第二章植物的矿质营养

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 氮的同化
一、植物的氮源
1.氮气 空气中含有79%的氮气 ,但植物无法直接利用这 些分子态氮。只有某些微生物才能利用 2.有机氮 土壤中的有机含氮化合物主要来源于动物、植 物和微生物躯体的腐烂分解, 大多是不溶性的,通 常不能直接为植物所利用,植物只可以吸收其中的 氨基酸、酰胺和尿素等水溶性的有机氮化物。 3.无机氮 植物的氮源主要是无机氮化物中的铵盐和硝酸 盐,它们约占土壤含氮量的1%-2%。
Fra Baidu bibliotek
2、亚硝酸还原酶(nitrite reductase,NiR)催化亚硝酸盐还 原为: NO-2+6e-+8H+ NiR NH+4+2H20 (3-10) 叶中NO2-运进叶绿体,在NiR 作用下,使NO2-还原为NH4+
根中,NO2-在前质体中被还原为NH4+。
三、氨的同化
-植物体内的氨参与有机氮化物的形成过程。
通常植物组织中,氨同化是通过谷氨酸合成酶循环进行的。
图 3-22 谷氨酸合成酶循环
2.谷氨酸脱氢酶 (glutamate dehydrogenase, GDH) GDH + α-酮戊二酸+ NH3+NAD(P)H+H L-谷氨 酸 +NAD(P)++H2O
GDH与NH3的亲和力很低,Km值为5.2~7.0mmol·L-1。 GDH在谷氨酸的降解中起了较大作用, 在异养真核生物中 (如真菌)的氨的同化过程中起主要作用。
分子氮被固定为氨的总反应式如下: N2+8e-+8H++16ATP 固氮酶 2NH3+H2+16ADP+16Pi
2、过程
图 3-23固氮酶催化反应 铁氧还蛋白还原铁蛋白,与ATP结合,铁蛋白还原钼铁蛋白,最 后还原N2成为NH3
固氮酶固定1分子N2要消耗8个e-和16个ATP。 高等植物固定1g N2要消耗有机碳12g。 减少固氮所需的能量投入量凾待解决的问题。 3、影响固氮因素 ①光合作用 为固氮提供物质和能量 ②生长期 最大固氮速率在种子和果实发育期, 豆 类种子中90%的氮是在生殖生长期固定的。 ③遗传因子 如结瘤的效率/根瘤菌与植物的识别能 力等, 用基因工程技术提高豆类产量,或把固氮基因引 入非豆科植物。
植物细胞硝酸盐同化,包括硝酸盐的跨质膜运输,然后经两步还原为氨
二、硝酸盐的还原
植物体内硝酸盐转化为氨的过程。 在一般田间条件下,NO-3是植物吸收的主要形式。NO3还原过程中,每形成一个分子NH4+要求供给8个电子。
1、硝酸还原酶(nitrate reductase, NR)催化硝酸盐还 原为亚硝酸盐: NO3-+NAD(P)H+H+ NR NO2-+NAD(P)++H2O 这一过程在根和叶的细胞质中进行。
图 高等植物硝酸还原酶的模型
A)硝酸盐还原酶的结构域结构。一个NR单体有三个主要的结构域,分别与钼辅 因子、血红素和FAD相连。FAD连接区从NAD(P)H接受电子;血红素结构域运 送电子到MoCo连接区,它传递电子给硝酸盐,hⅠ和hⅡ指铰链1和铰链2,分离 功能结构域。(B)硝酸盐还原酶的条带图解。血红素辅基用紫色表示,FAD用蓝色 表示,MoCo用黑色表示,2个单体之间的界面用黄色表示
NAD(P)H
四、生物固氮(biological nitrogen fixation)
生物固氮 某些微生物把空气 中的游离氮固定转化为氮化合 物(氨)的过程。 1、类型 生物固氮是由两 类微生物来实现的: 一类是自生固氮微生物包括细 菌和蓝绿藻(自生蓝细菌), 另一类是与其它植物(宿主)共 生的微生物, 例如与豆科植物共生的根瘤 菌, 与非豆科植物共生的放线菌, 以及与水生蕨类红萍(亦称满 江红)共生的蓝藻(鱼腥藻)等。
第五节合理施肥的生理基础
一、作物需肥特点
(一)不同作物或同一作物的不同品种需肥情况不同
三种酶在细胞中的定位:
绿色组织中GOGAT谷氨酸合酶存在于叶绿体内; GS谷氨酰胺合成酶在叶绿体和细胞质中都有存在, GDH主要存在于线粒体中。 在非绿色组织,特别是根中,GS和GOGAT定位于质体, GDH定位在线粒体中,而GS是否存在于细胞质中还有争论。
生成的谷氨酸是合成其他氨基酸的起点,可 通过转氨作用,生成另一种氨基酸,进而参与蛋 白质、核酸和其他含氮物质的合成代谢。
NR有黄素腺嘌呤二核苷酸(FAD)、细胞色素b557和 钼复合体(Mo-Co)三个辅基,为同型二聚体。催 化的反应模式如下:
→NO2-
→NO2硝酸还原酶是一种诱导酶(受底物的诱导而合成 的酶)。 吴相钰、汤佩松(1957)首先发现水稻幼苗培养 在含硝酸盐的溶液中会诱导产生硝酸还原酶。 NR对内外条件反应敏感. NR的活性可作为植物利用氮素能力的指标。
自然界中 N素循环
氮素循环
自然固氮 其中约有10%是在闪电过程的极端条件下完成的,其余9 0%是由微生物通过生物固氮完成的。 工业固氮 是人为地在高压高温下将分子氮还原成氨的过程。需消耗 大量能源。 生物固氮 微生物自生或与植物(或动物)共生,通过体内固氮酶的 作用,将大气中的游离氮固定转化为含氮化合物的过程。
1.谷氨酸合成酶循环
①谷氨酰胺合成酶(glutamine synthase,GS)催化下列 反应:
L-谷氨酸+ATP+NH3
G Mg2+ S
L-谷氨酰胺+ADP+Pi
GS存在于各种植物组织中,对氨有很高的亲和力,Km 为10-5~10-4mol·L -1 ,因此能防止氨累积而造成的 毒害。 ②谷氨酸合酶(GOGAT) 催化如下反应: L-谷氨酰胺+α-酮戊二酸+〔NAD(P)H或Fdred〕GOGAT 2L-谷氨酸+〔NAD(P)+或Fdox〕
叶片微量氮素吸收过程简图,
根木质部转运分配的硝酸盐经硝酸转运器被叶肉细胞吸收到细胞质中,经硝 酸还原酶作用还原为亚硝酸,亚硝酸和质子一起转运到细胞叶绿体中,在基质 中亚硝酸还原酶还原作用转化为铵,铵经变谷氨酸合成酶的一系列作用转变为 谷氨酸,谷氨酸再次进入细胞质。在天冬酰氨转移酶的作用下将氨基转移到天 冬氨酸,最后,天冬酰氨合成酶将天冬酰酸转变为天冬酰胺,ATP值的大约数 量就是每步反应上方所给的数值。
相关文档
最新文档