相似多边形及性质-优秀教案
初中数学优秀教案标准
教案名称:初中数学《相似多边形的性质》优秀教案一、教学目标1. 让学生理解相似多边形的概念,掌握相似多边形的性质。
2. 培养学生运用数学知识解决实际问题的能力。
3. 渗透转化思想,提高学生的逻辑思维能力。
二、教学内容1. 相似多边形的定义2. 相似多边形的性质3. 相似多边形在实际问题中的应用三、教学重点与难点1. 重点:相似多边形的概念及其性质。
2. 难点:相似多边形的性质在实际问题中的应用。
四、教学方法1. 情境创设:通过生活实例引入相似多边形的概念,激发学生的学习兴趣。
2. 合作学习:分组讨论相似多边形的性质,培养学生团队合作精神。
3. 探究学习:引导学生运用转化思想,自主探究相似多边形的性质。
4. 练习巩固:设计适量习题,让学生在实践中掌握相似多边形的性质。
五、教学过程1. 导入新课:展示一些生活中的相似图形,如树叶、衣服图案等,引导学生发现相似图形的特征。
2. 自主探究:让学生尝试解释相似图形的性质,分组讨论并总结出相似多边形的性质。
3. 讲解与演示:教师对相似多边形的性质进行讲解,并用多媒体演示相似多边形的性质及应用。
4. 练习巩固:设计一些练习题,让学生运用相似多边形的性质解决问题。
5. 总结与拓展:对本节课的内容进行总结,引导学生思考相似多边形在实际问题中的应用。
六、课后作业1. 复习本节课所学内容,巩固相似多边形的性质。
2. 完成课后练习题,提高运用相似多边形解决实际问题的能力。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生完成作业的质量,评估学生对相似多边形性质的掌握程度。
3. 单元测试:通过单元测试,了解学生对相似多边形知识的掌握情况,为下一步教学提供依据。
八、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学质量。
同时,关注学生在学习过程中的困惑和问题,及时给予解答和指导。
相似多边形 优秀教案
相似多边形教学设计教学目标(一)教学知识点经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形.(二)能力训练要求经历探索图形的边、角关系,培养学生的观察能力,分析判断能力.(三)情感与价值观要求通过观察、推断可以获得教学猜想,体验数学活动充满着探索性和创造性.教学重点探索相似多边形的定义,以及用定义去判断两个多边形是否相似.教学难点探索相似多边形的定义的过程.教学方法指导探索法教学过程Ⅰ.创设情境,引入新课类比全等图形,引入相似平面图形:地图,交通信号灯标志,启发引导同学们观察思考生活中的相似多边形。
活动目的:培养学生从图片直观地获得信息的读图能力,并通过亲身体验归纳总结相似图形的共同特点。
而且由此自然引出课题:“相似多边形”。
Ⅱ.新课讲解一、探究相似多边形的定义观察图片,由交通信号灯(四边形),再到地图连线得到任意六边形,初步感受到由特殊到一般的思想方法。
为了研究方便,从一般的六边形中,抽象出正方形,再过渡到矩形,观察思考:在上图两个多边形中,什么变了?什么没变?它们有怎样的变化规律?是否有相等的内角?相等内角的两边是否成比例?活动目的:根据生活经验和直观判断,以问答的形式引导学生逐步深入的思考多边形相似的条件。
问题的设置是帮助学生直观地寻找相似多边形特点。
请学生动手验证一下,同桌交流想法。
学生们可以从度量或者叠合的角度来完成验证。
学生总结归纳,得到:1、各角对应相等、各边对应成比例的两个多边形叫做相似多边形。
2、相似多边形对应边的比叫做相似比。
3、相似用“∽”表示,读作“相似于”。
(这里要提醒学生注意:在用相似符号记两个多边形时,之所以把表示对3 3 2 4.5 应角顶点的字母写在对应位置上,是因为可以一目了然的知道他们的对应边和对应角,与全等形的记法类似)活动目的:此处留给学生充分的时间与空间去想象和思考。
并培养学生对某个问题作出正确判断、合理解决问题的能力。
《相似多边形》教案
3相像多边形【知识与技术】1.认知趣像多边形的观点和性质.2.在简单情况下,能依据定义判断两个多边形相像.3.会用相像多边形的性质解决简单的几何问题.【过程与方法】理解相像多边形的观点和性质,并能娴熟运用.【感情态度】激发学习兴趣,培育想象力,发掘学生潜力.【教课要点】相像多边形的定义和性质.【教课难点】如何判断两个多边形能否相像.一、情境导入 ,初步认识如图:四边形 A 1B1C1D1是四边形 ABCD 经过相像变换所得的图象.请分别求出这两个四边形的对应边的长度 ,并分别量出这两个四边形各个内角的度数 . 而后与你的伙伴议论:这两个四边形的对应角之间有什么关系?对应边之间有什么关系?【教课说明】培育学生从图片直观地获守信息的能力,并经过亲自体验概括总结相像图形的共同特色 .由此自然地引出课题——相像多边形 . 二、思虑研究,获得新知1.相像多边形:各对应角相等、各对应边成比率的两个多边形叫做相像多边形.对应极点的字母写在对应的地点上,如四边形 A 1B1C1D1∽四边形 ABCD.相像多边形对应边的比叫做相像比.图中四边形 A 1B1C1D1与四边形 ABCD 的相像比为k=1/2.2.察看下边两个图,判断:它们形状同样吗?它们是相像图形吗?这两个五边形是,即_______________________________________.3.问题:假如两个多边形相像,那么它们的对应角有什么关系?对应边呢?相像多边形的性质: ____________________________________________.【教课说明】经过对各样相像图形特色的一个自然感知的过程,使学生都能用自己的语言概括总结出相像多边形的特色.【概括结论】相像多边形的对应角相等,对应边成比率.相像用“∽”表示,读作“相似于” .三、运用新知,深入理解1.以下每组图形的形状同样,它们的对应角有如何的关系?对应边呢?(1)正三角形 ABC 与正三角形 DEF;(2)正方形 ABCD 与正方形 EFGH.解: (1)因为正三角形每个角都等于60°,因此∠ A= ∠D=60°,∠ B=∠E=60°,∠C=∠F= 60°.因为正三角形三边相等,因此 AB ∶DE=BC ∶EF=CA∶FD;(2)因为正方形的每个角都是直角,因此∠ A= ∠E=90°,∠ B=∠F=90°,∠C=∠G=90°,∠ D= ∠H=90°,因为正方形的四边相等,因此 AB ∶EF=BC∶ FG=CD∶GH=DA ∶HE.2.两个相像多边形,此中一个多边形的周长和面积分别是10 和 8,另一多边形的周长为 25,则另一个多边形的面积是 ________.解答:两个相像多边形的周长的比等于相像比,因此相像比是10∶ 25=2∶ 5,而面积的比等于相像比的平方,设另一个多边形的面积是x,则 8:x=( 2∶5)2,解得: x=50,即另一个多边形的面积是50.3.两个相像的五边形,一个五边形的各边长分别为1,2,3,4,5,另一个的最大边长为 10,则后一个五边形的最短边的长为________.剖析:依据相像多边形的对应边的比相等可得.解:两个相像的五边形,最长的边是 5,另一个最大边长为10,则相像比是 5∶10=1∶2,依据相像五边形的对应边的比相等,设后一个五边形的最短边的长为x,则 1∶ x=1∶2,解得: x=2 ,即后一个五边形的最短边的长为 2.4.如图,四边形 ABCD ∽四边形 A ′B′C′D′,则∠ 1=_____,AD=_____.分析:依据相像多边形对应边之比相等,对应角相等可得.解答:四边形 ABCD ∽四边形 A ′B′C′D′,则∠ 1=∠B=70°,A DD C . AD DC即21 18 3,解得 AD=28 ,∠ 1=70°. AD2445.设四边形 ABCD 与四边形 A1B1C1D1 是相像的图形,且 A 与 A 1、B 与 B1、 C 与C1是对应点,已知AB=12 ,BC=18,CD=18,AD=9 ,A 1B1=8,则四边形 A 1B1C1D1的周长为 ________.分析:四边形 ABCD 与四边形 A 1B1C1 D1是相像的图形,则依据相像多边形对应边的比相等,便可求得 A 1B1C1D1的其余边的长,便可求得周长.解答:∵四边形 ABCD 与四边形 A 1 1 1 1 是相像的图形,B C D∴ AB BC CD DA .A1B1B1C1C1D1D1 A1又∵ AB=12 ,BC=18, CD=18,AD=9 ,A 1B1=8,∴12 18189,8 B1C1C1 D1D1 A1∴B1C1=12,C1D1=12,D1A1=6,∴四边形 A 1B1C1D1的周长 =8+12+12+6=38.【教课说明】学生在应用中更深层次认知趣像多边形的基本涵义;初步掌握相像多边形的对应角相等,对应边成比率的性质.四、师生互动,讲堂小结经过本节课的学习,你有何收获?还有哪些疑问?【教课说明】鼓舞学生联合本节课的学习过程,说说自己的收获与感想,让学生学会疏理、概括和总结 .1、部署作业 :教材“习题 3.4”中第 1 、2 题 .2、达成创优作业中本课时“课时作业”部分.本节课是在研究相像多边形的过程中,进一步发展学生概括、类比、反省、沟通、论证等方面的能力,提升数学思想水平,领会反例的作用及直觉的不行靠性.。
初中相似多边形的数学教案
初中相似多边形的数学教案一、教学目标:1. 让学生理解相似多边形的概念,掌握相似多边形的性质和判定方法。
2. 培养学生运用相似多边形的知识解决实际问题的能力。
3. 提高学生对数学的兴趣,培养学生的观察能力、推理能力和思维能力。
二、教学内容:1. 相似多边形的定义和性质2. 相似多边形的判定方法3. 相似多边形在实际问题中的应用三、教学重点与难点:1. 重点:相似多边形的概念、性质和判定方法。
2. 难点:相似多边形在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生通过观察、思考、讨论,自主探索相似多边形的性质和判定方法。
2. 利用多媒体课件辅助教学,生动展示相似多边形的图形变化,增强学生的直观感受。
3. 结合实际例子,让学生运用相似多边形的知识解决实际问题,提高学生的应用能力。
五、教学过程:1. 引入:通过展示一些相似的图形,如树叶、五星红旗等,引导学生观察相似现象,激发学生的兴趣。
2. 讲解:讲解相似多边形的定义、性质和判定方法,结合PPT演示,让学生清晰理解相似多边形的概念。
3. 练习:布置一些相关的练习题,让学生巩固所学知识,提高解题能力。
4. 应用:结合实际问题,让学生运用相似多边形的知识解决问题,培养学生的应用能力。
5. 总结:对本节课的内容进行总结,强调相似多边形的性质和判定方法,以及其在实际问题中的应用。
6. 作业:布置一些课后作业,让学生进一步巩固所学知识。
六、教学评价:1. 通过课堂提问、练习和作业,评估学生对相似多边形概念、性质和判定方法的理解程度。
2. 观察学生在解决实际问题时的应用能力,评价其对相似多边形知识的掌握情况。
3. 收集学生课堂参与度、提问反馈,了解学生对教学方法的接受程度和兴趣。
七、教学反思:1. 课后回顾教学过程,评估教学目标的达成情况。
2. 根据学生的反馈和表现,反思教学方法和策略的有效性,提出改进措施。
3. 考虑如何在后续教学中更好地激发学生的学习兴趣和主动性,提高教学效果。
相似多边形 优秀教案
相似多边形【教学目标】一、教学知识点经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形。
二、能力训练要求经历探索图形的边、角关系,培养学生的观察能力,分析判断能力。
三、情感与价值观要求通过观察、推断可以获得教学猜想,体验数学活动充满着探索性和创造性。
【教学重难点】1.探索相似多边形的定义,以及用定义去判断两个多边形是否相似。
2.探索相似多边形的定义的过程。
【教学方法】指导探索法。
【教学准备】投影片两张第一张(记作§4.4 A)第二张(记作§4.4 B)【教学过程】一、创设问题情境,引入新课[师]大家从语文的角度来分析一下“相似”一词的意思。
[生]“相似”就是差不多,但也不是完全相同,既有相同部分也有不同部分。
[师]很好,那“相似多边形”应怎么理解呢?[生]“相似多边形”即为两个边数相同的多边形,并且形状一样、大小可能不同。
[师]大家的分析能力非常棒,究竟“两个相似多边形”需满足什么条件呢?本节课我们将进行探索。
二、新课讲解1.探究相似多边形的定义投影片(§4.4 A)下图中的两个多边形分别是幻灯片上的多边形ABCDEF 和银幕上的多边形A 1B 1C 1D 1E 1F 1,它们的形状相同吗?图4-14(1)在上图的两个多边形中,是否有相等的内角?设法验证你的猜测。
(2)在上图的两个多边形中,相等内角的两边是否成比例? [师]请大家动手验证一下。
[生]在上图中,六边形ABCDEF 与六边形A 1B 1C 1D 1E 1F 1是形状相同的图形,其中∠A 与∠A 1,∠B 与∠B 1,∠C 与∠C 1,∠D 与∠D 1,∠E 与∠E 1,∠F 与∠F 1分别对应相等,AB 与A 1B 1,BC 与B 1C 1,CD 与C 1D 1,DE 与D 1E 1,EF 与E 1F 1,FA 与F 1A 1的比都相等。
北师大版数学九年级上册4.3 相似多边形教案
3相似多边形●归纳导入下列每组图形形状相同吗?每组图形中边与角分别有什么关系?【归纳】相似多边形的定义:各角分别__相等__各边__成比例__的两个多边形叫做相似多边形.【教学与建议】教学:通过图形的比较,归纳相似多边形所具备的共同特征,导入相似多边形的定义.建议:强调相似多边形定义的两个关键点:一是各角分别相等;二是各边成比例.●类比导入色彩斑斓的世界中有许多形状相同的图形,这些图形的形状相同,大小不等,我们称之为相似图形.今天,老师就带领同学们来了解相似王国里的一个伟大家族——相似多边形(板书课题).【教学与建议】教学:收集相似图形的信息,体会相似图形在生活中的实际意义,自然引出课题——相似多边形.建议:让学生口答图片的异同,教师补充.命题角度1利用相似多边形的定义判断相似多边形具备的两个关键点:①各角分别相等;②各边分别成比例.【例1】(1)已知矩形ABCD中,AB=4,BC=3,下列四个矩形中与矩形ABCD相似的是(A)A B C D(2)下列各组图形中相似的有__①②__.(填序号)①放大镜下放大后的图象和原来的事物;②幻灯片的底片与投影在屏幕上的画面;③天空中两片白云的照片.命题角度2利用相似多边形的性质计算利用相似多边形的性质进行计算的关键是找准对应边和对应角.【例2】(1)一个五边形的边长分别为2,3,4,5,6,另一个和它相似的五边形的最大边长为24,则这个五边形的最短边长为(B)A.6 B.8 C.10 D.12(2)在四边形ABCD与四边形A′B′C′D′中,AB=3,BC=5,∠D=50°,A′B′=6,要使四边形ABCD∽四边形A′B′C′D′,则B′C′=__10__,∠D′=__50°__.高效课堂教学设计1.掌握相似多边形和相似比的概念.2.利用定义判断两个多边形是否相似.3.掌握相似多边形的性质,能根据相似比进行相关的计算.▲重点相似多边形的定义和性质.▲难点如何判断两个多边形是否相似.◆活动1创设情境导入新课(课件)观察以下三组图形,每一组图形的对应边、对应角有什么关系呢?(1)(2)(3)◆活动2 实践探究 交流新知 【探究1】相似多边形的概念和性质 教师展示课件(播放动画)在这两个多边形中,是否有相等的内角?夹相等内角的两边是否成比例? 归纳:1.各角分别相等、各边成比例的两个多边形叫做相似多边形. 2.相似用“∽”表示,读作“相似于”.例如,在上图中,六边形ABCDEF 与六边形A 1B 1C 1D 1E 1F 1相似,记作六边形ABCDEF ∽六边形A 1B 1C 1D 1E 1F 1.在记两个多边形相似时,要把表示对应顶点的字母写在对应的位置上.3.相似多边形对应边的比叫做相似比.例如,五边形ABCDE ∽五边形A 1B 2C 1D 1E 1,对应边的比AB A 1B 1 =BCB 1C 1=CD C 1D 1 =DE D 1E 1 =EA E 1A 1 =45 ,因此五边形ABCDE 与五边形A 1B 1C 1D 1E 1的相似比为k 1=45,五边形A 1B 1C 1D 1E 1与五边形ABCDE 的相似比为k 2=54.讨论:下面每组图形形状相同,它们的对应角有怎样的关系?对应边呢? (1)正三角形ABC 与正三角形DEF ; (2)正方形ABCD 与正方形EFGH .(1) (2)归纳:相似多边形的对应边成比例,对应角相等. 【探究2】相似多边形的判定 1.想一想:(1)任意两个等边三角形相似吗?任意两个正方形呢?任意两个正n 边形呢? (2)任意两个菱形相似吗?2.观察下面两组图形,提出问题(多媒体展示): 图①中的两个图形相似吗?为什么? 图②中的两个图形呢?与同伴交流.图① 图②如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗? 归纳:相似多边形必须同时具备两点:对应角相等、对应边成比例. ◆活动3 开放训练 应用举例例1 一块长3 m 、宽1.5 m 的矩形黑板如图所示,镶在其外围的木质边框宽7.5 cm.边框的内外边缘所成的矩形相似吗?为什么?(让学生先判断,分组讨论,再通过计算验证自己的判断)【方法指导】对应边成比例的两个矩形相似.解:不相似.理由如下:内边缘矩形长3 m ,宽1.5 m ,外边缘所成的矩形长为3+0.075×2=3.15(m),宽为 1.5+0.075×2=1.65(m).∴边框的内外边缘所成的矩形的长之比为33.15 =2021 ,宽之比为1.51.65 =1011 .∵2021≠1011,∴边框的内外边缘所成的矩形不相似. 例2 如图,四边形ABCD ∽四边形A ′B ′C ′D ′,则∠1=__70°__,AD =__28__.【方法指导】根据相似多边形对应边之比相等,对应角相等可得.解:四边形ABCD ∽四边形A ′B ′C ′D ′,则∠1=∠B =70°,A ′D ′AD =D ′C ′DC .即21AD =1824,解得AD =28.◆活动4 随堂练习1.如果六边形ABCDEF ∽六边形A ′B ′C ′D ′E ′F ′,∠B =75°,则∠B ′的度数是(C) A .15° B .25° C .75° D .105°2.△ABC ∽A ′B ′C ′,相似比为35 ,且AC =3,BC =4,AB =5,则A ′C ′=__5__,__B ′C ′__=__203__,A ′B ′=__253__,∠C ′=__90°__.3.课本P 87随堂练习T 1.解:(1)相似.理由如下:∵32 =4.53 =1.5,且矩形的每个内角均为90°,∴该组两个矩形相似;(2)不相似.理由如下:∵22.5 ≠36,∴该组两个矩形不相似.◆活动5 课堂小结与作业学生活动:这节课你的主要收获是什么?还有什么疑惑?教学说明:相似多边形的概念及性质的运用中,通过观察、类比提高数学思维. 作业:课本P 88随堂练习T 2,P 88习题4.4中的T 1、T 2、T 3.本节课设置大量的图片,体现数学来源于生活.通过折纸操作、观察、猜想,探索出相似多边形的概念,让学生切身感受到自己是学习的主人,为学生今后获取知识、探索发现和创造打下良好的基础.。
4.3《相似多边形》教案
1.培养学生的几何直观与空间想象能力,通过探索相似多边形的性质,使学生能够直观感知图形的相似关系,发展其空间观念。
2.提高学生的逻辑推理与数学论证能力,学会运用严谨的数学语言和逻辑思维,证明相似多边形的判定方法,增强数学推理素养。
3.培养学生的数据分析与问题解决能力,使学生能够运用相似多边形的性质解决实际问题,提高解决几何问题的策略和方法。
4.3《相似多边形》教案
一、教学内容
本节课选自教材第四章第三节《相似多边形》。教学内容主要包括以下两个方面:
1.相似多边形的定义及性质:理解相似多边形的含义,掌握相似多边形对应角相等、对应边成比例的性质。
2.相似多边形的判定方法:学会使用SSS(三边对应成比例)、SAS(两边对应成比例且夹角相等)、ASA(两角对应相等且夹边成比例)等方法判断两个多边形是否相似。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似多边形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似但大小不同的物体?”(如两个不同大小的三角形风筝)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似多边形的奥秘。
4.增强学生的数学应用意识,通过实际案例让学生体会相似多边形在现实生活中的广泛应用,激发学习兴趣,培养数学应用的思维方式。
三、教学难点与重点
1.教学重点
-理解并掌握相似多边形的定义及性质,特别是对应角相等、对应边成比例的特点。
-学会运用SSS、SAS、ASA等判定方法判断两个多边形是否相似。
-能够运用相似多边形的性质解决实际问题,如计算相似多边形的边长、面积等。
相似多边形的性质表格式教案
(1) △ASR 与△ABC 相似吗为什么
(2) 求正方形 PQRS 的边长。
解略
A
课后练习:1、2。
SER
B
C
P DQ
谈谈本节后你的收获与疑惑。
理解并掌握相似三角形对应高的比、对应角平分线的比、以 及对应中线的比都等于相似比。
培养学生的分析能力和数形结合的能力
知识点
理解并初步掌握相似多边形周长的比等于相似比、面积的比
的等于相似比的平方,并能用来解决简单的问题。
学 本节课共分 2 课时,第 1 课时主要探索相似三角形中对应高的
情 分
比、对应中线的比与相似比的关系;第 2 课时探索相似多边形的
少。
(2)如果 CH 和 FG 是他们的对应角平分线,那么 CH FG
等于多少。如果 CH 和 FG 是他们的对应中线呢那么 CH 等 FG
于多少。
性质:相似三角形对应高的比、对应角平分线的比和对
应中线的比都等于相似比。
如图,在等腰三角形 ABC 中,底边 BC=60cm,高
AD=40cm,四边形 PQRS 是正方ed on 22 November 2020
课题 :
课时安排:
课题名称 相似多边形的性质(一) NO:1 课 型 新 授
教 德育点 材 分 创新点 析
能力点
经历探索相似多边形的过程,并在探究过程中发展学生积极 的情感、态度、价值观,体验解决问题策略的多样性。
析 周长笔、面积比与相似比的关系。
教学流程 (内容概 要)
一、引入
师生互动 (问题设计、情景创设)
A B 若正方形 ABCD 边长为 1 周长为 4,面积为 1 若边长增大一倍,变为 2.周长为 8,面积为 4 若边长,变为 3.周长为 12,面积为 9
相似多边形教案
相似多边形教案相似多边形教案教学目标:1. 了解什么是相似多边形;2. 学会如何判断两个多边形相似;3. 学会如何计算相似多边形的边长和面积。
教学重点:1. 判断两个多边形相似的条件;2. 计算相似多边形的边长和面积。
教学难点:1. 判断两个多边形相似的方法;2. 计算相似多边形的边长和面积的公式。
教学准备:1. 尺子;2. 直角三角板;3. 计算器;4. 板书工具。
教学过程:Step 1 引入新知识老师用一张纸上面画出一个多边形,并问学生是否知道这是一个什么图形。
学生回答多边形。
老师进一步引导学生思考,多边形有哪些特点?学生给出答案,如由一系列连线所组成,边数多于3个等等。
老师再进一步问学生是否知道什么是相似多边形?学生可能不知道,老师解释相似多边形是指边与边对应成比例,角与角对应相等的多边形。
Step 2 判断相似多边形的条件老师现在用纸板上画出两个多边形,一个较大,一个较小,让学生观察它们。
然后老师提问,如何判断这两个多边形是否相似?学生可能不知道,老师解释判断相似多边形的条件有两个:1. 其对应的边成比例;2. 其对应的角相等。
Step 3 利用相似多边形的性质计算老师告诉学生,相似多边形的边长和面积可以通过比例关系来计算。
老师写出相似多边形的边长和面积计算公式,并通过几个例子让学生理解。
Step 4 练习与巩固老师让学生进行一些练习,如判断两个多边形是否相似,以及计算相似多边形的边长和面积。
Step 5 拓展老师告诉学生相似多边形的概念不仅可以在平面几何中应用,还可以在立体几何中应用。
老师可以给出一个立体图形,如一个棱台,让学生思考如何判断它与另一个棱台是否相似,以及如何计算相似棱台的边长和体积。
Step 6 总结与展望老师和学生一起总结学过的知识,再次强调相似多边形的判断条件和计算公式。
并展望相似多边形的应用,如在建筑、地图等方面。
Step 7 课堂作业布置一些课堂作业,如判断两个多边形是否相似,以及计算相似多边形的边长和面积。
4.3《相似多边形》数学北师大版九年级上册教案
第四章图形的相似4.3 相似多边形一、教学目标1.经历相似多边形概念的形成过程,了解相似多边形的含义.2.进一步发展归纳、类比、反思、交流等方面的能力,提高数学思维水平,体会反例的作用.二、教学重点及难点重点:探索相似多边形的定义,判断两个多边形是否相似.难点:探索相似多边形的定义的过程.三、教学用具多媒体课件、直尺或三角板.四、相关资《生活中的相似多边形》图片,《相似多边形》微课.五、教学过程【情境引入】生活中同学们常会看到这样的图片.很明显,上面几组中的两个图形不是全等图形,但每组中的两个图形的形状相同,满足这种关系的两个图形是什么关系呢?与全等图形有怎样的联系?它们的边之间、角之间又有怎样的特征呢?带着这些问题让我们一起开始今天的学习吧!设计意图:从生活中常见的图形入手,让学生感受到形状相同、大小不等的两个图形间存在着密切的联系,同时提出疑问,过渡自然,引入本课研究内容.【探究新知】想一想下图中的两个多边形分别是计算机显示屏上的多边形ABCDEF和投射到银幕上的多边形A1B1C1D1E1F1,它们的形状相同吗?(1)在这两个多边形中,是否有对应相等的内角?设法验证你的猜想.(2)在这两个多边形中,夹相等内角的两边是否成比例?师生活动:教师出示问题,对于问题(1),学生根据生活经验和直观判断容易得出结论,教师应鼓励学生用自己的方法验证所得的结论.例如,可以用量角器度量;还可以把两多边形画在透明纸上,然后剪下来把对应的角重叠在一起进行比较.对于问题(2)的结论不如问题(1)的结论那样直观易得.教师可以引导学生通过度量比较的方法获得结论.答:图中的六边形ABCDEF与六边形A1B1C1D1E1F1是形状相同的多边形.(1)在这两个多边形中,有对应相等的内角,即∠A与∠A1,∠B与∠B1,∠C与∠C1,∠D与∠D1,∠E与∠E1,∠F与∠F1分别对应相等,这些角称为对应角.(2)在这两个多边形中,夹相等内角的两边成比例,即AB与A1B1,BC与B1C1,CD 与C1D1,DE与D1E1,EF与E1F1,FA与F1A1的比都相等,这些边称为对应边.我们把各角分别相等、各边成比例的两个多边形叫做相似多边形.例如,在上图中,六边形ABCDEF与六边形A1B1C1D1E1F1相似,记作六边形ABCDEF ∽六边形A1B1C1D1E1F1,“∽”读作“相似于”.在记两个多边形相似时,要把表示对应顶点的字母写在对应的位置上.相似多边形对应边的比叫做相似比.例如,五边形ABCDE∽五边形A1B1C1D1E1,对应边的比,因此五边形ABCDE与五边形A1B1C1D1E1的相似比为,五边形A1B1C1D1E1与五边形ABCDE的相似比为.设计意图:从特例入手,学生比较容易接受,而从特例的探索过程得到的活动经验对一般情况的探索起到铺垫的作用,从而降低难度.议一议(1)任意两个等边三角形相似吗?任意两个正方形呢?任意两个正n边形呢?(2)任意两个菱形相似吗?师生活动:教师出示问题,学生思考、讨论,教师分析、引导.答:(1)任意两个等边三角形相似,任意两个正方形相似,任意两个正n边形相似,因为它们的各角对应相等,各边对应成比例.(2)任意两个菱形不一定相似,因为两个菱形的各边虽对应成比例,但它们的各角不一定分别对应相等.设计意图:巩固对相似多边形概念的理解.【典例精析】例一块长3 m、宽1.5 m的矩形黑板如图所示,镶在其外围的木质边框宽7.5cm.边框的内外边缘所成的矩形相似吗?为什么?师生活动:教师出示问题,学生思考、讨论,教师引导学生应用相似多边形的定义判断.答:不相似;因为,所以对应边不成比例.所以这两个矩形不相似.设计意图:加深对相似多边形概念的理解.【课堂练习】1.观察下图中的各组图,其中形状相同的有().A.1组B.2组C.3组D.4组2.下列四组图形中,一定相似的是().A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形3.在□ABCD与□A′B′C′D′中,若AB=4,BC=2,A′B′=2,B′C′=1,则□ABCD与□A′B′C′D′_____________相似(填“一定”或“不一定”).4.已知五边形ABCDE∽五边形A1B1C1D1E1,且AB=2,BC=3,A1B1=4,∠D=20°,∠E=50°,则B1C1=__________,∠E1=__________.5.如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长;(2)求矩形DMNC与矩形ABCD的相似比.师生活动:教师出示例题,学生尝试完成,教师给出规范的解题过程.6.如图,四边形ABCD和EFGH相似,求角α,β的大小和EH的长度x.师生活动:教师找几名学生板演,讲解出现的问题.参考答案1.C.2.D.3.不一定.4.6;50°.5.解:(1)由已知,得MN=AB,MD=.∵矩形DMNC与矩形ABCD的相似,∴.∴.∵AB=4,∴AD=.(2)矩形DMNC与矩形ABCD的相似比为.设计意图:让学生进一步加深对相似多边形概念的理解,培养学生分析问题、解决问题的意识和能力.教师根据学生情况补充:两个多边形如果相似,不仅有对应角相等,对应边成比例的结论,它们的周长的比也等于相似比,面积的比等于相似比的平方.6.解:因为四边形ABCD和EFGH相似,所以它们的对应角相等,由此可得α=∠C=83°,∠A=∠E=118°.在四边形ABCD中,β=360°-(78°+83°+118°)=81°.因为四边形ABCD和EFGH相似,所以它们的对应边成比例,由此可得,即.解得x=28.设计意图:通过求相似多边形的对应边、角,巩固相似多边形的概念及性质.六、课堂小结1.相似多边形及其相关概念各角分别相等、各边成比例的两个多边形叫做相似多边形.相似用符号“∽”表示,读作“相似于”.相似多边形对应边的比叫做相似比.2.相似多边形的性质(1)相似多边形的对应角相等,对应边成比例;(2)相似多边形周长的比等于相似比;(3)相似多边形面积的比等于相似比的平方.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计4.3 相似多边形1.相似多边形及其相关概念2.相似多边形的性质。
教案指导记录初中数学
教案指导记录初中数学教案名称:初中数学《相似多边形的性质》年级:八年级学科:数学课时:2课时教材版本:人教版教学目标:1. 让学生理解相似多边形的概念,掌握相似多边形的性质。
2. 培养学生观察、分析、归纳的能力,提高学生的数学思维能力。
3. 培养学生合作学习、交流表达的能力,提高学生的团队协作能力。
教学内容:1. 相似多边形的定义及性质2. 相似多边形的判定3. 相似多边形的应用教学过程:第一课时:一、导入新课1. 利用多媒体展示一些生活中的相似图形,引导学生观察、思考。
2. 学生汇报观察结果,教师总结相似图形的特征。
二、探究相似多边形的性质1. 学生分组讨论,总结相似多边形的性质。
2. 各组汇报讨论结果,教师点评并总结。
三、例题讲解1. 教师讲解例题,引导学生掌握解题方法。
2. 学生独立完成练习题,教师批改并讲解错误。
四、课堂小结1. 教师引导学生总结本节课所学内容。
2. 学生分享学习收获,教师给予鼓励。
第二课时:一、复习导入1. 教师提问,检查学生对相似多边形性质的掌握情况。
2. 学生回答问题,教师点评并引导。
二、探究相似多边形的判定1. 学生分组讨论,总结相似多边形的判定方法。
2. 各组汇报讨论结果,教师点评并总结。
三、例题讲解1. 教师讲解例题,引导学生掌握解题方法。
2. 学生独立完成练习题,教师批改并讲解错误。
四、课堂小结1. 教师引导学生总结本节课所学内容。
2. 学生分享学习收获,教师给予鼓励。
五、课后作业1. 教师布置作业,巩固所学知识。
2. 学生认真完成作业,教师批改并反馈。
教学评价:1. 学生对相似多边形的概念、性质、判定方法的掌握程度。
2. 学生在解决问题时的思维能力、创新能力。
3. 学生在课堂上的参与度、合作意识、交流表达能力。
教学反思:本节课通过引导学生观察生活中的相似图形,激发学生的学习兴趣。
在探究相似多边形的性质和判定过程中,充分发挥学生的主动性,培养学生的观察、分析、归纳能力。
初中相似多边形的数学教案
初中相似多边形的数学教案一、教学目标1. 让学生理解相似多边形的概念,掌握相似多边形的性质和判定方法。
2. 培养学生运用相似多边形的知识解决实际问题的能力。
3. 发展学生的逻辑思维能力和合作交流能力。
二、教学内容1. 相似多边形的定义2. 相似多边形的性质3. 相似多边形的判定方法4. 相似多边形在实际问题中的应用三、教学重点与难点1. 教学重点:相似多边形的概念、性质、判定方法及应用。
2. 教学难点:相似多边形的判定方法及在实际问题中的应用。
四、教学方法1. 采用直观演示法、讲解法、引导发现法、实践操作法等多种教学方法。
2. 利用多媒体课件、模型、图片等教学资源,增强学生对相似多边形概念的理解。
3. 组织学生进行小组讨论、探究活动,培养学生的合作交流能力。
五、教学过程1. 引入新课:通过展示一些相似图形,引导学生发现它们的共同特征,从而引出相似多边形的概念。
2. 讲解相似多边形的定义:讲解相似多边形的定义,让学生理解相似多边形的性质和判定方法。
3. 相似多边形的性质:引导学生发现相似多边形的一些性质,如对应角相等、对应边成比例等。
4. 相似多边形的判定方法:讲解相似多边形的判定方法,让学生能够运用判定方法判断两个多边形是否相似。
5. 实际问题中的应用:出示一些实际问题,让学生运用相似多边形的知识解决问题,巩固所学知识。
6. 课堂小结:对本节课的内容进行总结,强调相似多边形的概念、性质和判定方法。
7. 布置作业:设计一些有关相似多边形的练习题,巩固所学知识。
六、教学评价1. 通过课堂讲解、练习和小组讨论,评价学生对相似多边形概念、性质和判定方法的理解程度。
2. 评估学生在解决实际问题中运用相似多边形知识的熟练程度。
3. 观察学生在课堂活动中的参与程度、合作交流能力和创新思维能力。
七、教学反馈1. 课后收集学生作业,分析其对相似多边形知识的掌握情况。
2. 在课堂上抽取学生回答问题,了解其对相似多边形知识的理解程度。
相似多边形-人教版九年级数学下册教案
相似多边形-人教版九年级数学下册教案一、教学目标1.理解相似多边形的概念,掌握判定相似多边形的条件;2.掌握相似多边形的性质:对应角相等、对应边成比例;3.能够利用相似多边形的性质解决实际问题。
二、教学重难点1.相似多边形的判定条件;2.相似多边形的性质和应用。
三、教学内容和方法1. 教学内容1.相似多边形的概念和判定条件;2.相似多边形的性质:对应角相等、对应边成比例;3.利用相似多边形的性质解决实际问题。
2. 教学方法1.示范法:通过画图及实例讲解相似多边形的概念、判定条件和性质;2.分组讨论法:让学生利用相似多边形的性质解决一些实际问题,提高学生的合作能力和解决问题的能力;3.讨论式授课:通过提出问题和学生讨论的方式引导学生理解和掌握相似多边形的性质和应用。
四、教学步骤1. 导入环节1.通过画出相似的两个三角形,引导学生理解相似的概念;2.引导学生回忆三角形相似的判定条件,引出判定相似多边形的条件。
2. 讲解环节1.第一种判定相似多边形的条件——对应角相等:画出相似的两个四边形,让学生观察对应角是否相等,引导学生发现如果对应角相等,则这两个四边形相似;2.第二种判定相似多边形的条件——对应边成比例:画出相似的两个四边形,让学生观察对应边是否成比例,引导学生发现如果对应边成比例,则这两个四边形相似。
3. 练习环节1.让学生在课本上完成相关知识的习题;2.老师提出一些实际问题,让学生利用相似多边形的性质解决问题。
4. 总结归纳1.总结两个判定相似多边形的条件;2.总结相似多边形的性质:对应角相等、对应边成比例。
五、板书设计相似多边形的判定条件:对应角相等对应边成比例相似多边形的性质:对应角相等对应边成比例六、教学反思本节课主要讲解了相似多边形的概念、判定条件、性质和应用。
对于学生来说,掌握判定相似多边形的条件和相似多边形的性质是本节课的难点。
教学方法上采用了示范法、分组讨论法和讨论式授课,通过引导学生发现规律来提高学生的兴趣和学习效果。
相似多边形教案
相似多边形教案教案标题:相似多边形教案教案目标:1. 理解相似多边形的概念和性质。
2. 能够识别相似多边形,并找出它们之间的相似关系。
3. 掌握相似多边形的比例关系和性质。
4. 能够应用相似多边形的知识解决实际问题。
教学准备:1. 教师准备:投影仪、白板、彩色笔、相似多边形的示例图片、实际生活中的相似多边形图片。
2. 学生准备:铅笔、直尺、量角器。
教学过程:步骤一:引入1. 教师通过投影仪展示一些相似多边形的示例图片,并引导学生观察并描述它们之间的相似关系。
2. 教师解释相似多边形的概念,即具有相同形状但大小不同的多边形。
步骤二:相似多边形的性质1. 教师引导学生发现相似多边形之间的比例关系,如边长比例、角度比例等。
2. 教师通过示例和图示解释相似多边形的性质,如对应角相等、对应边成比例等。
步骤三:相似多边形的判定1. 教师给出一些多边形,要求学生判断它们是否相似,并解释判断的依据。
2. 学生进行小组讨论,然后展示并解释自己的判断结果。
步骤四:相似多边形的应用1. 教师给出一些实际生活中的相似多边形的图片,如建筑物、地图等。
2. 学生观察并讨论这些图片中的相似多边形,并分析它们之间的相似关系。
3. 学生尝试应用相似多边形的知识解决一些实际问题,如计算高楼的高度、估算地图上的距离等。
步骤五:总结和拓展1. 教师与学生一起总结相似多边形的概念、性质和应用。
2. 学生通过练习题巩固所学知识,并尝试拓展更复杂的相似多边形问题。
教学延伸:1. 学生可以用几何软件绘制相似多边形,并观察它们之间的性质和关系。
2. 学生可以进行实地考察,寻找并记录实际生活中的相似多边形,并分析它们之间的相似关系。
教学评估:1. 教师观察学生在课堂上的参与和回答问题的能力。
2. 教师布置相似多边形的练习题,检查学生对知识的掌握情况。
3. 学生通过解决实际问题展示他们对相似多边形的应用能力。
教学反思:1. 教师根据学生的反馈和表现,及时调整教学步骤和策略。
初中数学教案简洁版
教案标题:初中数学《相似多边形的性质》教学目标:1. 理解相似多边形的定义及性质。
2. 学会运用相似多边形的性质解决实际问题。
3. 培养学生的逻辑思维能力和空间想象力。
教学内容:1. 相似多边形的定义。
2. 相似多边形的性质。
3. 相似多边形的应用。
教学过程:一、导入(5分钟)1. 通过展示两组多边形,让学生观察并讨论它们之间的相似性。
2. 引导学生发现相似多边形的特点,从而引出相似多边形的定义。
二、新课讲解(15分钟)1. 讲解相似多边形的定义:如果两个多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。
2. 讲解相似多边形的性质:(1)相似多边形的对应角相等。
(2)相似多边形的对应边成比例。
(3)相似多边形的面积比等于对应边长比的平方。
3. 通过例题讲解相似多边形的性质在实际问题中的应用。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固相似多边形的性质。
2. 引导学生运用相似多边形的性质解决实际问题。
四、课堂小结(5分钟)1. 回顾本节课所学内容,总结相似多边形的定义及性质。
2. 强调相似多边形性质在实际问题中的应用。
五、课后作业(课后自主完成)1. 完成课后练习题,巩固相似多边形的性质。
2. 尝试解决一些实际问题,运用相似多边形的性质。
教学反思:本节课通过引导学生观察、讨论,引出相似多边形的定义,再通过讲解相似多边形的性质及应用,使学生掌握相似多边形的相关知识。
在课堂练习环节,注重培养学生的实际应用能力,让学生学会运用相似多边形的性质解决实际问题。
总体来说,本节课达到了预期的教学目标,学生对相似多边形的理解和应用能力得到了提高。
但在教学过程中,需要注意关注学生的学习情况,及时解答学生的疑问,提高课堂效果。
相似多边形的性质教案
4.8相似多边形的性质(1)
教学目的
1相似多边形对应高的比,对应角平分线的比和对应中线的比与相似比的关系。
2利用相似三角形的性质解决一些实际问题。
重点
相似三角形中对应线段比值的推导;运用相似三角
形的性质解决实际问题。
教具
多媒体
难点
相似三角形的性质的运用。
教法
启发、探索
教
学
过
程
教
学
内
容
双边活动
设计意图
时间
一提问问题:
1相似多边形有哪些性质?
2在相似三角形中,是否只有对应角相等、对应边成比例这个性质?
二创设情境:
多媒体显示:
1教科书146页引例
2把上面的问题化成一般问题,看能得到什么结论?
已知△ABC∽△A’B’C’ 相似比为 K,CD 、C’D’是它们
CD
的对应高,那么等于多少?
C'D'
变式一:如果CD、C’D’是它们
习题4.10:P148必做题1、2、
选 做 题3
学生认真思考完成后
指名口答
应用本节结论解题培养学生应用数学知识解决问题的能力。
6
引导学生对所学内容进行反思、归纳。
2
学生总结,谈收获
1
巩固深化课堂知识。
板
书
引例: 结论:
4.8相似多边形的性质(1)
变式:
练习
CD
的对应角平分线,那么等
C'D'
于多少?
变式二:。如果CD、C’D’是它
CD
们的对应中线,那么等于
C'D'
多少?
结论:相似三角形的性质:
初中数学《相似多边形》优秀教案
初中数学《相似多边形》优秀教案1、学问与技能:使同学经受相像多边形概念的形成过程,了解相像多边形的定义,并能依据定义推断两个多边形是否相像。
2、过程与方法:在探究相像多边形本质特征的过程中,进一步进展同学归纳、类比、反思、沟通等方面的力量,体会反例的作用。
3、情感态度与价值观:通过观看、推断得到数学猜想、获得数学结论的过程,体验数学活动布满了探究性和制造性。
教学重点:探究相像多边形的定义过程,以及用定义去推断两个多边形是否相像。
教学难点:探究相像多边形的定义过程。
教学过程:(一)创设情景,导入新课。
(3分钟)由于同学已经学习了外形相同的图形,在这里我向同学展现一组图片(课件),引导同学从中找出外形相同的图形。
同学回答后,利用课件演示抽象出多边形。
大多数同学可能会指出黑板边框的内外边缘所围成的矩形的外形也相同。
我紧接着创设悬念:这两个矩形的外形相同吗?利用课件演示,把内边缘的矩形的长和宽按相同比例放大后不能与外边缘矩形重合。
此时的同学确定倍感怀疑,急迫想探个毕竟。
老师顺势导入新课:那么满意什么条件的多边形才是外形相同的多边形呢?今日我们一起来探究相像多边形。
(二)自主学习,合作探究。
(15分钟)1、动手试验,初步感知定义。
课前发给每个小组一套相像多边形的图片(其中包括两个相像三角形、一个等边三角形、两个相像四边形),组织同学按外形相同给多边形找伴侣。
然后引导同学以小组为单位从中选择一组多边形探究解决下面问题。
(1)在这两个多边形中,是否有相等的内角?设法验证你的猜想。
(2)在这两个多边形中,相等的内角的两边是否成比例?(设计意图:引导同学分组争论、探究、验证、沟通,并进行演示,着重引导同学说明验证的方法,无论同学提出什么样的验证方式,只要有道理,老师都应赐予充分确定和鼓舞。
)对相等内角的两边是否对应成比例这个问题同学可能会感到困难,由于同学已经学习了成比例线段,我会利用这一点启发同学运用测量、计算的方法解决这一难点。
初中相似多边形的性质教案
初中相似多边形的性质教案教学目标:1. 知识与技能:使学生掌握相似多边形的定义和性质,能够运用相似多边形的性质解决一些实际问题。
2. 情感与态度:培养学生的探索精神和合作意识,通过运用相似多边形的性质,增强学生的应用意识。
教学重难点:1. 重点:相似多边形的性质及其应用。
2. 难点:相似多边形的性质的灵活运用。
教学准备:1. 教学工具:黑板、粉笔、多媒体教学设备。
2. 教学素材:相关例题和练习题。
教学过程:一、创设情境,引入新课1. 复习已学知识:回顾多边形的定义和性质,复习三角形的相关知识。
2. 提出问题:在两个相似多边形中,它们的对应边和对应角有什么关系?二、自主探究,揭示相似多边形的性质1. 引导学生通过观察、分析、归纳相似多边形的性质。
2. 学生汇报探究结果,教师进行总结,得出相似多边形的性质:a. 相似多边形的对应边成比例。
b. 相似多边形的对应角相等。
c. 相似多边形的面积比等于相似比的平方。
三、巩固新知,运用性质解决实际问题1. 通过幻灯片展示一些实际问题,引导学生运用相似多边形的性质进行解决。
2. 学生独立解答问题,教师进行讲解和指导。
四、课堂练习,巩固提高1. 布置一些相关的练习题,让学生独立完成。
2. 教师对学生的解答进行点评和指导。
五、总结反思,拓展延伸1. 让学生回顾本节课所学的内容,总结相似多边形的性质及其应用。
2. 提出一些拓展性问题,激发学生的学习兴趣。
教学反思:本节课通过创设问题情境,引导学生自主探究相似多边形的性质,并通过实际问题让学生运用性质进行解决。
在教学过程中,注意引导学生积极参与,培养学生的探索精神和合作意识。
通过课堂练习和总结反思,巩固提高学生对相似多边形性质的理解和应用。
总体来说,本节课达到了预期的教学目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.4 相似多边形及性质(第1课时,共2课时)
【教学目标】
1.相似多边形的周长比,面积比与相似比的关系.
2.经历探索相似多边形的性质的过程,培养学生的探索能力. 【教学重点】相似多边形的周长比、面积比与相似比的关系. 【教学难点】相似多边形周长比、面积比与相似比的关系的推导. 【教学过程】
一.引入新课 听故事 想问题
很久以前,某地发生大旱,地里的庄稼都干死了,于是大家到庙里向神祈求下雨.神说,如果你们做一个比现在的方桌大一倍的方桌来祭我,我就给你们降水.于是大家重新做了一个摆设祭品的方桌.新方桌的边长是原来的2倍.可是神愈发怒了.
想一想
如果△ABC ∽△A ′B ′C ′,相似比为k ,那么△ABC 与△A ′B ′C ′的周长比和面积比分别是多少? [生]△ABC 与△A ′B ′C ′的周长比为k ,面积比为k 2. 二、新课
如图4-45,四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2,相似比为k .
(1)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的周长比是多少?
(2)连接相应的对角线A 1C 1,A 2C 2,所得的△A 1B 1C 1与△A 2B 2C 2相似吗? △A 1C 1D 1与△A 2C 2D 2呢?如果相似,它们的相似各是多少?为什么?
(3)设△A 1B 1C 1,△A 1C 1D 1,△A 2B 2C 2,△A 2C 2D 2的面积分别是,111C B A S ∆ 222222111,,D C A C B A D C A S S S ∆∆∆ 那么
2
221112
22111D C A D C A C B A C B A S S S S ∆∆∆∆=
各是多少?
(4)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的面积比是多少?
提示:△A 1B 1C 1∽△A 2B 2C 2、△A 1C 1D 1∽△A 2C 2D 2,且相似比都为k . ∵四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2 ∴
2
211221122112211D A D
A D C D C C
B
C B B A B A === ∠
D 1A 1B 1=∠D 2A 2B 2,∠B 1=∠B 2. ∠B 1C 1D 1=∠B 2C 2D 2,∠D 1=∠D 2. 在△A 1B 1C 1与△A 2B 2C 2中
∵
2
2112211C B C
B B A B A = ∠B 1=∠B 2. ∴△A 1B 1
C 1∽△A 2B 2C 2. ∴
2
21
1B A B A =k . 同理可知,△A 1C 1D 1∽△A 2C 2D 2,且相似比为k . 发现得:
(3)提示:△A 1B 1C 1∽△A 2B 2C 2,△A 1C 1D 1∽△A 2C 2D 2.得其面积之比等于相似比的平方,再利用等比性质得:
222
22222222222)(k S S S S k D C A C B A D C A C B A =++∆∆∆∆,得相似四边形的面积之比等于相似比的平方.
如果把四边形换成五边形,那么结论又如何呢?
让学生完成相似五边形的周长比等于相似比;面积比等于相似比的平方的证明 照此方法,将四边形换成五边形,那么也有相同的结论. 由此可知:
相似多边形对应对角线之比等于相似比. 相似多边形的周长比等于相似比.
相似多边形的面积比等于相似比的平方. 三.练习
1.课本P90第7题
2、课本P89 练习题1、2 四.小结
相似多边形对应对角线之比等于相似比. 相似多边形的周长比等于相似比. 相似多边形的面积比等于相似比的平方. 五.作业 课本P89习题23.4第2、5题 课后作业:习题23.4第1、4题
同步练习
六.反思
23.4 相似多边形及性质(第2课时,共2课时)
授课人: 刘华 教学时间:
【教学目标】
1.相似多边形的周长比,面积比在实际中的应用.
2.经历探索相似多边形的性质的过程,培养学生的探索能力. 【教学重点】相似多边形的周长比、面积比与相似比关系的归纳. 【教学难点】相似多边形周长比、面积比与相似比的关系的应用. 【教学过程】 一.知识点回顾:
相似多边形的性质:
● 相似三角形对应高的比,对应角平分线的比,对应中线的比, ● 相似三角形的周长的比都等于相似比. ● 相似三角形面积的比等于相似比的平方. ● 相似比等于1的两个三角形全等.
● 相似多边形对应对角线的比等于相似比. ● 相似多边形的周长等于相似比.
● 相似多边形面积的比等于相似比的平方.
二.例题讲解
例1如图,在梯形ABCD 中,ADBC ,AD =2,BC =8,EF‖BC ,且EF 分别交AB 、DC 于E 、F . (1)若梯形AEFD ∽梯形EBFD ,求EF 的长;
(2)求满足(1)条件下的梯形AEFD 与梯形EBFD 的周长比. 分析:(1)由相似得相似比可求线段的长;
(2)由相似多边形的性质可求周长比.由学生完成求解过程. 解:(1)∵梯形AEFD ∽梯形EBFD
∴
BC
EF
EF AD =
得:16822
=⨯=*=BC AD EF
EF 的长是非曲4;
(2)∵梯形AEFD ∽梯形EBFD
∴
2
1
42===++++++EF AD CF BC EB EF FD EF AE AD
∴梯形AEFD 与梯形EBFD 的周长比等于1:2.
例2.如图,在△ABC 中,∠C =90°,以它的边为对应边,在三角形外分别作三个相似多边形.问斜边上多边形的面积S1与两直角边上多边形面积之和(S2+S3)有什么关系?为什么?
解:根据相似多边形性质,得
A E
B C
F
D
2322
21AC S BC S AB S =
=
由等比性质,得22322
1
AC BC S S AB
S ++= 又 ∵2
2
2
AC BC AB +=
∴ S 1=S 2+S 3
三.练习:补例
1、同步练习P75第8题。
2、课本P90 题8。
四.小结与扩展
1.相似多边形的周长比等于相似比.
2、相似多边形面积的比等于相似比的平方.
五.作业 1、 课本P90 题6、7。
2、同步练习
六.反思:
A
C
B
S 3 S 1
S 2。