1计算过程:i ni i i u xx αα,1)0()0(∑==,有对任意向量不全为0,则有1111112211211111111011)()(...u u a u a u λu λαu αA x A Ax x k n n k n k k ni ik i i ni i i k )(k (k))(k αλλλλλα++++=+=+++≈⎥⎦⎤⎢⎣⎡+++======∑∑ 可见,当||12λλ越小时,收敛越快;且当k 充分大时,有1)1111)11111λαλαλ=⇒⎪⎩⎪⎨⎧==+++(k )(k k(k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。
2 算法实现.,, 3,,1 , ).5()5(,,,,||).4();max(,).3()(max(;0,1).2(,).1()()()(停机否则输出失败信息转置若转否则输出若计算最大迭代次数,误差限,初始向量输入矩阵βλβεβλβλε←+←<<-←←=←←k k N k y x Ay x x abs x y k N x A k k k3 matlab 程序代码function [t,y]=lpowerA,x0,eps,N) % t 为所求特征值,y是对应特征向量k=1;z=0; % z 相当于λy=x0./max(abs(x0)); % 规范化初始向量x=A*y; % 迭代格式b=max(x); % b 相当于βif abs(z-b)<eps % 判断第一次迭代后是否满足要求t=max(x);return;endwhile abs(z-b)>eps && k<Nk=k+1;z=b;y=x./max(abs(x));x=A*y;b=max(x);end[m,index]=max(abs(x)); % 这两步保证取出来的按模最大特征值t=x(index); % 是原值,而非其绝对值。
7.1对于矩阵(1)用幂法计算A的主特征值和对应的特征向量
01
0
的特征值问题。给定高次方程:
(1) x 3 x 2 5 x 3 0, (2) x 3 3 x 1 0, (3) x 41 x 3 1 0.
试用幂法求出方程的最大的根,或用QR算法求出高次方程的一切根。
第七章特征值与特征向量的数值求法73???????????????????????????????0100001000010121aaaaann可以化为求矩阵根的问题求多项式方程0111axaxaxxfnnn????????的特征值问题
第七章 特征值与特征向量的数值求法
数值试验题7
7.1 对于矩阵
0 1 2 3
A
2 3 1
3 0 2
0 1 3
1 2 0
,
(1)用幂法计算A的主特征值和对应的特征向量。当特征值有6 位小数稳定是迭代终止。
(2)以幂法迭代几次所得主特征值的近似值为位移量P,用反幂 法求接近于P 的特征值及对应的特征向量。
第七章 特征值与特征向量的数值求法
7.2 对于适当阶数(例如10~100阶)的矩阵
4 1
1 4 1
A
,
1 4 1
1Hale Waihona Puke 4用Jacobi方法求它的全部特征值和特征向量。
第七章 特征值与特征向量的数值求法
7.3 求多项式方程f ( x) x n an1 xn1 a1 x a0根的问题, 可以化为求矩阵
an1 1
an2 0
a1 0
a0 0
A
0
10
0
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试用幂法求出方程的最大的根,或用QR算法求出高次方程的一切根。
a n 1 1 A 0 0 an 2 a1 0 1 0 0 0 1 a0 0 0 0
的特征值问题。给定高次方程:
(1) x 3 x 2 5 x 3 0, ( 2) x 3 3 x 1 0, ( 3) x 41 x 3 1 0.
第七章 特征值与特征向量的数值求
4 1 A 1 4 1 1 4 1 , 1 4
用Jacobi方法求它的全部特征值和特征向量。
第七章 特征值与特征向量的数值求法
7.3 求多项式方程 ( x ) x n an1 x n1 a1 x a0根的问题 可以化为求矩阵 f ,
第七章 特征值与特征向量的数值求法
数值试验题7
7.1 对于矩阵
0 2 A 3 1 1 3 0 2 2 0 1 3 3 1 , 2 0
(1)用幂法计算A的主特征值和对应的特征向量。当特征值有6 位小数稳定是迭代终止。 (2)以幂法迭代几次所得主特征值的近似值为位移量P,用反幂 法求接近于P 的特征值及对应的特征向量。