分子生物学第5章
分子生物学 第五章 DNA的转座
![分子生物学 第五章 DNA的转座](https://img.taocdn.com/s3/m/05faf88371fe910ef12df891.png)
转座作用
DNA的转座,或称移位,是由可移位因子介导 的遗传物质重排现象。
“转座”?
不十分准确,在转座过程中,可移位因子的一个 拷贝常常留在原来的位置上,在新位点出现的是 拷贝,因此,转座有别于同源重组,它依赖于 DNA的复制。 根据转座子复制与否,转座作用可分为:
单纯转移 复制转移
5.1转座子 转座子
5.4.3 TnA家族 家族
TnA家族都是比较大的转座子(-5kb以上), 家族都是比较大的转座子( 以上), 家族都是比较大的转座子 以上 其特点是两端不含IS, 其特点是两端不含 ,但含有独立的转位酶基 因和抗药性基因。 因和抗药性基因。TnA家族包括许多类似的转 家族包括许多类似的转 位子。它们的一般结构均相类似, 位子。它们的一般结构均相类似,但有不同的 遗传标记(genetic markers)。 遗传标记 。
5.4.1 Tn10 许多转位子两端的IS具有完全相同的反向 许多转位子两端的 具有完全相同的反向 或同向)重复顺序。但亦有些Tn两端 两端IS不 (或同向)重复顺序。但亦有些 两端 不 完全相同,从而引起其功能各异。例如Tn10 完全相同,从而引起其功能各异。例如Tn10 两端的IS(右侧IS10R,左侧为 两端的 (右侧 ,左侧为IS10L)即不 ) 完全相同。 完全相同。
IS10L Tn10 (9.3 kb) IS10R
IR IR
பைடு நூலகம்IR
IR IR
IR
两端的反向重复顺序长22bp。这 在IS10两端的反向重复顺序长 两端的反向重复顺序长 。 个22bp的反向重复即是转位酶所赖以识 的反向重复即是转位酶所赖以识 别的位点,因而为转位反应所必须。 别的位点,因而为转位反应所必须。由 的反向重复不完全相同, 于IS10R和IS10L的反向重复不完全相同, 和 的反向重复不完全相同 所以IS10R是Tn10转位所必须,而IS10L 转位所必须, 所以 是 转位所必须 的转位活性却仅为IS10R的1-10%(目前 %(目前 的转位活性却仅为 的 %( 估计IS10R和IS10L之间约有 %的差 之间约有2.5% 估计 和 之间约有 异)。
分子生物学-第5章-分子生物研究法(上)精选全文完整版
![分子生物学-第5章-分子生物研究法(上)精选全文完整版](https://img.taocdn.com/s3/m/45518408ae1ffc4ffe4733687e21af45b307fe9c.png)
限制性核酸内切酶
限制性核酸内切酶(restriction endonuclease, RE)
一类能识别和切割双链DNA分子中特定碱基顺序的核酸 水解酶
Bam HⅠ
GGATCC CCTAGG
GCCTAG+
GATCC G
分类: Ⅰ、Ⅱ、Ⅲ (基因工程技术中常用Ⅱ型)
命名
Hin dⅢ
Haemophilus influenzae 自主 复制能力的 DNA分子( vector),如 病毒、噬菌体 和质粒等小分 子量复制子都 可以作为基因 导入的载体。
1970年Mandel和Higa发现,大肠杆菌细胞经适量氯化钙处 理后,能有效地吸收λ噬菌体DNA。
1972年,Cohen等人又报道,经氯化钙处理的大肠杆菌细 胞同样能够摄取质粒DNA。
把磷酸基团加到多聚核苷酸链的5'-OH末端(进行末端标记 实验或用来进行DNA的连接 在双链核酸的3'末端加上多聚单核苷酸
从DNA链的3'末端逐个切除单核苷酸
从DNA链的5'末端逐个切除单核苷酸 切除位于DNA链5'或3'末端的磷酸基团
1972 - Paul Berg,
Produced first recombinant DNA using
5.1 重组DNA技术回顾 5.2 DNA基本操作技术 5.3 RNA基本操作技术 5.4 SNP的理论与应用 5.5 基因克隆技术 5.6 蛋白质组与蛋白质组学技术
5.1 重组DNA技术回顾
三大成就 :
1. 40年代确定了遗传信息的携带者,即基因的分子载体 是DNA而不是蛋白质,解决了遗传的物质基础问题;
• 基因工程是指在体外将核酸分子插入病毒、质粒 或其它载体分子,构成遗传物质的新组合,使之 进入原先没有这类分子的寄主细胞内并进行持续 稳定的繁殖和表达。
分子生物学第5章蛋白质翻译
![分子生物学第5章蛋白质翻译](https://img.taocdn.com/s3/m/1634b048c850ad02de804192.png)
---aa 接受臂 ;
loading aa at 3‟ end ---TΨ C loop; contact with 5s rRNA
---DHU loop;
contact with AARS ---anti-codon loop;
34
---extra loop;
分类标准
tRNACys表示转运半胱氨酸的tRNA Cys-tRNACys 表 示 携 带 了 半 胱 氨 酸 的 tRNACys
●
Paracodon ---由若干Nt组成,存在于tRNA不定位置上 ---与AARS侧链基团的分子发生特异的“契合” ---成为tRNA准确负载氨基酸的机制之一
●
tRNA的“L”三维结构与功能 “L”构型的结构力 ---二级结构中双链区的碱基堆积力和氢键 ---二级结构中非双链区在“L”结构中,形成氢键结合
成为核糖体识别第一个 AUG的信号
细菌 16S
AMEAMECCUGCGGUUGGAUGACCUCCUU
哺乳动物 18S rRNA AMEAMECCUGCGGAAGGAUGAUUA
高度相似
5.2.3. mRNA
mRNA分子5‟端的序列对于起始密码子选择 有重要作用
● In Prokaryote
poly-cistron
a) 简并现象的概念; ---一种氨基酸受2个或2个以上codon编码的遗传现象 ---编码一种aa的4个codon间, 仅3rd Nt 不同, 称为codon family 例;Ser (6 codons) 1 codon family & 2 extra codons
密码子的简并性
b) 简并现象的机理;
5.3. Genetic Code
分子生物学-第五章--蛋白质的生物合成可编辑全文
![分子生物学-第五章--蛋白质的生物合成可编辑全文](https://img.taocdn.com/s3/m/f6df2ba559f5f61fb7360b4c2e3f5727a5e924c9.png)
遗传密码的连续性
遗传密码的摆动配对
密码的简并性具有的生物学意义
它允许生物体的DNA碱基有较大变异 的余地,使基因突变可能造成的为害降至 最低程度,而不影响物种形状的表达,对 环境的适应和物种遗传的稳定。
例如细菌DNA中G+C含量变动很大, 但不同G+C含量的细菌却可以编码出相同 的多肽链。
这归因于同义密码子的分布规则。
摇摆假说
由于同义密码子的第1、2个碱基是保守的,第3个碱 基是可变的,因此解读同义密码子的tRNA的反密码子的 第1个碱基必定具有最小的专一性,也就是说它与密码子 第3个碱基之间的配对原则具有一定范围的灵活性。
由于反密码子位于tRNA的突环上,因此反密码子三 联体的排列就会呈弯曲弧线,不能与密码子保持完全的平 行,加上反密码子的第1个核苷酸位于非双链结构的松弛 环内,摇摆的自由度较大,从而导致密码子的第3个核苷 酸和反密码子的第1个核苷酸之间可能形成非标准的碱基 配对,反密码子的这一位点也被称为摇摆位点(一般为第 34位碱基)。
在原核生物和真核生物中,均存在另一种 携带蛋氨酸的tRNA,识别非起始部位的蛋氨 酸密码,AUG。
tRNA在将密码的信息及排列转换为多肽链中 的氨基酸序列的过程中起着中心及桥梁的作用。
最简单的tRNA只有74个核苷酸,而最大的也 很少超过94个核苷酸。这个特点使得tRNA成为最 先被定序的核酸。
序列测定的结果揭示tRNA是同源性相对较高 的RNA分子,tRNA分子含有大量修饰核苷酸和可 能存在各种碱基配对的二级结构。
能 够 识 别 mRNA 中 5′ 端 起 始 密 码 AUG 的 tRNA是一种特殊的tRNA,称为起始tRNA。
在 原 核 生 物 中 , 起 始 tRNA 是 一 种 携 带 甲 酰蛋氨酸的tRNA,即tRNAifmet;
分子生物学第5章、第6章
![分子生物学第5章、第6章](https://img.taocdn.com/s3/m/8c0df618eefdc8d376ee3250.png)
•DNA分子内或分子间发生遗传信息的重新组合,称为 遗传重组,或基因重排。→ 重组DNA •真核生物基因组间重组多发生在减数分裂时同源染 色体之间的交换;细菌及噬菌体的基因组为单倍体, 来自不同亲代两组DNA之间可通过多种形式进行遗传 重组。 •DNA重组对生物进化起着关键的作用。 •重组分类:同源重组(homologous recombination) 、 位点特异性重组(site-specific recombination)、 转座重组(transposition recombination)和 异常重组(illegitimate recombination)。
1. 互变异构体:碱基发生烯醇式-酮式互变异构或者氨 基-亚氨基互变异构时,使碱基错配。 2. 脱氨基作用:碱基上氨基自发脱落,或在诱变剂的 作用下脱去氨基,则C→U、A →I、G →X,引起子 链错误。 3. DNA聚合酶“打滑”:DNA复制时发生碱基的环出现 象,引起一个或数个碱基的插入或缺失,易发生于 几个相同碱基串联的部位。 4. 活性氧(O3)引起的诱变:①氧化碱基与C、A配对, 造成GC → TA颠换,这种损伤可以积累;②H2O2造成 的DNA氧化损伤,此类损伤一般能被修复。
核苷酸切除修复
错配修复
错配修复对 DNA复制忠实 性的贡献力达 102-103,DNA 子链中的错配 几乎完全都被 修正,充分反 映了母链的重 要性。
大肠杆菌甲基化引 导的错配修复
重组修复
易错修复和SOS反应
•SOS反应:当DNA损伤广泛难以继续复制时,由此而
诱发出一系列复杂的反应。
•这种修复特异性低,对碱基的识别、选择能力差。
5.3.4 基因突变的后果
基因突变的后果主要是生物功能的丧失。 某一基因突变后使其所表达的蛋白质或酶失活, 有时还会引起多种酶的缺乏。 有些突变可产生功能获得性显性表现型。 典型的人体细胞突变每个基因每代发生率为107~10-5,但并非所有的突变都会导致疾病。
分子生物学第五章课后思考题答案【修订版】
![分子生物学第五章课后思考题答案【修订版】](https://img.taocdn.com/s3/m/fadfb84ee45c3b3567ec8bb1.png)
分子生物学第五章作业1、哪些重要的科学发现和实验推动了DNA重组技术的产生及发展?答:近半个世纪来,分子生物学主要取得了三大成就:第一,20世纪40年代确定了遗传信息的携带者,即基因的分子载体是DNA而不是蛋白质,解决了遗传的物质基础问题;第二,50年代提示了DNA分子的双螺旋结构模型和半保留复制机制,解决了基因的自我复制和世代交替问题;第三,50年代末至60年代,相继提出了“中心法则”和操纵子学说,成功地破译了遗传密码,充分认识了遗传信息的流动和表达。
但事实上,DNA分子体外切割与连接技术及核苷酸序列分析技术的进步直接推动了重组DNA技术的产生和发展。
其中,限制性内切核酸酶和DNA连接酶等工具酶的发现和应用是现代生物工程技术史上最重要的事件。
DNA重组技术的产生及发展过程中比较重要的科学发现和实验如下:1957年A.Kornberg从大肠杆菌中发现了DNA聚合酶I。
1965年S. W. Holley完成了酵母丙氨酸tRNA的全序列测定;科学家证明细菌的抗药性通常由"质粒"DNA所决定。
1967年年世界上有五个实验室几乎同时宣布发现了DNA连接酶。
1970 年H.O.Smith,K.W.Wilcox和T.J.Kelley分离了第一种限制性核酸内切酶。
H.M.Temin和D.Baltimore从RNA肿瘤病毒中发现反转录酶。
1972-1973 年H.Boyer,P.Berg等人发展了DNA重组技术,于72年获得第一个重组DNA分子,73年完成第一例细菌基因克隆。
1978 年首次在大肠杆菌中生产由人工合成基因表达的人脑激素和人胰岛素。
1981 年R. D. Palmiter和R. L. Brinster获得转基因小鼠;A. C. Spradling和G. M. Rubin得到转基因果蝇。
1982 年美、英批准使用第一例基因工程药物--胰岛素;Sanger等人完成了入噬菌体48,502bp全序列测定。
分子生物学5第五章 DNA的损伤修复和突变[可修改版ppt]
![分子生物学5第五章 DNA的损伤修复和突变[可修改版ppt]](https://img.taocdn.com/s3/m/df6b825e376baf1ffd4fad08.png)
CC
CC 相邻的胸腺嘧啶
CC
CC 胸腺嘧啶二聚体
二、二聚体修复的机制
1、光复活(photo reactivation ) 直接修复
----TT-------AA----
----TT-------AA----
• 复制前、不容易出错 • 400 nm 蓝光、PR 酶
(photo-reactivation enzyme) 光敏裂合酶(photolyase)
浓度的稀释 ● 链的非准确转移,导致突变机率的增加
重组修复 (链转移修复)
• 复制后修复 • 容易出错
二聚体后起始
• RecA, DNApolymerae • ligase 重组修复后的损伤位点可 由其它机制进一步修复
RecA
聚合酶、连接酶
4. 易错修复(SOS修复 SOS repair)
(1) 实验证据
分子生物学5第五章 DNA的损 伤修复和突变
引起损伤的因素: ♦ 自发性损伤(复制中的损伤、碱基的自发性化学改变、
自发脱碱基、 细胞的代谢产物对DNA的损伤) ♦ 物理因素引起的损伤(电离辐射、紫外线) ♦ 化学因素引起的损伤(烷化剂、碱基类似物) 引起损伤的类型:
碱基脱落、碱基(或核苷)改变、错误碱基(碱基的取 代)、碱基的插入或缺失、链的断裂、链交联(链内、链 间)、嘧啶二聚体等等
D.S. DNA
提取
变性
S.S. DNA
TT
TT TT
AA AA
TT
AA
TT TT
TT
TT
变性
AA
复制过程越过二聚体而在相应新链上留下缺口
★二聚体后起始
修复相关机制:
● 与Rec-A蛋白引起的重组(strand transfer)有关 ● TT dimer未被修复,仅表现在后代群体中TT dimer
分子生物学课件第五章 同源重组、位点特异性重组
![分子生物学课件第五章 同源重组、位点特异性重组](https://img.taocdn.com/s3/m/9e45d846aa00b52acec7ca09.png)
The Holliday Model
* This model of recombination was first proposed by Robin Holliday in 1964 and re-established by David Dressler and Huntington Potter in 1976 who demonstrated that the proposed
Fig. 22.5 f-h
8. The nicks are sealed by DNA ligase, yielding a Holliday junction.
9. Branch migration occours, sponsored by RuvA and RuvB.
10. RuvC resolves the structure.
6. The invading strand basepaired with a homologous region, releasing SSB and RecA.
7. RecBCD nicks the loopingout strand. RecA and SSB helps strand exchange.
Roles
Generating new gene/allele combinations (crossing over during meiosis)
Generating new genes (e.g., IgG rearrangement)
Integration of a specific DNA element DNA repair
* The two molecules must share a region of homologous (i.e. nearly identical) DNA sequence - a minimum of 30-151 bp is required.
医学分子生物学第五章 真核基因表达调控
![医学分子生物学第五章 真核基因表达调控](https://img.taocdn.com/s3/m/909c8b2027d3240c8547ef2a.png)
DNA ① 转录调控
hnRNA
② 加工调控
mRNA
细胞核
③ 转运调控 mRNA
细胞质
翻译调控 ④
⑤ mபைடு நூலகம்NA降解调控
蛋白质 失活mRNA
甲基化的重建决定了细胞分化的命运,形 成的印记,在体细胞分裂中稳定遗传。
胰岛素样生长因子2( IGF2) 存在基因组印记 的现象, IGF2能促进细胞的增殖、分化以及 个体的生长发育并抑制细胞凋亡 。IGF2基因 组印记与多种肿瘤的发生、发展相关 。 来源于父方的基因Igf2对胚胎的贡献是促进胎 儿生长,加速其发育,促进胎盘发育为胎儿提 供更多营养。父系表达基因tgf2的缺失导致胎 儿在宫内生长迟缓。
四、染色质结构与基因表达调控: 真核细胞中基因转录的模板是染色质
而不是裸露的DNA,因此染色质呈疏松 或紧密结构,即是否处于活化状态是决 定RNA聚合酶能否有效行使转录功能的 关键。
00:28
四、染色质结构与基因表达调控:
活性染色质(常染色质) 按功能状态的不同可将染色质分为活性染色质和非 活性染色质,所谓活性染色质是指具有转录活性的 染色质;非活性染色质是指没有转录活性的染色质。
00:28
③大多为重复序列,一般长约50bp,适合与某 些蛋白因子结合。其内部常含有一个核心序 列:(G)TGGA/TA/TA/T(G),该序列是 产生增强效应时所必需的;
④ 增强效应有严密的组织和细胞特异性,说明增 强子只有与特定的蛋白质(转录因子)相互作用 才能发挥其功能;
00:28
《分子生物学》第五章期末习题
![《分子生物学》第五章期末习题](https://img.taocdn.com/s3/m/b7045550f4335a8102d276a20029bd64783e6230.png)
《分子生物学》第五章期末习题第5章原核生物基因表达调控-习题答案一、名词解释基因表达调控:所有生物的信息,都是以基因的形式储存在细胞内的DNA(或RNA)分子中,随着个体的发育,DNA分子能有序地将其所承载的遗传信息,通过密码子-反密码子系统,转变成蛋白质或功能RNA分子,执行各种生理生物化学功能。
这个从DNA到蛋白质或功能RNA的过程被称之为基因表达,对这个过程的调节称之为基因表达调控。
组成性基因表达:是指在个体发育的任一阶段都能在大多数细胞中持续进行的基因表达。
其基因表达产物通常是对生命过程必须的或必不可少的,一般只受启动序列或启动子与RNA聚合酶相互作用的影响,且较少受环境因素的影响及其他机制调节,也称为基本的基因表达。
管家基因:某些基因产物对生命全过程都是必须的获必不可少的。
这类基因在一个生物个体的几乎所有细胞中均表达,被称为管家基因。
诱导表达:是指在特定环境因素刺激下,基因被激活,从而使基因的表达产物增加。
阻遏表达:是指在特定环境因素刺激下,基因被抑制,从而使基因的表达产物减少。
反式作用因子:又称为分子间作用因子,指一些与基因表达调控有关的蛋白质因子。
它们由某一基因表达后通过与特异的顺式作用元件相互作用,反式激活另一基因的转录。
操纵子:是指原核生物中由一个或多个相关基因以及转录翻译调控元件组成的基因表达单元。
SD序列:存在于原核生物起始密码子AUG上游7~12个核苷酸处的一种4~7个核苷酸的保守片段,它与16S rRNA 3’端反向互补,所以可将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。
根据首次识别其功能意义的科学家命名。
阻遏蛋白:是一类在转录水平对基因表达产生负控作用的蛋白质,在一定条件下与DNA结合,一般具有诱导和阻遏两种类型。
在诱导类型中,信号分子(诱导物)使阻遏蛋白从DNA释放下来;在阻遏类型中,信号分子使阻遏蛋白结合DNA,不管是哪一种情况,只要阻遏蛋白与DNA结合,基因的转录均将被抑制。
分子生物学基础第五章遗传信息的翻译—从mRNA到蛋白质第二节蛋白质生物合成的过程
![分子生物学基础第五章遗传信息的翻译—从mRNA到蛋白质第二节蛋白质生物合成的过程](https://img.taocdn.com/s3/m/13032e2ae97101f69e3143323968011ca300f725.png)
第二节 蛋白质生物合成的过程
图5-8 原核生物蛋白质合成起始复合体的形成
第二节 蛋白质生物合成的过程
2.真核生物蛋白质合成的起始 真核生物蛋白质合成的起始需要更多的蛋白质因子 eIF参与,目前至少发现有9种,其中有些因子含有多达11 种不同的亚基。但对它们的功能了解甚少,主要过程如图 5-9所示。与原核系统类似,eIF-3使40S的小亚基与大亚 基分开,但其间的反应不同。Met-tRNAiMet首先与小亚基 结合,同时与eIF-2及GTP形成起始四元复合体,该复合体 再 在 多 个 因 子 的 帮 助 下 开 始 与 mRNA 的 5 ′ 端 结 合 。 其 中 eIF-4因子含有1个特殊的亚基,能特异性地结合在mRNA的 5′端帽子结构上。结合在mRNA上后,核糖体小亚基就开 始向3′端移动至第一个AUG,这种移动由ATP水解为ADP及 磷酸来提供能量。
图5-11 细菌中肽链延伸的 第一步反应:进位
第二节 蛋白质生物合成的过程
图5-12 转肽
第二节 蛋白质生物合成的过程
图5-13 细菌中肽链延伸的第 三步反应:移位
第二节 蛋白质生物合成的过程
四、翻译的终止 翻译的最后一步涉及到肽酰-tRNA中连接tRNA和C端氨 基酸酯键的切断,这一过程需要终止和释放因子(RFs)。 核糖体与mRNA的解离还需要核糖体释放因子(RRF)的参 与。细胞中通常不含能识别3个终止密码子的tRNA。在大 肠杆菌中,当终止密码子进入核糖体上的A位点后,即被 释放因子识别。RF-1可识别UAA和UAG,RF-2识别UAA和UGA, RF-3有助于RF-1和RF-2的活性。释放因子使肽酰转移酶将 多肽链转至H2O分子而不是通常的氨酰-tRNA,释放出mRNA 并与核糖体亚基完全解离。当释放因子识别在A位点上的 终止密码子后,存在于大亚基上的肽酰转移酶专一活性转 变成了酯酶活性,以水解新生合成的肽链。原核生物蛋白 质合成中新生肽链的释放如图5-14所示。
分子生物学 第五章
![分子生物学 第五章](https://img.taocdn.com/s3/m/f5a406e29b89680203d82547.png)
成多肽的氨基酸顺序,再进行比较分析来推测各氨基酸的
密码子。
三、Khorana的实验
Khorana就是用这种方法将所有的遗传密码都破译了。 这项实验还同时证实了三联密码子的准确性以及简并性的存在。
Robter Holley发现并得到了 tRNA的精确结构,应用上述各种方 法仅用了4年时间,于1965年完全查清了20种基本氨基酸所对应 的全部61个密码子,编出了遗传密码字典(教材表 5-4)。AUG 为起始密码子(initiation codon),其余61个密码子对应20种氨 基酸。另外的3个密码子(UAA、UAG和UGA)是终止密码子 (termination codons or stop codons),它们不编码任何氨基酸, 只结束蛋白质的合成。
除了色氨酸和甲硫氨酸仅有一个密码子外,其它氨基酸 都有一个以上的密码子,如:亮氨酸、精氨酸、丝氨酸 都有6个密码子,大多数氨基酸有2个、3个或4个密码子 (教材表5-5)。
二、密码的简并性(degeneracy) 密码子的简并性可以减少有害的突变,具有非常 重要的生物学意义。
三、密码的摆动性
密码的简并性往往表现在密码子的第三位碱基上,如甘 氨酸的密码子是GGU、GGC、GGA、GGG,丙氨酸的 密码子是GCU、GCC、GCA、GCG,它们的前两位碱基 是相同的,只是第三位碱基不同。有些氨基酸只有两个密 码子,通常第三位碱基或者都是嘌呤,或者都是嘧啶。 显然,密码子的专一性基本上取决于前两位碱基,第三位 碱基起的作用有限。即第三位碱基有较大的灵活性。
蛋白质分子的20种氨基酸编码,不可能是一对一的关系,两个碱基 决定一个氨基酸也只能编码16种氨基酸,如果用三个碱基决定一个 氨基酸,43=64,就足以编码20种氨基酸。这是编码氨基酸所需碱 基的最低数目,故密码子应是三联体(triplet)。
分子生物学:第5章原核生物基因表达调控习题
![分子生物学:第5章原核生物基因表达调控习题](https://img.taocdn.com/s3/m/1e0620642a160b4e767f5acfa1c7aa00b52a9dd2.png)
分子生物学:第5章原核生物基因表达调控习题第五章原核生物基因表达调控一、名词解释:1. 操纵子2. 基因表达3. 看家基因4. 正调控和负调控5. 安慰诱导物6. 衰减子(弱化子)7. 魔斑8. 结构基因和调节基因9. 本底水平表达二、填空1. 操纵子的基因表达调节系统属于水平的调节,乳糖操纵子模型由和1961年提出的。
色氨酸操纵子包括和两方面的调控。
2. 能够诱导操纵子但不是代谢底物的化合物称为诱导物。
能够诱导乳糖操纵子的化合物就是其中一例。
这种化合物同蛋白质结合,并使之与分离。
乳糖操纵子的体内功能性诱导物是。
3. 色氨酸是一种调节分子,被视为。
它与一种蛋白质结合形成。
通过控制起作用。
色氨酸操纵子受另一种系统------ 的调控,它涉及到第一个结构基因被转录前的转录。
4. 大肠杆菌乳糖操纵子调节基因编码的与结合,对Lac结合,对Lac表达实施负调控;与复合物结合于上游部分,对Lac表达实施正调控。
5. 操纵子中没有基因产物的是和三、选择题1. 下面哪些真正是乳糖操纵子的诱导物?(BDE)A. 乳糖B. 蜜二糖C. O- 硝基苯酚-β-半乳糖苷(ONPG)D. 异丙基-β-巯基-半乳糖苷E. 异乳糖2. 色氨酸操纵子的调控作用是受两个相互独立的系统控制的,其中一个需要前导肽的翻译,下面哪一种调控这个系统?(B)A. 色氨酸B. 色氨酰-tRNA TrpC. 色氨酰-tRNAD. cAMPE. 以上都不正确3. 阻遏蛋白(阻抑蛋白)识别操纵子中的( C )A. 启动基因B. 结构基因C. 操纵基因D. 内含子E. 外显子4. 乳糖、阿拉伯糖、色氨酸等小分子物质在基因表达调控中作用的共同特点是A. 与启动子结合B. 与DNA结合影响模板活性C. 与RNA聚合酶结合影响其活性D. 与蛋白质结合影响该蛋白质结合DNAE. 与操纵基因结合5. 下面那项不属于原核生物操纵元的结构A. 启动子B. 终止子C. 操纵子D. 内含子6. 下列有关操纵子的论述哪个是错误的()A. 操纵子是由启动基因、操纵基因与其所控制的一组功能上相关的结构基因组成的基因表达调控单位B. 操纵子不包括调节基因C. 代谢底物往往是该途径的可诱导酶的诱导物,代谢终产物往往是可阻遏酶的辅阻遏物D. 真核细胞的酶合成也存在诱导和阻遏现象,因此也是由操纵子进行调控的7. 操纵子调节系统属于哪一种水平的调节?A 复制水平的调控B 转录水平调控C 转录后加工的调控D 翻译水平的调控8. 对调节基因下述哪些论述哪些是对的()A 是编码阻遏蛋白的结构基因B 各种操纵子的调节基因都与启动基因相毗邻C 调节基因是操纵子的组成部分D 调节基因的表达另有转移的调控区9. 以下有关阻遏蛋白的哪些是对的()A 阻遏蛋白是调节基因表的的产物B 可诱导操纵子的阻遏蛋白具有直接与操纵子基因结合的活性,与诱导物相互作用后丧失活性C 可阻遏操纵子的阻遏蛋白没有直接与操纵子基因结合的活性,与辅阻遏物结合后才有此活性D 阻遏蛋白可与RNA聚合酶竞争同一结合部位10. 关于启动基因的下述论点哪些是错误的()A 启动基因是RNA聚合酶识别并最县结合的一段DNA序列B 启动基因是最先被RNA聚合酶转录的DNA 序列C 启动基因是DNA上富含A-T碱基对的部分D 启动基因是引发DNA复制的特殊序列11. 下列有关降解物基因活化蛋白(CAP)的哪些论点是正确的()A CAP-cAMP可专一地与启动基因结合,促进结构基因的转录B CAP可单独与启动子相互作用,促进转录C CAP-cAMP可与调节基因结合,控制阻遏蛋白的合成D CAP-cAMP可与RNA聚合酶竞争地结合于启动基因,从而阻碍结构基因的转录12. 与乳糖操纵子操纵基因结合的物质是()A RNA聚合酶B DNA聚合酶C 阻遏蛋白D 反密码子四、是非题1. 葡萄糖和乳糖并存时,细菌优先利用乳糖并启动乳糖操纵子()2. 小分子物质如ITPG诱导乳糖操纵子表达时起负调控作用与操纵基因相结合阻抑结构基因的表达()3. 色氨酸操纵子中含有衰减子区,其调控作用主要受Trp浓度高低影响()4. 色氨酸操纵子(trpoperon)中含有衰减子序列()5. cAMP在laz操纵子中起正调控作用,其浓度受环境中的葡萄糖影响,与其浓度成正比()6. 大肠杆菌乳糖操纵子真正的诱导物不是乳糖,而是它的异构体别乳糖()7. 操纵基因又称操纵子,如同启动基因又称启动子一样()8. 可诱导操纵子是负责调节糖分解代谢的,可阻遏操纵子是负责调节氨基酸代谢的()五、问答题:1. 试述乳糖操纵子的结构及负控诱导的调控机理2. 如何区别可诱导和可阻遏的基因调控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)当色氨酸充足时,色氨酰tRNA供给充足,核糖体迅速翻译序列1
合成前导肽,并对序列2形成约束,使序列2、3不能形成茎环结 构,转而序列3、4形成转录终止子结构衰减子,使下游正在转 录结构基因的RNA聚合酶脱落,终止转录
转录衰减机制:
新生肽链 核糖体
5’ 1 2
衰减子结构 (attenuator)
3
4
mRNA
UUUU 3’
DNA
trp 密码子当色氨酸来自度高时核糖体5’
1
2
3 4
当色氨酸浓度低时
高Trp时: Trp-tRNATrp 存在
核糖体通过片段1(2个Trp密码子) 封闭片段2
片段3,4形成发夹结构 类似于不依赖ρ因子的转录终止序列 RNA聚合酶停止转录,产生衰减子转录产物 转录、翻译偶联,产生前导肽
前导序列:在trp mRNA5'端trpE基因的起始密码前一 个长162nt的mRNA片段。
第10和第11位上有相 邻的两个色氨酸密码子
转录与翻译的偶联是衰减调控的基础 色氨酰tRNA浓度的变化是衰减调控的信号
(1)当色氨酸缺乏时,色氨酰tRNA供给不足,合成前导肽的核糖体
停滞于序列1的色氨酸密码子位点,序列2、3形成茎环结构,使
结合乳糖、G存在与否及与操纵子正、负控因素、 基因开放与关闭情况如下:
葡萄糖(G) 乳糖 基因开放 基因关闭 机理简述(学生填充)
①
×
× √ √
√
× × √
√
√ √ √
CAP正控、乳糖去阻遏、基因开放、转录进行 不能诱导去阻遏,CAP即使结合,基因未开放 细菌优先用G,无CAP结合,无诱导去阻遏 CAMP-CAP复合物无,CAP位点空,去阻遏 也无RNA pol结合
信号转导网络系统为基础
RNA的转录合成——蛋白质的翻译后修饰,各个环节
基因 激活
转录起始 转录后加工 mRNA降解
蛋白质翻译 翻译后加工修饰
蛋白质降解等
五、基因转录调控的基本要素
主要是控制转录起始,基本要素:RNA聚合酶、调控序列和调节蛋白 1、调控序列 • ①顺式作用元件 (cis-acting element):是基因序列的一部分,绝大 多数与结构基因 (转录区)在同一染色体DNA上,位于结构基因上游、 下游或内部,通过与RNA聚合酶、调节蛋白结合调控基因表达。 • 包括启动子、终止子、原核生物的操纵基因和衰减子、真核生的增强 子和沉默子等 • ②反式作用元件 (trans-acting element):属于调节基因,与靶基因 在同一或不同染色体DNA上,通过编码产物调控基因表达,其编码产
第二节
原核生物基因表达调控
• 单细胞生物
• 没有能量储备系统
• 对环境(生存和营养)的高度适应能力
• 生长繁殖最优化
• 操纵子结构
一、原核生物基因表达调控的特点
• 1· 以操纵子为单位进行转录 操纵子 (operon):是原核细胞DNA上的一段区域,由若干功能 相关的结构基因和控制这些基因表达的元件组成的一个完整的连续的 功能单位。 • 2· 基因转录的特异性由σ因子决定 不同的σ因子与核心酶结合,可以转录不同的基因 环境变化可以诱导表达特定的σ因子,启动转录特定的基因 • 3· 转录与翻译偶联 没有核膜包被 除了σ因子之外 • 4· 基因表达既有正调控,又有负调控 • 5· 存在衰减子调控机制 • 6· 基因表达存在应急应答调控机制 当遇到诸如氨基酸缺乏等紧急情况时,会产生应急应答,包括 各种RNA、蛋白质、糖和脂肪在内的几乎所有合成代谢都停止
操纵基因 ——阻遏蛋白的结合位点
当操纵序列结合有阻遏蛋白时,会阻碍 RNA 聚合酶与启动序列的结合,或是 RNA 聚合 酶不能沿DNA向前移动 ,阻碍转录。
启动序列 操纵序列 阻遏蛋白 编码序列 pol
2· 调节蛋白
• DNA结合蛋白,与调控序列结合影响转录 (1)分类: • ①特异因子:σ因子——启动子 • ②阻遏蛋白:操纵基因(负调控) • ③激活蛋白:CAP位点(正调控) (2)作用模式:环境信号(诱导物和阻遏物)影响 环境信号与调节蛋白结合,改变调节蛋白构象,影响调节蛋白 与调控序列的结合,调控基因表达。四种模式: 钝化 可诱导基因: 诱导物 活化 活化 可阻遏基因: 阻遏物 钝化 激活蛋白 激活蛋白 阻遏蛋白 阻遏蛋白
第五章
基因表达调控
第一节 基因表达调控的基本原理
• 在不同时期和不同条件下,基因表达的开启 或关闭以及基因活性的增加或减弱等是受到 严格调节控制的,这种控制即基因表达调控 • 调控可以发生在基因表达的任何阶段。
一、基因表达调控的基本方式
• 基因根据表达及表达调控特点分2类 1、管家基因(housekeeping gene):其表达产物在 整个生命过程中都是必需的,因此在一个生物体的 各中细胞内持续表达。受环境因素影响较小,表达
究于1960年提出了乳糖操纵子模型 • 阐述原核生物基因转录调控机制的经典模型
1、乳糖操纵子的结构
调控序列
结构基因
DNA
P
O
操纵序列
Z
Y
A
Z: β-半乳糖苷酶
Y: 透酶 A:乙酰基转移酶
启动序列 CAP结合位点
2· 乳糖操纵子的阻遏调控
• 上游调节基因lacI,组成性表达阻遏蛋白LacI
• 在没有乳糖时会与lacO结合,阻挡RNA聚合酶沿着DNA模板链移
CAP的正性调节 + + + + 转录
DNA
CAP
P
O
Z
Y
A
CAP CAP CAP CAP
无葡萄糖,cAMP浓度高时
CAP
有葡萄糖,cAMP浓度低时
4· 乳糖操纵子的双重调控
• LacI和CAP的双重调控 存在乳糖而解除LacI的阻遏调控 缺乏葡萄糖而启动CAP的激活调控 • 意义:经济
高效表达
2、 空间特异性
在同一生长发育阶段,不同基因在同一组织器官的 表达水平不同;而同一基因在不同组织器官的表达水平 也不同。 基因表达的空间特异性是细胞分化所形成的组织器 官中体现,所以也成为细胞或组织特异性
3、条件特异性
• 许多基因(特别是奢侈基因)的表达水平受代谢条件和环境
因素影响
• 例如:
• 大肠杆菌乳糖操纵子在有乳糖而缺乏葡萄糖时高水平表达
二、转录水平的调控
(一)调控因素
• 原核生物基因的转录调
控是由RNA聚合酶、调控序列
和调节蛋白决定的
1· 调控序列
• 启动子和终止子,操纵基因和分解代谢物基因激活蛋白结合 (CAP)位点 (1)操纵基因(operator):位于启动子和结构基因之间,相邻、 重叠或包含于启动子内,是阻遏蛋白的结合位点 (2) CAP位点:位于启动子上游,CAP的结合位点
R
P
O
leading seq.
E
D
C
B
A
+
Negative-repressible operon trp
70-fold lower than fully de-repressed
2、阻遏调控
• 操纵子上游存在调节基因trpR,编码同二聚体阻遏蛋白TrpR
• (1)当色氨酸缺乏时,游离的阻遏蛋白TrpR不能与操纵基因trpO结
方式属于组成性表达
2、奢侈基因(luxury gene):仅在特定组织中有高
表达,表达产物具有特殊功能。易受环境因素影响,
即受到调控,表达方式属于条件性表达
奢侈基因
对环境信号的应答方式,分2类: • ①可诱导基因:受环境信号刺激时启动表达或表达增强, 属于诱导表达(induce expression) • ②可阻遏基因:受环境信号刺激时终止表达或表达减弱, 属于阻遏表达(repress expression),相应的环境信号 称为阻遏物(repressor)
合,RNA聚合酶可以有效地转录结构基因,最终提高色氨酸的合成 速度
• (2)当色氨酸充足时,色氨酸作为阻遏物与阻遏蛋白TrpR结合,使
之变构成为活性TrpR ,与操纵基因trpO结合,阻遏RNA聚合酶与 启动子trpP结合。己经转录的mRNA也很快降解,最终降低色氨酸 的合成速度
3、衰减调控
• 作用于转录延长环节
I
pol P
O
Z
Y
A
没有乳糖存在时
DNA mRNA
I
pol
P
O
Z
Y
A
mRNA
启动转录
阻遏蛋白
β-半乳糖苷酶 别乳糖 乳糖
有乳糖存在时
3· 乳糖操纵子的激活调控
野生型lacP为弱启动子,需要激活蛋白CAP的激活调控 CAP含两个结构域: • ①N端结构域:cAMP结合域 • ②C端结构域:DNA结合域,与CAP位点结合 CAP须先与cAMP形成复合物——CAP位点——CAP的激活受 cAMP浓度控制。 cAMP的浓度与葡萄糖的浓度呈负相关 • ①当葡萄糖缺乏时,cAMP浓度高,CAP· cAMP复合物浓度高, 与CAP位点的结合效应强,通过与RNA聚合酶α亚基作用促进 其与启动子的结合,可以将转录启动效率提高50倍; • ②当葡萄糖充足时,与上相反
基因表达(+)
基因表达(-)
(二)乳糖操纵子
• 葡萄糖是大肠杆菌的主要能源 • 葡萄糖效应或分解代谢物阻遏:当可以得到葡萄糖和乳糖时, 大肠杆菌会先利用葡萄糖。当葡萄糖全部耗尽之后,大肠杆 菌停止生长。经过短时间的适应,大肠杆菌就会利用乳糖的 现象。
• Jacob和Monod(1965年诺贝尔生理学或医学奖获得者)通过研
物称为反式作用因子 (trans-acting factor)。