项目二 直流电机类型及其控制技术

合集下载

直流电机种类及应用场合

直流电机种类及应用场合

直流电机种类及应用场合直流电机按照结构形式可分为刷型直流电机和无刷直流电机。

1. 刷型直流电机:刷型直流电机是通过刷子与转子之间的接触产生摩擦来实现电流的流动,进而产生转矩。

它主要由定子、转子、刷子和电枢等组成。

(1)永磁直流电机:永磁直流电机通过在转子中使用永磁体,将电能转化为机械能。

由于永磁体产生的磁场相对强大和稳定,永磁直流电机具有高效率、高转矩、高响应速度等优点,广泛应用于电动车辆、电梯、通讯设备、家用电器等领域。

(2)励磁直流电机:励磁直流电机通过外部励磁电源提供磁场,产生转矩。

励磁直流电机具有较大的输出功率和可调速范围,并且具有较好的负载自适应性能。

它广泛应用于起重机、钢铁冶金、石油化工、煤矿等行业。

(3)复合励磁直流电机:复合励磁直流电机是一种结合了永磁励磁和电磁励磁的混合励磁方式的电机。

它综合了永磁直流电机和励磁直流电机的优点,具有较高的效率、较高的输出功率和较宽的调速范围。

它主要应用于电机控制系统对输出转矩要求较高的场合。

2. 无刷直流电机:无刷直流电机使用电子换向器(称为无刷控制器)以电子方式来换向,避免了传统刷子直流电机的机械摩擦和损耗。

它由定子、转子、传感器和无刷控制器等组成。

(1)无刷直流电机:无刷直流电机具有高效率、高转矩、高速度、高精度调速性能,以及无电刷摩擦、无火花等优点。

它主要应用于机床、数控机床、工业自动化设备、航空航天设备、医疗设备等领域。

(2)无刷直流无刷电机:无刷直流无刷电机将励磁电源放到了定子中,通过在转子上使用永磁体和传感器来实现无刷控制。

它具有高效率、高转矩、高响应等优点,广泛应用于工业自动化、家电、医疗设备、新能源等领域。

总结起来,直流电机种类包括刷型直流电机和无刷直流电机。

刷型直流电机主要包括永磁直流电机、励磁直流电机和复合励磁直流电机,广泛应用于电动车辆、起重机、通讯设备等领域。

无刷直流电机主要包括无刷直流电机和无刷直流无刷电机,广泛应用于机床、工业自动化、医疗设备等领域。

直流电机原理及控制

直流电机原理及控制
调压调速能在较大的范围内无级平滑 调速。
恒转矩调速方式
电机长期运行时,电枢电流应小于额定
值 IN,而电磁转矩 Te = Km I 。
在调压调速范围内,励磁磁通不变,容 许的输出转矩也不变,称作“恒转矩调速 方式”。
恒功率调速方式
在弱磁调速范围内,转速越高,磁通越弱, 容许输出转矩减小,而容许输出转矩与转 速的乘积则不变,即容许功率不变,为 “恒功率调速方式”。
• 旋转变流机组——用交流电动机和直流发 电机组成机组,获得可调的直流电压。
• 静止式可控整流器——用静止式的可控整 流器获得可调的直流电压。
• 直流斩波器或脉宽调制变换器——用恒定 直流电源或不控整流电源供电,利用电力 电子开关器件斩波或进行脉宽调制,产生 可变的平均电压。
1.1.1 旋转变流机组(G-M系统)
估算。
图1-13 晶闸管触发与整流装置的输 入-输出特性和的测定
最大失控时间
失控时间是随机的,最大可能的失控时间就 是两个相邻自然换相点之间的时间,与交流电 源频率和整流电路形式有关,由下式确定
Ts max
1 mf
(1-13)
式中 f — 交流电流频率(Hz); m — 一周内整流电压的脉冲波数。
R
(3)V-M系统 机械特性
图1-11 完整的V-M系统机械特性
(4)V-M系统机械特性的特点
图1-11绘出了完整的V-M系统机械特性,分 为电流连续区和电流断续区。由图可见:
–当电流连续时,特性硬;
–电流断续时,特性很软,呈显著的非线性, 理想空载转速翘得很高。
1.2.5 晶闸管触发和整流装置的放大系数和 传递函数
(1-14)
传递函数简化
由于式(1-14)中包含指数函数,它使系统成 为非最小相位系统,分析和设计都比较麻烦。为 了简化,先将该指数函数按台劳级数展开,则式 (1-14)变成

直流电动机控制技术

直流电动机控制技术

图3-7 电刷装置
二、直流电机的基本结构与铭牌
转子(电枢)部分
1)电枢铁心 是主磁通磁路的主要部分,同时用以嵌放电 枢绕组。为了降低电机运行时的电枢铁心中产生的涡流损 耗和磁滞损耗,电枢铁心用0.5mm厚的硅钢片冲制的冲片叠 压而成,冲片形状如图3-8所示。叠成的铁心固定在转轴或 转子支架上。铁心的外圆开有电枢槽,槽内嵌放电枢绕组。
用途
(1)由于直流电动机能在宽广的范围内平滑而经济地 调节速度,所以它在精密机床和以蓄电池为电源的小型起 重运输机械等设备中应用较多;
(2)在机器人领域,小容量直流电动机的应用也很广 泛。
一、直流电机原理
直流电动机的基本工作原理
图3-1 直流电动机物理模型
一、直流电机原理
图3-1是最简单的直流电动机的物理模型,N和S是一对 固定的磁极(一般是电磁铁,也可以是永久磁铁)。磁极之 间有一个可以转动的铁质圆柱体,称为电枢铁心。铁心表 面固定一个用绝缘导体构成的电枢线圈abcd,线圈的两端 分别接到相互绝缘的两个圆弧形铜片上。弧形铜片称为换 向片,它们的组合体称为换向器。在换向器上放置固定不
二、直流电机的基本结构与铭牌
图3-3 直流电机结构图
二、直流电机的基本结构与铭牌
图3-4 直流电机横剖面示意图
二、直流电机的基本结构与铭牌
定子部分
1)主磁极 主磁极的作用是产 生气隙磁场。主磁极由主磁极铁心 和励磁绕组两部分组成,如图3-5所 示。铁心用0.5~1.5mm厚的钢板冲 片叠压铆紧而成,上面套励磁绕组 的部分称为极身,下面扩宽的部分 称为极靴,极靴宽于极身,既可使 气隙中磁场分布比较理想,又便于 固定励磁绕组。励磁绕组用绝缘铜 线绕制而成,套在极身上,再将整 个主磁极用螺钉固定在机座上。

直流电动机的分类

直流电动机的分类

直流电动机的分类直流电动机是一种常见的电动机类型,根据其不同的特性和用途,可以进行多种分类。

本文将从不同的角度对直流电动机进行分类介绍,以帮助读者更好地了解和理解直流电动机的特点和应用。

一、按照励磁方式分类1. 永磁直流电动机:永磁直流电动机是利用永磁材料产生磁场,用于产生转矩的一种直流电动机。

永磁直流电动机具有结构简单、体积小、效率高等优点,广泛应用于家用电器、机械设备等领域。

2. 电磁励磁直流电动机:电磁励磁直流电动机是通过外部电源提供电流,产生磁场,用于产生转矩的一种直流电动机。

电磁励磁直流电动机可根据不同的励磁方式进一步分为串激直流电动机、并激直流电动机和复合励磁直流电动机等。

二、按照转子结构分类1. 锚定转子直流电动机:锚定转子直流电动机是指转子上的绕组通过集电环与外部电源相连接的一种直流电动机。

锚定转子直流电动机具有结构简单、启动扭矩大等特点,广泛应用于起动和变速控制等场合。

2. 无刷直流电动机:无刷直流电动机是指转子上的绕组通过电子换向器与外部电源相连接的一种直流电动机。

无刷直流电动机不需要使用集电环和刷子,具有无摩擦、无火花、寿命长等优点,被广泛应用于航空航天、机器人等高精度领域。

三、按照工作原理分类1. 制动型直流电动机:制动型直流电动机又称为发电制动电动机,是指在发电状态下产生电能,用于制动负载的一种直流电动机。

制动型直流电动机通常用于电动车辆、电梯等需要制动的场合。

2. 发电型直流电动机:发电型直流电动机是指在机械转动的过程中产生电能的一种直流电动机。

发电型直流电动机通常用于风力发电、水力发电等领域。

四、按照用途分类1. 直流电机:直流电机是指用于将电能转换为机械能的一种电动机,广泛应用于各种机械设备和家用电器中。

2. 直流发电机:直流发电机是指将机械能转换为电能的一种电动机,常用于独立发电系统和特殊的工业用途。

以上是对直流电动机的分类介绍,希望能够帮助读者更好地理解直流电动机的不同类型和应用场景。

任务2直流电机控制电路原理与应用

任务2直流电机控制电路原理与应用

任务2直流电机控制电路原理与应用直流电机是一种将直流电能转化为机械能的装置,广泛应用于工业生产、家电、交通工具等领域。

直流电机控制电路是为了满足不同工作条件下对电机转速、转向、转矩等参数要求而设计的电路系统。

本篇文章将从直流电机控制电路的原理和应用两个方面进行介绍。

一、原理直流电机控制电路的基本原理是通过改变电机的电流和电压,控制电机的运行状态。

在直流电机控制电路中,常用的控制方法有启动、制动、调速、逆变等。

1.启动直流电机启动时需要较大的启动电流,为了防止电机启动时的冲击电流对电网和电机本身造成损坏,一般采用电阻启动和恒压法启动。

电阻启动是通过串接启动电阻,降低电动机的终端电压,从而限制启动电流的大小。

启动过程中,通过逐渐减小启动电阻的方式,使电动机逐步加速,最终将电阻完全切除,电机达到额定运行状态。

恒压法启动是通过在电动机终端并联一个恒压控制器,将额定电压经过控制器分压,形成一个低电压区,以降低启动电流。

启动过程中,控制器逐步提高电压,使电机逐步加速,最终将电压调整至额定电压,电机达到额定运行状态。

2.制动直流电动机制动是指将电动机由运转状态逐渐减速到停止状态的过程。

制动方法有机械制动、电阻制动、平衡电压制动等。

机械制动是通过机械摩擦或电磁刹车等方式,使电动机逐渐减速到停止状态。

电阻制动是通过串接制动电阻,将电机终端电压降低,使电机终端电压小于电机电动势,从而产生逆向电动势,使电机产生制动扭矩,逐渐减速到停止状态。

平衡电压制动是通过在电机两端并联一个可变阻值的电阻,使其电阻变化和电机转速变化保持同步,以实现平衡制动。

3.调速直流电机的调速可以通过改变电机电压或电流来实现。

调速方法有电压调速、电流调速、PWM调速等。

电压调速是通过改变电机的供电电压,可以直接改变电机的转速。

常用的电压调速方法有串联电动势调速、平行电动势调速、分级电动势调速等。

电流调速是通过改变电机的电流大小,控制电机的转速。

一般通过改变电机绕组电阻来实现电流调速。

最全直流电机工作原理与控制电路解析(无刷+有刷+伺服+步进)

最全直流电机工作原理与控制电路解析(无刷+有刷+伺服+步进)

最全直流电机工作原理与控制电路解析(无刷+有刷+伺服+步进)直流电动机是连续的执行器,可将电能转换为(机械)能。

直流电动机通过产生连续的角旋转来实现此目的,该角旋转可用于旋转泵,风扇,压缩机,车轮等。

与传统的旋转直流电动机一样,也可以使用线性电动机,它们能够产生连续的衬套运动。

基本上有三种类型的常规电动机可用:AC 型电动机,(DC)型电动机和步进电动机。

典型的小型直流电动机交流电动机通常用于高功率的单相或多相(工业)应用中,需要恒定的旋转扭矩和速度来控制大负载,例如风扇或泵。

在本(教程)中,我们仅介绍简单的轻型直流电动机和步进电动机,这些电动机用于许多不同类型的(电子),位置控制,微处理器,(PI)C和(机器人)类型的电路中。

基本直流电动机该直流电动机或直流电动机,以给它的完整的标题,是用于产生连续运动和旋转,其速度可以容易地控制,从而使它们适合于应用中使用是速度控制,伺服控制类型的最常用的致动器,和/或需要定位。

直流电动机由两部分组成,“定子”是固定部分,而“转子”是旋转部分。

结果是基本上可以使用三种类型的直流电动机。

有刷(电机)–这种类型的电机通过使(电流)流经换向器和碳刷组件而在绕线转子(旋转的零件)中产生磁场,因此称为“有刷”。

定子(静止部分)的磁场是通过使用绕制的定子励磁绕组或永磁体产生的。

通常,有刷直流电动机便宜,体积小且易于控制。

无刷电动机–这种电动机通过使用附着在其上的永磁体在转子中产生磁场,并通过电子方式实现换向。

它们通常比常规的有刷型直流电动机更小,但价格更高,因为它们在定子中使用“霍尔效应”开关来产生所需的定子磁场旋转顺序,但是它们具有更好的转矩/速度特性,效率更高且使用寿命更长比同等拉丝类型。

伺服电动机–这种电动机基本上是一种有刷直流电动机,带有某种形式的位置反馈控制连接到转子轴。

它们连接到PWM型控制器并由其控制,主要用于位置(控制系统)和无线电控制模型。

普通的直流电动机具有几乎线性的特性,其旋转速度取决于所施加的直流电压,输出转矩则取决于流经电动机绕组的电流。

直流电机的特点及控制方式

直流电机的特点及控制方式

直流电机的结构特点由直流电动机和发电机工作原理示意图可以看到,直流电机的结构应由定子和转子两大部分组成。

直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。

运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。

1. 定子(1)主磁极主磁极的作用是产生气隙磁场。

主磁极由主磁极铁心和励磁绕组两部分组成。

铁心一般用0.5mm~1.5mm厚的硅钢板冲片叠压铆紧而成,分为极身和极靴两部分,上面套励磁绕组的部分称为极身,下面扩宽的部分称为极靴,极靴宽于极身,既可以调整气隙中磁场的分布,又便于固定励磁绕组。

励磁绕组用绝缘铜线绕制而成,套在主磁极铁心上。

整个主磁极用螺钉固定在机座上,1—换向器 2—电刷装置 3—机座 4—主磁极 5—换向极6—端盖 7—风扇 8—电枢绕组 9—电枢铁心(2)换向极换向极的作用是改善换向,减小电机运行时电刷与换向器之间可能产生的换向火花,一般装在两个相邻主磁极之间,由换向极铁心和换向极绕组组成,如8.6所示。

换向极绕组用绝缘导线绕制而成,套在换向极铁心上,换向极的数目与主磁极相等。

(3)机座电机定子的外壳称为机座,见图8.4中的3。

机座的作用有两个:一是用来固定主磁极、换图8.5 主磁极的结构向极和端盖,并起整个电机的支撑和固定作用; 1—主磁极 2—励磁绕组 3—机座二是机座本身也是磁路的一部分,借以构成磁极之间磁的通路,磁通通过的部分称为磁轭。

为保证机座具有足够的机械强度和良好的导磁性能,一般为铸钢件或由钢板焊接而成。

4)电刷装置电刷装置是用来引入或引出直流电压和直流电流的,如图8.7所示。

电刷装置由电刷、刷握、刷杆和刷杆座等组成。

电刷放在刷握内,用弹簧压紧,使电刷与换向器之间有良好的滑动接触,刷握固定在刷杆上,刷杆装在圆环形的刷杆座上,相互之间必须绝缘。

直流电机控制方案

直流电机控制方案

直流电机控制方案摘要:直流电机广泛应用于各种领域,包括工业自动化、机械设备、交通工具以及家用电器等。

本文将介绍直流电机控制方案,包括常用的控制方法和技术,以及其在不同应用中的实际运用。

引言:直流电机作为一种常见的电动机类型,其控制方案的研究和应用具有重要意义。

通过对直流电机的精确控制,可以实现速度、位置和扭矩调节等功能,有利于提高机器的性能和效率。

一、直流电机控制的基本原理1.1 电机控制模型直流电机的控制采用电流反馈闭环控制,通常基于电机控制模型进行设计。

控制模型可以分为简化模型和详细模型两种。

简化模型主要用于初步设计和简单控制,而详细模型适用于精确控制和深入研究。

1.2 控制方法直流电机的控制方法主要分为开环控制和闭环控制两种。

开环控制通过设定合适的参数来控制电机运行,但无法对外界变化进行及时响应。

闭环控制利用测量的反馈信号进行控制,能够实现更精确的控制效果。

二、直流电机控制的常用技术2.1 脉宽调制(PWM)技术脉宽调制技术是一种常用的直流电机控制技术,通过调制脉冲的宽度来控制电机速度和扭矩。

PWM技术能够提供高效的能量转换和平滑的电机控制。

2.2 电流反馈控制技术电流反馈控制技术是直流电机控制中常用的一种技术。

通过测量电机电流,可以提供对电机的精确控制,包括速度和扭矩的调节。

2.3 编码器反馈技术编码器反馈技术是一种常见的位置反馈技术,通过测量电机转子的位置信息来实现位置控制。

编码器反馈技术具有高精度和可靠性,可以满足对电机位置的精确控制需求。

2.4 软件控制技术软件控制技术是一种基于微处理器和相关软件进行控制的技术。

通过编程实现电机控制,可以灵活地调整电机的运行参数和控制策略。

三、直流电机控制方案的应用3.1 工业自动化领域直流电机在工业自动化领域应用广泛,例如机器人、自动化生产线等。

通过精确控制直流电机,可以实现工业设备的高效运行和精确控制。

3.2 交通工具领域直流电机在交通工具领域的应用也十分广泛,包括电动汽车、电动自行车等。

直流电动机分类

直流电动机分类

直流电动机分类直流电动机是一种将直流电能转换为机械能的电机,广泛应用于各种领域。

根据不同的分类标准,直流电动机可以分为多种类型,本文将从不同的角度对直流电动机进行分类。

一、按照电源类型分类直流电动机根据其供电方式的不同,可以分为独立励磁直流电动机和串励直流电动机。

1. 独立励磁直流电动机独立励磁直流电动机是指通过外部电源为其励磁,使其产生磁场,进而工作的电动机。

该类型的电动机具有磁场稳定性好、调速范围宽等特点,适用于对调速性能要求较高的场合。

2. 串励直流电动机串励直流电动机是指其励磁线圈与电动机的电枢线圈串联在一起,共用同一电源的电动机。

该类型的电动机具有起动扭矩大、转速调节范围广等特点,适用于对起动性能要求较高的场合。

二、按照结构形式分类直流电动机根据其结构形式的不同,可以分为分别励磁直流电动机、复励磁直流电动机和永磁直流电动机。

1. 分别励磁直流电动机分别励磁直流电动机是指其励磁线圈与电动机的电枢线圈分别供电的电动机。

该类型的电动机结构简单、制造成本低、容易实现调速等特点,广泛应用于家用电器、办公设备等领域。

2. 复励磁直流电动机复励磁直流电动机是指其励磁线圈既可以与电动机的电枢线圈并联,也可以与电动机的电枢线圈串联的电动机。

该类型的电动机具有起动性能好、调速范围广等特点,适用于起动和调速性能要求较高的场合。

3. 永磁直流电动机永磁直流电动机是指其励磁采用永磁体,不需要外部励磁的电动机。

该类型的电动机具有结构简单、体积小、效率高等特点,广泛应用于电动车、家用电器等领域。

三、按照转子结构分类直流电动机根据其转子结构的不同,可以分为鼠笼式直流电动机和绕线式直流电动机。

1. 鼠笼式直流电动机鼠笼式直流电动机是指其转子由绕组和铁芯构成,绕组上的导线形状类似于老鼠的笼子,因此得名。

该类型的电动机结构简单、制造成本低、运行可靠等特点,广泛应用于电动工具、家用电器等领域。

2. 绕线式直流电动机绕线式直流电动机是指其转子由绕组构成,绕组上的导线形状为螺旋状。

直流电机的控制方法

直流电机的控制方法

直流电机的控制方法直流电机作为一种常见的电机类型,广泛应用于工业和家用电器中,其控制方法多种多样。

下面我将详细介绍主要的直流电机控制方法,包括直流电机的速度控制和转矩控制。

一、直流电机的速度控制方法:1. 电压控制法:直流电机的速度与电枢电压成正比,因此可以通过改变电枢电压来实现电机的速度控制。

常见的实现电压控制法的方法有以下几种:- 稳压变频:利用能量转换设备将电网的交流电转换为直流电,并通过逆变器将直流电转换为交流电,再将其输出到直流电机上。

通过改变逆变器的输出频率和电压大小来控制直流电机的转速。

- 变阻控制:通过改变电枢电路中的电阻来改变电枢电压,从而实现直流电机的速度控制。

这种方法简单易行,但效率较低,能耗较大。

- 自励电压反馈控制:利用自励电压的反馈信号将直流电机的转速控制在设定值范围内,采用PID控制或者模糊控制的方法进行调节。

2. 电流控制法:直流电机的速度与电枢电流成反比,因此可以通过改变电枢电流来实现电机的速度控制。

常见的实现电流控制法的方法有以下几种:- 稳流变频:通过改变逆变器输出电压的频率和幅值,从而控制直流电机的电流大小,从而达到控制速度的目的。

- 直流电机与电阻串联:通过在直流电机的电枢电路中串联一个可变电阻,调节电压大小以改变电枢电流,进而控制电机的速度。

- 直流电机与电压反馈:通过检测电机的电压,利用电压反馈控制方法调节输出的电流,从而实现速度控制。

二、直流电机的转矩控制方法:1. 电枢电压控制法:直流电机的转矩与电枢电压成正比,因此可以通过改变电枢电压来实现电机的转矩控制。

常见的实现电枢电压控制法的方法有以下几种:- 稳压变频:通过改变逆变器的输出频率和电压大小,从而控制直流电机的转矩。

- 电压比例控制:利用直流电机的转矩与电枢电压成正比的特性,在控制系统中设定一个电压转矩比例,根据系统的需求调节电枢电压。

2. 电流控制法:直流电机的转矩与电枢电流成正比,因此可以通过改变电枢电流来实现电机的转矩控制。

直流电机及其控制系统ppt课件

直流电机及其控制系统ppt课件
外,对大、中容量的电动机不能直接起 动。
• ⒉降压起动
• 起动瞬间,把加于电枢两端的电源电压 降低,以减少起动电流Ist的起动方法。 为了获得足够的起动转矩Tst,普通将起 动电流限制在〔2~2.5〕IN以内。
• 因此,在起动时,把电源电压降低到
• U=〔2~2.5〕 IN ×Ra。
• 随着转速的上升,电枢电势Ea逐渐加大, 电枢电流Ia相应减小。此时,再将电源电 压不断升高。
• Δn=〔Ra+R〕T/ 〔 KE KTΦ2 〕为转速降。
• 上式为机械特性的普通方程。从该式可看 出:
• 当磁通Φ为常数时,机械特性是一条随着 T的添加 n 略有下降的直线。
• 电机空载运转时,机械负载转矩为零, 但作用于电动机轴上的空载转矩不为零 而应为T0,将T0带入,可得到电机的实 践空载转速为:
• ⒊效率特性:当U=UN、If=IfN时, • η=f〔Ia〕的关系曲线——效率特性
• 电动机总损耗PΣ中,可以分为不变损耗 和可变损耗两部分。
• 不变损耗Pm + PFe =Po
• 可变损耗Pcua与Ia的平方成正比
• 所以:当Ia从零开场添加时,效率η逐渐 添加,但当Ia添加到一定程度后,效率η 又逐渐减小。直流电动机的效率约在 0.75~0.94之间。
• ⒊ 电枢回路串电阻起动 • 电枢回路串电阻R,起动电流为:
• 为了坚持起动过程的平稳性,希望串入 电阻平滑调理,普通采用分段切除的方 法。
• ㈡ 他励直流电动机的调速特性 • ⒈调速方法 • 他励直流电动机的电枢电路电压平衡方
• ③特性斜率为βN=Ra/〔 KE KTΦN2 〕, 由于Ra很小,因此βN较小。阐明他励直 流电机的固有机械特性较硬。

第3章直流电动机电机与电气控制技术经典课件工程师必备教学课程

第3章直流电动机电机与电气控制技术经典课件工程师必备教学课程
3.1.2 直流电动机的铭牌数据
每一台直流电机上面都有一块铭牌,上面标注各种额定 数据,说明该直流电机的型号、规格、性能,是用户合理 选择和正确使用直流电机的依据。
第3章 直流电动机
电机与电气控制技术
6.1.2 直流电机的铭牌数据
每台直流电机上面都有一块铭牌,铭牌数据是生产厂家根据 国家标准要求,设计和试验所得的一组反映电机性能的主要数 据。铭牌上标注有各种额定数据,说明该直流电机的型号、规 格、性能,是用户合理选择和正确使用直流电机的依据。
直流电动机的转速:
n Ea U I a Ra
Ce
Ce
第3章 直流电动机
电机与电气控制技术
直流电动机的转速: n
Ea
U I a Ra
Ce
Ce
若将电磁转矩公式代入上式即可得到电机转速另一形式
n
U CT
Ra CTCe 2
T
n0
CT
其中的n0为空载转速,C是一常数,反映了电机特性曲线斜
率。
n
空载电磁转矩T0是因电动机上的轴承、电刷和整流环 间的摩擦、电枢和磁系统的旋转以及铜损耗而形成的阻转 矩。空载阻转矩T0的数值可以用没有负载时的电动机功率 P0来计算。空载功率是能保持额定转速时的最低电压与电 流的乘积。
直流电动机的空载损耗P0很小,大约只是额定输出功率 的2%~3%,故空载阻转矩也为输出转矩的2%~3%。
直流电机的定子都 包含哪几部分?各 部分作用如何?
直流电机的转子都 包含哪几部分?各 部分作用如何?
电机与电气控制技术
3.2 直流电动机的工作原理
直流电动机工作原理是建立在电磁力和电磁感应的基础上。为 了便于分析问题,我们把复杂的直流电机结构用下图所示的直流 电动机简化模型来代替。

直流电动机驱动及其控制

直流电动机驱动及其控制

度,满足高精度应用需求。
智能化与网络化
03
通过集成传感器、通信模块和控制单元,实现直流电动机的智
能化与网络化,提升系统的自动化和远程监控能力。
新材料与新技术的应用
新型磁性材料
利用新型磁性材料如稀土永磁材料,增强直流电动机的磁场强度 和稳定性,提高电机性能。
碳纤维复合材料
在电动机结构中应用碳纤维复合材料,减轻电机重量,提高机械强 度和耐腐蚀性。
案例三
总结词
航空航天领域对直流电动机驱动与控制技术有特殊要求,需要具备高可靠性、高稳定性 、抗干扰能力强等特点。
详细描述
在航空航天领域中,直流电动机驱动与控制系统广泛应用于各种飞行器、卫星和火箭的 控制系统。由于航空航天领域的特殊环境条件,对直流电动机驱动与控制系统的可靠性 、稳定性和抗干扰能力要求极高。因此,需要采用先进的材料、工艺和设计方法,确保
直流电动机驱动及 其控制
目录
• 直流电动机简介 • 直流电动机驱动技术 • 直流电动机的控制技术 • 直流电动机驱动与控制的挑战与展望 • 实际应用案例分析
01
CATALOGUE
直流电动机简介
直流电动机的基本原理
直流电动机的基本原理基于磁场和电流的相互作用。当电流通过电机的线圈时, 会产生磁场,该磁场与电机内部的磁铁相互作用,从而产生转矩驱动电机旋转。
案例二
总结词
工业自动化生产线中,直流电动机驱动与控制技术广泛应用于各种机械设备的驱动,具有高精度、高效率、高可 靠性等优点。
详细描述
在工业自动化生产线中,直流电动机驱动与控制系统能够实现精确的位置控制、速度控制和力矩控制,广泛应用 于机床、机器人、包装机械等设备的驱动。通过先进的控制算法,可以实现高精度的运动控制和工艺参数调节, 提高生产效率和产品质量。

深入详解直流电机控制技术

深入详解直流电机控制技术

深入详解直流电机控制技术直流电机的类型在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。

大家熟悉的录音机、电唱机、录相机、电子计算机等,都不能缺少直流电机。

所以直流电机的控制是一门很实用的技术。

本文将详细介绍各种直流电机的控制技术。

直流电机,大体上可分为四类:第一类为有几相绕组的步进电机。

这些步进电机,外加适当的序列脉冲,可使主轴转动一个精密的角度(通常在1.8°--7.5°之间)。

只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向进行连续的转动。

步进电机用微处理器或专用步进电机驱动集成电路,很容易实现控制。

例如常用的SAAl027或SAAl024专用步进电机控制电路。

步进电机广泛用于需要角度转动精确计量的地方。

例如:机器人手臂的运动,高级字轮的字符选择,计算机驱动器的磁头控制,打印机的字头控制等,都要用到步进电机。

第二类为永磁式换流器直流电机,它的设计很简单,但使用极为广泛。

当外加额定直流电压时,转速几乎相等。

这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中。

也用于变速范围很宽的驱动装置,例如:小型电钻、模型火车、电子玩具等。

在这些应用中,它借助于电子控制电路的作用,使电机功能大大加强。

第三类是所谓的伺服电机,伺服电机是自动装置中的执行元件,它的最大特点是可控。

在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,伺服电机就立即停止转动。

伺服电机应用甚广,几乎所有的自动控制系统中都需要用到。

例如测速电机,它的输出正比于电机的速度;或者齿轮盒驱动电位器机构,它的输出正比于电位器移动的位置.当这类电机与适当的功率控制反馈环配合时,它的速度可以与外部振荡器频率精确锁定,或与外部位移控制旋钮进行锁定。

唱机或激光唱机的转盘常用伺服电机。

天线转动系统,遥控模型飞机和舰船也都要用到伺服电机。

电机及其控制技术-直流电机4

电机及其控制技术-直流电机4
P33
U Ce n
RaT CT RaT U n n0 n n0:理想空载转矩 2 Ce CeCT
U E I a Ra E Ce n
U Ce n I a Ra
T CT I a
直流他励电动机的固有机械特性
直流他励电动机的固有机械特性
(1)随着T的增大,n降低,特性曲线是一条略为向下倾斜的直线。 (2)机械特性斜率很小,曲线较平,为硬特性。 (3)当T=0,n=n0,电机处于理想空载状态。 (4)当T=TN, n=nN,为电动机的额定工作点。 (5)电动机启动时,n=0,Ea=0,由于Ra很小,电枢电流Is(启动电流) =10-20IN、启动转矩Ts=10-20TN。
nN
(3)感应电动势
E U N I a Ra 110 261 0.04 99.6V
练习:
一 台 并 励 电 动 机 , 其 额 定 数 据 如 下 : PN=7.5kW, UN=220V, IN=42.61A, nN=1500r/min, Ra=0.1014Ω,Rf=46.5Ω,试求:(1) η 、电枢电流、输出转矩T2;(2)感应电动势 解:(1)
(2)改变电枢电压后斜率不变。 (3)转速只能从额定转速往下调。

(1)理想空载转速n0与电枢电压U成正比。
(4)调速前、后机械特性斜率不变,机械特性硬度高,速度稳定性好,调速范围广,最高 转速与最低转速之比可打10倍以上。 (5)当电压连续可调时,转速也连续可调,可实现无级调速。 (6)降压调速是通过减小输入功率来降低转速的,故调速时损耗减小, 调速经济性好。 (7)在各种转速下,能输出相同的转矩,为恒转矩调速。 降低电源电压调速的缺点: 要有电压可调的直流电源, 设备多,较复杂,初次投资大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2)直流电机工作原理
工作原理:直流电机里边固定有环状永磁体,电流通过转子上的线圈产生
安培力,当转子上的线圈与磁场平行时,再继续转动受到的磁场方向将改变, 因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变, 产生的洛伦兹力方向不变,所以电机能保持一个方向转动。
通电线圈在磁场中要受到磁场力的作用。假设电刷A与电源的正极相连,电 刷B与电源的负极相连,电流经A→d→c→b→a→B形成回路。根据左手定则, 线圈ab受力向右,线圈cd受力向左。这样就形成 一个转矩,使电枢逆时针旋转 。当电枢转过90°时,此时通电线圈虽然受到电磁力的作用,但转矩为零。由 于电枢机械惯性的作用,电枢也能转动一定的角度,这时线圈中电流的方向也 发生了改变。当电枢转过180°时,这时电流经过A→a→b→c→d→B形成回路 ,线圈内电流的方向发生了改变,根据左手定则,线圈ab受力向左,线圈cd受 力向右,仍然形成一个逆时针转动的转矩,电枢按同一方向继续旋转,这样电 动机就可以连续旋转。
(1)旋转变流机组 用交流电机和直流发电机组成机组,以获得可调的直流电压
。由交流电机(原动机)拖动直流发电机G来实现变流,由G给 需要调速的直流电机M供电,调节发电机的励磁电流if的大小, 就能够方便地改变其输出电压V,从而调节电机的转速。
第三节 直流电机的性能特性及特点
1)直流电动机的机械特性 (1)并励电动机机械特性及应用 ①并励电动机具有硬的机械特性,即转速随负载变化较小,负载增大时, 转速下降不多; ②具有恒转速特性; ③可以空载或轻载运行; ④主磁通很小时可以造成飞车,并且主磁极绕组不允许开路。 ⑤与他励电动机性能相近,并励电动机适用于负载变化时要求转速比较稳 定的场合。 (2)串励电动机机械特性 ①串励电动机具有软的机械特性,负载较小时,转速较高,负载增大时, 转速迅速下降; ②具有恒功率特性; ③空载或轻载时转速很高,会造成换向困难或离心力过大而使电枢绕组损 坏,不允许空载起动及皮带传动。 ④串励电动机适用于恒功率负载和速度变化大的负载。而复励电动机性能 介于串励与并励之间。
流电动机、并励直流电动机、他励直流电动机和复 励直流电动机。
按照直流电动机的磁场与电枢绕组的联结关系 不同,电动机的励磁方式可分为他励、串励、并励 和复励四种。
根据不同励磁方式,直流电动机稳定运行时的基本方程
(l)电压方程 他励电动机Iα= lf, Eα=U-Iα*Rα 并励电动机Iα=l-lf, Eα=U-Iα*Rα 串励电动机Iα=l=lf, Eα=U-Iα*(Rα+Rf)
(2)转矩方程 驱动转矩Te必须与机械负载转矩TL乃及空载损 耗转矩Tf相平衡,平衡方程式为Te=TL +Tf。
(3)电磁功率 负载运行时,电磁绕组的感应电动势与电枢电流的乘积,称为 电磁功率,用Pe表示:
Pe= Eα*Iα 根据能量守恒定律,对于电动机,电磁功率应等于输出的机械 功率,即
Pe= Eα*Iα=T2*2兀n/60=Tω
4.直流电机的特点 (1)电枢轴要延长,以便安装用于速度检测的脉冲发生器和推力轴接头。
(2)转子直径要设计得小些,轴长要设计得长些以适应高速旋转。 (3)为了便于散热,电枢槽要设计得多些。 (4)为了换向器片、电刷等的定期检查和维护,检查窥视窗口应制造得大 些。 (5)由于振动,为了防止电刷的误动作,应提高电刷的预压紧力。 (6)和其他电动汽车用电机相同,最大功率值和额定功率记录在铭牌上。
项目二 直流电机类型及其控制技术
第一节 直流电机的类型 直流电动机按结构及 有刷直流电动机可划分:永磁直流电动机和电磁
直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁
氧体永磁直流电动机和铝镍钴永磁直流电动机。 直流电机一般是根据励磁方式进行分类:串励直
(4)串励电动机工作特性和机械特性 机械特性是指在额定电压和电磁绕组不变情况下,转矩与转
速之间的关系。 由转矩公式可知:
(1)产生转矩的条件,必须有励磁磁通和电枢电流,而且与两 者的乘积成正比 (2)磁通不变时,转矩与电流成正比,只要控制了电枢电流, 就可以控制转矩的大小; (3)改变电机旋转的方向可以通过改变电枢电流的方向或者改 变磁通的方向来实现。 1)他励电动机 他励电机的励磁方式是励磁绕组与电枢绕组分开,外加两个直 流电源进行励磁。 2)并励电机 并励电机的励磁方式,是采用励磁绕组与电枢绕组共用同一直 流电源,并且励磁绕组与电枢绕组呈并联关系。 3)串励电机 串励电机励磁方式是将励磁绕组与电枢绕组串联到同一共用电
第二节 直流电机的构造及工作原理
1)直流电机的基本构造。直流电机主要由转子、定子、端盖 和电刷架四部分组成。 (1)定子 定子主要由主磁极、换向磁极、电刷和机座等部分组成。定子 的功能是用来产生磁通和进行机械固定。 (2)转子 转子主要由电枢铁芯、电枢绕组及换向器等部分组成。端盖上 装有轴承以支撑电机转子旋转,端盖固定在机座两端。 (3)换向器:换向器是由许多换向片组成的整体,装在转子 的一端,与换向片间相互绝缘,转动的换向器与固定的电刷滑 动接触,使转动的电枢绕组与静止的外电路相连接。 (4)电枢绕组:转子绕组是按规律地绕在转子铁芯槽内,与 换向器连接,形成闭合回路。其作用是运动中切割磁力线。
2)直流电动机的工作特性
在电源电压U为额定电压和励磁电路的电阻Rf为常数的条件下,改变 负载后,n,T, η分别随P2变化的关系称之为工作特性。其曲线如图213所示。 其中还包括转速特性、转矩特性和效率特性等。
3.直流电机的驱动特性
电动汽车直流电机驱动系统中的直流电机通常采用串励电机和他励电 机。电动汽车驱动电机在很多情况下使用的驱动特性。
第四节 直流电机的控制技术
1)直流电机的调速控制
直流电机的物理模型如图2-15所示。直流电机运行过程中符合以下公式。
直流电机电磁转矩:
Te=KmΦIa
(2-1)
式中 Te ——电机的电磁转矩,(Nm);
Φ——励磁磁通( Wb);
Ia——电枢电流(A);
Km——由电机结构参数决定的转矩常数。
常用的可控直流电源有以下三种
相关文档
最新文档