信号与系统基本概念

合集下载

信号与系统通信原理知识点

信号与系统通信原理知识点

描述信源平均信息量的物理量,等于 信源所有可能消息的信息量的数学期 望。
07 模拟调制技术
幅度调制原理及抗噪性能分析
幅度调制原理
幅度调制是通过改变载波的振幅来传递 信息的一种调制方式。在幅度调制中, 调制信号控制载波的振幅,使得载波的 振幅随着调制信号的变化而变化。
VS
抗噪性能分析
幅度调制系统的抗噪性能主要取决于信噪 比(SNR)。在相同的信噪比条件下,幅 度调制系统的误码率随着信噪比的增加而 降低。为了提高幅度调制系统的抗噪性能, 可以采用增加信号功率、降低噪声功率、 采用合适的解调方式等方法。
对于离散时间信号,可以采用离散时间傅里叶变换(DTFT)进行频域
分析,DTFT是连续时间傅里叶变换的离散化形式。
系统频率响应
系统频率响应的定

系统对输入信号的响应可以通过 频率响应来描述,频率响应反映 了系统对不同频率分量的放大或 衰减程度。
系统频率响应的求

通过系统的传递函数或差分方程 可以求解系统的频率响应,传递 函数描述了系统输入与输出之间 的关系。
数值计算法
对于难以用解析方法求解的拉普拉斯反变换,可以采用数值计算方法进行近似求解。
系统S域分析
系统函数
在S域中,系统的特性可以用系统函数来描述。系统函数 是系统冲激响应的拉普拉斯变换,它包含了系统的全部信 息。
频率响应分析
通过系统函数在虚轴上的取值可以得到系统的频率响应。 频率响应描述了系统对不同频率信号的放大或衰减特性。
通信分类
根据传输媒介的不同,可分为有线通信和无线通信;根据信号性质的不同,可分为模拟通信和数字通 信。
模拟通信与数字通信比较
信号性质
模拟通信传输连续的信号,数 字通信传输离散的信号。

信号与系统知识点归纳

信号与系统知识点归纳
频谱特性
周期信号的频谱是离散的,由一系列频率分量组成,每个 分量对应一个傅里叶系数。
幅度谱和相位谱
幅度谱表示各频率分量的幅度大小,相位谱表示各频率分 量的相位信息。
非周期信号频谱分析
傅里叶变换
将非周期信号表示为一系列复指数函数的积分,即 $F(omega) = int_{-infty}^{infty} f(t) e^{jomega t} dt$,其中 $F(omega)$ 是信号的频谱。
单位样值信号
在某一时刻取值为1,其余时 刻为0的信号。
正弦型信号
形如sin(ωn)或cos(ωn)的周期 性信号,其中ω为角频率。
复杂指数型信号
形如ean的形式,其中a和ω为 常数,n为离散时刻。
离散时间信号频谱分析
离散时间信号的频谱
通过傅里叶变换将离散时间信号从时域转换 到频域,得到信号的频谱。
信号分类
根据信号的性质和特征,信号可以分 为多种类型,如连续时间信号和离散 时间信号、周期信号和非周期信号、 能量信号和功率信号等。
系统定义及性质
系统定义
系统是一个由输入信号激励、内部含有某种变换关系、并能产生输出信号的物理装置或算法。在信号处理中,系 统通常表示为对输入信号进行某种变换或处理的过程。
周期信号的频谱
周期信号可以表示为无穷级数,其频谱由傅 里叶系数确定。
非周期信号的频谱
非周期信号的频谱是连续的,可以通过傅里 叶变换求得。
信号的能量和功率谱
能量信号和功率信号的频谱特性不同,分别 对应能量谱和功率谱。
离散时间系统响应
线性时不变系统的响应
线性时不变系统对输入信号的响应具有叠加性和时不变性。
卷积和运算
线性时不变系统的响应可以通过输入信号与系统单位样值响应的卷积 和求得。

信号与系统

信号与系统

第一章信号与系统的基本概念一、信号的定义①广义地说,信号就是随时间和空间变化的某种物理量或物理现象.②在通信工程中,一般将语言、文字、图像、数据等统称为消息,在消息中包含着一定的信息③信号是消息的载体,是消息的表现形式,是通信的客观对象,而消息则是信号的内容④应当注意,信号与函数在概念的内涵与外延上是有区别的。

信号一般是时间变量t的函数,但函数并不一定都是信号,信号是实际的物理量或物理现象,而函数则可能只是一种抽象的数学定义。

二、信号的分类(1) 确定信号与随机信号。

按信号随时间变化的规律来分,信号可分为确定信号与随机信号。

实际传输的信号几乎都是随机信号。

因为若传输的是确定信号,则对接收者来说,就不可能由它得知任何新的信息,从而失去了传送消息的本意。

但是,在一定条件下,随机信号也会表现出某种确定性,例如在一个较长的时间内随时间变化的规律比较确定,即可近似地看成是确定信号。

随机信号是统计无线电理论研究的对象。

本书中只研究确定信号。

(2)连续时间信号与离散时间信号。

按自变量t取值的连续与否来分,信号有连续时间信号与离散时间信号之分,分别简称为连续信号与离散信号。

(3)周期信号与非周期信号。

设信号f(t),t∈R,若存在一个常数T,使得f(t-nT)=f(t) n∈Z (1-1)则称f(t)是以T为周期的周期信号。

从此定义看出,周期信号有三个特点:1) 周期信号必须在时间上是无始无终的,即自变量时间t的定义域为t∈R。

2) 随时间变化的规律必须具有周期性,其周期为T。

3) 在各周期内信号的波形完全一样。

(4) 正弦信号与非正弦信号。

(5) 功率信号与能量信号。

三、信号的相关名词1. 有时限信号与无时限信号若在有限时间区间(t1<t<t2)内信号f(t)存在,而在此时间区间以外,信号f(t)=0,则此信号即为有时限信号,简称时限信号,否则即为无时限信号。

2. 有始信号与有终信号设t1为实常数。

若t<t1时f(t)=0, t>t1时f(t)≠0,则f(t)即为有始信号,其起始时刻为t1。

信号与系统基本概念

信号与系统基本概念

(1)
o t0
t
(t)(t
t0 )dt 0, (t
1 t0 )
31
冲激函数的性质
为了信号分析的需要,人们构造了 t 函数,它属于广 义函数。就时间 t 而言, t 可以当作时域连续信号处
理,因为它符合时域连续信号运算的某些规则。但由于
t 是一个广义函数,它有一些特殊的性质。
1.抽样性 2.奇偶性
41
系统方框图(基本元件)
1.加法器 e1t
r t
e1t r t
2.乘法器
e2 t e1 t
e2 t
e2t rt e1t e2 t
r t
rt e1t e2 t
3.微分器
et
d
r t
d
rt de(t)
dt
4.积分器
et
rt
t
r(t) e( )d
42
§1.6 线性时不变系统
线性系统与非线性系统
线性系统:指具有线性特性的系统。
线性:指均匀性,叠加性。
均匀性(齐次性):
et rt ket krt
叠加性:
e1(t ) e2 (t )
r1 r2
(t) (t )
e1(t )
e2
(t)
r1(t )
r2
(t
)
43
判断方法
先线性运算,再经系统=先经系统,再线性运算
若 HC1 f1t C2 f2t C1H f1t C2H f2t
(t)具有筛选f (t)在t 0处函数值的性质 (t t0 )具有筛选f (t)在t t0处函数值的性质 33
奇偶性
(t) (t)
•由定义2,矩形脉冲本身是偶函数,故极限

信号与系统_基本概念

信号与系统_基本概念

f(t)=Keat
式中,a是实数。
f(t)
Keat(a>0)
Keat(a=0) Keat(a<0) 0 t
1-4 指数信号
特点:对时间的求导、积仍为指数信号
第 1 章 信号与系统的基本概念
2)正弦信号
f(t)=Ksin(t+)
式中K为振幅,是角频率。 为初相位。 其波形如P7图1-6所示。
(-∞<t<∞)
(1)f(t)=f(-t) (2)f(0)=1 (3)

0t k :
f (t ) 0
(5) f (t ) t 0
(4) f (t )dt

返回首页
第 1 章 信号与系统的基本概念
1.2 信号的运算与变换
• • • • • 信号的代数运算 信号的微分与积分 信号的反褶 信号的时移 信号的尺度变换
f (t ) Fm cos(t ) t
第 1 章 信号与系统的基本概念
b)离散信号: 离散的含义是指定义域离散(即仅在某些不连 续的时间上有定义) 函数值可连续也可不连续, 时间和函数值均离散的信号称数字信号
f (nT ) f (n )
1
0
f (n )
1

T 2T 3T 4T
特点:对时间的求导、积分 仍为正弦信号
第 1 章 信号与系统的基本概念 3)复指数信号
f (t ) Kest
其中 s j
Ke Ke
st
( j )t
Ke cos( t ) jKe sin( t )
t
t
在信号分析中是非常重要的信号,概括了许多常用的基本信号。
三)典型信号(常用信号)

信号与系统的基本概念

信号与系统的基本概念

信号与系统
满足 E= f (k ) 2< 的离散信号,称为能量信号。
k
满足 P= lim 1 N /2 f (k) 2< 的离散信号,称为功率信号。 N N k N /2
信号与系统
(三)基本的连续信号
信号与系统
信号与系统
信号与系统
信号与系统
两个基本信号及其性质
单位阶跃信号ε(t)、单位冲激信号δ(t)是连续信号中两 个最基本的信号;单位阶跃序列ε(k)、单位样值序列δ(k)
(1)f(t 1)(t) (2)df (t)
dt
解:(1)将f(t)右移1,得f(t-1),如 图(a)所示。
f(t-1)乘ε(t)是将f(t-1)的t<0的部分截去,得到f(t-1)ε(t),如图
(b)所示。
(a)
信号与系统
(b)
(2)对f(t)求一阶导数时,注意在跃变时间点将出现冲 积函数。df(t)/dt的波形如图所示。
E
=
f (t) 2 dt

它所消耗的功率 P lim 1 T/2 f (t) 2 dt ,分别定义为该信号的
能量、功率。
T T T /2
如果信号f(t)的能量E满足0<E<∞(此时信号功率P=0),则称 f(t)为能量有限信号,简称能量信号。任何时限有界信号都属于
能量信号。 如果信号f(t)的功率P满足0<P<∞(此时信号能量E=∞),则称 f(t)为功率有限信号,简称功率信号。任何有界的周期信号均属 于功率信号。 相应地,对于离散时间信号,也有能量信号、功率信号之分。
信号与系统
信号与系统
(六) 信号的时域分解
信号与系统
(七)任意信号表示为完备的正交函数集

信号与系统基本概念

信号与系统基本概念

傅立叶级数展开
直流 分量
基波分量 n =1
2π ω1 = T1
谐波分量 n>1
nω1
给定信号之后,信号的系数也就是信号的分量就 给定信号之后, 确定了:信号的分量是确定的, 确定了:信号的分量是确定的,不是任意的
直流 系数
余弦分量 系数
1 t +T a0 = ∫t f (t).dt T1
0 1 0
y(n) 数字信号 处理器 DSP D/A 变换器 DAC 模拟 模拟 滤波器 ya(t) PoF
滤波器 xa(t) PrF
A/D 变换器 ADC
判断与思考
给定一个信号,将其分解为单个频率成 分的叠加时,可以有多种分解方法。如 果使其中一种频率成分所占比重增加, 可以通过减少其他频率成分,使最后的 叠加仍然得到原信号。 实信号的复指数傅立叶级数表达中,为 什么复数的叠加,最后仍然得到实信号?
∞ 1 0 n=1 n 1 n 1
由欧拉公式 其中
f (t) =
n=−∞
F(nω )e jnω1t ∑ 1

F ( 0) = a0
1 F(nω1) = (an − jbn ) 2
1 F(−nω1) = (an + jbn ) 2
引入了负频率
三角表达到指数表达的推导
f1 (t ) = a0 + ∑ (an cos nω1t + bn sin nω1t )
2 t +T an = ∫t f (t).cosnω1t.dt T1
0 1 0
0 +T 1
2 t 正弦分量 bn = ∫t T 系数 1
0
f (t).sin nω1t.dt
矩形波的傅立叶级数展开与合成: 基频、3倍频、5倍频

信号与系统的基本知识

信号与系统的基本知识

04 信号与系统的分析方法
时域分析法
时间波形分析
01
直接观察信号的时域波形,了解信号的基本特征和变化规律。
相关分析
02
研究信号自身或信号之间的相似性,用于信号检测、识别和提
取有用信息。
卷积积分
03
描述线性时不变系统对输入信号的响应,用于求解系统的零状
态响应。
频域分析法
频谱分析
将信号分解为不同频率的正弦波, 研究信号的频率成分和幅度、相 位随频率的变化规律。
02
周期信号的判定
03
周期信号的频率
一个信号是否是周期的,可以通 过观察其波形是否在一定时间后 重复出现来判断。
周期信号的频率是指单位时间内 信号重复的次数,与周期成倒数 关系。
信号的奇偶性
奇信号的定义
奇信号是指对于任意时刻t,都有f(-t) = -f(t) 的信号。
偶信号的定义
偶信号是指对于任意时刻t,都有f(-t) = f(t)的信号。
生物系统建模与仿真
信号与系统的方法可用于建立生物系统的数学模型,并通过计算机 仿真研究和理解生物系统的复杂行为。
其他领域中的信号与系统
01
语音与音频处理
在语音和音频处理领域,信号与系统理论用于声音的采集、编码、合成
和分析等方面。
02
图像处理与计算机视觉
图像处理和计算机视觉中涉及大量的信号与系统方法,如图像滤波、边
05 信号与系统的应用举例
通信系统中的信号与系统
信号传输与处理
在通信系统中,信号与系统理论用于分析和设计信号的传输、调制、 编码和解码等过程,以确保信息的可靠传输和高效处理。
信道建模与均衡
通信系统中的信道往往存在多径效应、衰落和干扰等问题,信号与 系统理论可用于建立信道模型,设计均衡算法以补偿信道失真。

信号与系统全套课件

信号与系统全套课件

滤波器设计和应用
滤波器的概念和分类
根据滤波器的频率响应特性,可分为低通、高通、带通和带阻滤 波器等。
滤波器设计方法
包括巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等设计方法, 以及数字滤波器的设计等。
滤波器的应用
在通信、音频处理、图像处理等领域广泛应用,如信号去噪、平 滑处理、频率选择性传输等。
04 信号与系统复频域分析
状态变量分析法概述
1
状态变量分析法是一种基于系统内部状态变量描 述系统动态行为的方法。
2
它适用于线性时不变系统,可以方便地分析系统 的稳定性、能控性、能观性等重要特性。
3
状态变量分析法通过引入状态变量的概念,将高 阶微分方程转化为一阶微分方程组,从而简化系 统分析和设计的复杂性。
状态方程和输出方程建立
系统函数的性质
系统函数具有因果性、稳定性、频率 响应等性质,这些性质决定了系统的 基本特性和性能指标。
稳定性判据和稳态误差分析
稳定性判据
通过系统函数的极点分布来判断系统的 稳定性,常用的稳定性判据有劳斯判据 、奈奎斯特判据等。
VS
稳态误差分析
稳态误差是指系统对输入信号响应的稳态 分量与期望输出之间的差值,通过分析系 统函数和输入信号的特性,可以对系统的 稳态误差进行定量评估。
信号与系统全套课件
目 录
• 信号与系统基本概念 • 信号与系统时域分析 • 信号与系统频域分析 • 信号与系统复频域分析 • 离散时间信号与系统分析 • 状态变量分析法在信号与系统中的应用
01 信号与系统基本概念
信号定义与分类
信号定义
信号是传递信息的函数,它可以是时间的函数,也可以是其 他独立变量的函数。在信号处理中,通常将信号表示为时间 的函数,即s(t)。

信号与系统考研笔记

信号与系统考研笔记

信号与系统考研笔记一、信号与系统的基本概念1.信号的定义和分类:信号可以分为确定性信号和随机信号,周期信号和非周期信号,连续时间信号和离散时间信号等。

2.系统的定义和分类:系统可以分为线性系统和非线性系统,时不变系统和时变系统,连续时间和离散时间系统等。

3.信号的基本运算:包括信号的加法、减法、乘法、除法等基本运算。

4.系统的基本运算:包括系统的串联、并联、反馈等基本运算。

二、傅里叶变换1.傅里叶级数和傅里叶变换的定义:傅里叶级数用于表示周期信号,而傅里叶变换则用于表示非周期信号。

2.傅里叶变换的性质:包括对称性、线性(叠加性)、奇偶虚实性、尺度变换特性、时移特性、频移特性、微分特性、积分特性、卷积特性、相关与自相关特性等。

3.傅里叶变换的应用:包括频域分析、系统响应分析、滤波器设计等。

三、拉普拉斯变换和Z变换1.拉普拉斯变换的定义和性质:拉普拉斯变换是用来分析具有无穷大的时间域信号的一种方法。

2.Z变换的定义和性质:Z变换是用来分析离散时间信号的一种方法。

3.拉普拉斯变换和Z变换的应用:包括系统响应分析、控制系统设计等。

四、线性时不变系统1.LTI系统的定义和性质:LTI系统是指具有线性特性和时不变特性的系统。

2.LTI系统的分析和设计:包括系统的频率响应分析、系统稳定性分析、系统均衡和滤波等。

3.LTI系统的状态空间表示:包括状态空间模型的建立、系统的稳定性和可控性分析等。

五、采样定理和离散傅里叶变换1.采样定理的理解和应用:采样定理规定了采样频率和信号带宽之间的关系,对于连续时间信号的离散化采样具有重要意义。

2.DFT的理解和应用:DFT是离散时间信号的一种基本运算,可以用于信号的分析和处理。

3.快速傅里叶变换(FFT)的理解和应用:FFT是一种高效计算DFT的算法,可以大大提高信号处理的速度和效率。

六、信号与系统的应用和实践1.数字信号处理的应用和实践:包括数字滤波器设计、数字波形合成、数字音频处理等。

信号与系统的概念

信号与系统的概念

f
[
n N
],
0,
n为N整倍数 其它
1.4 信号的基本运算 1.4.1 两信号相加
两信号相加,是指两信号对应时刻的信号值(函数 值)相加,得到一个新的信号。
f (t) f1(t) f2 (t) 或 f [n] f1[n] f2[n] (1.4.1)
f1(t) 1
1
0
1
t
(a) 信号f1(t)波形
(1.2.5)
可以看出,复信号是由两个实信号a(t )和 (t )构成的, 当然也可看成是由两个实信号 和i(t) 构q(成t) 的,且
i(t) a(t) cos((t)) q(t) a(t)sin((t))

a(t) i2(t) q2(t) tan[(t)] q(t)
i(t)
1.2.4 周期信号与非周期信号
t
(a) 信号 f (t)的波形
0 1/ 2 1
t
(b) 信号 f (2t)的波形
0
1
2
3
4
t
(c) 信号 f (1 t)的波形 2
图1.3.3 信号 f (t)及其尺度变换
2. 离散时间信号的展宽和压缩
设离散时间信号 f [n] 的波形如图1.3.4(a)所示, 其时间展宽 倍的N情况可表示为
f1[n]
抽样信号(函数)
Sa(t) sin(t) t
抽样信号是信号处理中的一个重要信
号,在t 0时,函数取得最大值1,
而在t k 时(为非零整数),函数
Sa(t)
值为0,如图1.2.5所示。
1
(1.2.3)
4 3 2
0
2 3 4
t
图1.2.5

信号与系统的基本概念

信号与系统的基本概念
5
3、周期信号与非周期信号
周期信号(periodic)是在时间或空间上无始无终地重复着 某种变化规律的信号。
对于连续信号f (t),有 f (t)=f (t+mT) 满足上式的最小T值称为f (t)的周期。
m=0, ±1, ±2, …
非周期信号(non-periodic)是指无重复变化规律的信号。 任意两个或两个以上的周期信号的组合不一定是周期
功率信号(power)是指平均功率有限,而总能量无限大的信号。
在时间间隔无限大的情况下,所有周期信号都是功率信号。 这样只能从平均功率去考察研究。
非周期脉冲信号如果只存在于有限时间内,那么该信号一定 是能量信号。这样只能从能量的角度去加以研究。
存在于无限时间内的非周期信号可以是能量信号,也可以是 功率信号,这要根据具体信号函数来确定。
函数:f (t)=Amcos(t+)
信号一般是时间变量t的函数, 但函数并不一定都是信号。
波பைடு நூலகம்:
数据:
t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 u(t) 1.2 1.4 1.3 1.7 1.1 1.9 1.8
3
二、信号的分类 1、确定信号与随机信号 确定信号(determinate)是指可用确定的图形、曲线或函数 式准确描述的信号。 随机信号(random)是不能用确定的图形、曲线或函数式准 确描述的信号。只能通过大量试验测出它在某些确定时 刻或空间点上取某些数值的概率。 2、连续信号与离散信号 连续信号(continuous)是指自变量取值是连续的信号。它在 所讨论的时间区间内,除有限个间断点外, 对于任意时间 值都可给出确定的函数值。
信号。 如果两个或两个以上的周期信号的周期具有公倍数,

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。

信号分为连续信号和离散信号两种类型。

连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。

2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。

系统分为线性系统和非线性系统两种类型。

线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。

3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。

例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。

二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。

对信号进行时域分析,可以揭示信号的变化规律和特征。

例如,信号的幅度、频率、相位等特征。

2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。

连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。

3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。

线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。

三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。

它可以将信号转换为频谱,揭示信号的频率成分和能量分布。

傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。

2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。

3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。

根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。

四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。

《信号与系统》课件第1章 (3)

《信号与系统》课件第1章 (3)
41
4. 指数信号 指数信号的一般数学表达式为
f(t)=Aest
根据式中s的不同取值,可以分下列两种情况讨论: (1) s=σ时,此时为实指数信号,即
(1-23)
f(t)=Aeσt
(1-24)
当σ>0时,信号呈指数规律增长;当σ<0时,信号随指数规律
衰减;当σ=0时,指数信号变成恒定不变的直流信号,如图1-
16所示。
42
图1-16 实指数信号
43
(2) s=σ+jω,此时为复指数信号。利用欧拉公式,可以进 一步表示为
(1-25) 可见,复指数信号的实部和虚部都是振幅按指数规律变化的 正弦振荡,当σ>0(σ<0)时,其实部和虚部的振幅按指数规律增 长(衰减);当σ=0时,复指数信号变为虚指数信号
(1-26) 此时信号的实部和虚部都是等幅振荡的正弦波。复指数信号 虚部的波形如图1-17所示。
f(t)δ(t)=f(0)δ(t)
若f(t)在t=t0时连续,则有
f(t)δ(t-t0)=f(t0)δ(t-t0)
(1-16) (1-17)
36
对上面两式取积分,可得到下面两个重要的积分结果: (1-18) (1-19)
式(1-19)说明,δ(t)函数可以把信号f(t)在某时刻的值采样(筛选) 出来,这就是δ(t)的筛选性。
11
图1-4 非周期能量信号
12
图1-5 非周期功率信号
13
图1-6 非功率非能量信号
14
1.2.2 几种常用的基本信号 1. 单位斜变信号 斜变信号是指从某一时刻开始随时间成正比例增加的信
号。斜变信号也称斜坡信号。若斜变信号增长的变化率为1, 斜变的起始点发生在t=0时刻,就称其为单位斜变信号(如图 1-7所示),其数学表达式为

信号与系统基本概念

信号与系统基本概念

信号与系统基本概念
信号与系统是信号处理领域的基本概念。

信号指的是随时间变化的物理量或信息,可以是连续的或离散的。

系统是对信号进行处理、传输或变换的过程或装置。

信号可以分为连续信号和离散信号。

连续信号是随时间连续变化的信号,可用连续函数表示。

离散信号是在一些特定时刻取值的信号,可用数列表示。

系统可以分为线性系统和非线性系统。

线性系统满足叠加性质,即输入信号的线性组合对应于输出信号的线性组合。

非线性系统则不满足这一性质。

信号与系统的关系可以用系统的输入和输出表示。

输入信号经系统处理后,得到输出信号。

信号可以通过系统进行传输、处理或变换。

常见的系统包括滤波器、放大器、变换器等。

信号与系统在通信、图像处理、音频处理等领域有广泛应用。

通过对信号和系统进行研究,可以实现信号的提取、增强、压缩等操作,从而得到想要的结果。

信号与系统的基本概念

信号与系统的基本概念





(t ) d t 0 ,

t

(t ) d t (t )
(t ) (t ) , (t ) 是奇函数
26
总结:
• R(t), (t), (t) 之间的关系
R(t )
(t )
(t )
求导
求导
1 t
0
积分
1 t
0
积分

(1)
j
������ < 0, ������ ≠ 0
������ > 0, ������ ≠ 0
j 0
������ = 0, ������ ≠ 0
������ < 0, ������ = 0
������ > 0, ������ = 0
O
������ = 0, ������ = 0

j 0
14
• 5、单位斜变信号
1
0
t
27
2-3 信号的运算
• 2-3-1 信号自变量的运算
1、移位变换
f (t )
f ( t ) f ( t t0 )
将信号f t 沿 t 轴平移t0即得 时移信号 f t t0 , t0 为常数
t0 0 ,右移(滞后)
O
t
f (t )
O
t
f (t )
t0 0 ,左移(超前)
O
t
28
2.反褶
f (t ) f (t )
以纵轴为轴反折f (t )及得到f (t )的波形
f t 1
2
f t 1
O
1
t
1 O
2

信号与系统PPT课件

信号与系统PPT课件
f(t) 1
-2 o
2 t t → 0.5t 扩展
f (2 t ) 1
-1 o 1
t
f (0.5 t )
1
-4
o
4t
对于离散信号,由于 f (a k) 仅在为a k 为整数时才有意义, 进行尺 度变换时可能会使部分信号丢失。因此一般不作波形的尺度变换。
平移与反转相结合举例
例 已知f (t)如图所示,画出 f (2 – t)。 解答 法一:①先平移f (t) → f (t +2)
结论
由上面几例可看出: ①连续正弦信号一定是周期信号,而正弦序列不一定是 周期序列。 ②两连续周期信号之和不一定是周期信号,而两周期序 列之和一定是周期序列。
4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
(1)信号的能量E (2)信号的功率P
def
E
f(t )2 d t
P
def
lim
T
1
T
T
2
T
f(t )2 d t
2
若信号f (t)的能量有界,即 E <∞ ,则称其为能量有限信号, 简称能量信号。此时 P = 0
若信号f (t)的功率有界,即 P <∞ ,则称其为功率有限信号, 简称功率信号。此时 E = ∞
解 (1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周期 分别为N1 = 8 , N2 = 4,故f1(k) 为周期序列,其周期为 N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为 β1 = 2 rad;由于2π/ β1 = π为无理数,故f2(k) = sin(2k)为非周期序列 。

信号与系统的基本概念

信号与系统的基本概念
2 t 2 t 2 t
cos10t , e
2 t
sin 10t (t ) ,
e2 t cos10t (t )
1.2 信号的运算
•两信号相加或相乘 •信号的导数和积分
•信号的自变量的变换
时移 折叠 尺度 一般情况
1.2.1 两信号相加和相乘
两个信号相加与相乘,将它们在同一瞬时的值相加 (相乘)。
t0 0 f1 (t ) f 2 (t ) t 0 t 1 0 t 1
1.2.2 信号的导数与积分
导数:f t d f t dt ,积分:f
( 1)
(t ) f d
t
信号的导数 波形上是求信号各点随时间的 变化率,在不连续点处,
•信号的分类方法很多,可以从不同的角度对 信号进行分类。 •按实际用途划分: 电视信号 雷达信号 控制信号 通信信号 广播信号 …… •按所具有的时间特性划分
1.1.2 信号的分类
1.确定信号和随机信号
•确定性信号 对于指定的某一时刻t,可确定一相应的函数值f(t)。 若干不连续点除外。 •随机信号 具有不可预知的不确定性。 •伪随机信号 貌似随机而遵循严格规律产生的信号(伪随机码)。
解:
由最小公倍数知识:T=40 。
4.能量信号与功率信号
信号的能量与平均功率的定义 设信号电压或电流为ƒ(t),它在1欧姆电阻上的瞬时功率
为|ƒ(t)|2, 在时间区间 (-T,T) 内消耗的总能量为:
E lim
T T

T
2
f (t ) dt
1 平均功率为: P lim T 2T
f (t 1)
1
-1 0
f (t 1)

信号与系统的基本概念

信号与系统的基本概念

1 g (t)
lim
0
g (t)
(t)
+ t=0
1V
2
0
2
t
-
C=1F
3.复指数信号
est s j 为复数,称复频率
⑴当 s 0 时,e st 1,为直流信号 ⑵当 0 时,e st et,为单调增长或衰减的
实指数信号
⑶当 0 时,est e jt cost j sin t
解:对信号 f1(t),有
E lim
T (e2 t )2dt
0
e4tdt
e4tdt 2
4t
e dt
1
T T
0
0
2
P0 所以该信号为能量信号。
对信号 f2 (t) 有
T
E lim (e2t )2dt T T lim 1 e4T e4T T 4
f 2 (t) e2t
连续时间信号: 除若干个不连续点外,
其它时刻都有定义 ,通常
用 f (t) 表示。
f (t)
0
t
离散时间信号:
仅在离散时刻有定义, 通常用 f (tk ), f (kT), f (k) 表示。


t3
t-1 0 t1 t2
t4
tk
3 .周期信号和非周期信号 周期信号:


0
(每隔一定时间重复出现且无始无终)
系统的模型是实际系统的近似化和理想化。一般来 说,系统输入和输出之间的关系常用微分方程表示:
y(n)(t) an1y(n1)(t) a1y'(t) a0 y bmx(m)(t) bm1x(m1)(t) b1x'(t) b0x(t)
也可以用一个方框图表示系统:

信号与系统---基本概念

信号与系统---基本概念

信号与系统---基本概念⼀、系统理论概念1、信号:信号是信息和能量的载体。

2、系统:系统⽤来对信号并因此也对信息和能量进⾏处理;3、信息:信息是⼀种知识内容,这种知识的物理体现(知识表现)就是信号;4、抽象的系统:为了进⾏系统研究,需要使⽤⼀个数学模型。

已经表明,在采⽤抽象的数学公式进⾏描述时,许多表⾯上不同的系统都表现为相同的形式。

系统理论的巨⼤优势就在于这种数学上的抽象概括。

因此不同专业领域的⼈就可以说同⼀种语⾔,并且能够共同地处理⼀项任务。

由于这个原因,系统理论具有了中⼼的地位。

抽象理论的另⼀个优点是,对系统进⾏描述,与系统的实际实现⽆关。

系统理论是⼀个思想流派,它允许:进⾏更⼴义的思考;把外来的解决⽅案应⽤到其他问题上。

5、数学模型:⼀个真实系统的数学模型是⼀组数学⽅程。

为了能够脱离物理意义⽽⼯作,常常是采⽤定标的,⽆量纲形式对信号进⾏记录的。

为了使数学上的⼯作量保持在可控的范围内,在模型中只对实际系统中需要关注的主要部分进⾏映像变换。

因此简单化的模型不再与实际样本相符。

但是,只要模型能够为真实系统的特征提供有⽤的解释和预测,这样的由于简化⽽带来的不符合也就⽆关紧要了。

否则就必须使模型得到逐步完善。

从原则上讲,⼀个模型应当尽可能简单,⽽且只要在必要时才是复杂的。

在应⽤⽅⾯,最为困难的部分是建模。

⾄于⼀个模型是否能够精确地解决⼀个具体课题,就只能通过经验回答这个问题了。

可以通过仿真对模型的特征与实际系统的特征进⾏⽐较。

但是为此需要对各种物理关系有深⼊的认识。

系统理论做为纯粹的数学学科不能对这种物理诠释提供⽀持。

因此,系统理论也只不过是⼀种⼯具(尽管是⼀种引⼈⼊胜的强⼤⼯具)⽽已,绝不可能使使⽤者摒弃其原专业领域坚实的专业知识。

系统理论在电⽓技术⽅⾯的主要应⽤领域是通信技术、调节技术和测量技术。

这些专业的典型特征是抽象并侧重理论,⽽且理论具有通⽤性。

对于应⽤⽽⾔,除了理论以外,在理论应⽤过程中所获得经验也是必要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统基本概念
一.常用信号
ε(t) δ(t) cos(ωt+Ф) e st
ε(k) δ(k) cos(ωk+Ф) a k e sk
二.信号常用运算
x(t)=x1(t)+x2(t) x(k)=x1(k)+x2(k)
x(t)=x1(t)-x2(t) x(k)=x1(k)-x2(k)
x(t)=x1(-t) x(k)=x1(-k)
x(t)=x1(t-t0) x(k)=x1(k-k0)
x(t)=x1(at) x(k)=x1(ak)
x(t)=x1(at-t0) x(k)=x1(ak-k0)
x(t)=dx1(t)/dt x(k)=x1(k)-x1(k-1)
ex1:
y(t)=(t+2)*(ε(t+2)-ε(t)) +2ε(t)-2ε(t-2)
y(1-2t)=?
三.周期信号与非周期信号
f(t+T)=f(t) f(n+N)=f(n)
ex2:
f(k)=cos(2k)
g(k)=cos(π/3k)+cos(π/4k)
周期信号?
f(k): N=2π/2=π
g(k): N=m1*N1=m2*N2
N1=2π/(π/3)=6
N2=8;
N=m1*6=8*m2
N=m1*3=4*m2
m1=4 m2=3
N=4*6=24;
四.奇偶函数
x(-t)=x(t)
x(-t)=-x(t)
五.系统分类
LTI----线性时不变系统
1.线性与非线性系统
线性:
零状态下:
a1*x1(t)+a2*x2(t) a1*y1(t)+a2*y2(t)
a1*x1(k)+a2*x2(k) a1*y1(k)+a2*y2(k)
2.时不变与时变系统
时不变
x(t-t0) y(t-t0)
x(k-k0) y(k-k0)
ex3:
y(t)=x(t)*cos (ωC t)
线性? 时不变?
If x(t)= a1*x1(t)+a2*x2(t)
Then
y(t)=(a1*x1(t)+a2*x2(t)) *cos (ωC t)
= a1*x1(t) *cos (ωC t)+ a2*x2(t)* cos (ωC t)
=a1*y1(t)+a2*y2(t)
线性
if x(t)=x1(t-t0)
y(t)=x(t)*cos (ωC t)
= x1(t-t0) *cos (ωC t)
y1(t-t0)=x1(t-t0)*cos (ωC t-ωC t0)
y(t)!= y1(t-t0)
时变
3.因果与非因果系统
1)
y(t)=f(x(t))
y(t) 仅与现在和过去的x值有关(x(t-τ) τ>=0)
y(k)=f(x(k))
y(k) 仅与现在和过去的x值有关(x(k-n) n>=0)
2)
LTI
h(t)=0 t<0
h(k)=0 k<0
3)
LTI
H(s) ROC: Right-half plane
H(z) ROC: Exterior of a Circle (+∞)
H(s) rational
ROC: Right-half plane to the rightmost pole H(z) rational
ROC: Exterior of a Circle
outside the rightmost pole
the order of numerator
<= the order of denominator
ex4:
y(n) =x(n)+1/3x(n-1)
h(n)=(1/2) kε(k)
H(z)=(1+1/3z-1)/(1-1/2z -1)
ROC |z|>1/2
3.稳定与非稳定系统
1)
BIBO
x(t) 有界y(t) 有界
x(k) 有界y(k) 有界
2)
LTI
∫-∞+∞|h(τ)|/dτ<+∞
∑k=-∞+∞|h(k)|<+∞
3)
LTI
H(s) ROC Include jw axis
H(Z) ROC Include |z|=1
Rational & Causal
H(s) Poles lie in left-half of s-plane
=real part of poles <0
H(Z) Poles lie inside unit circle
= |pi|<1
ex5:
y(n) =x(n)+1/3x(n-1)
h(n)=(1/2) kε(k)
H(z)=(1+1/3z-1)/(1-1/2z -1)
ROC |z|>1/2。

相关文档
最新文档