方差分析与假设检验实验报告二
如何撰写报告中的方差分析与假设检验
如何撰写报告中的方差分析与假设检验引言:在实证研究中,方差分析和假设检验是常用的统计方法。
它们可以帮助研究者评估不同组别之间的差异并确定结果的显著性。
然而,撰写报告时,对方差分析和假设检验的描述和解释往往带有一定的难度。
本文将从数据的准备、实验设计、统计方法和结果解读几个方面进行详细论述。
具体而言,我们将探讨实验设计中的依赖变量和自变量、方差分析和假设检验的基本概念、结果呈现的方式、以及如何进行结果解读。
一、数据准备:方差分析和假设检验的首要前提是有一组可靠的数据。
在进行实验之前,研究者需要确定准确的变量和测量方法,并设计有效的实验条件。
此外,在收集数据之前,应确保样本的代表性以及样本量的合理性。
数据的准备阶段应特别注意数据的清理和检验。
只有经过仔细清理的数据才能保证结果的准确性和可靠性。
二、实验设计:实验设计是方差分析和假设检验中的关键环节。
在设计实验时,研究者需要考虑自变量、依赖变量和控制变量。
自变量是影响依赖变量的因素,而控制变量是排除其他可能影响结果的因素。
一个好的实验设计应具备以下几个要素:随机分组、重复性、平衡性和隐蔽性。
只有在这些条件下,方差分析和假设检验的结果才能具备统计学上的合理性。
三、方差分析的基本概念:方差分析是用来比较两个或多个组别平均值差异的统计方法。
它的基本原理是通过计算组内变差和组间变差来评估组别之间的差异。
组内变差反映了组内个体的异质性,而组间变差衡量了不同组别之间的异质性。
通过比较组内变差和组间变差的大小,我们可以判断组别之间的显著性差异。
四、假设检验的基本概念:假设检验是用来验证统计假设的方法。
在方差分析中,我们通常会对两个假设进行检验,即零假设和备择假设。
零假设是指没有组别差异存在,备择假设是指组别差异显著存在。
通过计算统计量和确定显著性水平,我们可以通过拒绝或接受零假设来得出结论。
五、结果呈现的方式:在报告中呈现方差分析和假设检验的结果时,应该包括所使用的统计方法、样本的特征和主要结果。
均值差异性假设检验(二)方差分析.
●计算组间离差平方和(Between Group Sum 2 Squares): k
of
S A N xi μ
i 1
i=1,2...k 组间离差平方和SA,反映各水平均值差异。 ●计算组内离差平方和(Within Group Sum Squares) 2
of
Hale Waihona Puke SE xij xi
x
之间的差异,即进行不同系数的均值的二次方的差异 检验 按钮“Post Hoc”为不同水平多重对照分析选项,多 重对照分析是对不同水平下的均值进行如下比较: 当方差为齐性时,可以使用下面的14种多重检验方法
●LSD最小显著差异检验 ●Bonferroni修正的LSD检验(LSDMOD) ●Sidak多重配对比较检验 ●Scheffe同步进入的配对比较检验。 ●R-E-G-W F(Ryan-Einot-Gabriel-Welsch F)检验。 ●R-E-G-W Q(Ryan-Einot-Gabriel-Welsch range test) 检验。 ●S-N-K各组均值配对比较检验(Student NewmanKeuls)检验。 ●Tukey真实显著差异检验(Tukey's honestly significant difference)检验。 ●Tukey„ s-b 检验。
二、检验方法 假定某单因素影响下的试验数据如下:
水平数 样本数 1 2 … N 各水平均值 1 2 … k
X11 X12 X1n X1
X21 X22 X2n X2
Xk1 Xk2 Xkn Xk
表格中所有n×k个数据的总平均值为:μ N---同一水平下个案个数, K---因素水平数。 xi ---i水平均值。 μ ---总个案均值。
方差分析结果报告
方差分析结果报告1. 引言方差分析是一种常用的统计方法,用于比较两个或多个组之间的差异是否显著。
本报告旨在提供一份关于方差分析结果的详细分析和解释。
2. 数据收集与描述首先,我们需要收集与分析相关的数据。
在这次研究中,我们选择了三个组进行比较:组A,组B和组C。
每个组中有50个样本。
我们收集了每个样本的某种测量指标,并将其记录下来。
接下来,我们对数据进行描述统计分析。
对于每个组,我们计算了样本均值、标准差和样本容量。
这些统计量将帮助我们对数据的分布和变异程度有更清晰的认识。
3. 假设检验在进行方差分析之前,我们需要确立适当的假设。
在这个例子中,我们的原假设(H0)是所有组的平均值相等,即μA = μB = μC。
备择假设(H1)是至少有一个组的平均值与其他组不相等。
为了进行假设检验,我们使用方差分析(ANOVA)方法。
ANOVA的核心思想是通过比较组内变异与组间变异的大小来判断差异是否显著。
4. 方差分析结果经过方差分析,我们得到了以下结果:•组间方差(Between-group variance):X•组内方差(Within-group variance):Y•F统计量:Z•P值:W其中组间方差表示不同组之间的变异,组内方差表示同一组内的变异。
F统计量是通过组间方差与组内方差的比值计算得到的,用于判断差异是否显著。
P值是指在原假设成立的情况下,观察到当前统计量及更极端统计量的概率。
5. 结果解释与推论根据方差分析的结果,我们得出以下结论:•F统计量为Z,P值为W。
根据显著性水平的设定,我们可以根据P 值来判断差异是否显著。
如果P值小于设定的显著性水平(例如0.05),则拒绝原假设,认为至少有一个组的平均值与其他组不相等。
•如果拒绝原假设,我们可以进行事后多重比较(post hoc multiple comparisons)来确定具体的差异在哪些组之间存在。
需要注意的是,方差分析只能告诉我们是否有显著差异存在,但不能提供关于差异的具体原因。
统计分析中的假设检验与方差分析
统计分析中的假设检验与方差分析统计分析是一种科学的方法,通过对数据进行收集、整理、分析和解释,帮助我们了解现象背后的规律和关系。
在统计分析中,假设检验和方差分析是两个重要的概念和工具。
本文将介绍这两个概念的基本原理和应用。
一、假设检验假设检验是统计学中的一种常用方法,用于判断样本数据是否能够反映总体的特征。
在假设检验中,我们首先提出一个原假设(H0)和一个备择假设(H1),然后通过对样本数据的分析,判断是否拒绝原假设。
在假设检验中,我们需要进行以下几个步骤:1. 确定原假设和备择假设:原假设通常是我们要证伪的观点,备择假设则是我们要支持的观点。
例如,我们想要检验某个新药物是否有效,原假设可以是“该药物无效”,备择假设可以是“该药物有效”。
2. 选择显著性水平:显著性水平(α)是我们在进行假设检验时所允许的错误概率。
通常情况下,我们选择的显著性水平为0.05或0.01。
如果计算得到的p值小于显著性水平,则我们拒绝原假设。
3. 计算检验统计量:检验统计量是根据样本数据计算得到的一个数值,用于判断样本数据是否支持备择假设。
常见的检验统计量包括t值、F值等。
4. 判断拒绝或接受原假设:根据计算得到的检验统计量和显著性水平,我们可以判断是否拒绝原假设。
如果p值小于显著性水平,则我们拒绝原假设,否则我们接受原假设。
假设检验在实际应用中具有广泛的应用,例如医学研究、市场调查、工程设计等。
通过假设检验,我们可以对研究结果进行客观的评估和判断,从而做出更准确的决策。
二、方差分析方差分析是一种用于比较多个样本均值是否存在显著差异的统计方法。
在方差分析中,我们将总体分为若干个独立的组,然后通过计算组间方差和组内方差的比值,来判断不同组之间的均值是否存在显著差异。
方差分析的基本原理是利用方差的性质来比较样本均值之间的差异。
具体步骤如下:1. 确定独立变量和因变量:独立变量是我们要比较的不同组别,而因变量是我们要研究的特征或指标。
项目八假设检验回归分析与方差分析
项目八 假设检验、回归分析与方差分析实验2 回归分析实验目的 学习利用Mathematica 求解一元线性回归问题. 学会正确使用命令线性回归Regress, 并从输出表中读懂线性回归模型中各参数的估计, 回归方程, 线性假设的显著性检验结果, 因变量Y 在预察点0x 的预测区间等.基本命令1.调用线性回归软件包的命令<<Statistics\LinearRegression.m 输入并执行调用线性回归软件包的命令<<Statistics\LinearRegression.m或调用整个统计软件包的命令<<Statistics`2.线性回归的命令Regress一元和多元线性回归的命令都是Regress. 其格式是Regress[数据, 回归函数的简略形式, 自变量,RegressionReport(回归报告)->{选项1,选项2,选项3,…}]注: 回归报告中包含BestFit(最佳拟合,即回归函数), ParameterCITable(参数的置信区间表), PredictedResponse(因变量的预测值), SinglePredictionCITable(因变量的预测区间), FitResiduals(拟合的残差), SummaryReport(总结性报告)等.3.抹平“集合的集合”的命令Flatten命令Flatten[A]将集合的集合A 抹平为只有一个层次的集合. 例如, 输入Flatten[{{1,2,3},{1,{3}}}]则输出{1,2,3,1,3}.4.非线性拟合的命令NonlinearFit 使用的基本格式为NonlinearFit [数据, 拟合函数, (拟合函数中的)变量集, (拟合函数中的)参数, 选项] 注: 拟合函数中既有变量又有参数, 变量的个数要与数据的形式相应. 参数集中往往需 要给出各参数的初值. 选项的内容主要是指定拟合算法、迭代次数和精度.实验举例例2.1 (教材 例2.1) 某建材实验室做陶粒混凝土实验室中, 考察每立方米)(3m 混凝土的水泥用量(kg)对混凝土抗压强度)/(2cm kg 的影响, 测得下列数据:7.894.866.822.804.771.742602502402302202103.711.686.646.613.589.56200190180170160150yx y x 抗压强度水泥用量抗压强度水泥用量(1) 画出散点图;(2) 求y 关于x 的线性回归方程,ˆˆˆx b a y+=并作回归分析; (3) 设2250=x kg, 求y 的预测值及置信水平为0.95的预测区间.先输入数据:aa = {{150,56.9},{160,58.3},{170,61.6},{180,64.6},{190,68.1},{200,71.3},{210,74.1},{220,77.4},{230,80.2},{240,82.6},{250,86.4},{260,89.7}};(1) 作出数据表的散点图. 输入ListPlot[aa,PlotRange->{{140,270},{50,90}}]则输出图2.1.图2.1(2) 作一元回归分析, 输入Regress[aa,{1,x},x,RegressionReport->{BestFit,ParameterCITable,SummaryReport}]则输出{BestFit->10.2829+0.303986x, ParameterCITable->Estimate SE CI 1 10.2829 0.850375 {8.388111,12.1776}, x 0.303986 0.00409058 {0.294872,0.3131} ParameterTable->Esimate SE Tstat PValue 110.28290.85037512.09222.71852710-⨯,x 0.303986 0.00409058 74.3137 4.884981510-⨯ Rsquared->0.998193,AdjustedRSquared->0.998012, EstimatedVariance->0.0407025,ANOV A Table->DF SumOfSq MeanSq Fratio PValue Model1 1321.43 1321.435522.524.773961510-⨯Error10 2.39280.23928Total 11 1323.82现对上述回归分析报告说明如下:BestFit(最优拟合)-> 10.2829+0.303986x 表示一元回归方程为x y 303986.02829.10+=;ParameterCITable(参数置信区间表)中: Estimate 这一列表示回归函数中参数a , b 的点估计为aˆ=10.2829 (第一行), b ˆ= 0.303986 (第二行); SE 这一列的第一行表示估计量a ˆ的标准差为0.850375, 第二行表示估计量bˆ的标准差为0.00409058; CI 这一列分别表示a ˆ的置信水平为0.95的置信区间是(8.388111,12.1776), bˆ的置信水平为0.95的置信区间是 (0.294872,0.3131).ParameterTable(参数表)中前两列的意义同参数置信区间表; Tstat 与Pvalue 这两列的第一行表示作假设检验(t 检验):0:,0:10≠=a H a H 时, T 统计量的观察值为12.0922, 检验统计量的P 值为2.71852710-⨯, 这个P 值非常小, 检验结果强烈地否定0:0=a H , 接受0:1≠a H ; 第二行表示作假设检验(t 检验): ,0:0=b H 0:1≠b H 时T 统计量的观察值为74.3137, 检验统计量的P 值为 4.884981510-⨯, 这个P 值也非常小, 检验结果强烈地否定,0:0=b H 接受0:1≠b H .Rsquared->0.998193, 表示.998193.0)()(2==总平方和回归平方和SST SSR R 它说明y 的变化有99.8%来自x 的变化; AdjustedRSquared->0.998012, 表示修正后的=2~R 0.998012.EstimatedVariance->0.0407025, 表示线性模型),0(~,2σεεN bx a y ++=中方差2σ的估计为0.0407025.ANOV A Table(回归方差分析表)中的DF 这一列为自由度: Model(一元线性回归模型)的自由度为1, Error(残差)的自由度为,102=-n Total(总的)自由度为.111=-nSumOfSq 这一列为平方和: 回归平方和=SSR 1321.43, 残差平方和=SSE 2.3928,总的平方和=+=SSE SSR SST 1323.82;MeanSq 这一列是平方和的平均值, 由SumOfSq 这一列除以对应的DF 得到, 即.23928.02,43.13211=-===n SSEMSE SSR MSR FRatio 这一列为统计量MSEMSRF =的值, 即.52.5522=F 最后一列表示统计量F 的P 值非常接近于0. 因此在作模型参数)(b =β的假设检验(F 检验):0:;0:10≠=ββH H 时, 强烈地否定0:0=βH , 即模型的参数向量.0≠β因此回归效果 非常显著.(3) 在命令RegressionReport 的选项中增加RegressionReport->{SinglePredictionCITable}就可以得到在变量x 的观察点处的y 的预测值和预测区间. 虽然0.14=x 不是观察点, 但是可以用线性插值的方法得到近似的置信区间. 输入aa=Sort[aa]; (*对数据aa 按照水泥用量x 的大小进行排序*)regress2=Regress[aa,{1,x},x,RegressionReport->{SinglePredictionCITable}](*对数据aa 作线性回归, 回归报告输出y 值的预测区间*)执行后输出{SinglePredictionCITable-> Observed PredictedSE CI56.9 55.8808 0.55663 {54.6405,57.121} 58.3 58.92060.541391 {57.7143,60.1269} 61.6 61.9605 0.528883 {60.7821,63.1389} 64.6 65.00030.519305 {63.8433,66.1574} 68.1 68.0402 0.51282 {66.8976,69.1828} 71.3 71.0801 0.509547 {69.9447,72.2154}} 74.1 74.1199 0.509547 {72.9846,75.2553} 77.4 77.1598 0.51282 {76.0172,78.3024} 80.2 80.1997 0.519305 {79.0426,81.3567} 82.6 83.2395 0.528883 {82.0611,84.4179} 86.4 86.2794 0.541391 {85.0731,87.4857} 89.7 89.3192 0.55663 {88.079,90.5595}上表中第一列是观察到的y 的值, 第二列是y 的预测值, 第三列是标准差, 第四列是相应的预测区间(置信度为0.95). 从上表可见在)4.77(220==y x 时, y 的预测值为77.1598, 置信度为0.95的预测区间为(76.0172,75.2553), 在)2.80(230==y x 时, y 的预测值为80.1997, 置信度为0.95的预测区间为{79.0426,81.3567}. 利用线性回归方程, 可算得=0x 225时, y 的预测值为78.68, 置信度为0.95的预测区间为(77.546, 79.814).利用上述插值思想, 可以进一步作出预测区间的图形. 先输入调用图软件包命令<<Graphics`执行后再输入{observed2,predicted2,se2,ci2}=Transpose[(SinglePredictionCITable/.regress2)[[1]]];(*取出上面输出表中的四组数据, 分别记作observed2,predicted2,se2,ci2*) xva12=Map[First,aa];(*取出数据aa 中的第一列, 即数据中x 的值, 记作xva12*) Predicted3=Transpose[{xva12,predicted2}];(*把x 的值xva12与相应的预测值predicted2配成数对, 它们应该在一条回 归直线上*)lowerCI2=Transpose[{xva12,Map[First,ci2]}];(*Map[First,ci2]取出预测区间的第一个值, 即置信下限. x 的值xva12与相应 的置信下限配成数对*)upperCI2=Transpose[{xva12,Map[Last,ci2]}];(*Map[Last,ci2]取出预测区间的第二个值, 即置信上限. x 的值xva12与相应的置信上限配成数对*)MultipleListPlot[aa,Predicted3,lowerCI2,upperCI2,PlotJoined->{False,True,True,True},SymbolShape->{PlotSymbol[Diamond],None,None, None}, PlotStyle->{Automatic,Automatic,Dashing[{0.04,0.04}], Dashing[{0.04,0.04}]}](*把原始数据aa 和上面命令得到的三组数对predicted3,lowerCI2,upperCI2 用多重散点图命令MultipleListPlot 在同一个坐标中画出来. 图形中数据 aa 的散点图不用线段连接起来, 其余的三组散点图用线段连接起来, 而 且最后两组数据的散点图用虚线连接.*)则输出图2.2.图2.2从图形中可以看到, 由Y 的预测值连接起来的实线就是回归直线. 钻石形的点是原始数 据. 虚线构成预测区间.多元线性回归例2.2 (教材 例2.2) 一种合金在某种添加剂的不同浓度下, 各做三次试验, 得到数据如下表:8.323.327.298.277.288.301.306.321.313.274.297.312.318.292.250.300.250.200.150.10Yx 抗压强度浓度(1) 作散点图;(2) 以模型),0(~,22210σεεN x b x b b Y +++=拟合数据, 其中2210,,,σb b b 与x 无关;(3) 求回归方程,ˆˆˆˆ2210x b x b b y ++=并作回归分析. 先输入数据bb={{10.0,25.2},{10.0,27.3},{10.0,28.7},{15.0,29.8},{15.0,31.1},{15.0,27.8},{20.0,31.2},{20.0,32.6}, {20.0,29.7},{25.0,31.7},{25.0,30.1},{25.0,32.3}, {30.0,29.4},{30.0,30.8},{30.0,32.8}};(1) 作散点图, 输入ListPlot[bb,PlotRange->{{5,32},{23,33}},AxesOrigin->{8,24}]则输出图2.3.图2.3(2) 作二元线性回归, 输入Regress[bb,{1,x,x^2},x,RegressionReport->{BestFit,ParameterCITable,SummaryReport}](*对数据bb 作回归分析, 回归函数为,2210x b x b b ++用{1,x,x^2}表示, 自变量为x, 参数0b ,1b ,2b 的置信水平为0.95的置信区间)执行后得到输出的结果:{bestFit->19.0333+1.00857x-0.020381x 2, ParameterCITable->Estimate SE CI119.0333 3.27755{11.8922,26.1745} x 1.00857 0.356431{0.231975,1.78517}x 2 -0.0203810.00881488{-0.0395869,-0.00117497}ParameterTable->Estimate SE Tstat PValue 119.03333.277555.807180.0000837856x 1.00857 0.356431 2.82964 0.0151859 x 2 -0.0203810.00881488-2.312110.0393258Rsquared->0.614021,AdjustedRSquared->0.549692, EstimatedVariance->2.03968,ANOV A Table->DF SumOfSqMeanSq Fratio PValue Mode1 2 38.937119.4686 9.54490.00330658Error 12 24.47622.03968Total14 63.4133从输出结果可见: 回归方程为,020381.000857.10333.192x x Y -+=.020381.0ˆ,00857.1ˆ,0333.19ˆ210-===b b b 它们的置信水平为0.95的置信区间分别是 (11.8922,26.1745),(0.231975,1.78517),(-0.0395869,-0.00117497).假设检验的结果是: 在显著性水平为0.95时它们都不等于零. 模型),0(~,22210σεεN x b x b b Y +++=中,2σ的估计为2.03968. 对模型参数T b b ),(21=β是否等于零的检验结果是: .0≠β因此回归效果显著.非线性回归例2.3 下面的数据来自对某种遗传特征的研究结果, 一共有2723对数据, 把它们分成8类后归纳为下表.36.1937.1991.2079.2115.2342.257.2908.3887654321917461203246071021579y x 遗传性指标分类变量频率研究者通过散点图认为y 和x 符合指数关系:,c ae y bx += 其中c b a ,,是参数. 求参数c b a ,,的最小二乘估计.因为y 和x 的关系不是能用Fit 命令拟合的线性关系, 也不能转换为线性回归模型. 因此考虑用(1)多元微积分的方法求c b a ,,的最小二乘估计; (2)非线性拟合命令NonlinearFit 求c b a ,,的最小二乘估计.(1) 微积分方法 输入Off[Genera1::spe11] Off[Genera1::spe111] Clear[x,y,a,b,c]dataset={{579,1,38.08},{1021,2,29.70},{607,3,25.42},{324,4,23.15},{120,5,21.79},{46,6,20.91},{17,7,19.37},{9,8,19.36}}; (*输入数据集*) y[x_]:=a Exp[b x]+c (*定义函数关系*)下面一组命令先定义了曲线c ae y bx +=与2723个数据点的垂直方向的距离平方和, 记为).,,(c b a g 再求),,(c b a g 对c b a ,,的偏导数,,,cgb g a g ∂∂∂∂∂∂分别记为.,,gc gb ga 用FindRoot 命令解三个偏导数等于零组成的方程组(求解c b a ,,). 其结果就是所要求的c b a ,,的最小二乘估计. 输入Clear[a,b,c,f,fa,fb,fc]g[a_,b_,c_]:=Sum[dataset[[i,1]]*(dataset[[i,3]]-a*Exp[dataset[[i,2]]*b]-c)^2,{i,1,Length[dataset]}] ga[a_,b_,c_]=D[g[a,b,c],a]; gb[a_,b_,c_]=D[g[a,b,c],b]; gc[a_,b_,c_]=D[g[a,b,c],c]; Clear[a,b,c]oursolution=FindRoot[{ga[a,b,c]==0,gb[a,b,c]==0,gc[a,b,c]==0},{a,40.},{b,-1.},{c,20.}](* 40是a 的初值, -1是b 的初值, 20是c 的初值*)则输出{a->33.2221,b->-0.626855,c->20.2913} 再输入yhat[x_]=y[x]/.oursolution则输出20.2913+33.2221x e 626855.0这就是y 和x 的最佳拟合关系. 输入以下命令可以得到拟合函数和数据点的图形:p1=Plot[yhat[x],{x,0,12},PlotRange->{15,55},DisplayFunction->Identity]; pts=Table[{dataset[[i,2]],dataset[[i,3]]},{i,1,Length[dataset]}]; p2=ListPlot[pts,PlotStyle->PointSize[.01],DisplayFunction->Identity]; Show[p1,p2,DisplayFunction->$DisplayFunction];则输出图2.4.图2.4(2) 直接用非线性拟合命令NonlinearFit 方法 输入data2=Flatten[Table[Table[{dataset[[j,2]],dataset[[j, 3]]},{i,dataset[[j,1]]}],{j,1,Length[dataset]}],1]; (*把数据集恢复成2723个数对的形式*)<<Statistics`w=NonlinearFit[data2,a*Exp[b*x]+c,{x},{{a,40},{b,-1},{c,20}}]则输出x e 626855.02221.332913.20-+这个结果与(1)的结果完全相同. 这里同样要注意的是参数c b a ,,必须选择合适的初值.如果要评价回归效果, 则只要求出2723个数据的残差平方和.)ˆ(2∑-i i yy 输入 yest=Table[yhat[dataset[[i,2]]],{i,1, Length[dataset]}];yact=Table[dataset[[i,3]],{i,1,Length[dataset]}]; wts=Table[dataset[[i,1]],{i,1,Length[dataset]}]; sse=wts.(yact-yest)^2 (*作点乘运算*)则输出59.9664即2723个数据的残差平方和是59.9664. 再求出2723个数据的总的相对误差的平方和.]ˆ/)ˆ[(2∑-i i i y yy 输入 sse2=wts.((yact-yest)^2/yest) (*作点乘运算)则输出2.74075由此可见, 回归效果是显著的.实验习题1.某乡镇企业的产品年销售额x 与所获纯利润y 从1984年的数据(单位:百万元)如下表3.225.207.174.157.135.117.94.83.84.65.43.349.328.294.241.214.176.147.104.95.71.69493929190898887868584y x 纯利润销售额年度 试求y 对x 的经验回归直线方程, 并作回归分析.2.在钢线碳含量对于电阻的效应的研究中, 得到以下数据268.236.2221191815/95.080.070.055.040.030.010.0%/Ωμy x 电阻碳含量试求y 对x 的经验回归直线方程, 并作简单回归分析.(1) 画出散点图;(2) 求y 关于x 的线性回归方程,ˆˆˆx b a y+=并作回归分析; (3) 求0.14=x 时y 的置信水平为0.95的预测区间.4.下面给出了某种产品每件平均单价Y (单位:元)与批量x (单位:件)之间的关系的一组数 据18.120.121.124.126.130.140.148.155.165.170.181.1908075706560504035302520y x(i)作散点图. (ii)以模型),0(~,22210σεεN x b x b b Y +++=拟合数据, 求回归方程,ˆˆˆˆ2210x b x b b Y ++=并作简单回归分析.]。
实验报告统计实训(3篇)
第1篇一、实验目的本次实验旨在通过实际操作,加深对统计学基本概念和方法的理解,提高运用统计方法分析数据的能力。
通过本次实训,学生应掌握以下内容:1. 熟悉统计软件的基本操作;2. 掌握描述性统计、推断性统计的基本方法;3. 能够运用统计方法对实际问题进行分析;4. 提高数据收集、整理和分析的能力。
二、实验内容1. 数据收集:通过查阅相关资料,收集一组实际数据,例如某地区居民消费水平、学生成绩等。
2. 数据整理:对收集到的数据进行整理,包括数据的清洗、缺失值的处理等。
3. 描述性统计:运用统计软件对数据进行描述性统计,包括计算均值、标准差、方差、中位数、众数等。
4. 推断性统计:运用统计软件对数据进行推断性统计,包括t检验、方差分析、回归分析等。
5. 结果分析:根据统计结果,对实际问题进行分析,并提出相应的建议。
三、实验步骤1. 数据收集:从网络、书籍或实地调查等方式收集一组实际数据。
2. 数据整理:将收集到的数据录入统计软件,并进行数据清洗和缺失值处理。
3. 描述性统计:(1)打开统计软件,选择数据文件;(2)运用统计软件的描述性统计功能,计算均值、标准差、方差、中位数、众数等;(3)观察统计结果,分析数据的分布情况。
4. 推断性统计:(1)根据实际问题,选择合适的统计方法;(2)运用统计软件进行推断性统计;(3)观察统计结果,分析数据之间的关系。
5. 结果分析:(1)根据统计结果,对实际问题进行分析;(2)结合实际情况,提出相应的建议。
四、实验结果与分析1. 描述性统计结果:根据实验数据,计算得到以下统计量:均值:X̄ = 100标准差:s = 15方差:σ² = 225中位数:Me = 95众数:Mo = 105分析:从描述性统计结果可以看出,该组数据的平均值为100,标准差为15,方差为225,中位数为95,众数为105。
这表明数据分布较为集中,且波动较大。
2. 推断性统计结果:(1)t检验:假设检验H₀:μ = 100,H₁:μ ≠ 100。
数据方差分析实训报告
一、实训背景随着大数据时代的到来,数据分析和处理已经成为各行各业的重要技能。
为了提高我们对数据方差分析的理解和应用能力,我们进行了一次数据方差分析实训。
本次实训以某企业销售数据为研究对象,通过方差分析探讨不同因素对销售业绩的影响。
二、实训目的1. 理解方差分析的基本原理和适用范围;2. 掌握方差分析的步骤和方法;3. 提高对数据分析和处理的能力;4. 培养团队合作精神和问题解决能力。
三、实训内容1. 数据准备:收集某企业近一年的销售数据,包括销售额、产品种类、地区、销售人员等变量。
2. 数据描述:对收集到的销售数据进行描述性统计分析,包括均值、标准差、最大值、最小值等。
3. 数据处理:对数据进行预处理,包括缺失值处理、异常值处理等。
4. 方差分析:采用单因素方差分析(ANOVA)和双因素方差分析,探讨不同因素对销售业绩的影响。
5. 结果分析:根据方差分析结果,对影响因素进行解释和讨论。
四、实训步骤1. 提出假设:假设销售额与产品种类、地区、销售人员等因素之间存在显著差异。
2. 数据录入:将收集到的销售数据录入统计软件。
3. 描述性分析:对数据进行描述性统计分析,了解数据的分布情况。
4. 数据预处理:对数据进行缺失值处理和异常值处理,确保数据质量。
5. 方差分析:进行单因素方差分析和双因素方差分析,检验假设。
6. 结果分析:根据方差分析结果,对影响因素进行解释和讨论。
五、实训结果与分析1. 描述性分析结果:销售额均值为100万元,标准差为20万元,最大值为150万元,最小值为50万元。
2. 单因素方差分析结果:产品种类、地区、销售人员等因素对销售额均有显著影响。
3. 双因素方差分析结果:产品种类与地区、产品种类与销售人员、地区与销售人员等因素对销售额的影响存在显著差异。
4. 结果分析:根据方差分析结果,我们可以得出以下结论:(1)产品种类对销售额有显著影响,说明不同产品种类的销售业绩存在差异。
(2)地区对销售额有显著影响,说明不同地区的销售业绩存在差异。
概率与数理统计第8章--假设检验与方差分析
第8章假设检验与方差分析【引例】重庆啤酒股份有限公司(以下简称重庆啤酒)于1990年代初斥巨资开始乙肝新药的研发,其股票被视作“生物医药”概念股受到市场热捧。
尤其是2010~2011年的两年间,在上证指数大跌1/3的背景下,重庆啤酒股价却从23元左右飙升最高至元,但公司所研制新药的主要疗效指标的初步统计结果于2011年12月8日披露后,股价连续跌停,12月22日以元报收后停牌。
2012年1月10日重庆啤酒公告详细披露了有关研究结论,复牌后股价又遭遇连续数日下跌,1月19日跌至元。
此公告明确告知:“主要疗效指标方面,意向性治疗人群的安慰剂组与 600μg组,及安慰剂组与εPA-44 900μg组之间,HBeAg/抗HBe 血清转换在统计意义上均无差异”。
通俗地说,用药与不用药(安慰剂组)以及用药多与少(900μg组与600μg 组),都没有明显差异,这意味着该公司研制的乙肝新疫苗无效。
有关数据如表所示:表乙肝新疫苗的应答率注:εP A-44为治疗用(合成肽)乙型肝炎疫苗简称。
上表数据显示,两个用药组的应答率都高于安慰剂组的应答率,但为什么说“在统计意义上均无差异”为什么说这个结论表示乙肝新疫苗无效什么叫“在统计意义上无差异”如何根据样本数据作出统计意义上有无差异的判断解答这些问题就需要本章所要介绍的假设检验。
现实中,人们经常需要利用样本信息来判断有关总体特征的某个命题是真还是伪,或对某个(些)因素的影响效应是否显著作出推断,所以假设检验和方差分析有着广泛的应用。
例如,在生物医学领域,判断某种新药是否比旧药更有效;在工业生产中,根据某批零件抽样检查的信息来判断整批零件的质量是否符合规格要求;在流通领域,鉴别产品颜色是否对销售量有显著影响等等。
这些分析研究都离不开假设检验或方差分析。
假设检验与方差分析的具体方法很多,研究目的和背景条件不同,就需采用不同的方法。
本教材介绍假设检验与方差分析的基本原理和一些基本方法。
方差分析报告
方差分析报告1. 引言方差分析是统计学中常用的一种假设检验方法,用于比较两个或多个样本均值之间的差异是否显著。
本报告旨在对某个实验数据集进行方差分析,并分析各组之间的差异。
2. 数据集描述本次实验收集了X个样本,每个样本包含了Y个观测值。
在进行方差分析之前,我们首先对数据集进行了基本统计分析,包括均值、标准差等指标。
3. 假设检验我们的研究问题是比较不同组之间的均值是否存在显著差异。
针对这个问题,我们建立了以下假设: - 原假设(H0):不同组之间的均值没有显著差异。
- 备择假设(H1):不同组之间的均值存在显著差异。
我们采用方差分析方法来检验上述假设。
4. 方差分析方法方差分析是一种基于方差的假设检验方法,通过比较组内变异与组间变异的大小,来判断组间均值是否存在显著差异。
在本次实验中,我们采用一元方差分析方法。
4.1 方差分析假设条件在应用方差分析之前,我们需要先检验一些假设条件的满足情况: 1. 独立性假设:各组别观测值之间应独立,即组内观测值间相互独立,组间观测值也相互独立。
2. 正态性假设:各组别的观测值应当服从正态分布。
3. 方差齐性假设:各组别的观测值方差应当相等。
4.2 方差分析模型方差分析模型可以表示为以下方程:Yij = μ + αi + εij其中,Yij代表第i组的第j个观测值,μ代表总体均值,αi代表第i组的均值偏差(组效应),εij代表误差项。
4.3 汇总平方和与均方值方差分析中,我们通过计算不同来源的平方和来评估组间和组内的变异程度。
•总平方和(SST):反映了所有观测值与总体均值之间的差异总和。
•组间平方和(SSA):反映了不同组均值与总体均值之间的差异总和。
•组内平方和(SSE):反映了同一组别内观测值与该组均值之间的差异总和。
通过计算平方和,我们可以得到均方值(MS): - 组间均方值(MSA):SSA除以自由度(组别数-1)。
- 组内均方值(MSE):SSE除以自由度(总观测数-组别数)。
统计学方差分析实训报告
一、实训背景随着社会经济的快速发展,统计学在各个领域都发挥着越来越重要的作用。
方差分析作为统计学中一种重要的推断方法,主要用于比较多个总体均值是否存在显著差异。
本次实训旨在通过实际操作,加深对方差分析理论的理解,并掌握其实际应用。
二、实训目的1. 理解方差分析的基本原理和方法。
2. 学会运用SPSS软件进行方差分析。
3. 分析实际数据,验证方差分析结果的可靠性。
三、实训内容本次实训主要分为以下三个部分:1. 方差分析基本原理- 了解方差分析的定义、假设和适用条件。
- 熟悉单因素方差分析、双因素方差分析等基本类型。
- 掌握方差分析的计算公式和结果解释。
2. SPSS软件操作- 学习SPSS软件的基本操作,包括数据录入、数据管理、统计分析等。
- 掌握SPSS中方差分析模块的使用方法,包括选择数据、设置分析参数、查看结果等。
3. 实际数据分析- 收集实际数据,如某班级学生不同科目的成绩、某地区不同年龄段居民收入等。
- 运用SPSS软件进行方差分析,比较不同组别之间的均值差异。
- 分析方差分析结果,得出结论并解释原因。
四、实训过程1. 数据准备- 收集某班级学生语文、数学、英语三门课程的成绩数据。
- 将数据整理成Excel表格,并保存为SPSS兼容格式。
2. SPSS操作- 打开SPSS软件,导入数据。
- 选择“分析”菜单下的“比较均值”选项,再选择“单因素方差分析”。
- 将语文、数学、英语三门课程的成绩分别设置为因变量,班级设置为分组变量。
- 设置显著性水平为0.05,点击“确定”进行方差分析。
3. 结果分析- 观察SPSS输出结果,包括描述性统计、Levene检验、方差分析表等。
- 分析F值、Sig.值等指标,判断不同科目成绩是否存在显著差异。
- 根据分析结果,得出结论并解释原因。
五、实训结果1. 描述性统计- 语文成绩:平均分85分,标准差10分。
- 数学成绩:平均分90分,标准差8分。
- 英语成绩:平均分80分,标准差9分。
假设检验与方差分析
参数检验
不依赖于总体参数的假设,而是直接对样本数据进行统计分析,例如中位数、众数等。
非参数检验
假设检验的类型
做出推断
根据样本数据和临界值的比较结果,做出关于总体参数的推断。
计算临界值
根据选择的统计量和显著性水平,计算临界值。
确定显著性水平
选择一个合适的显著性水平,用于判断样本数据是否具有统计学上的意义。
03
2. 收集数据
收集不同肥料处理下的农作物产量数据。
04
3. 数据整理
对数据进行整理,分组并计算各组的均值和总体均值。
05
4. 计算方差分析表
包括组间方差、组内方差和总方差。
06
5. 做出决策
根据组间方差和组内方差的比较,判断是否拒绝原假设。
方差分析案例
06
总结与展望
总结
01
假设检验与方差分析是统计学中常用的方法,用于研究不同组别之间的差异和比较不同数据集之间的关系。
假设检验与方差分析
目录
contents
引言 假设检验的基本概念 方差分析的基本概念 假设检验与方差分析的关联 案例分析 总结与展望
01
引言
是一种统计推断方法,通过检验样本数据是否符合某一假设,从而对总体做出推断。
是一种统计方法,用于比较不同组数据的均值是否存在显著差异。
主题介绍
方差分析
假设检验
对未来研究的展望
随着大数据时代的到来,数据量越来越大,对于高维数据的处理和分析成为未来研究的热点。如何利用假设检验与方差分析等方法处理高维数据,揭示其内在结构和规律,是未来研究的重要方向。
THANKS FOR
实验报告(二)
学生姓名:胡智昊学号:31405714一、实验项目名称:实验报告(二)二、实验目的和要求(一)掌握列联分析的软件应用(二)掌握方差分析的软件应用三、实验内容1.为研究上市公司对其股价波动的关注程度,一家研究机构对在主板、中小板和创业板(2)计算上市公司的类型与对股价波动的关注程度两个变量之间的φ系数、Cramer’s V 系数和列联系数,并分析其相关程度。
Ho:假设上市公司的类型与对股价波动的关注程度无关H1:上市公司的类型与对股价波动的关注程度有关上市公司的类型关注不关注主板企业50 70 120中小板企业 30 15 45创业板企业 20 5 25100 90 190nij Nij nij-N ij nij-Nij 2/Nij50 63.15789 -13.15789474 2.7412280730 23.68421 6.315789474 1.68421052620 13.15789 6.842105263 3.55789473770 56.84211 13.15789474 3.04580896715 21.31579 -6.315789474 1.8713450295 11.84211 -6.842105263 3.95321637416.8537037 卡方5.991464547 卡方0.05所以拒绝原假设,认为有关2.为分析不同地区的消费者与所购买的汽车价格是否有关,一家汽车企业的销售部门对东部地区、中部地区和西部地区的400个消费者作了抽样调查,得到如下结果:(2)计算地区与所购买的汽车价格两个变量之间的φ系数、Cramer’s V系数和列联系数,并分析其相关程度。
H0:假设地区与所购买的汽车价格不相关H1:假设地区与所购买的汽车价格相关汽车价格东部地区中部地区西部地区10万元以下20 40 40 10010万-20万元50 60 50 16020万-30万元30 20 20 7030万元以上40 20 10 70140 140 120 400nij Nij nij-N ij nij-Nij 2/Nij20 35 -15 6.42857142950 56 -6 0.64285714330 24.5 5.5 1.23469387840 24.5 15.5 9.80612244940 35 5 0.71428571460 56 4 0.28571428620 24.5 -4.5 0.82653061220 24.5 -4.5 0.82653061240 30 10 3.33333333350 48 2 0.08333333320 21 -1 0.04761904810 21 -11 5.76190476229.9914966 卡方12.591587243.一家牛奶公司有4台机器装填牛奶,每桶的容量为4升。
假设检验项目八假设检验、回归分析与方差分析
项目八 假设检验、回归分析与方差分析实验1 假设检验实验目的 掌握用Mathematica 作单正态总体均值、方差的假设检验, 双正态总体的均值差、方差比的假设检验方法, 了解用Mathematica 作分布拟合函数检验的方法.基本命令1.调用假设检验软件包的命令<<Statistics\HypothesisTests.m输入并执行命令<<Statistics\HypothesisTests.m2.检验单正态总体均值的命令MeanTest命令的基本格式为MeanTest[样本观察值,0H 中均值0μ的值, TwoSided->False(或True), Known Variance->None (或方差的已知值20σ),SignificanceLevel->检验的显著性水平α,FullReport->True]该命令无论对总体的均值是已知还是未知的情形均适用.命令MeanTest 有几个重要的选项. 选项Twosided->False 缺省时作单边检验. 选项Known Variance->None 时为方差未知, 所作的检验为t 检验. 选项Known Variance->20σ时为方差已知(20σ是已知方差的值), 所作的检验为u 检验. 选项Known Variance->None 缺省时作方差未知的假设检验. 选项SignificanceLevel->0.05表示选定检验的水平为0.05. 选项FullReport->True 表示全面报告检验结果.3.检验双正态总体均值差的命令MeanDifferenceTest命令的基本格式为MeanDifferenceTest[样本1的观察值,样本2的观察值,0H 中的均值21μμ-,选项1,选项2,…]其中选项TwoSided->False(或True), SignificanceLevel->检验的显著性水平α,FullReport->True 的用法同命令MeanTest 中的用法. 选项EqualVariances->False(或True)表示两个正态总体的方差不相等(或相等).4.检验单正态总体方差的命令VarianceTest命令的基本格式为VarianceTest[样本观察值,0H 中的方差20σ的值,选项1,选项2,…]该命令的选项与命令MeanTest 中的选项相同.5.检验双正态总体方差比的命令VarianceRatioTest命令的基本格式为VarianceRatioTest[样本1的观察值,样本2的观察值,0H 中方差比2221σσ的值,选项1,选项2,…] 该命令的选项也与命令MeanTest 中的选项相同.注: 在使用上述几个假设检验命令的输出报告中会遇到像OneSidedPValue->0.000217593这样的项,它报告了单边检验的P 值为0.000217593. P 值的定义是: 在原假设成立的条件下, 检验统计量取其观察值及比观察值更极端的值(沿着对立假设方向)的概率. P 值也称作“观察”到的显著性水平. P 值越小, 反对原假设的证据越强. 通常若P 低于5%, 称此结果为统计显著; 若P 低于1%,称此结果为高度显著.6.当数据为概括数据时的假设检验命令当数据为概括数据时, 要根据假设检验的理论, 计算统计量的观察值, 再查表作出结论. 用以下命令可以代替查表与计算, 直接计算得到检验结果.(1)统计量服从正态分布时, 求正态分布P 值的命令NormalPValue. 其格式为NormalPValue[统计量观察值,显著性选项,单边或双边检验选项](2)统计量服从t 分布时, 求t 分布P 值的命令StudentTPValue. 其格式为StudentTPValue[统计量观察值,自由度,显著性选项,单边或双边检验选项](3)统计量服从2χ分布时, 求2χ分布P 值的命令ChiSquarePValue. 其格式为ChiSquarePValue[统计量观察值,自由度,显著性选项,单边或双边检验选项](4)统计量服从F 分布时, 求F 分布P 值的命令FratioPValue. 其格式为FratioPValue[统计量观察值,分子自由度,分母自由度,显著性选项,单边或双边检验选项](5)报告检验结果的命令ResultOfTest. 其格式为ResultOfTest[P 值,显著性选项,单边或双边检验选项,FullReport->True]注:上述命令中, 缺省默认的显著性水平都是0.05, 默认的检验都是单边检验.实验举例单正态总体均值的假设检验(方差已知情形)例 1.1 (教材 例 1.1) 某车间生产钢丝, 用X 表示钢丝的折断力, 由经验判断),(~2σμN X , 其中228,570==σμ, 今换了一批材料, 从性能上看, 估计折断力的方差2σ不会有什么变化(即仍有228=σ), 但不知折断力的均值μ和原先有无差别. 现抽得样本, 测得其折断力为578 572 570 568 572 570 570 572 596 584取,05.0=α试检验折断力均值有无变化?根据题意, 要对均值作双侧假设检验570:,570:10≠=μμH H输入<<Statistics\HypothesisTests.m 执行后, 再输入data1={578,572,570,568,572,570,570,572,596,584};MeanTest[data1,570,SignificanceLevel->0.05,KnownVariance->64,TwoSided->True,FullReport->True](*检验均值, 显著性水平05.0=α, 方差083.02=σ已知*) 则输出结果{FullReport->MeanTestStat Distribution 575.2 2.05548 NormalDistribution[]TwoSidedPValue->0.0398326,Reject null hypothesis at significance level ->0.05}即结果给出检验报告: 样本均值2.575=x , 所用的检验统计量为u 统计量(正态分布),检验统计量的观测值为 2.05548, 双侧检验的P 值为0.0398326, 在显著性水平05.0=α下, 拒绝原假设, 即认为折断力的均值发生了变化.例 1.2 (教材 例 1.2) 有一工厂生产一种灯管, 已知灯管的寿命X 服从正态分布)40000,(μN , 根据以往的生产经验, 知道灯管的平均寿命不会超过1500小时. 为了提高灯管的平均寿命, 工厂采用了新的工艺. 为了弄清楚新工艺是否真的能提高灯管的平均寿命,他们测试了采用新工艺生产的25只灯管的寿命. 其平均值是1575小时, 尽管样本的平均值大于1500小时, 试问: 可否由此判定这恰是新工艺的效应, 而非偶然的原因使得抽出的这25只灯管的平均寿命较长呢?根据题意, 需对均值的作单侧假设检验 1500:,1500:10>≤μμH H检验的统计量为 n X U /0σμ-=, 输入 p1=NormalPValue[(1575-1500)/200*Sqrt[25]]ResultOfTest[p1[[2]],SignificanceLevel ->0.05,FullReport ->True]执行后的输出结果为OneSidedPValue ->0.0303964{OneSidedPValue->0.0303964,Fail to reject null hypothesis at significance level ->0.05}即输出结果拒绝原假设单正态总体均值的假设检验(方差未知情形)例1.3 (教材 例1.3) 水泥厂用自动包装机包装水泥, 每袋额定重量是50kg, 某日开工后随机抽查了9袋, 称得重量如下:49.6 49.3 50.1 50.0 49.2 49.9 49.8 51.0 50.2设每袋重量服从正态分布, 问包装机工作是否正常(05.0=α)?根据题意, 要对均值作双侧假设检验:50:;50:10≠=μμH H输入data2={49.6,49.3,50.1,50.0,49.2,49.9,49.8,51.0,50.2};MeanTest[data2,50.0,SignificanceLevel ->0.05,FullReport ->True](*单边检验且未知方差,故选项TwoSided,KnownVariance 均采用缺省值*)执行后的输出结果为{FullReport->Mean TestStat Distribution,49.9 -0.559503 StudentTDistribution[8]OneSidedPValue ->0.295567,Fail to reject null hypothesis at significance level ->0.05}即结果给出检验报告: 样本均值9.49=X , 所用的检验统计量为自由度8的t 分布(t 检验),检验统计量的观测值为-0.559503, 双侧检验的P 值为0.295567, 在显著性水平05.0=α下, 不拒绝原假设, 即认为包装机工作正常.例1.4 (教材 例1.4) 从一批零件中任取100件,测其直径,得平均直径为5.2,标准差为1.6.在显著性水平05.0=α下,判定这批零件的直径是否符合5的标准. 根据题意, 要对均值作假设检验: .5:;5:10≠=μμH H 检验的统计量为n s X T /0μ-=, 它服从自由度为1-n 的t 分布. 已知样本容量,100=n 样本均值2.5=X , 样本标准差6.1=s .输入StudentTPValue[(5.2-5)/1.6*Sqrt[100],100-1,TwoSided->True]则输出TwoSidedPValue->0.214246 即P 值等于0.214246, 大于0.05, 故不拒绝原假设, 认为这批零件的直径符合5的标准.单正态总体的方差的假设检验例1.5 (教材 例1.5) 某工厂生产金属丝, 产品指标为折断力. 折断力的方差被用作工厂生产精度的表征. 方差越小, 表明精度越高. 以往工厂一直把该方差保持在64(kg 2)与64以下. 最近从一批产品中抽取10根作折断力试验, 测得的结果(单位为千克) 如下:578 572 570 568 572 570 572 596 584 570 由上述样本数据算得74.75,2.5752==s x .为此, 厂方怀疑金属丝折断力的方差是否变大了. 如确实增大了, 表明生产精度不如以前, 就需对生产流程作一番检验, 以发现生产环节中存在的问题.根据题意, 要对方差作双边假设检验:64:;64:2120>≤σσH H 输入 data3={578,572,570,568,572,570,572,596,584,570};VarianceTest[data3,64,SignificanceLevel->0.05,FullReport->True](*方差检验,使用双边检验,05.0=α*)则输出{FullReport->Variance TestStat Distribution75.7333 10.65 ChiSquareDistribution[9]OneSidedPValue->0.300464,Fail to reject null hypothesis at significance level->0.05}即检验报告给出: 样本方差,7333.752=s 所用检验统计量为自由度4的2χ分布统计量(2χ 检验), 检验统计量的观测值为10.65, 双边检验的P 值为0.300464, 在显著性水平05.0=α 时, 接受原假设, 即认为样本方差的偏大系偶然因素, 生产流程正常, 故不需再作进一步的 检查.例1.6 (教材 例1.6) 某厂生产的某种型号的电池, 其寿命(以小时计) 长期以来服从方差50002=σ的正态分布, 现有一批这种电池, 从它的生产情况来看, 寿命的波动性有所改变. 现随机取26只电池, 测出其寿命的样本方差92002=s .问根据这一数据能否推断这批电池的寿命的波动性较以往的有显著的变化(取02.0=α)?根据题意, 要对方差作双边假设检验: 5000:;5000:2120≠=σσH H 所用的检验统计量为,)1(2022σχS n -=它服从自由度为1-n 的2χ分布.已知样本容量,26=n 样本方差.92002=s输入ChiSquarePValue[(26-1)*9200/5000, 26-1,TwoSided->True]则输出TwoSidedPValue->0.0128357.即P 值小于0.05, 故拒绝原假设. 认为这批电池寿命的波动性较以往有显著的变化.双正态总体均值差的检验(方差未知但相等)例1.7 (教材 例1.7) 某地某年高考后随机抽得15名男生、12名女生的物理考试成绩如下: 男生: 49 48 47 53 51 43 39 57 56 46 42 44 55 44 40女生: 46 40 47 51 43 36 43 38 48 54 48 34从这27名学生的成绩能说明这个地区男女生的物理考试成绩不相上下吗?(显著性水平05.0=α).根据题意, 要对均值差作单边假设检验:211210:,:μμμμ≠=H H输入 data4={49.0,48,47,53,51,43,39,57,56,46,42,44,55,44,40};data5={46,40,47,51,43,36,43,38,48,54,48,34};MeanDifferenceTest[data4,data5,0,SignificanceLevel->0.05,TwoSided->True,FullReport->True,EqualVariances->True,FullReport->True](*指定显著性水平05.0=α,且方差相等*) 则输出{FullReport->MeanDiff TestStat Distribution3.6 1.56528 tudentTDistribution[25],OneSidedPValue->0.13009,Fail to reject null hypothesis at significance level->0.05}即检验报告给出: 两个正态总体的均值差为3.6, 检验统计量为自由度25的t 分布(t 检验),检验统计量的观察值为1.56528, 单边检验的P 值为0.13009, 从而没有充分理由否认原假 设, 即认为这一地区男女生的物理考试成绩不相上下.双正态总体方差比的假设检验例1.8 (教材 例1.8) 为比较甲、乙两种安眠药的疗效, 将20名患者分成两组, 每组10人, 如服药后延长的睡眠时间分别服从正态分布, 其数据为(单位:小时):甲: 5.5 4.6 4.4 3.4 1.9 1.6 1.1 0.8 0.1 -0.1乙: 3.7 3.4 2.0 2.0 0.8 0.7 0 -0.1 -0.2 -1.6问在显著性水平05.0=α下两重要的疗效又无显著差别.根据题意, 先在21,μμ未知的条件下检验假设:2221122210:,:σσσσ≠=H H输入 list1={5.5,4.6,4.4,3.4,1.9,1.6,1.1,0.8,0.1,-0.1};。
统计学中的方差分析与假设检验
统计学中的方差分析与假设检验方差分析(Analysis of Variance,简称ANOVA)是统计学中一种常用的假设检验方法,用于比较两个或多个样本的均值是否存在显著差异。
方差分析通过对不同组之间的方差进行比较,判断样本均值是否有统计学上的差异。
本文将介绍方差分析的基本原理和假设检验的步骤。
一、方差分析的基本原理方差分析是一种多个总体均值比较的方法,它通过计算组间离散度与组内离散度的比值来判断样本均值是否有显著差异。
方差分析的基本原理可以用以下公式表示:$$F=\frac{MS_{\text{between}}}{MS_{\text{within}}}$$其中,F为方差比值,$MS_{\text{between}}$为组间均方,$MS_{\text{within}}$为组内均方。
方差比值F的值越大,说明组间差异相对于组内差异的贡献越大,即样本均值之间的差异越显著。
通过查找F分布表,可以确定F值对应的显著性水平,从而判断样本均值是否有显著差异。
二、假设检验的步骤方差分析的假设检验可以分为以下几个步骤:1. 建立假设- 零假设(H0):各组样本的均值相等,即$\mu_1=\mu_2=...=\mu_k$- 备择假设(H1):至少有两个组样本的均值不相等,即$\mu_i\neq\mu_j$2. 计算组间均方- 组间均方$MS_{\text{between}}$的计算公式为:$MS_{\text{between}}=\frac{SS_{\text{between}}}{df_{\text{between}}}$ - 其中,$SS_{\text{between}}$为组间平方和,$df_{\text{between}}$为组间自由度。
3. 计算组内均方- 组内均方$MS_{\text{within}}$的计算公式为:$MS_{\text{within}}=\frac{SS_{\text{within}}}{df_{\text{within}}}$ - 其中,$SS_{\text{within}}$为组内平方和,$df_{\text{within}}$为组内自由度。
方差分析的实验报告
方差分析的实验报告方差分析的实验报告引言:方差分析(Analysis of Variance,简称ANOVA)是一种常用的统计方法,用于比较两个或多个样本均值之间的差异。
它可以帮助我们确定某个因素对于观测值的影响是否显著。
本实验旨在通过方差分析方法,探究不同肥料对植物生长的影响。
实验设计:本次实验选取了20个植物作为样本,将它们随机分成四组,每组5个植物。
接下来,每组植物分别施用不同种类的肥料:A、B、C和D。
在施肥后的一段时间内,记录植物的生长情况,包括高度、叶片数和根系长度。
通过方差分析,我们可以比较不同肥料对植物生长的影响是否显著。
结果分析:在进行方差分析之前,我们首先需要检验数据的正态性和方差齐性。
通过对数据进行正态性检验,我们发现所有的变量都满足正态分布的假设,因此我们可以继续进行方差分析。
而方差齐性检验结果显示,高度和叶片数的方差齐性假设成立,但根系长度的方差齐性假设不成立。
因此,在进行方差分析时,我们需要注意根系长度的结果。
接下来,我们进行方差分析。
对于高度和叶片数这两个变量,我们使用单因素方差分析;对于根系长度这个变量,由于方差齐性假设不成立,我们使用Welch的方差分析方法。
对于高度和叶片数,我们发现不同肥料对植物的生长有显著影响(F(3, 16) =5.67, p < 0.05)。
通过进一步的事后比较,我们发现使用肥料A和B的植物的生长显著高于使用肥料C和D的植物。
对于根系长度,我们同样发现不同肥料对植物的生长有显著影响(F(3, 7.38) = 3.42, p < 0.05)。
通过事后比较,我们发现使用肥料A的植物的根系长度显著高于使用肥料C和D的植物,而使用肥料B的植物的根系长度也显著高于使用肥料D的植物。
讨论:通过本次实验,我们可以得出结论:不同肥料对植物的生长有显著影响。
肥料A和B对植物的生长效果最好,而肥料C和D的效果相对较差。
这可能是因为肥料A和B中含有更多的营养物质,能够更好地满足植物的生长需求。
假设检验与方差分析
决策:
拒绝H0
拒绝 H0
.025
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
-1.96
0
1.96
Z
总体均值的检验
(2未知小样本)
• 1. 假定条件
– 总体为正态分布 2未知,且小样本
• 2. 使用t 统计量
t
X 0 S n
~ t (n 1)
2 未知小样本均值的检验
t 检验
(单尾和双尾)
Z 检验
(单尾和双尾)
2检验
(单尾和双尾)
总体均值检验
总体均值的检验
(检验统计量)
是
总体 是否已知 ?
否
小 样本容量 n
用样本标 准差S代替
大
z 检验
z 检验
t 检验
Z
X 0
Z
X 0 S n
t
X 0 S n
n
总体均值的检验
(2 已知或2未知大样本)
独立样本 配对样本
比例
方差
Z 检验
(大样本)
t 检验
(小样本)
t 检验
(小样本)
Z 检验
F 检验
两个独立样本的均值检验
两个独立样本之差的抽样分布
总体1
1
1
2 2
总体2
抽取简单随机样 样本容量 n1 计算X1
计算每一对样本 的X1-X2
抽取简单随机样 样本容量 n2 计算X2
所有可能样本 的X1-X2
决策:
拒绝 H0
. 205
在 = 0.05的水平上不能拒绝H0
结论:
不能否定研究者的估计
方差分析实验报告模板及范例
填写说明1、填写实验报告须字迹工整,使用黑色钢笔或签字笔填写。
2、课程编号和课程名称必须和教务系统中保持一致,实验项目名称填写须完整规范,不能省略或使用简称。
3、每个实验项目应填写一份实验报告。
如同一个实验项目分多次进行,可在实验报告中写明。
实验目录及成绩登记说明:实验项目顺序和名称由学生填写,必须前后保持一致;实验成绩以百分制计,由实验指导教师填写并签名;实验报告部分最终成绩为所有实验项目成绩的平均值。
实验报告实验日期:2020年 4月 16日星期四表15.点击“对比”,弹出对比对话框;勾选“多项式”,点击“继续”,如表2:表26.在单因素ANOVA分析对话框点击“事后多重比较”,弹出对话框,假定方差齐性一般有14种比较,最常见的就是LSD(L)最小显著差法:他没有在检验水准上做出任何的矫正,只是在标准误差的计算上充分利用样本数据,为所有组的均数统一估计出较为稳定的标准误差,一般被认为为最灵敏的方法;其他采用系统默认设置;单击“继续”,如图3所示:图37.为了定义统计方法和缺失值的处理方法,在单因素ANOVA分析对话框,单击“选项”,弹出选项对话框,在统计量中选择“方差齐性检验、平均值图”,缺失值选择系统默认,点击“继续”,如图4所示:图48.单击“确定”,等待输出结果。
ONEWAY 总销售量 BY 包装类别/POLYNOMIAL=1/STATISTICS HOMOGENEITY/PLOT MEANS/MISSING ANALYSIS/POSTHOC=LSD ALPHA(0.05).单向(1)方差齐性检验表,如表a;(2)ANOVA表,如下表b;事后检验(1)多重比较表,如下表c;平均值图,如下图5。
(二)第七章第三题——协方差分析1.课程了解学习协方差分析,是将回归分析同方差分析结合起来,以消除混杂因素的影响,对试验数据进行分析的一种分析方法。
协方差分析一般研究比较一个或者几个因素在不同水平上的差异,但观测量同时还受另一个难以控制的协变量的影响,在分析中剔除其影响,再分析各因素对观测变量的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南大学滇池学院
方差分析与假设检验实验报告二
学生姓名:方炜学号:20092123080专业:软件工程
一、实验目的和要求:
1、初步了解SPSS的基本命令;
2、掌握方差分析和假设检验。
二、实验内容:
1、为比较5中品牌的合成木板的耐久性,对每个品牌取4个样本作摩擦试验测量磨损量,得以下数据:
(1)它们的耐久性有无明显差异?
(2)有选择的作两品牌的比较,能得出什么结果?
2、将土质基本相同的一块耕地分成5块,每块又分成均等的4小块。
在每块地内把4个品
种的小麦分钟在4小块内,每小块的播种量相同,测得收获量如下:
考察地块和品种对小麦的收获量有无显著影响?并在必要时作进一步比较。
3、为了研究合成纤维收缩率和拉伸倍数对纤维弹性的影响进行了一些试验。
收缩率取0,4,
8,12四个水平;拉伸倍数取460,520,580,640四个水平,对二者的每个组合重复作两次试验,所得数据如下:
(1)收缩率,拉伸倍数及其交互作用对弹性有无显著影响?
(2)使弹性达到最大的生产条件是什么?
三、实验结果与分析:
1、运行结果截图:
1、结果分析:
(1)、Sig<0.05,耐久性有明显差异
(2)、由样本分析,品牌3分为一类;品牌1,2,5分为一类;品牌4分为一类。
而品牌3和品牌4差距最大,品牌3的耐久性最差,品牌4的耐久性最好。
2、运行结果截图:
2、结果分析:
(1)、地块(A组)Sig>0.05对小麦的收获量无显著影响,品种(B组)Sig<0.05对小麦的收获量有显著影响。
(2)、由图得,地块4最适合种小麦,地块1最不适合种小麦;而品种2的小麦收获量最大,品种4的小麦收获量最小。
3、运行结果截图:
3、结果分析:
(1)、收缩率,拉伸倍数两组实验的Sig基本大于0.05,对弹性无显著影响;下面的Post Hoc Tests,经过两次重复实验,合成纤维弹性只有一类(在数据量小的情况,有些许误差是允许的),可以判断交互作用对弹性无显著影响。
(2)、由图得,收缩率取4,拉伸倍数取520弹性达到最大。
四、实验小结:
1、掌握了用SPSS对数据进行方差分析。
2、根据方差分析,用假设检验对因素的分析。
3、还可以根据方差,对数据进一步比较,得出新的结论。