超疏水材料发展趋势

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
据实验观察不论是在水面的滑行、跳跃还是快 速掠过水黾都既不会滑破水面更不会浸湿腿部。因 而也就被美誉为 “池塘中的溜冰者”根据这一现象科 学家经过论证得出水水黾特殊腿部微纳米结构和水 面间形成的“空气垫”阻碍了水黾的浸润,让它们实现 了自然界版的 “水上漂”。据了解利用新型超疏水材 料制成的超级浮力材料河以使船表面具有超疏水性 并因此在其表面形成具体版的“空气垫” 改变船与水 的接触状态防止船体表面被水浸湿进而使其在水中 运行的阻力更小提高速度 , 节省了能源。研究人员 表明交通工具的 “水上飞”河以有效地提高交通工具 的速度节省一定的能源肩可能也会顺势引起交通、 能源领域的一次革新。
化学刻蚀法制备超疏水表面有较好的选择性,并 且可以对复杂形状的物体表面进行刻蚀,效率高,成 本低,但也有不足,如过度刻蚀对表面造成损伤,破 坏基体材料的力学性能,刻蚀过程中会产生废液,需 要处理。
电化学方法
X.Zhang等采用电化学方法,聚合物电解质对硅片表面 进行修饰以后,基底硅片表面上覆盖了大量金的树枝状分形 结构,制得表面具有较大接触角及较小滚动角,这说明了被 金树枝状结构覆盖的表面具有非常好的超疏水性能。 江雷等采用电纺技术,聚苯乙烯作为反应物,构建了一 种类似某些生物的微纳米双微观的的复合结构,生成了一层 超疏水膜。SEM扫描照片中观察到生成的纳米纤维将多孔微 球“捆绑”住,这样不仅提高了结构的稳定性,而且也模拟 了荷叶的复合结构。
在织物及过滤材料方面的应用
采用静电纺丝法或者在材料表面进行处理可
制备具有超疏水性的各种微纳米结构纤维。这类
材料因具有超疏水性能,可用于制造防水薄膜、 疏水滤膜以及防水透气薄膜等,或者使织物因疏 水性能而具有防水、防污染、防灰尘等新功能。 如美国NANOTEX公司采用纳米技术开发的
Nano-care 功能型面料;德国巴斯夫( BASF) 公司
江雷研究小组采用化学气相沉积法构建了表面具有纳米 亚微米的双微观结构的Zn0薄膜,测得这种薄膜的静态接触 角可高达164.3°, Zn0薄膜具有如此优良的疏水性能更进 一步印证了纳米亚微米的双微观结构是构建超疏水表面的必 要条件。该小组还通过反复实验探究了Zn0薄膜超疏水性与 亲水性之间的可逆转变。与此同时,他们还在石英基底上采 用化学气相沉积法构建了阵列碳纳米管(ACNT)膜测得该膜 表面的静态接触角为158.5°,如果对该膜用氟硅烷进行修 饰后,碳纳米管膜表现良好的超双疏性(既疏水又疏油),测 得油和水的静态接触角分别为161°和171°。
方面做了很多工作,例如在铝及其合金表面上制备超疏水薄膜使其
防腐能力明显提高碳纳米管粘接在基材铝板表面以形成复合结构表 面, 然后用聚四氟乙烯修饰该复合表面上以形成一层超疏水PTFE膜。 在国外许多铝、铁、碳钢等金属以及合金表面都会用超疏水膜 来修饰,以提高其防腐蚀性。该方法可有效地运用在如管道气体、液 体运输减阻等多方面对降低运输能耗提高输送效率有很大帮助未来 有较大的开发应用空间。
综上所述,固体与液体的相互浸润性的好坏及其所表现出的亲- 疏 水性是由接触角和滚动角两者共同表征。接触角越大和滚动角越小说明 材料表面的疏水性越强。
三、超疏水材料的制备方法
0 1
模板法
0 2
化学刻蚀法
0 3
电化学方法
0 4
化学气相沉积法
0 5
其他方法
模板法
这种方法是一种来自于化学仿生学中制备纳米材料的方法,它的基本 思想就是以某种粗糙的微纳米结构固体表面为基底,然后将易软化材料在 它的表面固化,之后就能得到和基底表面反向印相信息的粗糙纳米结构;有 的也以有机分子或它的自组装体系作为模板剂,在某种溶剂中,经过范德 华力、离子键与氢键等协同作用下,模板剂就会对游离在溶剂中有机前躯 体进行一定的引导,这样就能得到有序具有纳米结构的粒子或薄膜。江雷 等用模板法,合成了聚乙烯醇和聚丙烯腈的纳米纤维序列膜,就是采用多 孔氧化铝作为模板,这种纳米纤维序列膜接触角值能高达173.8°。 金美花等也是利用多孔氧化铝为模板,有机高分子聚合物在多孔氧化 铝的模板中孔道的内壁上附着,得到了聚苯乙烯的纳米阵列薄膜,这种膜 的静态接触角达到162 °。
超疏水材料发展趋势
目录
0 1
引言
0 2
超疏水的基本原理
0 3
超疏水材料的制备方法
0 4
超疏水材料的应用
0 5
超疏水表面材料存在的问题及发展趋势
一、引言
引言
在大自然中有着许多值得人类探索和学习的现象,人们 把这类现象加以研究并运用到改善生产和生活中,统称为仿 生学。 许多动植物的外表所具有的自清洁功能的现象,具有这 类现象的最典型的例子就是出淤泥而不染的荷叶表面。自然 界中许多动植物都具有这类功能,诸如鸟类的羽毛、水黾 (min)的腿部以及蝴蝶的翅膀等。在宏观上这些组织或者 器官均表现出水的极难浸润与挂壁。其原因在于它们的表面 具有超疏水性的组成与结构,因此这类材料被称为超疏水性 材料。
接触角
接触角是表征固体表面疏水性优劣的指标之一, 通常情况下,在不完全润湿性表面会形成一个冠形
液滴,如图所示。
当气、液、固三相接触达到平衡时,在三相接 触的公共点处作液一气界面的切线,我们把此切线 与固一液界面的夹角称为接触角 (θ)。如果固体表面 的接触角 θ < 90 °,此表面描述为亲水性表面 , 90°<θ<150°为疏水性表面,150°<θ<175°为超
在建筑防污耐水等领域内的应用
建筑物表面的污染主要是由于空气中微小颗粒的粘 附和雨、雪等的覆盖污染。超疏水材料因其独特的疏水
性,在建筑物内外墙、玻璃及金属框架等的防水、防雪
和耐沾污等方面均有广泛的应用前景,可大大降低建筑 物的清洁及维护成本,使得建筑物能长久保持亮丽的外
观。目前,超疏水表面材料在建筑防污染方面的产品主
在管道运输方面的应用
天然气的管道运输因其传输距离远 , 线路可控设备投入较简单 等优势已经成为陆上天然气资源的主要输送方式 , 但由于天然气中
往往含有硫化氢、二氧化碳和水等腐蚀性物质因而管道容易发生均
匀腐蚀、坑蚀、电化学腐蚀、冲刷腐蚀等现象。由于管道内壁表面 粗糙等原因天然气的传输效率也较低。针对上述问题许多学者在这
化学刻蚀法
化学刻蚀法是指用不同组成的刻蚀试剂对金属或者合金表面进行 侵蚀,利用晶格缺陷或合金不同成分耐腐蚀性差异进行选择性刻蚀, 通过控制刻蚀试剂浓度和刻蚀时间,得到合适的微观粗糙结构,然后 再用低表面能物质修饰,制备成超疏水表面。李艳峰等用盐酸刻蚀铝 合金,刻蚀后铝合金表面呈现出由矩形的凸台和凹坑构成的复杂粗糙 表面结构,经氟化试剂表面改性后,水滴接触角在156°左右,滚动 角为5°左右。 Baitai Qian等利用beck's位错刻蚀剂腐蚀Al, Zn, Cu多晶型金属, 再进行表面氟化从而制得最高接触角156°,滚动角和滞后角都很小 的超疏水表面。
其他应用
除了上述应用之外,超疏水材料还可以用于油水 分离、电池和燃料电池的应用、日用品包装、生物医 学、电子设备的防潮涂层等领域。
要是涂层及防护液等,如中科赛纳技术有限公司采用纳 米合成技术制备的纳米超疏水自清洁玻璃涂层。该涂层
一般为无色透明、无毒、无污染牢固度高且具有自清洁、
防结冰、抗氧化等功能。德国STO 公司同样根据荷叶 效应原理开发了有机硅纳米乳胶漆。江苏大学吉海燕、
陈刚等采用蚀刻法处理玻璃也制备了超疏水玻璃表面。
在船舶提高浮力方面的应用
化学气相沉积法
该方法制备成本比较高,特殊材料的制备可以运用气相沉积法。 Yoshimitsu Z等采用化学气相沉积法,使表而粗糙度在9.4~60.8nn 范围内,然后于其表面上用氟硅烷低表面能物质进行修饰,得到了 透明的超疏水薄膜。该小组在实验过程中还观察到超疏水薄膜的表 面不仅具有相同的聚集方式而且化学成分也很类似,改变超疏水表 面物理形貌微构造时,该表面的静态接触角有着很大的差异。因此 我们能从中得出结论,尽管粗糙度相似的固体表面,如果其表面形 貌微构造存在很大的差异时,那么疏水性能也会因此差别较大。为 此,研究人员对超疏水表面的物理形貌与微观构造进行了大量的实 验,并试图模拟生物表面的形貌与微观构造,以期能获得超疏水性 能优异的固体表面。
立刻铺展开,展示出超亲水的性质;当材料表面接触角大于 90 °时,我们认为这种材料是疏水材料 ; 如果材料的表面
接触角大于 150°,滚动接触角小于10°,那么我们认为
这种材料是超疏水材料,例如我们前面所提到的荷叶,水 滴在其表面的接触角大于 150°,不能稳定停留,极易滑 落,因而造就了它“出淤泥而不染”的性质。我们研究的 重点是超疏水表面。
模板法不需要复杂加工设备,模板可以使用多次,但也 有不足之处,如复杂形状的表面用模板法制备较困难且效率 低;用PDMS复型得到的软模板力学性能不佳,在使用过程中 会出现坍塌、撕裂或粘连等现象,复型难以达到精确控制, 无法复制精度小于50nm的微细结构。目前,用模板法制备 超疏水表面以聚合物超疏水表面为主,实验结果仍停留在实 验室阶段,制备大面积超疏水表面的工作仍有一定难度。
超疏水表面在日常生活用品、公共建筑、乃至国 防航空等方面有着广泛的应用。另一方面,作为一种 典型的界面现象,表面浸润性在界面化学、物理学、 材料学、界面结构设计以及其它交叉学科的基础研究 中也有极为重要的研究价值。由于其重要性,各行业、 各领域的专家及科研人员都开始加入到这方面的研究 和探索中,目的是将仿生学所得到的成果应用到改善 我们的生产和生活中去,为大众服务。
疏水表面, I75 ° < θ <180 °为极端疏水表面,而当
θ =180 °的表面称之为完全疏水表面。因此,用接 触角就能比较直观、方便的来描述固体表面疏水性
的优劣。
滚动角
上面所描述的接触角所表征的是水滴在水平面上的表现,而现实中 的平面往往不是水平的,更多的是斜面。水滴在倾斜表面上可能滚动或 停滞,这种状态可以用滚动角进行表征。所谓滚动角是指液滴在固体表 面开始滚动时的临界表面倾斜角度α( 如图所示) 。若液滴开始滚动的倾斜 角越小,表明此表面的超疏水性越好。 在倾斜表面,在水滴即将滚落下的临界状态下,水滴前部和尾部形 成两个不同的接触角 θa和θr。接触角滞后值是这两个角的差值,可以用 于表征固体表面所呈现出的亲- 疏水状态。液滴的滚动特性随着该接触 角的滞后值的上升而减弱。
其他方法
除了上述方法之外,还有相分离法、溶胶—凝胶 法、层层组装法、溶液浸泡法等。
四、超疏水材料的应用
在超疏水表面及材料具有广阔应用前景的驱动下,国内 外研究人员都做了大量的研究工作。下面将具体探讨超疏水 表面及材料是如何通过对表面修饰来提高传统材料的性能, 以及通过改良材料使其具备了一些崭新的附加功能。我们相 信超疏水材料特别是具有超双疏功能的一些材料应用前景定 会愈加广阔。 超疏水材料主要利用其自清洁、耐玷污等生物仿生方面 的特性进行开发和应用,在诸如军工、农业微流体毛细自灌 溉、管道无损运输、房屋建筑以及各种露天环境下工作的设 备的防水和防冰等方面有广阔的前景。具体有以下几方面。
二、超百度文库水的基本原理
目前,人们通常用液体在材料表面的接触角来表征材 料表面的润湿性。按照水滴在材料表面接触角大小的不同,
我们可以将材料进行如下分类 : 当接触角小于 90 °时,我
们认为这种材料是亲水材料;如果水滴在材料表面的接触角 小于 5°,那么这种材料是超亲水材料,例如经浓硫酸和
双氧水(体积比为7: 3)处理过的硅片,水滴在它的上面会
也将荷叶效应应用到纺织品上,开发出具有超疏 水自清洁功能的聚酯雨衣、雨篷及衣物面料等。
在微流体控制方面的应用
超疏水材料表面所具有的不浸润性及低表面粘滞力,使 其在微流体控制应用方面也有十分出色的表现。比如控制微 液滴的运动和流动,并以此制造微液滴控制针头,使得在实 验或者生产过程中对液体滴加计量能够精确控制,实验试剂 的添加将更得心应手。如果将这类技术运用到诸如静电喷涂 领域,比如用超疏水材料制造喷漆喷胶等的喷头,将会使喷 涂的液滴更加均匀,雾化效果更好,可以运用在对喷涂效果 有特殊要求的场合。另外如果以这类材料制作毛细管类的材 料,将会使液滴的虹吸量更少,可以制造体积更小精密度更 高的液体传输设备。
相关文档
最新文档