超疏水材料发展趋势
材料科学中的超疏水表面技术
材料科学中的超疏水表面技术材料科学是一门重要的学科,它研究各种物质的性质、结构、制备和应用等方面。
在材料科学中,超疏水表面技术受到越来越多的关注和研究。
下面,我们将详细了解这一技术的原理、应用和未来发展方向。
一、超疏水表面技术的原理超疏水表面技术是指通过特殊方法处理表面,使得其具有极强的疏水性能,即液滴在表面上呈现出球形或半球形的情况。
这种技术的核心在于微纳级的表面结构和化学成分的优化。
其中,微纳级的表面结构是关键因素之一。
通过制备一定尺度的微纳级结构,可以增加表面的接触角,即水滴在表面上的接触角大于90度。
同时,微纳级结构还可以改变水滴在表面上的运动方式,使其更容易滚动或滑落。
这些特性使得表面具有更好的自清洁、防污和防腐蚀功能。
另一个重要的因素是化学成分。
通过在表面增加亲水基团或疏水基团,可以调节表面的亲疏水性。
通过控制不同基团的分布密度和类型,可以实现不同功能的超疏水表面。
二、超疏水表面技术的应用超疏水表面技术具有广泛的应用前景,尤其在以下几个方面。
1. 自清洁材料超疏水表面可以有效地减少物质在表面上的侵蚀和积垢,因此可以应用于自清洁材料的制备。
例如,建筑材料、汽车玻璃、纺织品等都可以通过超疏水表面技术实现自清洁效果。
2. 防水和防污涂层超疏水表面可以抵御水和油等液体的渗透和附着,因此可以用于制备防水和防污涂层。
例如,建筑物的屋顶和外墙、飞机的机身和车辆的表面等都可以通过超疏水涂层实现防水和防污效果。
3. 生物医学应用超疏水表面还可以应用于生物医学领域。
通过在医疗器械表面制备超疏水结构,可以防止细菌和其他微生物的附着,从而减少感染的发生。
同时,超疏水表面还可以在肝功能损伤等情况下,帮助肝脏细胞愈合和再生。
三、超疏水表面技术的未来发展在未来,超疏水表面技术将会得到进一步发展和应用。
其中,以下几个方面将是重点。
1. 细化表面结构随着技术的逐步提升,表面结构已经从微观范围向纳米级发展。
未来,细化表面结构将更加普遍,甚至可能到达亚微米级。
超疏水材料的制备与应用前景
超疏水材料的制备与应用前景哎呀,要说这超疏水材料,那可真是个神奇的玩意儿!我记得有一次,我去公园散步,正好赶上下雨。
我躲在亭子里避雨,看到旁边的荷叶上,水珠一颗颗滚落,荷叶却一点也没被打湿。
当时我就想,这大自然可真是奇妙,居然有这种神奇的现象。
后来我才知道,这其实就是超疏水现象的一种体现。
那什么是超疏水材料呢?简单来说,就是一种表面与水的接触角大于 150 度,滚动角小于 10 度的材料。
要制备这种神奇的材料,方法还真不少。
比如说,我们可以用化学气相沉积法。
这就好比是给材料穿上一层特殊的“防护服”,让水根本沾不上边。
还有溶胶凝胶法,就像是给材料做了一次“美容护理”,让它的表面变得超级光滑,水一碰到就溜走了。
咱们先来说说化学气相沉积法。
这个方法就像是在一个神奇的魔法室里操作一样。
把需要处理的材料放进一个充满特殊气体的容器里,然后通过加热或者其他方式,让这些气体在材料表面发生反应,形成一层薄薄的、具有超疏水性能的涂层。
这层涂层就像是给材料披上了一层隐形的雨衣,水滴滴上去,就像在荷叶上一样,咕噜噜地滚走了。
溶胶凝胶法呢,稍微有点复杂。
先得准备好一些特殊的化学溶液,然后把材料浸泡在里面。
这些溶液会慢慢地发生化学反应,在材料表面形成一层凝胶。
经过一系列的处理,比如干燥、加热等等,这层凝胶就会变成具有超疏水性能的涂层。
这个过程就像是给材料做了一个深度的 SPA,让它焕然一新,拥有了超级疏水的能力。
还有一种方法叫模板法。
这就像是用一个模具来塑造材料的形状和表面结构。
先准备一个具有特殊微观结构的模板,然后把材料填充进去或者在模板表面进行处理。
最后去掉模板,留下的就是具有超疏水表面结构的材料啦。
这种方法就像是做蛋糕的时候用模具做出各种形状一样,只不过我们做出来的不是蛋糕,而是超疏水材料。
除了这些方法,还有刻蚀法、自组装法等等,每一种方法都有它的独特之处。
那超疏水材料都能用来干啥呢?这用处可多了去了!比如说在建筑领域,我们可以把超疏水材料涂在建筑物的外表面,这样雨水就不会在墙壁上留下痕迹,建筑物也不容易受到雨水的侵蚀。
水利工程中新型超疏水材料应用前景展望
3、生物仿生材料:模仿自然界中的生物表面结构,制备出具有高透光性和 耐磨性的超疏水材料。
4、其他新型超疏水材料:如金属有机框架(MOFs)材料、多孔陶瓷材料等。
参考内容
引言
随着科学的不断发展,新型材料的技术和应用越来越受到人们的。其中,超 疏水材料作为一种具有特殊表面性能的材料,引起了广泛的兴趣。超疏水材料具 有防水性和透气性,在众多领域中具有广阔的应用前景。本次演示将详细介绍超 疏水材料的定义、应用状况以及市场前景进行分析。
参考内容二
摘要:超疏水材料是一种具有特殊表面性能的材料,具有极低的液体吸附性 和高度的水滑性。本次演示将综述超疏水材料的研究现状,包括材料选择、材料 性能及其应用前景。最后,本次演示将总结目前的研究成果和不足,并强调未来 研究的需求和方向。
引言:超疏水材料是一种新型的功能材料,其表面具有特殊结构,使得液体 在与材料表面接触后迅速滑落,具有极低的水接触角和极高的水滑性。这种材料 在防尘、防水、防污等领域具有广泛的应用前景。近年来,研究者们在超疏水材 料的制备与应用方面进行了大量研究,取得了一系列重要的研究成果。然而,超 疏水材料的研究仍面临一些挑战,需要进一步深入探讨。
水利工程中新型超疏水材料应 用前景展望
目录
01 引言
03
新型超疏水材料研究 进展
02 研究现状 04 参考内容
引言
水利工程是国民经济的基础设施之一,对于保障水资源安全、促进经济发展 具有重要意义。然而,随着全球气候变化和人类活动的加剧,水利工程面临着越 来越多的挑战。为了提高水利工程的效能和安全性,新型超疏水材料的应用逐渐 成为研究的热点。本次演示将介绍水利工程中新型超疏水材料的应用前景展望。
超疏水材料的定义和应用状况
2024年疏水涂层市场需求分析
疏水涂层市场需求分析1. 引言疏水涂层是一种可以在物体表面形成疏水特性的涂层材料,具有广泛的应用前景。
本文将对当前疏水涂层市场的需求进行分析,以帮助企业更好地了解市场需求,为产品研发和市场营销提供参考。
2. 市场规模根据市场调查数据显示,近年来疏水涂层市场需求呈现稳步增长的趋势。
疏水涂层在建筑、汽车、航空航天、电子设备等领域都得到了广泛应用,并且市场前景广阔。
3. 市场需求分析3.1 建筑领域需求建筑领域对疏水涂层的需求主要集中在外墙涂料以及屋顶涂层上。
疏水涂层可以有效防止水分侵入建筑物内部,提高建筑物的防水和抗腐蚀能力。
随着人们对建筑品质和安全的要求不断提高,疏水涂层市场在建筑领域的应用将持续增长。
3.2 汽车工业需求汽车制造业对疏水涂层的需求主要体现在汽车外饰和内饰方面。
疏水涂层可以保护汽车车身和内饰件免受雨水、灰尘等外界环境的侵害,延长汽车使用寿命,并提高车辆的外观质量。
3.3 航空航天领域需求在航空航天领域,疏水涂层的应用非常重要。
疏水涂层可以降低飞机表面的空气阻力,提高飞机的燃油效率。
同时,疏水涂层还能减少冰封对飞机表面的影响,提高飞行安全性。
3.4 电子设备需求随着电子设备的普及和应用范围的扩大,对疏水涂层的需求也在逐渐增加。
疏水涂层可以保护电子设备表面免受水分、尘埃、油污等的侵害,提高设备的使用寿命和可靠性。
4. 发展趋势分析疏水涂层市场的发展趋势主要体现在以下几个方面:•技术创新:目前,研究人员正在不断探索新的疏水涂层材料和制备方法,以提高疏水涂层的性能和稳定性。
•环保可持续:随着人们对环保意识的提高,市场对环保型疏水涂层的需求也在增加。
疏水涂层生产商应该注重绿色环保产品的研发,以满足市场需求。
•多领域应用:未来,疏水涂层的应用领域将进一步拓展,如电子设备、食品包装等领域都有潜力成为新的疏水涂层市场。
5. 结论当前疏水涂层市场呈现良好的增长态势,市场需求主要集中在建筑、汽车、航空航天和电子设备等领域。
超疏水材料发展趋势
江雷研究小组采用化学气相沉积法构建了表面具有纳米
亚微米的双微观结构的Zn0薄膜,测得这种薄膜的静态接触 角可高达164.3°, Zn0薄膜具有如此优良的疏水性能更进 一步印证了纳米亚微米的双微观结构是构建超疏水表面的必 要条件。该小组还通过反复实验探究了Zn0薄膜超疏水性与 亲水性之间的可逆转变。与此同时,他们还在石英基底上采 用化学气相沉积法构建了阵列碳纳米管(ACNT)膜测得该膜 表面的静态接触角为158.5°,如果对该膜用氟硅烷进行修 饰后,碳纳米管膜表现良好的超双疏性(既疏水又疏油),测 得油和水的静态接触角分别为161°和171°。
.
在微流体控制方面的应用
超疏水材料表面所具有的不浸润性及低表面粘滞力,使 其在微流体控制应用方面也有十分出色的表现。比如控制微 液滴的运动和流动,并以此制造微液滴控制针头,使得在实 验或者生产过程中对液体滴加计量能够精确控制,实验试剂 的添加将更得心应手。如果将这类技术运用到诸如静电喷涂 领域,比如用超疏水材料制造喷漆喷胶等的喷头,将会使喷 涂的液滴更加均匀,雾化效果更好,可以运用在对喷涂效果 有特殊要求的场合。另外如果以这类材料制作毛细管类的材 料,将会使液滴的虹吸量更少,可以制造体积更小精密度更 高的液体传输设备。
在倾斜表面,在水滴即将滚落下的临界状态下,水滴前部和尾部形 成两个不同的接触角θa和θr。接触角滞后值是这两个角的差值,可以用 于表征固体表面所呈现出的亲- 疏水状态。液滴的滚动特性随着该接触 角的滞后值的上升而减弱。
综上所述,固体与液体的相互浸润性的好坏及其所表现出的亲- 疏 水性是由接触角和滚动角两者共同表征。接触角越大和滚动角越小说明 材料表面的疏水性越强。
.
在船舶提高浮力方面的应用
据实验观察不论是在水面的滑行、跳跃还 是快速掠过水黾都既不会滑破水面更不会浸湿 腿部。因而也就被美誉为“池塘中的溜冰者”根 据这一现象科学家经过论证得出水水黾特殊腿 部微纳米结构和水面间形成的“空气垫”阻碍了 水黾的浸润,让它们实现了自然界版的“水上漂”。 据了解利用新型超疏水材料制成的超级浮力材 料河以使船表面具有超疏水性并因此在其表面 形成具体版的“空气垫” 改变船与水的接触状态 防止船体表面被水浸湿进而使其在水中运行的
浅谈超疏水材料的应用前景
浅谈超疏水材料的应用前景超疏水材料是一类具有极强防水性能的材料,能够在其表面形成高度疏水的特性。
超疏水材料的应用前景非常广泛,以下将从工业、医疗、环境和生活等方面进行探讨。
首先,在工业领域,超疏水材料可以应用于液体分离和油水分离。
传统的分离方法需要耗费大量的能源和资源,而超疏水材料可以通过其疏水特性实现液体分离,从而节省资源并减少环境污染。
例如,将超疏水材料应用于油水分离装置,可以实现高效分离,并减少水资源的浪费。
此外,超疏水材料还可以应用于自清洁涂料、防腐材料等领域,提高工业材料的耐用性和性能。
其次,在医疗领域,超疏水材料有着广泛的应用前景。
例如,超疏水材料可以应用于医疗器械表面涂层,具有阻止细菌和病毒附着的作用,减少交叉感染的风险。
此外,超疏水材料还可以应用于人工皮肤和人工器官的制造,提高其稳定性和生物相容性。
超疏水材料的应用可以大大提高医疗领域的卫生标准和手术效果。
再次,在环境领域,超疏水材料可以应用于净化水源和治理水污染。
水是人类生活的基本需求,而水资源的污染和紧缺已经成为全球面临的问题。
超疏水材料可以通过其高度疏水的特性,使污染物无法进入水体,从而实现水的净化和保护。
例如,超疏水材料可以应用于河流、湖泊的保护和水域生态的恢复工作。
最后,在生活领域,超疏水材料也有着广泛的应用前景。
例如,超疏水材料可以应用于建筑材料,如窗户、墙面等,具有自清洁和防尘的功能。
此外,超疏水材料还可以应用于家居用品,如锅具、餐具等,防止水和油污渗透,提高其使用寿命和卫生程度。
超疏水材料的应用可以为人们的生活提供便利和舒适。
综上所述,超疏水材料具有广泛的应用前景,包括工业、医疗、环境和生活等方面。
随着科学技术的发展和研究的深入,超疏水材料的性能和应用领域将不断拓宽,为人类社会带来更多的福祉。
超疏水材料的应用前景
超疏水材料的应用前景一、引言超疏水技术是一种具有特殊表面性质的新型技术,具有防水、防雾、防雪、防污染、抗氧化、防腐蚀和自清洁以及防止电流传导等重要特点,在科学研究和生产、生活等诸多领域中有极为广泛的应用前景。
超疏水技术对于建筑工业、汽车工业、金属行业等的防腐防锈及防污也很有现实意义。
特别是近年来的微电子系统、光电子元器件及纳米科技等高新技术的高速发展,给超疏水涂层的研究和应用于勃勃生机。
超疏水材料的研究以诗句“出淤泥而不染,濯清涟而不妖”为契机,以科学的手段向我们解释这一奇特的自然现象,荷花表面覆盖的天然超疏水薄膜,使得水滴聚集成股,顺势流下,冲刷着荷叶表面的淤泥,营造了出淤泥而不染的状态。
自然界中此类的例子层出不穷,例如:壁虎可以吸附墙面垂直爬行,水黾、蚊子、蜻蜓都能在水上行走而不给水面带来丝毫的涟漪,就是因为其足上天然的超疏水材料。
无论是基础研究还是在实际应用方面,浸润性都是影响固体表面性能的重要因素之一,其主要由几何结构和化学成分共同决定。
接触角和滚动角的大小是衡量表面浸润性最常规的标准。
所谓超疏水表面一般是指与表面稳定接触角大于150°,滚动接触角小于10°。
它在工农业生产和人们的日常生活中有着极其广阔的应用前景。
近年来的研究表明,基于对昆虫的水上实验观察,我们还可以使水上飞行成为可能,依据原理即是在船的底部与船身部分覆盖超疏水材料的薄膜,达到防污防腐的作用,从而减轻海水对船本身的挤压,减小前进的阻力,进而节省能源。
同时,室外天线上超疏水材料的使用,也可以对防积雪防冰冻等起到至关重要的作用。
二、超疏水材料的应用超疏水材料主要利用其自清洁、防污、防粘附等优越的特性,广泛应用于建筑业、工农业生产、管道运输、医疗卫生、国防军事等领域,下面分别作具体的应用分析。
(一)超疏水材料在建筑防污耐水等领域内的应用建筑物表面的污染主要是由于空气中微小颗粒的粘附和雨、雪等的覆盖污染。
伴随近年来城市化的发展进程逐渐加快,城市人口迅速增加,随之而来的城市污染加剧了酸雨等灾害的发生频率,大量年代久远的建筑物表面被侵蚀,例如乐山大佛面部被酸雨侵蚀的痕迹就很明显地显露出来。
聚乙烯醇材料超疏水改性现状及发展趋势
聚乙烯醇材料超疏水改性现状及发展趋势聚乙烯醇(PVA)材料由于具有亲水性,作为良好的环境友好型材料,在化工、生物医学、包装等各个领域有着重要的应用。
其使用形式主要是薄膜材料。
聚乙烯醇薄膜材料的优点突出,具有良好的透明度和光泽性、良好的气体阻隔性、极佳的强韧性、耐撕裂性和耐磨性等,并在一定条件下具有水溶性和生物降解性,是近年来发展迅速的新型绿色材料之一[2-6]。
但与此同时,亲水性也限制了其应用领域。
因此,近年来,对于聚乙烯醇材料尤其是聚乙烯醇薄膜表面的超疏水改性成为重要的研究方向。
1超疏水相关定义润湿指液体与固体发生接触时,液体附着在固体表面或渗透到固体内部的现象。
而润湿性常常被用于考察表面的疏水性能。
而润湿性的考察往往涉及到接触角的概念。
接触角是指液体/气体界面接触固体表面而形成的夹角,其是由三个不同界面相互作用的一个系统。
最常见的概念解说是,一个小液滴在一单位横向的固体表面,由杨格一拉普拉斯方程所定义的水滴的形状,接触角扮演了约束条件。
接触角模型见图1,其中θc指接触角,γLG指液-气界面表面接触角,γSL 指固-液界面表面接触角,γSG指固-气界面表面接触角。
一般而言,接触角的数值满足杨格-拉普拉斯方程,即γLG COSθC= θSG - γSL,θC也被称作杨氏接触角[7-8]。
但杨氏方程没有考虑到真实固体表面在一定程度上存在粗糙不平及化学组成不均一的情况,而事实上,接触角的数值并不唯一。
对某一固体表面上已达平衡的水滴纪念性加水或抽水来使接触角增大或减小,定义接触线开始前移时的临界接触角为前进角(θa),而接触线收缩时的临界接触角为后退角(θr),θ。
与θ,两者的差值称为接触角滞后。
真实的接触角数值则处于前进角和后退角的范围之间。
由于存在接触角滞后的现象,在倾斜的表面上,随着倾斜角的增大,在重力作用下,水滴前部分的接触角增加而后部分减小。
达到临界接触角时水滴会向下滑动,定义此时的倾斜角为滚动角a。
超疏水材料的应用前景
滚动角
上面所描述的接触角所表征的是水滴在水平面上的表现,而现实中 的平面往往不是水平的,更多的是斜面。水滴在倾斜表面上可能滚动或 停滞,这种状态可以用滚动角进行表征。所谓滚动角是指液滴在固体表 面开始滚动时的临界表面倾斜角度α( 如图所示) 。若液滴开始滚动的倾斜 角越小,表明此表面的超疏水性越好。
Baitai Qian等利用beck's位错刻蚀剂腐蚀Al, Zn, Cu多晶型金属, 再进行表面氟化从而制得最高接触角156°,滚动角和滞后角都很小 的超疏水表面。
化学刻蚀法制备超疏水表面有较好的选择性,并 且可以对复杂形状的物体表面进行刻蚀,效率高,成 本低,但也有不足,如过度刻蚀对表面造成损伤,破 坏基体材料的力学性能,刻蚀过程中会产生废液,需 要处理。
在国外许多铝、铁、碳钢等金属以及合金表面都会用超疏水膜 来修饰,以提高其防腐蚀性。该方法可有效地运用在如管道气体、液 体运输减阻等多方面对降低运输能耗提高输送效率有很大帮助未来 有较大的开发应用空间。
在织物及过滤材料方面的应用
采用静电纺丝法或者在材料表面进行处理可 制备具有超疏水性的各种微纳米结构纤维。这类 材料因具有超疏水性能,可用于制造防水薄膜、 疏水滤膜以及防水透气薄膜等,或者使织物因疏 水性能而具有防水、防污染、防灰尘等新功能。 如美国NANOTEX公司采用纳米技术开发的 Nano-care 功能型面料;德国巴斯夫( BASF) 公司 也将荷叶效应应用到纺织品上,开发出具有超疏 水自清洁功能的聚酯雨衣、雨篷及衣物面料等。
超疏水材料主要利用其自清洁、耐玷污等生物仿生方面 的特性进行开发和应用,在诸如军工、农业微流体毛细自灌 溉、管道无损运输、房屋建筑以及各种露天环境下工作的设 备的防水和防冰等方面有广阔的前景。具体有以下几方面。
超疏水表面材料的发展前景
超疏水表面材料的发展前景
在当今科技发展日新月异的时代,超疏水表面材料作为一种颇具潜力的材料,
正逐渐引起人们的广泛关注。
超疏水表面材料具有很多独特的性质,例如具有超强的防水性能、自清洁性和抗粘附性等特点,因此在各种领域都有着广泛的应用前景。
首先,超疏水表面材料在防水领域具有巨大的潜力。
传统防水材料存在着吸水、透水等问题,而超疏水表面材料因其特殊的表面结构,可以使水珠在其表面呈现出极端的接触角,从而实现强大的防水效果。
这种特性使得超疏水表面材料在建筑、航空航天等领域的防水工程中备受关注。
其次,超疏水表面材料的自清洁性能也为各种领域带来了新的解决方案。
在户
外广告牌、汽车表面等需要经常清洁的场合,采用超疏水表面材料能够减少清洁频率,节约人力物力,并且在一定程度上实现自我清洁,提高使用效率。
此外,超疏水表面材料的抗粘附性也为生物医学领域带来了革命性的突破。
通
过将超疏水表面材料应用于医疗器械、生物传感器等医疗设备上,可以有效减少细菌粘附,降低感染几率,提高医疗设备的安全性和可靠性。
总的来说,超疏水表面材料作为一种新型材料,具有广泛的应用前景。
未来随
着科技的不断进步和材料制备技术的不断完善,相信超疏水表面材料将在更多领域展现出其独特的优势和价值,为人类社会带来更多的便利和创新。
超疏水纳米材料
超疏水纳米材料超疏水纳米材料是一种具有特殊表面性质的材料,其表面能够实现超强的疏水效果。
这种材料在各种领域都有着广泛的应用前景,包括防水涂料、油污清洁、生物医学材料等。
本文将介绍超疏水纳米材料的特性、制备方法以及应用前景。
超疏水纳米材料的特性主要体现在其表面的疏水性能上。
其表面具有微纳米级的结构,使得水滴在其表面上呈现出极强的滚动性,水滴接触角通常大于150°,甚至可以达到160°以上。
这种超强的疏水性能使得水滴在接触材料表面时能够迅速滚动并带走表面上的污垢和杂质,从而实现自清洁效果。
同时,超疏水表面也能够有效抑制水分子和油分子的吸附,具有优异的防水和防油性能。
制备超疏水纳米材料的方法多种多样,常见的包括溶液法、化学气相沉积法、电化学沉积法等。
其中,溶液法是一种较为简单且成本较低的制备方法,通常通过在材料表面沉积纳米颗粒或纳米结构来实现超疏水效果。
化学气相沉积法则是利用气相反应在材料表面沉积纳米结构,具有较高的制备精度和成品质量。
电化学沉积法则是通过电化学方法在材料表面沉积纳米结构,具有制备工艺简单、易于控制的优点。
超疏水纳米材料在各个领域都有着广泛的应用前景。
在建筑领域,超疏水涂料可以应用于建筑外墙和屋顶,实现自清洁和防水效果,提高建筑物的耐久性和美观性。
在汽车领域,超疏水涂层可以应用于车身表面和车窗玻璃,有效防止雨水和污垢对车辆表面的侵蚀,提高行车安全性。
在生物医学领域,超疏水材料可以应用于医疗器械和医用纺织品,减少细菌和病毒的附着,提高医疗设备的安全性和舒适性。
总之,超疏水纳米材料具有独特的表面性能和广泛的应用前景,其制备方法多样,应用领域广泛。
随着科学技术的不断进步,相信超疏水纳米材料将在未来得到更广泛的应用和发展。
超疏水材料的应用前景
超疏水材料的应用前景超疏水材料的应用前景近年来,超疏水材料以其优越的性能,超强的疏水能力,在家电行业的应用前景越来越广泛,引起了该领域专家的极大关注。
本文总结归纳了超疏水材料的疏水机理和研究现状。
最后,对超疏水材料在家电行业的发展前景进行了展望。
落在荷叶上的雨滴不能安稳地停留在荷叶表面,而是缩聚成大大小小的水珠并滚落下来,水珠在滚动的过程中会带走叶片表面的灰尘。
因此荷叶在雨后会变得一尘不染,这种现象在生活中很常见,我们称之为“荷叶效应”。
因此,科研工作者从中获得灵感和启迪,对超疏水表面展开大量的研究。
近年来,有关超疏水表面的制备及其性能方面的研究,成为了材料科学领域的关注热点,发展极其迅速。
超疏水材料以其优越的性能,超强的疏水能力,在家电行业中有着越来越广泛的应用前景。
1 疏水机理1.1 超疏水表面的特征自然界中的很多植物叶片,如荷叶、粽叶、水稻叶、花生叶等,都具有超疏水能力。
通过扫描电镜观察,这些叶片的表面并不光滑,而是分布着很多微纳米凸起。
直径约为125 nm的纳米枝状结构分布于直径约为7 μm 的微米级的乳突结构上,形成分级构造。
同时,叶面还覆盖有一薄层蜡状物,其表面能很低。
当雨水落在叶片表面时,凸起间隙中的空气会被锁定,雨水与叶面之间形成一层薄空气层,这样雨水只与凸起尖端形成点接触,表面黏附力很弱。
因此水在表面张力作用下可缩聚成球状,并能在叶片表面随意滚动。
而灰尘与叶片也为点接触,表面黏附力很小,很容易被水珠带走。
在分级构造和蜡状物的联合作用下,叶片得以实现超疏水性和自清洁功效。
除了植物之外,自然界中的许多动物体表面也具有很强的疏水和自清洁功能,如鸭子羽毛、蝴蝶翅膀、水上蜘蛛、水黾、蝉等。
房岩等人发现蝴蝶翅膀表面较强的疏水性是翅膀表面微米级鳞片和亚微米级纵肋综合作用的结果。
通过高倍扫描电镜观察,蝴蝶翅膀表面由多个鳞片覆瓦状排列组成,鳞片表面由亚微米级纵肋及连接组成,形成阶层复合结构,鳞片的纵肋横截面均为规则的三角形。
超疏水涂层材料的发展前景
超疏水涂层材料的发展前景
在当今社会,涂层材料已经成为各行业中不可或缺的一部分,从建筑领域到航空航天领域,甚至到日常生活用品上,我们都可以看到涂层的身影。
而随着科技的不断发展,超疏水涂层材料也逐渐引起人们的关注。
超疏水涂层是一种特殊的表面涂层,可以使涂层表面具有极强的疏水性能,水滴接触到表面后会形成高度接触角,迅速滑落,同时可以防止污垢、细菌的附着,具有自清洁、抗污染等功能。
这种涂层广泛应用于航天器表面、建筑外墙、汽车表面、玻璃器皿等领域。
超疏水涂层材料的发展前景是十分广阔的。
首先,超疏水涂层可以提高材料的耐候性和抗腐蚀性能,延长材料的使用寿命。
在海洋工程、建筑领域中,具有抗海水腐蚀、抗大气污染的超疏水涂层尤为重要。
其次,超疏水涂层还有降耗节能的效果,在船舶表面应用超疏水涂层,可以降低船体摩擦阻力,提高航行速度,减少能源消耗。
再者,超疏水涂层还具有环保的特点,通过使用超疏水涂层,可以减少化学清洁剂的使用,降低环境污染。
未来,随着超疏水涂层材料的研究不断深入,相信其在航空航天、能源领域、医疗器械等方面会有更广泛的应用。
同时,超疏水涂层材料的生产工艺也在不断完善,其成本逐渐降低,使得超疏水涂层可以更广泛地应用到各个领域中去。
总的来说,超疏水涂层材料有着巨大的发展潜力和广阔的市场需求。
作为一种功能性强大的涂层材料,超疏水涂层将会在未来的科技发展中扮演越来越重要的角色,给我们的生活带来更多的便利和舒适。
超疏水功能界面的制备及应用
超疏水功能界面的制备及应用一、概述超疏水功能界面,也称为超疏水表面或荷叶效应表面,是一种具有特殊润湿性质的材料表面,其接触角大于150,滚动角小于10,显示出极强的水排斥性。
自然界中,如荷叶、水黾足等生物表面就具有这种超疏水特性,使得水滴在其表面难以停留,容易滚动。
近年来,随着纳米技术的飞速发展,人工制备超疏水功能界面的研究取得了显著的进展,其应用领域也日益广泛。
超疏水功能界面的制备通常涉及低表面能物质的修饰和微纳米结构的构建。
低表面能物质如氟硅烷、长链烷烃等可以通过降低表面张力,使水滴在材料表面难以铺展。
而微纳米结构则可以通过捕获空气,形成一层气垫,进一步增强表面的疏水性。
超疏水功能界面在多个领域具有广泛的应用前景。
在防水材料领域,超疏水表面可以有效提高材料的防水性能,延长使用寿命。
在自清洁材料领域,超疏水表面可以轻易去除表面的水滴和污渍,实现自清洁效果。
超疏水功能界面在油水分离、抗腐蚀、抗结冰、生物医学等领域也具有潜在的应用价值。
本文旨在综述超疏水功能界面的制备方法、性能表征以及应用领域,为相关领域的研究者提供参考和借鉴。
同时,本文还将探讨当前超疏水功能界面研究中存在的问题和挑战,展望未来的发展方向。
1. 阐述超疏水功能界面的概念及特点超疏水功能界面是一种特殊的表面结构,具有极高的水接触角和极小的滚动角,使得水滴在表面上难以润湿和附着。
这种独特的性质赋予了超疏水功能界面许多引人注目的特点和应用潜力。
超疏水功能界面的水接触角通常大于150,有时甚至接近180,这意味着水滴在接触表面时会迅速弹起,形成类似于荷叶上的“水珠”现象。
这种超疏水性来源于表面的微观结构和化学组成,通过调控表面的粗糙度和引入低表面能物质,可以实现从亲水到超疏水的转变。
超疏水功能界面具有自清洁效应。
由于水滴在超疏水表面上难以停留,因此灰尘、泥土等污染物在表面上的附着力也会被大大削弱。
当水滴滚落时,可以轻易地将这些污染物带走,从而实现表面的自清洁。
织物防水的发展趋势
织物防水的发展趋势
随着科技的不断进步,织物防水技术也在不断发展。
以下是一些织物防水的发展趋势:
1. 纳米涂层技术:纳米涂层技术是目前最先进的织物防水技术之一。
通过在纤维表面涂覆纳米级的涂层,可以在织物上形成一层保护膜,提高织物的防水性能。
2. 超疏水材料:超疏水材料具有非常高的接触角,使得水滴无法附着在织物表面,从而达到防水效果。
超疏水材料的研究正在不断深入,有望成为未来织物防水的主要技术。
3. 无缝技术:传统织物防水往往需要在接缝处加工胶水或密封剂,容易导致防水性能不均匀。
无缝技术可以通过热压、高频熔接等方法将织物无缝结合,提高防水性能。
4. 可持续发展:随着对可持续发展的需求增加,织物防水技术也在朝着环保、可回收的方向发展。
研究人员正致力于开发低污染、可降解的防水涂层和材料,以减少对环境的负面影响。
综上所述,织物防水的发展趋势是朝着更先进、更持久、更环保的方向发展。
随着科技不断进步和创新,人们可以期待未来织物防水技术的更大突破。
超疏水材料的制备与应用
超疏水材料的制备与应用一、本文概述超疏水材料,作为一种特殊的表面功能材料,具有优异的防水性能,能够在水珠接触表面时形成近乎完美的球形水珠并迅速滚落,从而实现超疏水的特性。
这种独特的性质使得超疏水材料在众多领域具有广泛的应用前景,如自清洁材料、防水涂层、油水分离、防雾防霜、生物医疗等。
本文旨在全面介绍超疏水材料的制备技术、性能表征以及实际应用情况,旨在推动超疏水材料领域的研究与发展,为相关领域的科研工作者和从业人员提供有益的参考。
在制备技术方面,本文将详细介绍超疏水材料的制备原理、方法以及影响因素,包括物理法、化学法、模板法等。
同时,还将对制备过程中的关键问题,如表面粗糙度的控制、低表面能物质的选择等进行深入探讨。
在性能表征方面,本文将介绍超疏水材料的主要性能指标,如接触角、滚动角、耐磨性、耐腐蚀性、稳定性等,并阐述相应的测试方法和评价标准。
在实际应用方面,本文将重点介绍超疏水材料在自清洁、防水涂层、油水分离、防雾防霜、生物医疗等领域的应用案例和优势。
还将对超疏水材料的应用前景和挑战进行分析和展望。
本文将全面系统地介绍超疏水材料的制备技术、性能表征以及实际应用情况,为相关领域的科研工作者和从业人员提供有益的参考和借鉴。
二、超疏水材料的理论基础超疏水材料的理论基础主要源自固体表面的润湿理论,特别是与接触角和滚动角等关键参数紧密相关。
在理想情况下,当水滴与固体表面的接触角大于150°并且滚动角小于10°时,该材料被认为是超疏水的。
这一特性通常归因于材料表面的微纳米结构和低表面能物质的存在。
表面粗糙度对于实现超疏水性至关重要。
微纳米结构通过增加固液接触界面的复杂性,使得水滴难以在材料表面铺展。
这些微纳米结构还能够捕获空气,形成一层空气垫,从而进一步减少固液接触面积,增强疏水效果。
另一方面,表面能也是影响润湿行为的关键因素。
低表面能物质能够降低固体表面对水滴的粘附力,使得水滴更容易在材料表面滚动而非停留。
超疏水材料的应用前景
超疏水材料的应用前景超疏水材料技术是涉及生物、物理、化学以及材料等多学科交叉的前沿技术。
21世纪以来,在表面科学、仿生学以及多领域学科的交叉融合推动下,新型超疏水材料层出不穷,其优秀的润湿特性和广泛的应用前景,引起了各国的广泛关注。
2017年4月,在美国海军研究署等机构支持下,密歇根大学开发出新型自愈型超疏水涂层材料。
该材料拥有百倍于同类涂料的耐久性,可为舰船、飞机和战车提供兼具耐久性的防水、防结冰、自清洁能力。
一、超疏水材料技术概述超疏水性是一种特殊的润湿性,一般指水滴在固体表面呈球状,接触角大于150度,滚动角小于10度。
材料表面能(材料表面分子比内部分子多出的能量)越低,疏水性越好,且当低表面能材料具有微观粗糙结构时,水滴与材料之间会形成一层空气膜,阻碍水对材料表面的润湿,从而形成超疏水状态。
构造超疏水表面有两种方法,一是在疏水材料表面上构建微观粗糙结构,二是用低表面能物质对微观粗糙表面进行改性。
材料的超疏水性越好,水滴在材料表面上越接近球形,与材料的接触面积越小,越易从材料表面滑落。
此外,水滴在超疏水材料表面滚落时可带走污染物,使材料表面保持清洁。
因此超疏水材料具有防水、防腐蚀、防冰以及防附着等多重特性。
二、国外超疏水材料技术进展1. 多学科交叉融合成为超疏水材料技术发展的主要动力自然界中的动植物表皮具有特殊的微观结构和特殊的润湿性能,为构造超疏水材料提供了启示,如模拟荷叶结构可以获得超疏水性能、模仿鲨鱼皮结构可以获得水下减阻性能等。
仿生材料的研究,为超疏水材料的持续进步提供了动力。
2017年5月,德国弗莱堡大学开发出一种具有多层结构的自愈型超疏水涂层。
这种超疏水材料表面具有类似蛇褪去外皮的特性,可实现表面受损后超疏水性的自愈,为新型耐久自愈型超疏水材料的研发提供了新思路。
此外,增材制造、材料计算与模拟仿真等技术的应用,大大简化了材料表面微结构的设计、构造与控制难度,使超疏水材料的制备快速精准,结构和性能可控,实现了材料制备工艺、结构、性能等参量或过程的定量描述,缩短了材料研制周期,降低了研发成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在建筑防污耐水等领域内的应用
建筑物表面的污染主要是由于空气中微小颗粒的粘 附和雨、雪等的覆盖污染。超疏水材料因其独特的疏水
性,在建筑物内外墙、玻璃及金属框架等的防水、防雪
和耐沾污等方面均有广泛的应用前景,可大大降低建筑 物的清洁及维护成本,使得建筑物能长久保持亮丽的外
观。目前,超疏水表面材料在建筑防污染方面的产品主
综上所述,固体与液体的相互浸润性的好坏及其所表现出的亲- 疏 水性是由接触角和滚动角两者共同表征。接触角越大和滚动角越小说明 材料表面的疏水性越强。
三、超疏水材料的制备方法
0 1
模板法
0 2
化学刻蚀法
0 3
电化学方法
0 4
化学气相沉积法
0 5
其他方法
模板法
这种方法是一种来自于化学仿生学中制备纳米材料的方法,它的基本 思想就是以某种粗糙的微纳米结构固体表面为基底,然后将易软化材料在 它的表面固化,之后就能得到和基底表面反向印相信息的粗糙纳米结构;有 的也以有机分子或它的自组装体系作为模板剂,在某种溶剂中,经过范德 华力、离子键与氢键等协同作用下,模板剂就会对游离在溶剂中有机前躯 体进行一定的引导,这样就能得到有序具有纳米结构的粒子或薄膜。江雷 等用模板法,合成了聚乙烯醇和聚丙烯腈的纳米纤维序列膜,就是采用多 孔氧化铝作为模板,这种纳米纤维序列膜接触角值能高达173.8°。 金美花等也是利用多孔氧化铝为模板,有机高分子聚合物在多孔氧化 铝的模板中孔道的内壁上附着,得到了聚苯乙烯的纳米阵列薄膜,这种膜 的静态接触角达到162 °。
江雷研究小组采用化学气相沉积法构建了表面具有纳米 亚微米的双微观结构的Zn0薄膜,测得这种薄膜的静态接触 角可高达164.3°, Zn0薄膜具有如此优良的疏水性能更进 一步印证了纳米亚微米的双微观结构是构建超疏水表面的必 要条件。该小组还通过反复实验探究了Zn0薄膜超疏水性与 亲水性之间的可逆转变。与此同时,他们还在石英基底上采 用化学气相沉积法构建了阵列碳纳米管(ACNT)膜测得该膜 表面的静态接触角为158.5°,如果对该膜用氟硅烷进行修 饰后,碳纳米管膜表现良好的超双疏性(既疏水又疏油),测 得油和水的静态接触角分别为161°和171°。
化学刻蚀法制备超疏水表面有较好的选择性,并 且可以对复杂形状的物体表面进行刻蚀,效率高,成 本低,但也有不足,如过度刻蚀对表面造成损伤,破 坏基体材料的力学性能,刻蚀过程中会产生废液,需 要处理。
电化学方法
X.Zhang等采用电化学方法,聚合物电解质对硅片表面 进行修饰以后,基底硅片表面上覆盖了大量金的树枝状分形 结构,制得表面具有较大接触角及较小滚动角,这说明了被 金树枝状结构覆盖的表面具有非常好的超疏水性能。 江雷等采用电纺技术,聚苯乙烯作为反应物,构建了一 种类似某些生物的微纳米双微观的的复合结构,生成了一层 超疏水膜。SEM扫描照片中观察到生成的纳米纤维将多孔微 球“捆绑”住,这样不仅提高了结构的稳定性,而且也模拟 了荷叶的复合结构。
接触角
接触角是表征固体表面疏水性优劣的指标之一, 通常情况下,在不完全润湿性表面会形成一个冠形
液滴,如图所示。
当气、液、固三相接触达到平衡时,在三相接 触的公共点处作液一气界面的切线,我们把此切线 与固一液界面的夹角称为接触角 (θ)。如果固体表面 的接触角 θ < 90 °,此表面描述为亲水性表面 , 90°<θ<150°为疏水性表面,150°<θ<175°为超
化学气相沉积法
该方法制备成本比较高,特殊材料的制备可以运用气相沉积法。 Yoshimitsu Z等采用化学气相沉积法,使表而粗糙度在9.4~60.8nn 范围内,然后于其表面上用氟硅烷低表面能物质进行修饰,得到了 透明的超疏水薄膜。该小组在实验过程中还观察到超疏水薄膜的表 面不仅具有相同的聚集方式而且化学成分也很类似,改变超疏水表 面物理形貌微构造时,该表面的静态接触角有着很大的差异。因此 我们能从中得出结论,尽管粗糙度相似的固体表面,如果其表面形 貌微构造存在很大的差异时,那么疏水性能也会因此差别较大。为 此,研究人员对超疏水表面的物理形貌与微观构造进行了大量的实 验,并试图模拟生物表面的形貌与微观构造,以期能获得超疏水性 能优异的固体表面。
要是涂层及防护液等,如中科赛纳技术有限公司采用纳 米合成技术制备的纳米超疏水自清洁玻璃涂层。该涂层
一般为无色透明、无毒、无污染牢固度高且具有自清洁、
防结冰、抗氧化等功能。德国STO 公司同样根据荷叶 效应原理开发了有机硅纳米乳胶漆。江苏大学吉海燕、
陈刚等采用蚀刻法处理玻璃也制备了超疏水玻璃表面。
在船舶提高浮力方面的应用
疏水表面, I75 ° < θ <180 °为极端疏水表面,而当
θ =180 °的表面称之为完全疏水表面。因此,用接 触角就能比较直观、方便的来描述固体表面疏水性
的优劣。
滚动角
上面所描述的接触角所表征的是水滴在水平面上的表现,而现实中 的平面往往不是水平的,更多的是斜面。水滴在倾斜表面上可能滚动或 停滞,这种状态可以用滚动角进行表征。所谓滚动角是指液滴在固体表 面开始滚动时的临界表面倾斜角度α( 如图所示) 。若液滴开始滚动的倾斜 角越小,表明此表面的超疏水性越好。 在倾斜表面,在水滴即将滚落下的临界状态下,水滴前部和尾部形 成两个不同的接触角 θa和θr。接触角滞后值是这两个角的差值,可以用 于表征固体表面所呈现出的亲- 疏水状态。液滴的滚动特性随着该接触 角的滞后值的上升而减弱。
模板法不需要复杂加工设备,模板可以使用多次,但也 有不足之处,如复杂形状的表面用模板法制备较困难且效率 低;用PDMS复型得到的软模板力学性能不佳,在使用过程中 会出现坍塌、撕裂或粘连等现象,复型难以达到精确控制, 无法复制精度小于50nm的微细结构。目前,用模板法制备 超疏水表面以聚合物超疏水表面为主,实验结果仍停留在实 验室阶段,制备大面积超疏水表面的工作仍有一定难度。
也将荷叶效应应用到纺织品上,开发出具有超疏 水自清洁功能的聚酯雨衣、雨篷及衣物面料等。
在微流体控制方面的应用
超疏水材料表面所具有的不浸润性及低表面粘滞力,使 其在微流体控制应用方面也有十分出色的表现。比如控制微 液滴的运动和流动,并以此制造微液滴控制针头,使得在实 验或者生产过程中对液体滴加计量能够精确控制,实验试剂 的添加将更得心应手。如果将这类技术运用到诸如静电喷涂 领域,比如用超疏水材料制造喷漆喷胶等的喷头,将会使喷 涂的液滴更加均匀,雾化效果更好,可以运用在对喷涂效果 有特殊要求的场合。另外如果以这类材料制作毛细管类的材 料,将会使液滴的虹吸量更少,可以制造体积更小精密度更 高的液体传输设备。
其他方法
除了上述方法之外,还有相分离法、溶胶—凝胶 法、层层组装法、溶液浸泡法等。
四、超疏水材料的应用
在超疏水表面及材料具有广阔应用前景的驱动下,国内 外研究人员都做了大量的研究工作。下面将具体探讨超疏水 表面及材料是如何通过对表面修饰来提高传统材料的性能, 以及通过改良材料使其具备了一些崭新的附加功能。我们相 信超疏水材料特别是具有超双疏功能的一些材料应用前景定 会愈加广阔。 超疏水材料主要利用其自清洁、耐玷污等生物仿生方面 的特性进行开发和应用,在诸如军工、农业微流体毛细自灌 溉、管道无损运输、房屋建筑以及各种露天环境下工作的设 备的防水和防冰等方面有广之外,超疏水材料还可以用于油水 分离、电池和燃料电池的应用、日用品包装、生物医 学、电子设备的防潮涂层等领域。
二、超疏水的基本原理
目前,人们通常用液体在材料表面的接触角来表征材 料表面的润湿性。按照水滴在材料表面接触角大小的不同,
我们可以将材料进行如下分类 : 当接触角小于 90 °时,我
们认为这种材料是亲水材料;如果水滴在材料表面的接触角 小于 5°,那么这种材料是超亲水材料,例如经浓硫酸和
双氧水(体积比为7: 3)处理过的硅片,水滴在它的上面会
方面做了很多工作,例如在铝及其合金表面上制备超疏水薄膜使其
防腐能力明显提高碳纳米管粘接在基材铝板表面以形成复合结构表 面, 然后用聚四氟乙烯修饰该复合表面上以形成一层超疏水PTFE膜。 在国外许多铝、铁、碳钢等金属以及合金表面都会用超疏水膜 来修饰,以提高其防腐蚀性。该方法可有效地运用在如管道气体、液 体运输减阻等多方面对降低运输能耗提高输送效率有很大帮助未来 有较大的开发应用空间。
超疏水材料发展趋势
目录
0 1
引言
0 2
超疏水的基本原理
0 3
超疏水材料的制备方法
0 4
超疏水材料的应用
0 5
超疏水表面材料存在的问题及发展趋势
一、引言
引言
在大自然中有着许多值得人类探索和学习的现象,人们 把这类现象加以研究并运用到改善生产和生活中,统称为仿 生学。 许多动植物的外表所具有的自清洁功能的现象,具有这 类现象的最典型的例子就是出淤泥而不染的荷叶表面。自然 界中许多动植物都具有这类功能,诸如鸟类的羽毛、水黾 (min)的腿部以及蝴蝶的翅膀等。在宏观上这些组织或者 器官均表现出水的极难浸润与挂壁。其原因在于它们的表面 具有超疏水性的组成与结构,因此这类材料被称为超疏水性 材料。
在管道运输方面的应用
天然气的管道运输因其传输距离远 , 线路可控设备投入较简单 等优势已经成为陆上天然气资源的主要输送方式 , 但由于天然气中
往往含有硫化氢、二氧化碳和水等腐蚀性物质因而管道容易发生均
匀腐蚀、坑蚀、电化学腐蚀、冲刷腐蚀等现象。由于管道内壁表面 粗糙等原因天然气的传输效率也较低。针对上述问题许多学者在这
立刻铺展开,展示出超亲水的性质;当材料表面接触角大于 90 °时,我们认为这种材料是疏水材料 ; 如果材料的表面
接触角大于 150°,滚动接触角小于10°,那么我们认为
这种材料是超疏水材料,例如我们前面所提到的荷叶,水 滴在其表面的接触角大于 150°,不能稳定停留,极易滑 落,因而造就了它“出淤泥而不染”的性质。我们研究的 重点是超疏水表面。