第03章化学反应系统热力学习题及答案物理化学
大学物理化学 第三章 多组分系统热力学习指导及习题解答
RT Vm p A Bp
积分区间为 0 到 p,
RT
p
d ln
f=
(p RT
A Bp)dp
0
0p
RT p d ln( f )= (p A Bp)dp Ap 1 Bp2
0
p0
2
因为
lim ln( f ) 0 p0 p
则有
RT ln( f )=Ap 1 Bp2
为两相中物质的量浓度,K 为分配系数。
萃取量
W萃取
=W
1
KV1 KV2 V2
n
二、 疑难解析
1. 证明在很稀的稀溶液中,物质的量分数 xB 、质量摩尔浓度 mB 、物质的量浓度 cB 、质量分数 wB
之间的关系: xB
mBM A
MA
cB
MA MB
wB 。
证明:
xB
nA
nB nB
nB nA
)pdT
-S
l A,m
dT
RT xA
dxA
-S(mg A)dT
-
RT xA
dxA =
S(mg A)-S
l A,m
dT
Δvap Hm (A) T
dT
-
xA 1
dxA = xA
Tb Tb*
Δvap Hm (A) R
dT T2
若温度变化不大, ΔvapHm 可视为常数
- ln
xA =
Δvap Hm (A) R
真实溶液中溶剂的化学势 μA μ*A(T, p) RT ln γx xA =μ*A(T, p) RT ln aA,x
真实溶液中溶质 B μB μB* (T, p) RT ln γx xB =μ*A(T, p) RT ln aB,x
03章 热力学第二定律
一、Clausius 不等式—— 热力学第二定律的数学表达式 前面根据可逆过程的热温商定义了熵函 数,下面讨论不可逆的情况。 卡诺定理指出,工作于T1,T2两个热源间的 任意热机I与可逆热机R,其热机效率有如下的关 系:
I≤ R
说明:
1.各种说法一定是等效的。若克氏说法不成立,则开氏说法 也一定不成立; 2.要理解整个说法的完整性切不可断章取义。如不能误解为 热不能转变为功,因为热机就是一种把热转变为功的装置; 也不能认为热不能完全转变为功,因为在状态发生变化时, 热是可以完全转变为功的(如理想气体恒温膨胀即是一例) 3.虽然第二类永动机并不违背能量守恒原则,但它的本质却 与第一类永动机没什么区别。
2.卡诺定理 所有工作于同温热源和同温冷源之间的热机,其效率 都不能超过可逆机,即可逆机的效率最大。
I≤ R
3.卡诺定理的推论
所有工作于同温热源和同温冷源之间的可逆
机,其热机的效率都相等。
4.熵的数学表达式
S (
A
B
Q
T
)R
或
dS (
Q
T
)R
§3.5 Clausius 不等式与熵增加原理
(2)要使发生自发过程的系统复原,环境必 然留下永久变化的痕迹;
(3)自发过程是不可逆过程。 自然界中发生的一切实际过程都有一定的方向和限度。
§3.2
热力学第二定律
▲ Clausius 说法:不可能把热从低温物体传到高
温物体而不引起其它变化。
“It is impossible to devise an engine ,which working in a cycle, shall produce no effect other than the transfer of heat from a colder to a hotter body. ”
物理化学-课后答案-热力学第二定律
物理化学-课后答案-热力学第二定律-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
物理化学课后答案热力学第二定律
第三章 热力学第二定律复习题1指出下列公式的适用范围; 1min ln BB BS Rnx ∆=-∑;212222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; 3dU TdS pdV =-; 4G Vdp ∆=⎰5,,S A G ∆∆∆作为判据时必须满足的条件;解 1封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力;2非等温过程中熵的变化过程,对一定量的理想气体由状态AP 1、V 1、T 1改变到状态AP 2、V 2、T 2时,可由两种可逆过程的加和而求得;3均相单组分或组成一定的多组分封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程;4非体积功为0,组成不变的均相封闭体系的等温过程; 5S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡;A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;2判断下列说法是否正确,并说明原因;1不可逆过程一定是自发的,而自发过程一定是不可逆的; 2凡熵增加过程都是自发过程; 3不可逆过程的熵永不减少;4系统达平衡时,熵值最大,Gibbs 自由能最小;5当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;6某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;7在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;8理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符; 9冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; 10p C 恒大于V C ;答1不正确,因为不可逆过程不一定是自发的例如 可逆压缩就不是自发过程,但自发过程一定是不可逆的;2不正确,因为熵增加过程不一定是自发过程,但自发过程都是熵增加的过程;所以必须在隔离体系中凡熵增加过程都是自发过程;3不正确,因为不可逆过程不一定是自发的,而自发过程的熵永不减少;所以必须在隔离体系中;不可逆过程的熵永不减少4不正确;绝热体系或隔离体系达平衡时熵最大,等温等压不作非体积功的条件下,体系达平衡时Gibbs 自由能最小;5不正确,因为只有当系统的U 和V 恒定非体积功为0时,S ∆<0和S ∆=0的过程不可能发生; 6不正确,根据熵增加原理,绝热不可逆过程的S ∆>0,而绝热可逆过程的S ∆=0,从同一始态出发经历一个绝热不可逆过程的熵值和经历一个绝热可逆过程的熵值永不相等,不可能达到同一终态;7正确,在绝热系统中,发生了一个不可逆过程,从状态1变到了状态2,S ∆>0,S 2>S 1,仍然在绝热系统中,从状态2出发,无论经历什么过程,体系的熵值有增无减,所以永远回不到原来状态了;8不正确,Kelvin 的说法是不可能从单一的热源取出热使之变为功而不留下其它变化;关键是不留下其它变化,理想气体的等温膨胀时热全部变成了功,,体积增大了,环境的体积缩小的,留下了变化,故原来的说法不违反Kelvin 的说法;9不正确,Clausius 的说法是不可能把热从低温热源传到高温热源而不引起其它变化;冷冻机可以从低温热源吸热放给高温热源时环境失去了功,得到了热引起了变化,故原来的说法不违反Clausius 的说法; 10不正确,211p V P T T VV V C C V T V P αακκ∂∂⎛⎫⎛⎫-===- ⎪ ⎪∂∂⎝⎭⎝⎭,,因为P V T ∂⎛⎫ ⎪∂⎝⎭>0,TV P ∂⎛⎫⎪∂⎝⎭<0,即α>0,κ>0,则p V C C ->0,p C 恒大于V C ;但有例外,如对277.15K 的水,PV T ∂⎛⎫⎪∂⎝⎭=0,此时p V C C =;3指出下列各过程中,,,,,,Q W U H S A ∆∆∆∆和G ∆等热力学函数的变量哪些为零,哪些绝对值相等1理想气体真空膨胀; 2理想气体等温可逆膨胀; 3理想气体绝热节流膨胀; 4实际气体绝热可逆膨胀; 5实际气体绝热节流膨胀;62()H g 和2()O g 在绝热钢瓶中发生反应生成水; 72()H g 和2()Cl g 在绝热钢瓶中发生反应生成()HCl g ; 822(,373,101)(,373,101)H O l k kPa H O g k kPa ;9在等温、等压、不作非膨胀功的条件下,下列反应达到平衡2233()()2()H g N g NH g +10绝热、恒压、不作非膨胀功的条件下,发生了一个化学反应; 解10Q W U H ==∆=∆=20R U H Q W G A ∆=∆==∆=∆,,,0S ∆= 30U H Q W ∆=∆=== 40Q S U Q W W =∆=∆=+=, 50V Q U H =∆=∆=60W A G Q =∆=∆== U H ∆=∆ 70W A G Q =∆=∆== U H ∆=∆ 800R G A W U ∆=∆=-∆=∆H =,,; 90G ∆= ;10p 0H Q ∆== U W ∆=4将不可逆过程设计为可逆过程; 1理想气体从压力为p 1向真空膨胀为p 2;2将两块温度分别为T 1,T 2的铁块T 1>T 2相接触,最后终态温度为T 3水真空蒸发为同温、同压的气,设水在该温度时的饱和蒸气压为p , 22(,303,100)(,303,100)H O l K kPa H O g K kPa →4理想气体从111,,p V T 经不可逆过程到达222,,p V T ,可设计几条可逆路线,画出示意图;答1设计等温可逆膨胀2在T 1和T 2之间设置无数个温差为dT 的热源,使铁块T 1和T 1-dT,T 1-2dT,…的无数热源接触,无限缓慢地达到终态温度T,使铁块T 2和T 2-dT,T 2-2dT,…的热源接触,无限缓慢地达到终态温度T;3可以设计两条可逆途径:一是等压可逆,另一条是等温可逆;H 2O (l,303K,P S ) H 2S )H 2O (l,,)H 2H 2O ()H 2逆降温4可设计下列四条途径,从111,,p V T 变化到222,,p V T ; a 等容可逆升压到状态A 后再等温可逆膨胀终态Ⅱ; b 等压可逆膨胀到状态B 后再等温可逆膨胀到终态Ⅱ; c 等温可逆膨胀到状态C 后再等压可逆膨胀到终态Ⅱ; d 等温可逆膨胀到状态D 后再等容可逆升压到终态Ⅱ;5判断下列恒温、恒压过程中,熵值的变化,是大于零,小于零还是等于零,为什么 1将食盐放入水中;2HClg 溶于水中生成盐酸溶液; 343()()()NH Cl s NH g HCl g →+; 42221()()()2H g Og H O l +→;5333221(,)1(,)2(,)dm N g dm Ar g dm N Ar g +→+; 6333221(,)1(,)1(,)dm N g dm Ar g dm N Ar g +→+; 73332221(,)1(,)2(,)dm N g dm N g dm N g +→; 83332221(,)1(,)1(,)dm N g dm N g dm N g +→;解1S ∆<0,因为将食盐放入水中为放热过程,Q <0,QS Tδ∆=,所以S ∆<0;2S ∆<0,同理,HClg 溶于水中Q <0,S ∆<0;3S ∆>0,因为该过程为吸热反应,Q >0,S ∆>0;或因为混乱度增加; 4S ∆<0,因为该过程为放热反应,Q <0,S ∆<0;或因为混乱度减小; 5S ∆>0,根据min ln 2ln 2BB BS Rnx R ∆=-=∑>0,或因为混乱度增加;6S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;7S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;8S ∆<0,根据min ln 2ln 2BB BS Rnx R ∆=-=-∑<061在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应不能自发进行;但在实验室内常用电解水的方法制备氢气,这两者有无矛盾 2请将Carnot 循环分别表达在以如下坐标表示的图上:,,,,T p T S S V U S T H -----解 1r m G ∆>0的判据是在等温等压非体积功为0的条件下,所以在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应在等温等压非体积功为0的条件下不能自发进行;而在实验室内常用电解水的方法制备氢气,是在电功对体系作功,所以并不矛盾; 21234习题01有5mol某双原子理想气体,已知其RCmV5.2,=,从始态400K,200kPa,经绝热可逆压缩至400kPa后,再真空膨胀至200kPa,求整个过程的Q,W,△U,△H和△S.解第一步绝热可逆压缩Q1=0 △S1=04.15.25.2,,,,=+=+==RRRCRCCCrmVmVmVmP根据绝热过程方程CTP rr=-1得KkPakPaKPPTTrr6.4874002004004.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=--111,21()5 2.58.314(487.6400)9.1 V mU W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=111,21()5 3.58.314(487.6400)12.75 P mH nC T T mol J K mol K K kJ--∆=-=⨯⨯⋅⋅-=第二步等温向真空膨胀W2=0 △U2=△H2=0 Q2=0111221400ln58.314ln28.8200p kPaS nR mol J K mol J Kp kPa---∆==⨯⋅⋅=⋅所以整个过程的Q=0,W=9.1kJ,△U=9.1kJ,△H=12.75kJ,△S=28.8J•K-12有5molHeg可看作理想气体, 已知其RCmV5.1,=,从始态273K,100kPa,变到终态298K,1000kPa,计算该过程的熵变.解根据理想气体从状态p1,V1,T1到终态p2,V2,T2的熵变公式:1221lnlnTTCppnRSp+=∆得:111110029858.314ln5 2.58.314ln1000273kPa K S mol J K mol mol J K molkPa K----∆=⨯⋅⋅+⨯⨯⋅⋅186.615J K-=-⋅03在绝热容器中,将0.10kg、283K的水与0.20kg、313K的水混合,求混合过程的熵变;设水的平均比热为4.184kJ•K-1•kg-1.解设混合后的平衡温度为T,则 0.10kg 、283K 的水吸热为Q 1=C P T-T 1=4.184kJ•K -1•kg -1×0.10kg×T-283K 0.20kg 、313K 的水放热为Q 2=C P T 1-T=4.184kJ•K -1•kg -1×0.20kg×313K-T 平衡时Q 1=Q 2得 T=303K111113030.1(4.184)ln 28.57283TP T C KS dT kg kJ K kg J K T K ---∆==⨯⋅⋅⨯=⋅⎰111123030.2(4.184)ln127.17313T P T C KS dT kg kJ K kg J K T K---∆==⨯⋅⋅⨯=-⋅⎰△S=△S 1+△S 2=1.40J •K -104在298K 的等温情况下,在一个中间有导热隔板分开的盒子中,一边放0.2molO 2g,压力为20kPa,另一边放0.8molN 2g,压力为80kPa,抽去隔板使两种气体混合,试求1混合后盒子中的压力;2混合过程的Q,W,△U,△S 和△G ;3如果假设在等温情况下,使混合后的气体再可逆地回到始态,计算该过程的Q 和W 的值;解1混合前O 2g 和N 2g 的体积V 相等,混合后是1mol 气体占全部容积的体积2V;21130.28.31429824.77620O nRT mol J K mol KV dm P kPa--⨯⋅⋅⨯===11318.3142985024.7762nRT mol J K mol K p kPa V dm --⨯⋅⋅⨯===⨯2由于是等温过程 △U=0O 2g 和N 2g 都相当于在等温下从V 膨胀到2V2ln 2.02ln2.02R V VR S O ==∆ 2ln 8.02ln 8.02R VVR S N ==∆221ln 2 5.76O N S S S R J K -∆=∆+∆===⋅J RT p p nRT Vdp G 17192ln ln12-=-===∆⎰ 3因为△U′=0,Qr=-Wr=T △S′所以 Qr=-Wr=T △S′=298K×-5.76J•K -1=-1.716J05有一绝热箱子,中间用绝热隔板把箱子的容积一分为二,一边放1mol 300K,100kPa 的单原子理想气体Arg,另一边放2mol 400K,200kPa 的双原子理想气体N 2g,如果把绝热隔板抽去,让两种气体混合达平衡,求混合过程的熵变;解起初Arg 和N 2g 的体积分别为R p nRT V Ar 3==, R pnRTV N 42== 当混合时对于1molArg 相当于从300K,100kPa 膨胀到T,P,V=7R对于2molN 2g 相当于从400K,200kPa 膨胀到T,P,V=7R 而整个体系的 W=0 Q V =△U=0所以02=∆+∆N Ar U U即 0))(())((22,1,2=-+-T T N C n T T Ar C n m V N m V Ar0)400(252)300(231=-⨯+-⨯K T R mol K T R mol得 T=362.5K⎰+=∆T T m V Ar TnC V VnR S 1,1ln111173362.518.314ln8.314ln32300R Kmol J mol K J mol K R K----=⨯⋅⋅+⨯⋅⋅ =9.4J⎰+=∆T T m V N TnC V VnR S 22,2ln111175362.528.314ln8.314ln42400R Kmol J mol K J mol K R K----=⨯⋅⋅+⨯⋅⋅ =7.26JJ S S S N Ar 66.162=∆+∆=∆06有2mol 理想气体,从始态300K,20dm 3,经下列不同过程等温膨胀至50dm 3,计算各过程的Q,W,△U,△H 和△S;1可逆膨胀; 2真空膨胀;3对抗恒外压100kPa 膨胀;解由于是理想气体的等温过程,所以△U=△H=01可逆膨胀31123150ln 28.314300ln20V dm W nRT mol J K mol K V dm --=-=-⨯⋅⋅⨯⨯ =-4570.8J Q=-W=4570.8J14570.815.24300Q J S J K T K-∆==⋅ 2真空膨胀; W=Q=0S 是状态函数所以△S 的值同1 3对抗恒外压100kPa 膨胀;W=-PV 2-V 1=-100kPa50dm 3-20dm 3=-3.0kJ Q=-W=3.0kJS 是状态函数所以△S 的值同107有1mol 甲苯CH 3C 6H 5l 在其沸点383K 时蒸发为气,计算该过程的Q,W,△U,△H,△S,△A 和△G.已知在该温度下甲苯的汽化热为362kJ•kg -1.解在沸点时蒸发为可逆相变,所以 △G=0 △H=Q=362kJ•kg -1×1mol×0.092kg•mol -1=33.304kJ W =-p V g -V l = -p V g =-nRT=-1mol×8.341J•K -1•mol -1×383K=-3184.26J=-3.184kJ△U=△H-△PV=△H-P △V=△H+W=33.304kJ-3.184kJ=30.12kJ △S=Q/T=33.304kJ/383K=86.96J•K -1 △A=△U-T △S=△U-Q=W=-3.184kJ08在一个绝热容器中,装有298K 的H 2Ol1.0kg,现投入0.15kg 冰H 2Os,计算该过程的熵变.已知H 2Os 的熔化焓为333.4J•g -1. H 2Ol 的平均比热容为4.184J•K -1•g -1.解设计过程如下:1.0kg H 2Ol 放出的热为: Q 放=1.0×103×4.184×298-T0.15kgH 2Os 吸收的热为:Q 吸=0.15×103×4.184×T-273+0.15×103×333.4 根据Q 放=Q 吸 得 T=284.35K321S S S S ∆+∆+∆=∆dT TC T HdT TC K K p KKp ⎰⎰+∆+=35.28427335.284298 27335.284ln184.41015.02731015.04.33329835.284ln 184.4100.1333⨯⨯+⨯⨯+⨯⨯= =12.57J•K -109实验室中有一个大恒温槽的温度为400K,室温为300K,因恒温槽绝热不良而有4.0kJ 的热传给了室内的空气,用计算说明这一过程是否可逆.解该过程是体系放热Q,环境吸热-Q 的过程 △S 体系=Q/T 体系=-4.0kJ/400K=-10J •K -1 △S 环境=-Q/T 环境=4.0kJ/300K=13.33J •K -1△S 隔离=△S 体系+△S 环境=-10J •K -1+13.33J •K -1=3.33J •K -1>0 所以该过程为不可逆过程.10有1mol 过冷水,从始态263K,101kPa 变成同温、同压的冰,求该过程的熵变;并用计算说明这一过程的可逆性.已知水和冰在该温度范围内的平均摩尔定压热容分别为:11,2(,)75.3P m C H O l J K mol --=⋅⋅,11,2(,)37.7P m C H O s J K mol --=⋅⋅;在273K, 101kPa时水的摩尔凝固热为60012(,) 5.90fus m H H O s kJ mol -∆=-⋅;解设计如下过程263K 101kPa H 2O(l)22H 1311121,1273ln175.3ln 2.81263P m T K S nC mol J K mol J K T K---∆==⨯⋅⋅=⋅ 1121( 5.90)21.61273fus mn H mol kJ mol S J K T K--∆⨯-⋅∆===-⋅11123,1263ln137.7ln 1.41273P m T K S nC mol J K mol J K T K---∆==⨯⋅⋅=-⋅ △S=△S 1+△S 2+△S 3=-20.21J•K -1111molN 2g 可作理想气体,从始态298K,100kPa,经如下两个等温过程,分别到达终态压力为600kPa,分别求过程的Q,W,△U,△H,△A,△G,△S,和△S iso .1等温可逆压缩; 2等外压为600kPa 时压缩;解由于都是理想气体的等温过程,所以△U=△H=0 1等温可逆压缩1112100ln18.314298ln 4.439600p kPa W nRT mol J K mol K kJ p kPa--=-=-⨯⋅⋅⨯⨯= Q=-W=-4.439kJ△S =Q/T =-4439J/298K=-14.90J•K -1 △A =△U -T △S =-Q =W =4.439kJ △G =△H -T △S =-Q =W =4.439kJ △S 环境=-Q /T =14.90J•K -1 △S iso =△S 体系+△S 环境=0 2等外压为600kPa 时压缩 W=-P 2V 2-V 1=-nRT1-P 2/P 1=-1mol×8.314J•K -1•mol -1×298K×1-600kPa/100kPa =12.39kJ Q=-W=-12.39kJ△A,△G,△S 都是状态函数的变化,所以值与1相同 △S 环境=-Q /T=12.39kJ/298K=41.58J•K△S iso =△S 体系+△S 环境=-14.90J•K -1+41.58J•K=26.28J•K12将1molO 2g 从298K,100kPa 的始态,绝热可逆压缩到600kPa,试求该过程Q,W,△U,△H,△A,△G,△S,和△S iso .设O 2g为理想气体,已知O 2g的R C m p 5.3,=,112(,)205.14m S O g J K mol θ--=⋅⋅;解由于是绝热可逆压缩 Q=0 △S 体系=04.15.35.3,,,,=-=-==RR RRC C C C r m p m p mV m P根据绝热过程方程C T Pr r=-1得K kPa kPa K P P T T rr 2.4996001002984.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=--11,21()1 2.58.314(499.2298) 4.182V m U W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=11,21()1 3.58.314(499.2298) 5.855P m H nC T T mol J K mol K K kJ --∆=-=⨯⨯⋅⋅-=△A =△U - S △T =4182J-205.14J•K -1•mol -1×1mol×499.2K-298K =-37.092kJ △G =△H - S △T =5855J-205.14J•K -1•mol -1×1mol×499.2K-298K=-35.42kJ △S 环境=-Q /T =0 △S iso =△S 体系+△S 环境=013将1mol 双原子理想气体从始态298K,100kPa,绝热可逆压缩到体积为5dm 3,试求终态的温度、压力和过程的Q,W,△U,△H,和△S;解对于双原子理想气体R C m V 5.2,=R C m p 5.3,=4.15.25.3,,===RRC C r mV m P 而 11311118.31429824.78100nRT mol J K mol KV dm P kPa --⨯⋅⋅⨯===根据 C pV r=得:kPa dm dm kPa VV p p r12.940578.241004.1332112=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=322211940.125565.3818.314p V kPa dm T K nR mol J K mol --⨯===⨯⋅⋅因为是绝热可逆,所以Q=0 △S=011,21()1 2.58.314(565.38298) 5.557V m U W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=11,21()1 3.58.314(565.38298)7.78P m H nC T T mol J K mol K K kJ --∆=-=⨯⨯⋅⋅-=14将1mol 苯C 6H 6l 在正常沸点353K 和101.3kPa 压力下,向真空蒸发为同温、同压的蒸气,已知在该条件下,苯的摩尔汽化焓为130.77vap m H kJ mol -∆=⋅,设气体为理想气体;试求1该过程的Q 和W ;2苯的摩尔汽化熵m vap S ∆和摩尔汽化Gibbs 自由能m vap G ∆; 3环境的熵变△S 环;4根据计算结果,判断上述过程的可逆性; 解1向真空蒸发 W=0Q=△U而△U 为状态函数的变化所以当等温等压时相变时:W′=-nRT=-1mol×8.314J•K -1•mol -1×353K=-2.935kJ Q=△H=130.77vap m H kJ mol -∆=⋅ △U=Q+W=30.77kJ-2.935kJ=27.835kJ 所以Q=27.835kJ 211130.7787.167353vap mvap m H kJ mol S J K mol T K---∆⋅∆===⋅⋅0=∆m vap G G 是状态函数,所以△G 与可逆相变时相同 3△S 环境=-Q /T =-27.835kJ/353K=-78.85J•K -14△S iso =△S 体系+△S 环境=87.167J•K -1-78.85J•K -1=8.317J•K -1 即 △S iso >0 可见是不可逆过程.15某一化学反应,在298K 和大气压力下进行,当反应进度为1mol 时,放热40.0kJ,如果使反应通过可逆电池来完成,反应程度相同,则吸热4.0kJ;1计算反应进度为1mol 时的熵变m r S ∆;2当反应不通过可逆电池完成时,求环境的熵变和隔离系统的总熵变,从隔离系统的总熵变值说明了什么问题;3计算系统可能做的最大功的值;解1111400013.42298R r m Q J mol S J K mol T K---⋅∆===⋅⋅211140000134.2298P Q J mol S J K mol T K----⋅∆===⋅⋅环境△S iso =△S 体系+△S 环境=13.4J•K -1•mol -1+134.2J•K -1•mol -1=147.6 J•K -1•mol -1 即 △S iso >0 可见是不可逆过程.3J J J S T G W f 44000)400040000()(max ,=---=∆-∆H -=∆-=16 1mol 单原子理想气体从始态273K,100kPa,分别经下列可逆变化到达各自的终态,试计算各过程的Q,W,△U,△H,△S,△A 和△G;已知该气体在273K,100kPa 的摩尔熵11100m S J K mol --=⋅⋅;1恒温下压力加倍; 2恒压下体积加倍; 3恒容下压力加倍;4绝热可逆膨胀至压力减少一半;5绝热不可逆反抗50kPa 恒外压膨胀至平衡; 解1恒温下压力加倍即等温可逆△U=△H=01112100ln18.314273ln 1.573200p kPa W nRT mol J K mol K kJ p kPa--=-=-⨯⋅⋅⨯⨯= Q=-W=-1.573kJ△S=Q/T=-1.573kJ/273K=-5.76J•K -1 △A =△U -T △S =-Q =W =1.573kJ △G =△H -T △S =-Q =W =1.573kJ 2恒压下体积加倍T 2=2T 1 W=-PV 2-V 1=-P 1V 1=-nRT =-1mol×8.314J•K -1•mol -1×273K =-2.27kJ11,21()1 1.58.314273 3.4V m U nC T T mol J K mol K kJ--∆=-=⨯⨯⋅⋅⨯=11,21()1 2.58.314273 5.67P m H nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯= Q=△U-W=3.4kJ+2.27kJ=5.67kJ12ln5.2ln T T R T d C S p ==∆⎰ 1111 2.58.314ln 214.4mol J K mol J K---=⨯⨯⋅⋅⨯=⋅S 2=△S+S 1=14.4J•K -1+100J•K -1=114.4J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=3.4×103J-2×273K×114.4J•K -1-273K×100J•K -1 =-31.76kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=5.67×103J-2×273K×114.4J•K -1-273K×100J•K -1 =-29.49kJ3恒容下压力加倍 T 2=2T 1W=011,21()1 1.58.314273 3.4V m U nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯=11,21()1 2.58.314273 5.67P m H nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯=Q=△U=3.4kJ12ln5.1ln T T R T d C S V ==∆⎰ 1111 1.58.314ln 28.67mol J K mol J K---=⨯⨯⋅⋅⨯=⋅S 2=△S+S 1=8.67J•K -1+100J•K -1=108.67J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=3.4×103J-2×273K×108.67J•K -1-273K×100J•K -1 =-28.63kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=5.67×103J-2×273K×108.67J•K -1-273K×100J•K -1 =-26.36kJ4绝热可逆膨胀至压力减少一半;Q=0 △S=067.15.15.2,,===RRC C r mV m P 根据绝热过程方程C T Pr r=-1得K kPa kPa K P P T T rr 9.2065010027367.167.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=--)(12,T T nC W U m V -==∆111 1.58.314(206.9273)824.58mol J K mol K K J --=⨯⨯⋅⋅-=-)(12,T T nC H m P -=∆111 2.58.314(206.9273)1374.3mol J K mol K K J --=⨯⨯⋅⋅-=- △A =△U -S △T=-824.58J-100J•K -1•mol -1×1mol×206.9K-273K =-5.787kJ △G =△H -S △T=-1374.3J-100J•K -1•mol -1×1mol×206.9K-273K =-5.33kJ5绝热不可逆反抗50kPa 恒外压膨胀至平衡;Q=0)()(12122T T C V V P W V -=--= 即: )()(1211222T T C P nRT P nRT P V -=-- 代入数据得:T 2=218.4K所以 1121()1 1.58.314(218.4273)V W U C T T mol J K mol K K --=∆=-=⨯⨯⋅⋅⨯- =-680.92J)(12,T T nC H m P -=∆111 2.58.314(218.4273)mol J K mol K K --=⨯⨯⋅⋅-=-1.135kJ⎪⎪⎭⎫⎝⎛+=+=∆122112,21ln 25ln ln lnT T p p nR T TnC p p nR S m p111005218.418.314ln ln502273kPa Kmol J K mol kPa K --⎛⎫=⨯⋅⋅+ ⎪⎝⎭=1.125J•K -1S 2=△S+S 1=1.125J•K -1+100J•K -1=101.125J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=-680.92J-218.4K×101.125J•K -1-273K×100J•K -1 =4.533kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=-1135J-218.4K×101.125J•K -1-273K×100J•K -1 =-26.36kJ =4.08kJ17将1molH 2Og 从373K,100kPa 下,小心等温压缩,在没有灰尘等凝聚中心存在时,得到了373K,200kPa 的介稳水蒸气,但不久介稳水蒸气全变成了液态水,即H 2Og,373K,200kPa→H 2Ol,373K,200kPa求该过程的△H,△G 和△S;已知在该条件下水的摩尔汽化焓为146.02kJ mol -⋅,水的密度为1000kg•m -3.设气体为理想气体,液体体积受压力的影响可忽略不计;解设计可逆过程如下:H 2O(g)H 2O(l)H 2O(g)H 2O(l)373K,200kPa373K,200kPa(2)121lnp p nRT G =∆ =1mol×8.314J•K -1•mol -1×373Kln0.5 =-2.15kJ02=∆G)(12321p p nMVdp G p p -==∆⎰ρ=1mol×0.018kg•mol -1/1000kg•m -3200kPa-100kPa=1.8J△G=△G 1+△G 2+△G 3=-2148.2J11(46.02)46.02r m n mol kJ molkJ θ-∆H =∆H =⨯-⋅=- 146020(2148.2)117.6373G J J S J K T K-∆H -∆---∆===-⋅ 18用合适的判据证明:1在373K 和200kPa 压力下,H 2Ol 比H 2Og 更稳定; 2在263K 和100kPa 压力下,H 2Os 比H 2Ol 更稳定; 解1设计等温可逆过程如下1001200kPal kPaG V dp ∆=⎰20G ∆=等温等压无非体积功的可逆相变过程2003100kPag kPaG V dp ∆=⎰所以 ()20020013100100kPakPag l g kPakPaG G G V V dp V dp ∆=∆+∆=-≈⎰⎰若水蒸气可看作理想气体,则ln 20G RT ∆≈所以,在373K 和200kPa 压力下,H 2Ol 比H 2Og 更稳定; 2设100kPa 压力下设计如下可逆过程如下1mol,H 2O(s),263K21mol,H 2S 1ΔS 2S 3123S S S S ∆=∆+∆+∆,,273273()lnln 263273263fus m p m p mn K KnC nC K K K∆H =++冰(水)>0所以自发变化总是朝熵增加的方向进行,H 2Os 比H 2Ol 更稳定;19在298K 和100kPa 压力下,已知C 金刚石和C 石墨的摩尔熵、摩尔燃烧焓和密度分别为:试求:1在298K 及100kPa 下,C 石墨→C 金刚石的θm trs G ∆; 2在298K 及100kPa 时,哪个晶体更为稳定3增加压力能否使不稳定晶体向稳定晶体转化 如有可能,至少要加多大压力,才能实现这种转化解 1根据△G=△H-T △S),298(),298()298(金刚石石墨K H K H K H m c m c m r θθθ∆-∆=∆=-393.51kJ•mol -1--395.40kJ•mol -1 =1.89kJ•mol -1),298(),298()298(石墨金刚石K S K S K S m m m r -=∆θ=2.45J•K -1•mol -1-5.71J•K -1•mol -1 =-3.26J•K -1•mol -11111.89298( 3.26)trs m r m r m G H T S kJ mol K J K mol θθθ---∆=∆-∆=⋅-⨯-⋅⋅=2.862kJ•mol -12因为298K,100kPa 下,θm trs G ∆>0,说明此反应在该条件下不能自发向右进行,亦即石墨比较稳定.3设298K 下压力为p 2时石墨恰能变成金刚石dp V V p K G p K G p p m m m r m r )(),298(),298(2,2⎰-+∆=∆θθθθ石墨金刚石),298(2p K G m r θ∆>0,解上式得:p 2>1.52×109Pa即需要加压至1.52×109Pa 时,才能在298K 时,使石墨转化为金刚石.20某实际气体的状态方程为p RT pV m α+=,式中α为常数;设有1mol 该气体,在温度为T 的等温条件下,由p 1可逆地变到p 2;试写出:Q,W,△U,△H,△S,△A 及△G 的计算表达式;解:2112ln ln p p RT V V RT dV V RTpdV W m -=---=--=-=⎰⎰ααα因为 p T p T V U V T -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 而 α-=⎪⎭⎫ ⎝⎛∂∂m V V R T p 所以 0=--=⎪⎭⎫⎝⎛∂∂p V R TV U mT α 即该气体的等温过程 △U=0 Q=-W=21lnp p RT α=-=⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂P R TV T V T V P H P T )(12p p dp H -==∆⎰ααP R T V P S PT -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂12ln p p R dp p RS -=-=∆⎰12lnp p RT S T S T U A =∆-=∆-∆=∆ 1212ln)(p p RT p p S T H G +-=∆-∆=∆α 21在标准压力和298K 时,计算如下反应的)298(K G m r θ∆,从所得数据值判断反应的可能性;1 CH 4g+1/2O 2g →CH 3OHl2 C 石墨+2H 2g+ 1/2O 2g→CH 3OHl 所需数据自己从热力学数据表上查阅;解所查热力学数据如下:1155.115)72.50(27.166)298(-•-=---=∆mol kJ K G m r θ可见θm trs G ∆<0,说明此反应在该条件下能自发向右进行.21(298)166.27r m G K kJ mol θ-∆=-⋅可见θm trs G ∆<0,说明此反应在该条件下能自发向右进行.22计算下述催化加氢反应,在298K 和标准压力下的熵变;C 2 H 2 g + 2H 2 g → C 2 H 6 g已知C 2 H 2 g,H 2 g,C 2 H 6 g 在298K 和标准压力下的标准摩尔熵分别为:200.8J•K -1•mol -1,,130.6J•K -1•mol -1,,229.5J•K -1•mol -1,.解 ),(2),(),(),298(22262g H S g H C S g H C S p K S m m m m r θθθθθ--=∆=229.5J•K -1•mol -1-200.8J•K -1•mol -1-2×130.6J•K -1•mol -1, =-232.5J•K -1•mol -1 23若令膨胀系数P T V V ⎪⎭⎫ ⎝⎛∂∂=1α,压缩系数TpV V ⎪⎪⎭⎫⎝⎛∂∂-=1κ;试证明: κα2VT C C V P =-证明根据V P C C 和的定义,及H=U+P VV p P V p V P T U T V p T U T U T H C C ⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=-由dV V U dT T U dU TV ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= 在恒压下对T 求偏导得: pT V p T V V U T U T U ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T V P T V p V U C C ⎪⎭⎫ ⎝⎛∂∂⎭⎬⎫⎩⎨⎧+⎪⎭⎫ ⎝⎛∂∂=- 1又因为 pdV TdS dU -=在恒温下对V 求偏导得: p V S T V U TT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 2 TT T V p p S V S ⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 将麦克斯韦关系式p TT V p S ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫⎝⎛∂∂代入上式Tp T V p T V V S ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂ 3将3代入2得: p V p T V T V U Tp T-⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂ 4将4代入1得: Tp V P V p T V T C C ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=-2再将P T V V ⎪⎭⎫ ⎝⎛∂∂=1α, TpV V ⎪⎪⎭⎫⎝⎛∂∂-=1κ代入得: κα2VT C C V P =-24对van der Waals 实际气体,试证明: 2VV U T α=⎪⎭⎫ ⎝⎛∂∂证明: van der Waals 实际气体的状态方程式为()RT b V V a p m m =-⎪⎪⎭⎫ ⎝⎛+2 b V R T p mV -=⎪⎭⎫⎝⎛∂∂ 22m m m m m VT V V b V RT b V RT p b V R Tp T p T V U αα=+---=--=-⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 25对理想气体,试证明:nR S U p H V U VS S -=⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂ 证明 pdV TdS dU -=则 T S U V=⎪⎭⎫ ⎝⎛∂∂ p V U S-=⎪⎭⎫⎝⎛∂∂ 又 Vdp TdS dH +=则 Vp H S=⎪⎪⎭⎫ ⎝⎛∂∂ 那么 nRT pV S U p H V U VSS -=-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂ 26在600K,100kPa 压力下,生石膏的脱水反应为42422()()2()CaSO H O s CaSO s H O g ⋅→+试计算:该反应进度为1mol 时的Q,W,△Um,△Hm,△Sm,△Am 及△Gm;已知各物质在298K,100kPa 的热力学数据为:解W=-P △V=-PV 水=-2RT=-2×8.314J•K -1•mol -1×600K=-9.98kJ 在298K,100kPa 时:1(298)241.822(1432.68)(2021.12)104.8r m H K kJ mol θ-∆=-⨯+---=⋅11(298)188.832106.70193.97290.39r m S K J mol K θ--∆=⨯+-=⋅⋅11,33.58299.60186.2019.44r p m C J mol K --∆=⨯+-=-⋅⋅dT C K H K H m T T r m r m r ⎰∆+∆=∆21)298()600(θθ=104.8kJ•mol -1+-19.44J•K -1•mol -1600K-298K =98.93kJ•mol -T d C K S K S m T T r m r m r ln )298()600(21⎰∆+∆=∆θθ=290.39J•K -1•mol -1+-19.44J•K -1•mol -1ln KK298600 =276.79J•K -1•mol -1△Um=△Hm+W=98.93kJ•mol --9.98kJ•mol -=88.95kJ•mol - Q=△U-W=98.93kJ•mol -△Am=△U-T △S=88.95kJ•mol -1-600K×276.79J•K -1•mol -1=-77.124kJ•mol -1△Gm=△H-T △S=98.93kJ•mol -1-600K×276.79J•K -1•mol -1=-67.14kJ•mol -127将1mol 固体碘I 2s 从298K,100kPa 的始态,转变成457K,100kPa 的I 2g,计算在457K 时I 2g 的标准摩尔熵和过程的熵变;已知I 2s 在298K,100kPa 时的标准摩尔熵112(,,298)116.14m S I s K J K mol --=⋅⋅,熔点为387K,标准摩尔熔化焓12(,)15.66fus m H I s kJ mol -∆=⋅;设在298-378K 的温度区间内,固体与液体碘的摩尔比定压热容分别为11,2(,)54.68P m C I s J K mol --=⋅⋅,11,2(,)79.59P m C I g J K mol --=⋅⋅,碘在沸点457K 时的摩尔汽化焓为12(,)25.52vap m H I l kJ mol -∆=⋅;解设计可逆过程如下:I 22(g)100kPa△S=△S 1+△S 2+△S 3+△S 4=vapm vap KKp fusmfus KKP T T d l C T H T d s C H ∆++∆+⎰⎰ln )(ln )(457387387298θ=4571052.25387457ln 68.543871066.15298387ln 68.5433⨯+⨯+⨯+⨯=123.82J•K -1•mol -1又因为 ),(),(22s I S g I S S m m -=∆123.82J•K -1•mol -1=),(2g I S m -116.14 J•K -1•mol -1得: ),(2g I S m =239.96J•K -1•mol -128保持压力为标准压力,计算丙酮蒸气在1000K 时的标准摩尔熵值;已知在298K 时丙酮蒸气的标准摩尔熵值11(298)294.9m S K J K mol θ--=⋅⋅在273-1500K 的温度区间内,丙酮蒸气的定压摩尔热容m P C ,与温度的关系式为:36211,[22.47201.810(/)63.510(/)]P m C T K T K J K mol ----=+⨯-⨯⋅⋅解:由于dT T C S P⎰=故 TC dS P=即⎰⎰=2121T T PS S dT TC S d T T T d C K S K S m K Kr m m ln )298()1000(1000298⎰∆+=θθ=434.8J•K -1•mol -1。
物理化学03章_热力学第二定律(二)
Ssys = 19.14 J K
Ssur = 0
1
(系统未吸热,也未做功)
Siso = Ssys + Ssur = 19.14 J K 1 > 0
(2)为不可逆过程.
例2:在273 K时,将一个 22.4 dm3 的盒子用隔板一分为二,
0.5 mol 0.5 mol O2 (g) N2 (g)
p1 V1 p2 V2 T2 p2 V2 ∵ = ∴ = T1 T2 T1 p1V1
V2 p2V2 ∴ S = nR ln + nCV ,m ln V1 p1V1
V2 p2 V2 = nR ln + nC V ,m ln + nC V ,m ln V1 p1 V1
p2 V2 ∴ S = nCV ,m ln + nC p ,m ln p1 V1
因为在可逆相变中压力恒定,所以可逆热即为相 因为在可逆相变中压力恒定, 变焓.又由于温度一定,所以, 变焓.又由于温度一定,所以,物质 B 由 α 相态 转化为 β 相态
p ,T B (α ) → B ( β )
的相变熵为: 的相变熵为:
β α H β α S = T
用上式,可计算正常熔点下的熔化熵, 用上式,可计算正常熔点下的熔化熵,正常 沸点下的蒸发熵等等. 沸点下的蒸发熵等等.
= TC S > 0
Q W
热源
R2
TC
1
W2
Q W2
TB热源做功能力低于TA
TB热源做功能力低于TA
其原因是经过了一个不可逆的热传导过程 功变为热是无条件的,而热不能无条件 地全变为功. 热和功即使数量相同,但"质量"不等, 功是"高质量"的能量. 高温热源的热与低温热源的热即使数量相 同,但"质量"也不等,高温热源的热"质量" 较高,做功能力强. 从高"质量"的能贬值为低"质量"的能 是自发过程.
物理化学答案――第三章_多组分系统热力学及其在溶液中的应用习.
第三章多组分系统热力学及其在溶液中的应用一、基本公式和内容提要1. 偏摩尔量定义:其中X为多组分系统的任一种容量性质,如V﹑U﹑S......全微分式:总和:偏摩尔量的集合公式:2. 化学势定义物质的化学势是决定物质传递方向和限度的强度因素,是决定物质变化方向和限度的函数的总称,偏摩尔吉布斯函数只是其中的一种形式。
3. 单相多组分系统的热力学公式4. 化学势判据等温等压、只做体积功的条件下将化学势判据用于多相平衡和化学平衡中,得多组分系统多相平衡的条件为:化学平衡的条件为:5.化学势与温度、压力的关系(1)化学势与压力的关系(2)化学势与温度的关系6.气体的化学势(1)纯组分理想气体的化学势理想气体压力为(标准压力)时的状态称为标准态,称为标准态化学势,它仅是温度的函数。
(2)混合理想气体的化学势式中:为物质B的分压;为物质B的标准态化学势;是理想气体混合物中B组分的摩尔分数;是B纯气体在指定T,p时的化学势,p是总压。
(3)实际气体的化学势式中:为实际气体或其混合物中物质B的化学势;为B的标准态化学势,其对应状态是B在温度T、压力、且假想具有理想气体行为时的状态,这个状态称为实际气体B的标准态;分别为物质B的逸度系数和逸度。
7. 稀溶液中的两个经验定律(1)拉乌尔定律一定温度时,溶液中溶剂的蒸气压与溶剂在溶液中的物质的量分数成正比,其比例系数是纯溶剂在该温度时的蒸气压。
用公式表示为。
对二组分溶液来说,,故拉乌尔定律又可表示为即溶剂蒸气压的降低值与纯溶剂蒸气压之比等于溶质的摩尔分数。
(2)亨利定律一定温度时,稀溶液中挥发性溶质的平衡分压与溶质在溶液中的物质的量分数成正比。
用公式表示。
式中:为溶质的浓度分别为摩尔分数、质量摩尔浓度和物质的量浓度表示时的亨利系数,单位分别为Pa、和。
使用亨利定律时应注意:①是溶质在液面上的分压;②溶质在气体和在溶液中的状态必须是相同的。
8.溶液的化学势(1)理想液态混合物中物质的化学势①定义:在一定的温度和压力下,液态混合物中任意一种物质在任意浓度均遵守拉乌尔定律的液态混合物称为理想液态混合物。
物理化学核心教程(第二版)沈文霞编科学出版社_课后习题详解第三章
第三章热力学第二定律三.思考题参考答案1.自发过程一定是不可逆的,所以不可逆过程一定是自发的。
这说法对吗? 答:前半句是对的,但后半句是错的。
因为不可逆过程不一定是自发的,如不可逆压缩过程就是一个不自发的过程。
2.空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与热力学第二定律矛盾呢?答:不矛盾。
Claususe 说的是:“不可能把热从低温物体传到高温物体,而不引起其他变化”。
而冷冻机系列,把热从低温物体传到了高温物体,环境做了电功,却得到了热。
而热变为功是个不可逆过程,所以环境发生了变化。
3.能否说系统达平衡时熵值最大,Gibbs 自由能最小?答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。
等温、等压、不做非膨胀功,系统达平衡时,Gibbs 自由能最小。
也就是说,使用判据时一定要符合判据所要求的适用条件。
4.某系统从始态出发,经一个绝热不可逆过程到达终态。
为了计算熵值,能否设计一个绝热可逆过程来计算?答:不可能。
若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。
反之,若有相同的终态,两个过程绝不会有相同的始态。
所以只有设计一个除绝热以外的其他可逆过程,才能有相同的始、终态。
5.对处于绝热钢瓶中的气体,进行不可逆压缩,这过程的熵变一定大于零,这说法对吗?答:对。
因为是绝热系统,凡是进行一个不可逆过程,熵值一定增大,这就是熵增加原理。
处于绝热钢瓶中的气体,虽然被压缩后体积会减小,但是它的温度会升高,总的熵值一定增大。
6.相变过程的熵变,可以用公式H S T∆∆=来计算,这说法对吗? 答:不对,至少不完整。
一定要强调是等温、等压可逆相变,H ∆是可逆相变时焓的变化值(,R p H Q ∆=),T 是可逆相变的温度。
7.是否,m p C 恒大于,m V C ?答:对气体和绝大部分物质是如此。
但有例外,4摄氏度时的水,它的,m p C 等于,m V C 。
物理化学第三章课后答案完整版
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
物理化学习题及答案
物理化学习题及答案第一章热力学第一定律选择题1.热力学第一定律ΔU=Q+W 只适用于(A) 单纯状态变化(B) 相变化(C) 化学变化(D) 封闭物系的任何变化答案:D2.关于热和功, 下面的说法中, 不正确的是(A) 功和热只出现于系统状态变化的过程中, 只存在于系统和环境间的界面上 (B) 只有在封闭系统发生的过程中, 功和热才有明确的意义(C) 功和热不是能量, 而是能量传递的两种形式, 可称之为被交换的能量(D) 在封闭系统中发生的过程中, 如果内能不变, 则功和热对系统的影响必互相抵消答案:B2.关于焓的性质, 下列说法中正确的是(A) 焓是系统内含的热能, 所以常称它为热焓(B) 焓是能量, 它遵守热力学第一定律(C) 系统的焓值等于内能加体积功 (D) 焓的增量只与系统的始末态有关答案:D。
因焓是状态函数。
3.涉及焓的下列说法中正确的是(A) 单质的焓值均等于零(B) 在等温过程中焓变为零(C) 在绝热可逆过程中焓变为零(D) 化学反应中系统的焓变不一定大于内能变化答案:D。
因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0则ΔH<ΔU。
4.下列哪个封闭体系的内能和焓仅是温度的函数(A) 理想溶液 (B) 稀溶液 (C) 所有气体 (D) 理想气体答案:D5.与物质的生成热有关的下列表述中不正确的是(A) 标准状态下单质的生成热都规定为零 (B) 化合物的生成热一定不为零 (C) 很多物质的生成热都不能用实验直接测量(D) 通常所使用的物质的标准生成热数据实际上都是相对值答案:A。
按规定,标准态下最稳定单质的生成热为零。
6.dU=CvdT及dUm=Cv,mdT适用的条件完整地说应当是 (A) 等容过程(B)无化学反应和相变的等容过程(C) 组成不变的均相系统的等容过程(D) 无化学反应和相变且不做非体积功的任何等容过程及无反应和相变而且系统内能只与温度有关的非等容过程答案:D7.下列过程中, 系统内能变化不为零的是(A) 不可逆循环过程(B) 可逆循环过程 (C) 两种理想气体的混合过程(D) 纯液体的真空蒸发过程答案:D。
物理化学 第03章习题(含答案)
第三章 化学平衡测试练习题选择题:1、化学反应若严格遵循体系的“摩尔吉布斯函数—反应进度”曲线进行,则该反应在( A )[A].曲线的最低点[B].最低点与起点或终点之间的某一侧[C].曲线上的每一点[D].曲线以外某点进行着热力学可逆过程.2、有一理想气体反应A+B=2C ,在某一定温度下进行,按下列条件之一可以用θm r G ∆直接判断反应方向和限度:( C )[A].任意压力和组成[B].总压101.325kPa ,物质的量分数31===C B A x x x [C].总压303.975kPa ,31===C B A x x x [D].总压405.300kPa ,41==B A x x ,21=C x 3、298K 的理想气体化学反应AB=A+B ,当温度不变,降低总压时,反应的转化率( A )[A].增大 [B].减小 [C].不变 [D].不能确定4、已知气相反应)()(3)(126266g H C g H g H C =+在373K 时的143.192-⋅-=∆mol kJ H mr θ,当反应达平衡时,可采用下列哪组条件,使平衡向右移动( C )[A].升温与加压 [B].升温与减压[C].降温与加压 [D].降温与减压5、化学反应的平衡状态随下列因素当中的哪一个面改变? ( A )[A].体系组成 [B].标准态 [C].浓度标度[D].化学反应式中的计量系数νB6、在相同条件下有反应式(1)C B A 2=+,(θ1,m r G ∆);(2) C B A =+2121,(θ2,m r G ∆)则对应于(1),(2)两式的标准摩尔吉不斯函数变化以及平衡常数之间的关系为:( B )[A].θθ2,1,2m r m r G G ∆=∆,θθ21K K =[B].θθ2,1,2m r m r G G ∆=∆,221)(θθK K =[C].θθ2,1,m r m r G G ∆=∆,221)(θθK K =[D].θθ2,1,m r m r G G ∆=∆,θθ21K K = 7、反应)()()()(222g H g CO g O H g CO +=+,在600℃、100 kPa 下达到平衡后,将压力增大到5000kPa ,这时各气体的逸度系数为09.12=CO γ,10.12=H γ,23.1=CO γ,77.02=O H γ。
物理化学第三章习题答案
S3 nC p,m(s)lnT T21 ?
S2
nfusHm T2
?
S ?
G H T S ?
12. 在400K、标准压力下,理想气体间进行下列 恒温、恒压化学反应:A(g)+ 2B(g)→ 3C(g)+ D (g)
求进行1mol上述反应的AΔrGmθ已B知25℃数C据如下:D
G H T S 56 2 21 .6 1 0 ( 3 5-2 05) . 5 22 1 .4J 27
8. 1 mol液体水于298.15K,101.325 kPa下蒸发为水蒸气,
试计算此过程的W、Q、∆U、∆H、∆S及 ∆G,
并判断此过程能否自发进行.已知在298.15K、3.167 kPa
H 2
H 2 O (l) H 2 O (g)
H H 2
29 .18 K 5 ,p23.16 k7 Pa 29.185K,3.16k7Pa
U H p ( V g V l) H p g V H n R ? T
S S 1 S 2 S 3
S1 0
S3
nRln 3.167 10.1325
何者可以作为上述过程是否自发进行的判据。 请计算出具体数值来说明。
C 6H 6(l) 不 可 C 逆 6H 6(g) H
35.23K 5,10.312k5Pa 35.23K 5,10.312k5Pa
可逆
H n v a H p m3.7 0k 7J
U H p ( V g V l) H p g V H n R 2 . 0 k 8 T 8 J
已知H2O(l)在298.15K时饱和蒸气压为3.168kPa, H2O(l)的摩尔体积为 18.02 mL/mol 。
p1
物理化学第五版第三章答案
物理化学第五版第三章答案3.22 绝热恒容容器中有一绝热耐压隔板,隔板两侧均为N2(g)。
一侧容积50 dm3,内有200 K的N2(g) 2 mol;另一侧容积为75 dm3, 内有500 K的N2(g) 4 mol;N2(g)可认为理想气体。
今将容器中的绝热隔板撤去,使系统达到平衡态。
求过程的。
解:过程图示如下同上题,末态温度T确定如下经过第一步变化,两部分的体积和为即,除了隔板外,状态2与末态相同,因此注意21与22题的比较。
3.23 甲醇()在101.325KPa下的沸点(正常沸点)为,在此条件下的摩尔蒸发焓,求在上述温度、压力条件下,1Kg液态甲醇全部成为甲醇蒸汽时。
解:3.24 常压下冰的熔点为0℃,比熔化焓,水的比定压热熔。
在一绝热容器中有1 kg,25℃的水,现向容器中加入0.5 kg,0℃的冰,这是系统的始态。
求系统达到平衡后,过程的。
解:过程图示如下将过程看作恒压绝热过程。
由于1 kg,25℃的水降温至0℃为只能导致克冰融化,因此3.27 已知常压下冰的熔点为0℃,摩尔熔化焓,苯的熔点为5.5 1℃,摩尔熔化焓。
液态水和固态苯的摩尔定压热容分别为及。
今有两个用绝热层包围的容器,一容器中为0℃的8 mol H2O(s)与2 mol H2O(l)成平衡,另一容器中为5.510℃的5 mol C6H6(l)与5 mol C6H6(s)成平衡。
现将两容器接触,去掉两容器间的绝热层,使两容器达到新的平衡态。
求过程的。
解:粗略估算表明,5 mol C6H6(l) 完全凝固将使8 mol H2O(s)完全熔化,因此,过程图示如下总的过程为恒压绝热过程,,忽略液态乙醚的体积3.30. 容积为20 dm3的密闭容器中共有2 mol H2O成气液平衡。
已知80℃,100℃下水的饱和蒸气压分别为及,25 ℃水的摩尔蒸发焓;水和水蒸气在25 ~ 100 ℃间的平均定压摩尔热容分别为和。
今将系统从80℃的平衡态恒容加热到100℃。
衡水学院-《物理化学》第三章-热力学第二定律-作业及答案
⑴系统与100℃的热源接触;
⑵系统先与55℃的热源接触至热平衡,再与100℃的热源接触;
⑶系统依次与40℃,70℃的热源接触至热平衡,再与100℃的热源接触;
解:
[145-20]将温度均为300 K,压力均为100 kPa的100dm3的H2(g)与50dm3的CH4(g)恒温恒压下混合,求过程的ΔS。假定H2(g)和CH4(g)均可认为是理想气体。
解:
[146-25]常压下冰的熔点为273.15 K,比熔化焓Δfush=333.3J·g-1,水的比定压热容cp= 4.184 J·g-1·K-1。系统的始态为一绝热容器中1kg,353.15 K的水及0.5kg,273.15 K的冰。求系统达到平衡后,过程的ΔS。
解:
[148-37]已知在100 kPa下水的凝固点为0℃,在-5℃时,过冷水的比凝固焓 ,过冷水和冰的饱和蒸气压分别为 及 。今在100 kPa下,有-5℃1 kg的过冷水变为同样温度、压力下的冰,设计可逆途径,分别按可逆途径计算过程的ΔG及ΔS。
解:
[148-38]已知在-5℃,水和冰的密度分别为 和 。在-5℃,水和冰的相平衡压力为59.8MPa。今有-5℃的1 kg水在100 kPa下凝结成同样温度下的冰,求过程的ΔG。假设,水和冰的密度不随压力改变。
水 ①
氯仿 ②
①-②得:
解得: 即262.9℃
(1)p2=10MPa
⑵T2= 238.15K
解:(1)
解得:T2= 234.9K
⑵
解得:p2=61.5MPa
第三章化学热力学基础含答案
第三章 化学热力学基础1、以下物质在什么情况下⊿f H θm 、⊿f G θm 、S θm 数值为零。
H 2、O 2、Cl 2、Br 2、I 2、P 、Ag 、C 、Sn2、什么时候⊿r H θm =⊿f H θm (B )3、估算反应的温度条件:低温、高温、任何温度自发或不自发4、哪些属于状态函数:H 、G 、S 、U 、p 、V 、T 、n 、W 、Q 、Q p 、Q v5、方程式相加、减、倍数(分数)、正逆,⊿H 、⊿G 、⊿S 变化?6、转变温度计算7、标态下反应自发性计算判定:⊿r G θm练习:一、单选题1、如果一个反应的吉布斯自由能变为零,则反应:A 、能自发进行B 、 是吸热反应C 、是放热反应D 、 处于平衡状态2、已知: Mg(s) + Cl 2(g) = MgCl 2(s) mr H ∆= -642 kJ·mol -1,则: A 、在任何温度下,正向反应是自发的B 、在任何温度下,正向反应是不自发的C 、高温下,正向反应是自发的;低温下,正向反应不自发D 、高温下,正向反应是不自发的;低温下,正向反应自发3、某化学反应可表示为A(g) + 2B(s)−→−2C(g)。
已知 m r H ∆< 0,下列判断正确的是 :A 、 仅常温下反应可以自发进行B 、 仅高温下反应可以自发进行C 、 任何温度下反应均可以自发进行D 、 任何温度下反应均难以自发进行4、已知 CO(g) = C(s) +21O 2(g) 的 m r H ∆> 0, m r S ∆< 0, 则此反应A 、 低温下是自发变化B 、 高温下是自发变化C 、 低温下是非自发变化,高温下是自发变化D 、 任何温度下都是非自发的5、稳定单质在298 K ,100 kPa 下,下述正确的是:A 、 m S , m f G ∆为零B 、 m f H ∆不为零C 、 m S 不为零, m f H ∆为零D 、 m S , m f G ∆, m f H ∆均为零6、在下列反应中,焓变等于AgBr(s) 的 m f H ∆的反应是:A 、 Ag +(aq) + Br -(aq) = AgBr(s)B 、 2Ag(s) + Br 2(g) = 2AgBr(s)C 、 Ag(s) +21Br 2(l) = AgBr(s) D 、 Ag(s) +21Br 2(g) = AgBr(s)7、已知下列数据,哪个反应表示Δr H m Θ=Δf H m Θ (C 2H 5OH, l )A .2C(金)+3H 2(l)+1/2O 2(g ) = C 2H 5OH (l)B .2C(石)+3H 2(g l)+1/2O 2(l) =C 2H 5OH (l)C .2C(石)+3H 2(g)+1/2O 2(g )= C 2H 5OH (l)D .2C(石)+3H 2(g)+1/2O 2(g ) = C 2H 5OH (g)8、下列各热力学函数中,哪些函数值不是零?A 、⊿f H θm (O 2,g,298K);B 、⊿f G θm (I 2,s,298K);C 、 ⊿f H θm (Br 2,l,298K);D 、S θ(H 2,g,298K)9、一种反应在高温下能自发进行,而在低温下不能自发进行的条件是:A . Δr H θ m < 0 ,Δr S θ m < 0 ; B. Δr H θ m < 0,Δr S θ m > 0 ;C. Δr H θ m > 0,Δr S θ m > 0 ;D. Δr H θ m > 0,Δr S θ m < 010、 “反应3H 2(g)+N 2(g)=2NH 3(g)在标准状态下进行”的含义是:A 、在p(H 2)=p(N 2)=p(NH 3)=100KPa 条件下进行;B 、298K ,保持p(H 2)=p(N 2)=p(NH 3)=100KPa 条件下进行;C 、反应系统保持压力100KPa 条件下进行;D 、p=100KPa 的H 2和N 2混合,反应发生。
第五版物理化学习题答案
第三章热力学第二定律??卡诺热机在的高温热源和的低温热源间工作。
求(1)?热机效率;(2)?当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为?????? 根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)?热机效率;(2)? 当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解: (1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法)?? 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
?????? 解:将热源看作无限大,因此,传热过程对热源来说是可逆过程??? 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)?可逆热机效率。
(2)?不可逆热机效率。
(3)?不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义???? 因此,上面三种过程的总熵变分别为。
??已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ?℃的水,求过程的。
第03章化学反应系统热力学习题及答案物理化学
第03章化学反应系统热力学习题及答案物理化学-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 化学反应系统热力学习题及答案§3.1 标准热化学数据(P126)1. 所有单质的 Om f G ∆ (T )皆为零为什么试举例说明答:所有处于标准态的稳定单质的O m f G ∆ (T ) 皆为零,因为由稳定单质生成稳定单质的状态未发生改变。
如:单质碳有石墨和金刚石两种,O m f G ∆ (298.15K,石墨)=0,而O m f G ∆(298.15K,金刚石)=2.9 kJ·mol -1 (课本522页),从石墨到金刚石状态要发生改变,即要发生相变,所以O m f G ∆ (298.15K,金刚石)不等于零。
2. 化合物的标准生成热(焓)定义成:“由稳定单质在298.15K 和100KPa 下反应生成1mol 化合物的反应热”是否准确为什么答:标准生成热(焓)的定义应为:单独处于各自标准态下,温度为T 的稳定单质生成单独处于标准态下、温度为T 的1mol 化合物B 过程的焓变。
此定义中(1)强调压力为一个标准大气压,而不强调温度;(2)变化前后都单独处于标准态。
3. 一定温度、压力下,发生单位化学反应过程中系统与环境交换的热Q p 与化学反应摩尔焓变r m H ∆是否相同为什么答: 等压不作其他功时(W’=0),数值上Q p =n r H ∆。
但Q p 是过程量,与具体的过程有关;而r m H ∆是状态函数,与过程无关,对一定的化学反应有固定的数值。
如将一个化学反应至于一个绝热系统中,Q p 为零,但r m H ∆有确定的数值。
§3.2 化学反应热力学函数改变值的计算(P131)1. O m r G ∆(T )、m r G ∆(T )、O m f G ∆(B,相态,T )各自的含义是什么答:O m r G ∆(T ): 温度为T ,压力为P θ,发生单位反应的ΔG ;m r G ∆(T ):温度为T ,压力为P ,发生单位反应的ΔG ;Omf G ∆(B,相态,T ):温度为T ,压力为P θ,由各自处于标准状态下的稳定单质,生成处于标准态1mol 化合物反应的ΔG 。
物理化学03章_热力学第二定律-1
V 任意可逆循环
证明如下:
p
(1)在任意可逆循环的曲
线上取很靠近的PQ过程
R
T
V
PO Q
W
(2)通过P,Q点分别作RS和
X N
TU两条可逆绝热膨胀线, (3)在P,Q之间通过O点作 等温可逆膨胀线VW
M O' Y
S
U
V
任意可逆循环
使两个三角形PVO和OWQ的面积相等,
这样使PQ过程与PVOWQ过程所作的功相同。
设始、终态A,B的熵分别为SA 和 SB,则:
SB SA S
B A
(
Q T
)R
或
S
对微小变化
i
(
Qi Ti
)R
S
dS
Q ( T )R
i
(
Qi Ti
)R
0
这几个熵变的计算式习惯上称为熵的定义式,
即熵的变化值可用可逆过程的热温商值来衡量。
§3.4 熵的概念 Entropy
从Carnot循环得到的结论: 即Carnot循环中,热效应与温度商值的加和等于零。
Qc Qh 0 Tc Th
对于任意的可逆循环,都可以分解为若干个 小Carnot循环。
先以P,Q两点为例
任意可逆循环的热温商
p
R
T
V PO
PVO = OWQ
Q
W MXO’ = O’YN
X N
M O' Y
S
U
T1
T2
T3
T4
i
(
Qi
Ti
)R
0
δ Q
T
R
物理化学 傅献彩 第三章热力学第二定律01-0608-09
Th
Qc
高温热源
高温热源
Qh
今令一个Carnot机在高温和低 温热源间工作,从高温热源吸收 Qh,对外做功W,向低温热源放 热Qc,根据假设从 低温热源
Qc自发传递
R
Qc
W
高温热源
Tc
低温热源
第二类永动机示意图
热力学第二定律
循环净结果为: 热机从高温热源吸收热量:Qh- Qc 体系对外做功:-W= Qh- Qc Carnot机从单一热源吸取的热 量全部变为功,而留下任何变化变 化。 ----第二类永动机
(1)引入了一个不等号 的方向问题;
I R ,原则上解决了化学反应
(3)为热力学第二定律熵函数S的提出奠定了基础。
§3.4 熵的概念
一、熵的导出 1. Carnot循环热温商
Qc Qh 0 Tc Th
热效应与温度商值的加和等于零。
2.任意的可逆循环热温商
可以分解为无数多个小Carnot循环。 先以P,Q两点为例
任意可逆循环的热温商
p
R V P
O
PVO = OWQ
T
Q W
X
M
O'
S
N
Y
U
MXO’ = O’YN
任意可逆循环
V
任意可逆循环的热温商
证明如下: (1)在任意可逆循环的曲线上取很靠近的PQ过程 (2)通过P,Q点分别作RS和TU两条可逆绝热膨胀线, (3)在P,Q之间通过O点作等温可 p R 逆膨胀线VW V 使两个三角形PVO和OWQ的面 积相等,这样使PQ过程与PVOWQ过程 所作的功相同。 同理,对MN过程作相同处理, 使MXO’YN折线所经过程作功与MN 过程相同。 VWYX就构成了一个Carnot循环。
物理化学习题解
第三章 化学反应系统热力学 练 习 题3-4 在291~333K 温度范围内,下述各物质的C p,m /(JK -1mol -1)分别为 CH 4(g): 35.715; O 2(g): 29.36; CO 2(g): 37.13; H 2O(l): 75.30;在298.2K 时,反应 CH 4 (g) + 2O 2(g)==CO 2(g) + 2H 2O(l) 的恒压反应热效应为 -890.34kJmol -1。
.求 333K 时该反应的恒容反应热效应为多少? 解:(1) 求333K 时恒压反应热效应: ΔH (333K) =ΔH (298.2K)+⎰∆333298d TC p = -887.0 kJ mol -1(2) 求恒容反应热效应: ΔU (333K) =ΔH (333K) - ∑BB)(RTg ν= -881.6kJmol -13-5 由以下数据计算2,2,3,3四甲基丁烷的标准生成热。
已知:Om f H ∆[H(g)]=217.94 kJ mol -1,Om f H ∆[C(g)]=718.38 kJmol -1,εC-C =344 kJmol -1,εC-H = 414 kJmol -1。
解:O m f H ∆[CH 3C(CH 3)2 C(CH 3)2 CH 3 (g)]=18O m f H ∆[H(g)]+8Om f H ∆[C(g)]-7εC-C -18εC-H = -190 kJ mol -13-6 已知计算25℃时甲醇的饱和蒸气压p *。
解:CH 3OH(l)→CH 3OH(g) ,Om r G ∆=[-200.7-(-238.7)]-T [239.7-127.0]×10-3= 4.4 kJ mol -1O m r G ∆=O ln K RT -, O K =p */Op , p *=1.7×104Pa3-8 已知反应C(石墨)+H 2O(g)→CO(g)+H 2(g) 的 Om r H ∆(298.15 K) =133 kJ mol -1,计算该反应在125℃时的 Om r H ∆(398.15K)。
物理化学第二、三章习题及答案
主要计算公式
总结
1. 热力学第一定律的数学表达式 :
dU Q W 或 U Q W
适用于封闭体系中的单纯PVT变化、相变化、化学变化
2. 恒容热和恒压热
Qv U
Qp H
适用于dV=0,W’=0条件下的三类反应
适用于dP=0,W’=0条件下的三类反应
3. 摩尔定压热容和摩尔定容热容之间的关系:
n= 1 mol T1=300.15K P1=101.32 KPa V1
dT 0 n= 1 mol T2=300.15K P2 V2
习题
n= 1 mol T3=370.15K P3=250.00 KPa V3 = V2
dV 0
因为V2=V3,则p2/T2=p3/T3, p2=p3T2/T3=250.00×300.15/370.15 kPa=202.72 kPa nRT p 1 W2=0 W p (V V ) nRT p nRT ( 2 1)
vap H m 1 1 p2 ( ) 克-克方程 ln p1 R T2 T1
可用来计算不同温度下的蒸气压或摩尔蒸发热。
热力学第一定律
习题
1、 1 mol 某理想气体于27oC ,101.325 kPa 的始态下,先受 某恒定外压恒温压缩至平衡态,再恒容升温至97oC , 250.00 kPa。求过程的W,Q, △U, △H。已知气体的
热力学第一定律
n= 5 mol T1=300 P1=200 KPa
dTV 0 n= 5 mol T2=300K P2=50 KPa
习题
T3 P3=200 KPa
Qr 0 n= 5 mol
整个过程由于第二步为 绝热过程,计算热是方 便的,而第一步 为恒温可逆过程,则: U1 0 Q1 W1 , Q1 -W1 V2 p1 Q Q1 Q2 W1 0 nRT ln nRT ln V1 p2 (5 8.314 300 ln 200/ 50) J 17.29kJ W U Q (15.15 17.29)kJ 2.14kJ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 化学反应系统热力学习题及答案§3.1 标准热化学数据(P126)1. 所有单质的 O m f G ∆ (T )皆为零?为什么?试举例说明?答:所有处于标准态的稳定单质的O m f G ∆ (T ) 皆为零,因为由稳定单质生成稳定单质的状态未发生改变。
如:单质碳有石墨和金刚石两种,O m f G ∆ (298.15K,石墨)=0,而O m f G ∆(298.15K,金刚石)=2.9 kJ·mol -1 (课本522页),从石墨到金刚石状态要发生改变,即要发生相变,所以O m f G ∆ (298.15K,金刚石)不等于零。
2. 化合物的标准生成热(焓)定义成:“由稳定单质在298.15K 和100KPa 下反应生成1mol 化合物的反应热”是否准确?为什么?答:标准生成热(焓)的定义应为:单独处于各自标准态下,温度为T 的稳定单质生成单独处于标准态下、温度为T 的1mol 化合物B 过程的焓变。
此定义中(1)强调压力为一个标准大气压,而不强调温度;(2)变化前后都单独处于标准态。
3. 一定温度、压力下,发生单位化学反应过程中系统与环境交换的热Q p 与化学反应摩尔焓变r m H ∆是否相同?为什么?答: 等压不作其他功时(W’=0),数值上Q p =n r H ∆。
但Q p 是过程量,与具体的过程有关;而r m H ∆是状态函数,与过程无关,对一定的化学反应有固定的数值。
如将一个化学反应至于一个绝热系统中,Q p 为零,但r m H ∆有确定的数值。
§3.2 化学反应热力学函数改变值的计算(P131) 1.O mr G ∆(T )、m r G ∆(T )、Om f G ∆(B,相态,T )各自的含义是什么? 答:Om r G ∆(T ): 温度为T ,压力为P θ,发生单位反应的ΔG ;m r G ∆(T ):温度为T ,压力为P ,发生单位反应的ΔG ;O mf G ∆(B,相态,T ):温度为T ,压力为P θ,由各自处于标准状态下的稳定单质,生成处于标准态1mol 化合物反应的ΔG 。
2. 25℃时,H 2O(l)及H 2O(g)的标准摩尔生成焓分别为-285.838 kJ mol -1及-241.825 kJ mol -1。
计算水在25℃时的气化焓。
解:g l ∆H m =Δf H m θ(H 2O,g)- Δf H m θ(H 2O,l)=-241.825-(-285.838)=44.01 kJ·mol -13.用热化学数据计算下列单位反应的热效应Om r H ∆(298.15K)。
(1) 2CaO(s)+5C(s,石墨)→2CaC 2(s)+CO 2(g) (2) C 2H 2(g)+H 2O(l)→CH 3CHO(g) (3) CH 3OH(l)+21O 2(g)→HCHO(g)+H 2O(l) 解: (1) 2CaO(s)+5C(s,石墨)→2CaC 2(s)+CO 2(g) Δf H m θ(kJ·mol -1): -635.09 0 59.8 -393.509Δr H m θ(298.15K)=2Δf H m θ(CaC 2(s)) + Δf H m θ(CO 2(g)) - 2Δf H m θ(CaO(s)) - 5Δf H m θ(C(s))=[2×(-59.8)+(-393.509)] - 2×(-635.09) - 0=757.07 kJ·mol -1(2) C 2H 2(g)+H 2O(l)→CH 3CHO(g)Δc H m θ(kJ·mol -1): -1300 0 -1193Δr H m θ(298.15K)= Δc H m θ(C 2H 2(g))+ Δc H m θ(H 2O(l))- Δc H m θ(CH 3CHO(g))=-1300-(-1193)=-107 kJ·mol -1注:C 2H 2(g)和CH 3CHO(g)的Δc H m θ数值本书未给出,是从其它物理化学书中查到的。
(3) CH 3OH(l)+21O 2(g)→HCHO(g)+H 2O(l) Δf H m θ(298.15K): -238.66 0 -115.9 -285.83Δr H m θ(298.15K)=Δf H m θ(HCHO(g))+Δf H m θ(H 2O(l))-Δf H m θ(CH 3OH(l))-(1/2)Δf H m θ(O 2(g)) =-115.9+(-285.83)-(-238.66)= -163.16 kJmol -14.利用附录表中O m f H ∆ (B,相态,298.15 K)数据,计算下列反应的 O m r H ∆ (298.15K)及Or mU ∆ (298.15K)。
假定反应中各气体物质可视为理想气体。
(1) H 2S(g) + 3/2O 2(g) → H 2O(l) + SO 2(g) (2) CO(g) + 2H 2(g) → CH 3OH (l) (3) Fe 2O 3(s) + 2Al(s) →Al 2O 3(α) + 2Fe (s)解:O m r H ∆=Or m U ∆+ΣνB (g)RT 。
【因为H=U+PV ,ΔH=ΔU+Δ(PV)=ΔU+Δ(n g RT)= ΔU+RTΔn g ,对一定温度压力下的化学反应则有:O m r H ∆=O r m U ∆+ ΣνB (g)RT 】(1) H 2S(g) + 3/2 O 2(g) → H 2O (l) + SO 2(g)Omr H ∆=Δf H m θ(SO 2(g))+Δf H m θ(H 2O(l))- Δf H m θ(H 2S(g))-3/2Δf H m θ(O 2(g))=-296.83+(-285.83)-(-20.63)-0=-562.03 kJ·mol -1O mr H ∆=O r m U ∆+ ΣνB (g)RT Or mU ∆=O m r H ∆-ΣνB (g)RT= -562.03+(3/2)×8.314×298.15×10-3= -558.3 kJ·mol -l(2) CO(g)+2H 2(g)→CH 3OH(l),Om r H ∆=(-238.66)-(-110.525)=-128.14 kJ·mol -1, Or mU ∆=O m r H ∆-ΣνB (g)RT=(-128.14)-(-3) ×8.314×298.15×10-3= -120.7 kJ·mol -l(3) Fe 2O 3(s)+2Al(s)→Al 2O 3(α)+2Fe(s),Om r H ∆=(-1675.7)-(-824.2)= -851.5 kJ·mol -l , Or mU ∆=O m r H ∆-ΣνB (g)RT=O m r H ∆= -851.5 kJ·mol -l5.计算在无限稀的溶液中发生下述单位反应的热效应。
已知标准摩尔生成焓数据(单位是kJ mol -1):H 2O(l),-285.83;AgCl(s),-127.07;Na +,-329.66;K +,-251.21;Ag +,-105.90;NO 3-,-206.56;Cl -,-167.46;OH -,-229.94;SO 42-,-907.51。
(1) NaCl(∞,aq)+KNO 3(∞,aq)→ (2) NaOH(∞,aq)+HCl(∞,aq)→(3) 1/2Ag 2SO 4(∞,aq)+NaCl(∞,aq)→解:(1) 实质上是:Na ++Cl -+K ++NO 3-→Na ++Cl -+K ++NO 3-,没有化学反应,所以Om r H ∆=0(2) 实质上是:OH -(∞,aq)+H +(∞,aq)→H 2O(l),Omr H ∆=Δf H m θ(H 2O(l))- Δf H m θ(H +(∞,aq))- Δf H m θ(OH -(∞,aq ))=-285.83-0-(-229.94)=-55.89 kJ·mol -1 (3) 实质上是:Ag +(∞,aq)+Cl -(∞,aq)→AgCl(s),Om r H ∆=(-127.07)-(-105.9)-(-167.46)=146.29 kJ·mol -16.(1) CO(g) + H 2O(g) —→ CO 2(g) + H 2(g) Δϑm r H (298.15K)=-41.2 kJ ·mol –1(2)CH 4(g) + 2H 2O(g) —→CO 2(g) + 4H 2(g) Δϑm r H (298.15K)=165.0 kJ ·mol –1反应 CH 4(g) + H 2O(g) —→ CO(g) + 4H 2(g) 为 (2)-(1):则:Δϑm r H (298.15K) = 165.0-(-41.2) = 206.2 kJ ·mol –17.解:CH 4(g) + Cl 2(g) —→ CH 3Cl(g) + HCl(g)Δϑm r H (298.15K) = 4ε(C-H)+ε(Cl-Cl)-3ε(C-H)-ε(C-Cl)-ε(H-Cl)=414.63+242.7-328.4-430.95= -102.02 kJ ·mol –1 C 2H 6(g) —→ C 2H 4(g) + H 2(g)Δϑm r H (298.15K) = 6ε(C-H)+ε(C-C)-ε(H-H)-4ε(C-H)-ε(C=C)=2×414.63+347.7-435.97-606.7 = 134.29 kJ ·mol –18. 由以下数据计算2,2,3,3四甲基丁烷的标准生成热。
已知:O m f H ∆[H(g)]=217.94 kJ mol -1,O m f H ∆[C(g)] =718.38 kJ mol -1,εC-C =344 kJ mol -1,εC-H = 414 kJ mol -1。
解:2,2,3,3四甲基丁烷的结构式如下:【含有7个C-C 键和18个C-H 键】9H 2(g)+8C(s,石墨)→C 8H 18, O m r H ∆=O m f H ∆(C 8H 18)【相当于9个H 2(g)变成18个H(g)原子,8个C(s,石墨)变成8个C(g)原子后(此时打开键需要吸收一定的能量),然后再组合成C 8H 18(放出一定的能量)。
】所以,O m f H ∆(C 8H 18)=O m r H ∆=18O m f H ∆[H(g)]+8O m f H ∆[C(g)] – (7εC-C +18εC-H )=18×217.94+8×718.38-7×344 -18×414= -190.04 kJ·mol -1C C CH 3CH 3CH 3CH 3CH 3CH 39H2(g)+8C(S,石墨) C 8H1818H(g)+8C(g)9. 将0.005kg 的正庚烷放入弹式量热计内通氧燃烧,反应的结果使量热计量温度上升2.94 K ,已知量热计总的热容量为8175.54 J K -1,开始时的平均温度为298.15 K 。