河南省驻马店市上蔡县2019-2020学年九年级上学期期末数学试题
河南省驻马店地区九年级上学期数学期末考试试卷
河南省驻马店地区九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共8小题,每小题3分,共24分) (共8题;共24分)1. (3分) (2019九上·江津期中) 已知a、b为实数,且满足(a2+b2)2﹣9=0,则a2+b2的值为()A . ±3B . 3C . ±9D . 92. (3分) (2017九上·上城期中) 当时,二次函数有最大值,则实数的值为().A .B . 或C . 或D . 或或3. (3分)用配方法解方程x2﹣8x+3=0,下列变形正确的是()A . (x+4)2=13B . (x﹣4)2=19C . (x﹣4)2=13D . (x+4)2=194. (3分) (2017九上·上蔡期末) 如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是().A . ∠ABD=∠CB . ∠ADB=∠ABCC .D .5. (3分)如图,P为⊙O外一点,PA切⊙O于点A,且OP=5,PA=4,则sin∠APO等于()A .B .C .D .6. (3分) (2019八下·新田期中) 下列说法中,真命题的是()A . 平行四边形既是轴对称图形又是中心对称图形B . 平行四边形的邻边相等C . 矩形的对角线互相垂直D . 菱形的面积等于两条对角线长乘积的一半7. (3分) (2019八上·西安月考) 如图,梯子靠在墙上,梯子的应用到墙根的距离为,梯子的顶端到地面的距离为,现将梯子的底端向外移动到,使梯子的底端到墙根的距离等于,同时梯子的顶端下降至,那么()A . 小于B . 大于C . 等于D . 小于或等于8. (3分)已知二次函数y1=ax2+bx+c与一次函数y2=kx+b的图象交于A(-1,5)和B(4,2),则能使y1>y2成立的X的取值范围是A . x<-1B . x>4C . -1<x<4D . x<-1或x>4二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)9. (3分)(2018·青岛) 计算:2﹣1× +2cos30°=________.10. (3分) (2019九上·忻城期中) 若关于x的方程(m﹣2)x2+2x+1=0有两个实数根,则m的取值是________.11. (3分) (2020九上·敦化期末) 如图,抛物线交轴于点,交轴于点,在轴上方的抛物线上有两点,它们关于轴对称,点在轴左侧.于点,于点,四边形与四边形的面积分别为6和10,则与的面积之和为________.12. (3分)如图,甲船从点O出发,自南向北以40海里/时的速度行驶;乙船在点O正东方向120海里的A 处,以30海里/时的速度自东向西行驶,经过________小时两船的距离为100海里.13. (3分) (2018九上·嵩县期末) 如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB干点E,且tan∠α= ,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD 与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤ .其中正确的结论是________(填入正确结论的序号).14. (3分)已知二次函数y= x2的图象如图所示,线段AB∥x轴,交抛物线于A、B两点,且点A的横坐标为2,则AB的长度为________.三、解答题(本大题共10小题,共78分) (共10题;共78分)15. (6分) (2019九上·长白期中) 用公式法解方程:16. (6分) (2019八下·长春期末) 如图1,在6×6的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.△ABC的顶点在格点上.点D是BC的中点,连接AD.(1)在图2、图3两个网格图中各画出一个与△ABC相似的三角形,要求所画三角形的顶点在格点上,相似比各不相同,且与△ABC的相似比不为1;(2)tan∠CAD=________.17. (6分) (2019九上·芜湖月考) 如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东,南,西,北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的,小路与观赏亭的面积之和占草坪面积的,求小路的宽.18. (7.0分)(2019·宁波模拟) 已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.19. (7.0分)(2016·抚顺模拟) 计算:(1)sin30°+3tan60°﹣cos245°.(2)如图,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD的长.20. (7.0分) (2020九上·来安期末) 东坡商贸公司购进某种水果成本为20元/ ,经过市场调研发现,这种水果在未来48天的销售单价(元/ )与时间(天)之间的函数关系式,为整数,且其日销售量()与时间(天)的关系如下表:时间(天)1361020…日销售量()11811410810080…(1)已知与之间的变化符合一次函数关系,试求在第30天的日销售量;(2)哪一天的销售利润最大?最大日销售利润为多少?21. (8分) (2019九上·北京月考) 如图,在平面直角坐标系xOy中,点,,.(1)以点C为旋转中心,把逆时针旋转,画出旋转后的△ ;(2)在(1)的条件下,点A经过的路径的长度为________ 结果保留;点的坐标为________.22. (9分)已知,如图1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边ABCD的边AB、CD、DA上,AH=2,连接CF.(1)如图2,当四边形EFGH为正方形时,求CF的长和△FCG的面积;(2)如图1,设AE=x,△FCG的面积=y,求y与x之间的函数关系式与y的最大值.(3)当△CG是直角三角形时,求x和y值.23. (10.0分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.24. (12分)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4SBOC ,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.参考答案一、选择题(本大题共8小题,每小题3分,共24分) (共8题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题(本大题共10小题,共78分) (共10题;共78分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
河南省驻马店市上蔡县19-20学年九年级上学期期末数学试卷 及答案解析
河南省驻马店市上蔡县19-20学年九年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列化简正确的是()A. √13=√33B. √(−5)2=−5C. √8−√2=√6D. √12=4√32.已知关于x的一元二次方程2x2−3x+m=0有一个根为−2,则m的值为()A. 7B. −7C. 14D. −143.在△ABC中,点D在AB上,点E在AC上,且△ADE与△ABC相似,AD=EC,BD=10,AE=4,则AB的长为()A. 2√10B. 12C. 2√10+10D. 12或2√10+104.如图,△ABC的顶点是正方形网格的格点,则sin A是()A. √23B. √55C. 2√55D. 125.已知点A(1,y1),B(2,y2)在抛物线y=−(x+1)2+2上,则下列结论正确的是()A. 2>y1>y2B. 2>y2>y1C. y1>y2>2D. y2>y1>26.二次函数y=2x2+4x−3的图象的顶点坐标是()A. (0,−3)B. (1,3)C. (−1,−3)D. (−1,−5)7.在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为()A. 14B. 23C. 13D. 3168.如图,在⊙O中,AB⏜=AC⏜,∠ADC=20°,则∠AOB的度数是()A. 40°B. 30°C. 20°D. 10°9.如图,AB是半圆O的直径,C、D是半圆O上的两点,OD//BC,OD与AC交于点E.下列结论不一定成立的是()A. △AOD是等边三角形B. AD⏜=CD⏜BCC. ∠ACB=90°D. OE=1210.如图,矩形ABCD中,AB=2AD=4cm,动点P从点A出发,以1cm/s的速度沿线段AB向点B运动,动点Q同时从点A出发,以2cm/s的速度沿折线AD→DC→CB向点B运动,当一个点停止时另一个点也随之停止.设点P的运动时间是x(s)时,△APQ的面积是y(cm2),则能够反映y与x之间函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共15.0分)11.计算:sin30°=______.12.设m,n分别为一元二次方程x2+2x−2020=0的两个实数根,则m2+3m+n=______.13.在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是______.14. 如图,△ABO 三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A′B′O ,已知点B′的坐标是(3,0),则点A′的坐标是______.15. 如图,在平面直角坐标系中,抛物线y =x 2−2x +2交y 轴于点A ,直线AB 交x 轴正半轴于点B ,交抛物线的对称轴于点C ,若OB =2OA ,则点C 的坐标为______ .三、解答题(本大题共8小题,共75.0分)16. 先化简,再求值:(2−x−1x+1)÷x 2+6x+9x 2−1,其中x =3tan30°−3.17. 有4张看上去无差别的卡片,上面分别写有数−1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为______;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.18.如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O于点E.(1)求证:CD=CE;(2)连接AE,若∠D=25°,求∠BAE的度数。
【40套试卷合集】河南省上蔡县第一初级中学2019-2020学年数学九上期末模拟试卷含答案
C2019-2020学年九上数学期末模拟试卷含答案第Ⅰ卷 (选择题 32分)一、选择题(共8个小题,每小题4分,共32分)在下列每小题给出的四个选项中,只有一个是符合题目要求的............. 1.已知⊙O 1和⊙O 2的半径分别为5和2,圆心距为3,则两圆的位置关系是A .内切B .外切C .相交D .内含2.在Rt △ABC 中,∠C =90°,若BC =2,AB =,则tanA 的值为A .12B .2 CD3. 有5张正面分别标有数字 -2,-1,0,l ,2的卡片,它们除数字 不同外,其余全部相同.从中任抽一张,那么抽到负数的概率是 A .45 B .35 C .25 D .154. 如图,点A ,B ,C 在⊙O 上,若∠AOB=70°,则∠ACB 的度数为 A .35° B .40° C .50° D .70° 5.下列图形中,是中心对称图形但不是轴对称图形的是6.如图,为了估算河的宽度,小明采用的办法是:在河的对 岸选取一点A ,在近岸取点D ,B ,使得A ,D ,B 在一条 直线上,且与河的边沿垂直,测得BD=10m ,然后又在垂 直AB 的直线上取点C ,并量得BC=30 m .如果DE=20 m , 则河宽AD 为 A .20m B .203m C .10 m D .30 m 7.二次函数2y ax bx c =++的部分图象如图所示,则下列结论中正确的是A .a >0B .不等式20ax bx c ++>的解集是﹣1<x <5C .0a b c -+>D .当x >2时,y 随x 的增大而增大A .B .D .(第2题)(第4题)(第6题)EACD B8.在平面直角坐标系中,以原点O 为圆心的圆过点A (0,,直线34y kx k =-+ 与⊙O 交于B ,C 两点,则弦BC 的长的最小值为 A .5 B. C. D.第Ⅱ卷 (填空题、解答题 88分)二、填空题 (共4个小题,每题4分,共16分)图中阴影部分的面积为 .13. 计算:011(2014)()2sin302-++︒14. 如图,△ABC 中,点D 在边AC 上,满足ABD C ∠=∠, (1)求证:△ABD ∽△ACB ; (2)若 AB=4,AD=2,求CD 的长.15. 已知:二次函数2y x bx c =++的图像过点A (2,5),C (0,﹣3). (1)求此二次函数的解析式;(2)求出该抛物线与x 轴的交点坐标; (3)直接写出当31x -≤≤时,y 的取值范围.(第7题)(第8题)ADC(第14题)C C 2C 1A 3A 2A O16. 画图:在平面直角坐标系中,ΔOAB 的位置 如图所示,且点A (-3,4),B (0,3). (1)画出ΔOAB 绕点O 顺时针旋转90°后得到的ΔOA B '';(2)写出点A ,B 的对称点A ',B '的坐标; (3)求点A 在旋转过程中所走过的路径长.17.已知关于x 的一元二次方程0222=-++k x x 有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.18.站在教学楼上的A 处 测得旗杆低端C 的俯角为30°, 测得旗杆顶端D 的仰角为45°,如果旗杆与教学楼的 水平距离BC 为6m ,那么旗杆CD 的高度是多少? (结果保留根号)19. 已知直线l 与⊙O ,AB 是⊙O 的直径,AD ⊥l 于点D.(1)如图①,当直线l 与⊙O 相切于点C 时,求证:AC 平分∠DAB ; (2)如图②,当直线l 与⊙O 相交于点E ,F 时,求证:∠DAE=∠BAF.四、解答题(本题共15分,每小题5分)新 课 标 第 一 20. 如图,在Rt △ABC 中,∠C=90°,AB 的垂直平分线与AC ,AB 的交点分别为D ,E . (1)若AD=15,4cos 5BDC ∠=, 求AC 的长和tan A 的值;(第20题)BACED图①图②(第16题)(第18题)(2)设BDC α∠=,计算tan2α的值.(用sin α和cos α的式子表示)21. 中踏销售某种商品,每件进价为10元,在销售过程中发现,平均每天的销售量y (件)与销售价x (元/件)之间的关系可近似的看做一次函数:260y x =-+; (1)求中踏平均每天销售这种商品的利润w (元)与销售价x 之间的函数关系式; (2)当这种商品的销售价为多少元时,可以获得最大利润?最大利润是多少?22. 如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,交⊙O 于点P ,点B 是⊙O 上一点,连接BP 并延长,交直线l 于点C ,使得 AB=AC.(1)求证:AB 是⊙O 的切线; (2)若PC=,OA=5,求⊙O 的半径和线段PB 的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 在平面直角坐标系中,抛物线22133222m y x mx m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (4,n )在这条抛物线上. (1)求B 点的坐标;(2)将此抛物线的图象向上平移72个单位,求平移后的图象的解析式; (3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象. 请你结合这个新的图象回答:当直线12y x b =+与此图象有两个公共点时,b 的 取值范围.24. 如图①,已知点O 为菱形ABCD 的对称中心,∠A=60°,将等边△OEF 的顶点放在点O 处,OE ,OF 分别交AB ,BC 于点M ,N. (1)求证:OM=ON ;(2)写出线段BM ,BN 与AB 之间的数量关系,并进行证明;(3)将图①中的△OEF 绕O 点顺时针旋转至图②所示的位置,请写出线段BM ,BN与AB 之间的数量关系,并进行证明.CA25. 四边形ABCD 中,E 是边AB 上一点(不与点A ,B 重合),连接ED ,EC ,则将四 边形ABCD 分成三个三角形.若其中有两个三角形相似,则把E 叫做四边形ABCD 的边AB 上的相似点;若这三个三角形都相似,则把E 叫做四边形ABCD 的边AB 上 的黄金相似点.(1)如图①,∠A=∠B=∠DEC=60°,试判断点E 是否为四边形ABCD 的边AB 上的相似点?并说明理由;(2)如图②,在(1)的条件下,若E 是AB 的中点,①判断点E 是否为四边形ABCD 的边AB 上的黄金相似点?并说明理由; ②若AD ·BC=18,求AB 的长;(3)在矩形ABCD 中,AB=10,BC=3,且A ,B ,C ,D 四点均在正方形格(格中每个小正方形的边长为1)的格点上,试在图③中画出矩形ABCD 的边AB 上 的一个黄金相似点E .初 三 数 学一、选择题(共8个小题,每小题4分,共32分) CBEA D图②D AEBC图①图③BADC----------------5分------------------4分 ----------------------2分--------------------------4分 -------------------------3分-------4分 -----------1分---------3分 --------------------------5分----------------------2分 ----------------------1分------------5分13.解:011(2014)()2sin302-+︒= 2123221⨯-++ =322+14.(1)证明:∵ABD C ∠=∠,∠A=∠A ∴△ABD ∽△ACB (2)∵△ABD ∽△ACB ∴A B A CA D A B=∴AB 2=AD ·AC ∵AB=4,AD=2 ∴AC=8 ∴CD=615.(1) ∵2y x bx c =++的图像过点A (2,5),C (0,﹣3)∴5423bc c =++⎧⎨-=⎩∴b=2∴二次函数的解析式 223y x x =+- (2)令y=0,则2230x x +-= ∴(3)(1)0x x +-= ∴123,1x x =-=∴抛物线与x 轴的交点坐标为(-3,0),(1,0) (3)当x=-3或x=1时,y=0; 当x=-1时,y=-4∴-4≤y ≤0 16.(1)如图,ΔOA B ''即为所求;(2)A '坐标(4,3),B '坐标(3,0); (3)求点A 在旋转过程中所走过的路径长是弧A A '的长. 由题意可知:OA=5∵ΔO A B 绕点O 顺时针旋转90°后得到的Δ∴∠AO A '为旋转角,即∠AO A '=90°∴弧A A '的长为:ADC(第14题)yxO 1-3-2-1-3-2-11---------5分----------------------1分 ----------------------2分 ---------1分 --------------------3分---------2分---------3分--------4分 ---------5分--------------------5分---------2分 ---------1分90551801802n r πππ∙==17.解:(1)∵0222=-++k x x 有两个不相等的实数根∴2242424120Δac (k )k b -=--=-+>= ∴k<3(2)∵若k 为正整数,∴k 的值是1,2当k=1时,则有0122=-+x x ,△=8,方程的根不是整数,不合题意,舍 当k=2时,则有022=+x x ,则有2,021-==x x ∴k 的值是218. 由题意可知:∠EAC=30°,∠DAE=45°,BC=AE=6 在Rt △AED 中,∵∠DEA=90°,∠DAE=45° ∴AE=DE=6在Rt △AEC 中,∵∠AEC=90°,∠CAE=30°∴AC CE 21=设CE=x ,则AC=2x 由勾股定理得,364∴∴22222=-=-x x AE CE AC∴3212==x∴CD=DE+CE=326+19. (1)证明:连接OC在⊙O 中,∵OA=OC ∴∠1=∠3∵直线l 与⊙O 相切于点C ∴OC ⊥l ∵AD ⊥l ∴OC ∥AD ∴∠3=∠2 ∴∠1=∠ 221---------3分---------4分---------5分∴AC 平分∠DAB (2)证明:连接BF ∵AB 是⊙O 的直径 ∴∠AFB=90° ∴∠2+∠ABF=90°∵AD ⊥l ∴∠ADE=90°∴∠1+∠AED=90° ∵AEFB 内接于圆 ∴∠AED=∠ABF∴∠1=∠2 即:∠DAE=∠BAF 20.解:(1)∵ DE 垂直平分AB ,∴ 15BD AD ==. ………………………………1分在Rt △ACD 中,90C ∠=︒,AD=15,4cos 5BDC ∠=,∴ 4cos 15125CD AD BDC =⋅∠=⨯=. 3sin1595BC AD BDC =⋅∠=⨯=.∴ 27AC CD AD =+=. ……………………………2分 在Rt △ABC 中,90C ∠=︒, ∴ 91tan 273BC A AC ===. …………………………3分 (2)在Rt △ACD 中,90C ∠=︒,∴ cos CD AD BDC =⋅∠.sin BC AD BDC =⋅∠.∴ cos AC CD AD AD BDC =+=⋅∠. ……………………………4分 在Rt △ABC 中,90C ∠=︒, ∴ sin sin tan cos 1cos BC AD BDC BDCA AC AD AD BDC BDC∠∠===+∠+∠. ……………5分21. (1)由题意,得:w = (x -10)y ………………………………2分=(x -10)(260x -+) 2280600x x =-+-………………………………3分202bx a=-=时,200=最大y …………………………………………5分 答:当销售单价定为20元时,每月可获得最大利润,最大利润是200元.22. 解:(1)连接OB 。
河南省19-20学年九年级上学期期末数学试卷(A卷) 及答案解析
河南省19-20学年九年级上学期期末数学试卷(A卷)一、选择题(本大题共10小题,共30.0分)1.如图所示的几何体的主视图是()A. B. C. D.2.一元二次方程x2−4x+5=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根3.如图,有一圆心角为120°,半径长为6的扇形,若将OA、OB重合后围成一圆锥侧面,那么圆锥的高是()A. 4√2B. 2√3C. 2√2D. 4√34.如图,正比例函数y1=k1x的图象与反比例函数y2=k2的图象相交于xA,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A. x<−2或x>2B. x<−2或0<x<2C. −2<x<0或0<x<2D. −2<x<0或x>25.如图,已知∠OBA=20°,且OC=AC,则∠BOC的度数是()A. 70°B. 80°C. 40°D. 60°6.以坐标原点为旋转中心,把点A(3,6)逆时针旋转90°,得到点B,则点B关于y轴对称的点的坐标为()A. (6,3)B. (−3,−6)C. (6,−3)D. (−6,3)7.如图,D,E分别是△ABC的边AB,AC上的点,DE//BC,若DE:BC=1:3,则S△AED:S△BCA的值为().A. 13B. 14C. 19D. 1168.已知二次函数y=−(x+ℎ)2,当x<−3时,y随x增大而增大,当x>0时,y随x增大而减小,且h满足ℎ2−2ℎ−3=0,则当x=0时,y的值为()A. −1B. 1C. −9D. 99.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若苗圃园的面积为72平方米,则x为()A. 12B. 10C. 15D. 810.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=kx(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A. 增大B. 减小C. 先减小后增大D. 先增大后减小二、填空题(本大题共5小题,共15.0分)11.如果关于x的方程x2−4x+2m=0有实数根,则m的取值范围是________。
2019年驻马店市初三数学上期末模拟试题(带答案)
2019年驻马店市初三数学上期末模拟试题(带答案)一、选择题1.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( )A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠32.如图,Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,分别以A 、C 为圆心,以2AC 的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分面积为( )A .(24−254π)cm 2 B .254πcm 2 C .(24−54π)cm 2 D .(24−256π)cm 2 3.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-4.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .12 5.抛物线2y x 2=-+的对称轴为A .x 2=B .x 0=C .y 2=D .y 0=6.下列诗句所描述的事件中,是不可能事件的是( )A .黄河入海流B .锄禾日当午C .大漠孤烟直D .手可摘星辰7.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A .①③B .②④C .②③D .③④8.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°9.若20a ab -=(b ≠0),则a ab +=( ) A .0 B .12 C .0或12 D .1或 210.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b ;④2a+b=0;⑤∆=b 2-4ac<0中,成立的式子有( )A.②④⑤B.②③⑤C.①②④D.①③④11.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是()A.36°B.54°C.72°D.108°12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点P,若CD=AP=8,则⊙O的直径为( )A.10B.8C.5D.3二、填空题13.从五个数1,2,3,4,5中随机抽出1个数,则数3被抽中的概率为_________.14.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.15.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是_____.16.已知二次函数,当x_______________时,随的增大而减小.17.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.18.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.19.△ABC中,∠A=90°,AB=AC,以A为圆心的圆切BC于点D,若BC=12cm,则⊙A的半径为_____cm.20.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个.三、解答题21.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.22.如图,在⊙O中,点C为»AB的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.23.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元. 24.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.25.解方程:2(x-3)2=x 2-9.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m 的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩ 解得:m>1且m ≠3.故答案为D.【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.2.A解析:A【解析】【分析】利用勾股定理得出AC 的长,再利用图中阴影部分的面积=S △ABC −S 扇形面积求出即可.【详解】解:在Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,∴10AC ===cm , 则2AC =5 cm , ∴S 阴影部分=S △ABC −S 扇形面积=2190525862423604ππ⨯⨯⨯-=-(cm 2), 故选:A .【点睛】本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt △ABC 的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.3.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 4.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.5.B解析:B【解析】【分析】根据顶点式的坐标特点,直接写出对称轴即可.【详解】解∵:抛物线y=-x2+2是顶点式,∴对称轴是直线x=0,即为y轴.故选:B.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.6.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D 、是不可能事件,故选项正确.故选D .【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.D解析:D【解析】【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断;②根据抛物线的对称轴方程即可判断;③根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;④根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断.【详解】解:①观察图象可知:a <0,b <0,c >0,∴abc >0,所以①错误;②∵对称轴为直线x =﹣1, 即﹣2b a=﹣1,解得b =2a ,即2a ﹣b =0, 所以②错误;③∵抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1,∴抛物线与x 轴的另一个交点为(﹣3,0),当a =﹣3时,y =0,即9a ﹣3b +c =0,所以③正确;∵m >n >0,∴m ﹣1>n ﹣1>﹣1,由x >﹣1时,y 随x 的增大而减小知x =m ﹣1时的函数值小于x =n ﹣1时的函数值,故④正确;故选:D .【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.8.D解析:D【解析】【分析】根据圆周角定理求出∠AOC ,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC =34°,∴∠AOC =2∠ADC =68°.∵OA =OC ,∴∠OAC =∠OCA 12=(180°﹣68°)=56°. 故选D .【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 9.C解析:C【解析】【分析】【详解】解:∵20a ab -= ()0b ≠,∴a(a-b)=0,∴a=0,b=a .当a=0时,原式=0;当b=a 时,原式=12,故选C 10.D解析:D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a >0,∵对称轴在y 轴的右侧,∴a ,b 异号,∴b <0,∵抛物线交y 轴于负半轴,∴c <0,∴abc >0,故①正确,∵x=1时,y <0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.11.C解析:C【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度,故选C.12.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【详解】连接OC,∵CD⊥AB,CD=8,∴PC=12CD=12×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP-OA=8-x,∴OC2=PC2+OP2,即x2=42+(8-x)2,解得x=5,∴⊙O的直径为10.故选A.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题13.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:1 5【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比. 14.8【解析】【分析】首先求出AB的坐标然后根据坐标求出ABCD的长再根据三角形面积公式计算即可【详解】解:∵y=x2﹣2x﹣3设y=0∴0=x2﹣2x﹣3解得:x1=3x2=﹣1即A点的坐标是(﹣10解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.15.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 16.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x <2时y随x的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.考点:二次函数的性质17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.18.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr解得:r=1故答案为:1【点睛】本题考查了圆锥解析:【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr1203180π⨯=,解得:r=1.故答案为:1.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.19.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC =6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】【分析】由切线性质知AD⊥BC,根据AB=AC可得BD=CD=AD=12BC=6.【详解】解:如图,连接AD,则AD⊥BC,∵AB=AC,∴BD=CD=AD=12BC=6,故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.20.2【解析】试题解析:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n)个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2 解析:2【解析】试题解析:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为34,∴63 64n=+,解得:n=2.故答案为2.三、解答题21.(1)作图见解析;(2)作图见解析;(3)(0,-2).【解析】试题分析:(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.试题解析:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).【考点】作图-旋转变换;作图-平移变换.22.(1)见解析;(2)83【解析】【分析】(1)连接OA,由»»CA CB,得CA=CB,根据题意可得出∠O=60°,从而得出=∠OAD=90°,则AD与⊙O相切;(2)由题意得OC⊥AB,Rt△BCE中,由三角函数得BE=43,即可得出AB的长.【详解】(1)证明:如图,连接OA,∵»»CA CB,=∴CA=CB,又∵∠ACB=120°,∴∠B=30°,∴∠O=2∠B=60°,∵∠D=∠B=30°,∴∠OAD=180°﹣(∠O+∠D)=90°,∴AD与⊙O相切;(2)∵∠O=60°,OA=OC,∴△OAC是等边三角形,∴∠ACO=60°,∵∠ACB=120°,∴∠ACB=2∠ACO,AC=BC,∴OC⊥AB,AB=2BE,∵CE=4,∠B=30°,∴BC=2CE=8,∴BE2CE∴AB=2BE=∴弦AB的长为.【点睛】本题考查了切线的判定和性质,垂径定理,解直角三角形,熟练掌握切线的判定和性质是解题的关键.23.10%;3327.5万元.【解析】试题分析:(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用2016年的经费×(1+增长率)即可.试题解析:(1)设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)(1+x)万元.则2500(1+x)(1+x)=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费3327.5万元.24.(1)50,25;(2)20【解析】【分析】(1)先将10.5万元化为105000元,设该乡镇有x名高中学生获得了资助,则该乡镇有2x 名初中学生受到资助,由题意得一元一次方程,求解即可;(2)以“2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元”为等量关系,列出方程,然后设a%=t,化为关于t的一元二次方程,求解出t,再根据a%=t,求得a即可.【详解】(1)10.5万元=105000元设该乡镇有x名高中学生获得了资助,则该乡镇有2x名初中学生受到资助,由题意得:20023006105000⨯+⨯=x xx=解得:25x=∴250∴该乡镇分别有50名初中学生和25名高中学生获得了资助.(2)由题意得:⨯⨯+⨯++⨯⨯+⨯+=5030%13%2001%2540%1%30012%10800a a a a∴1013%1%101%12%36a a a a ⨯+⨯++⨯+⨯+=设%a t =,则方程化为:22101431013236t t t t +++++=∴2253580t t +=﹣解得 1.6t =﹣(舍)或20%t =∴20a =.【点睛】本题主要考查了由实际问题抽象出一元二次方程和一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.x 1=3,x 2=9.【解析】试题分析:方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.试题解析:方程变形得:2(x ﹣3)2﹣(x+3)(x ﹣3)=0,分解因式得:(x ﹣3)(2x ﹣6﹣x ﹣3)=0,解得:x 1=3,x 2=9.考点:解一元二次方程-因式分解法.。
河南省驻马店地区2020版九年级上学期数学期末考试试卷B卷
河南省驻马店地区2020版九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019八上·深圳期末) 下列运算中正确的是()A .B .C .D .2. (2分)cos45°的值等于()A .B .C .D .3. (2分)下列二次根式中属于最简二次根式的是()A .B .C .D .4. (2分) (2018九上·扬州期末) 方程配方后,下列正确的是()A .B .C .D .5. (2分)下列各命题中正确的是()①方程x2=-4的根为x1=2,x2=-2②∵(x-3)2=2,∴x-3= ,即x=3± ③∵x2- =0,∴x=±4④在方程ax2+c=0中,当a>0,c>0时,一定无实根B . ②③C . ③④D . ②④6. (2分)(2017·绵阳模拟) 如图,在正方形ABCD中,点O为对角线AC的中点,过点o作射线OG、ON分别交AB,BC于点E,F,且∠EOF=90°,BO、EF交于点P.则下列结论中:⑴图形中全等的三角形只有两对;⑵正方形ABCD的面积等于四边形OEBF面积的4倍;⑶BE+BF= OA;⑷AE2+CF2=2OP•OB.正确的结论有()个.A . 1B . 2C . 3D . 47. (2分) (2017八下·重庆期末) 在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A . 都不变B . 都扩大5倍C . 正弦扩大5倍、余弦缩小5倍D . 不能确定8. (2分) (2017九上·杭州月考) 已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于 x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是()A . ①②B . ①③C . ②③④二、填空题 (共6题;共7分)9. (1分)计算的结果是________.10. (1分) (2017九上·钦州期末) 在Rt△ABC中,∠C=90°,AC=BC,那么sinA=________.11. (1分)(2017·薛城模拟) 20170+2|1﹣sin30°|﹣()﹣1+ =________.12. (1分) (2018九上·长兴月考) 已知两个相似三角形的对应边之比为2,则它们的周长之比是________.13. (2分)(2018·青浦模拟) 如果两个相似三角形周长的比是2:3,那么它们面积的比是________.14. (1分)已知⊙P的半径为1,圆心P在抛物线上运动,当⊙P与x轴相切时,圆心P的坐标为________ .三、解答题 (共10题;共60分)15. (5分) (2020八下·绍兴月考) 解方程:(1)(x+1)(x+2)=2(x+2)(2)16. (5分)(2018·河源模拟) 计算:17. (5分)转盘被均匀分为37格,分别标以0~36这37个数字,且所有写有偶数(0除外)的格子都涂成了红色,写有奇数的格子都涂成了蓝色,而0所在的格子被涂成了绿色.游戏者用此转盘(如图)做游戏,每次游戏游戏者交游戏费1元,游戏时,游戏者先押一个数字,然后快速地转动转盘,若转盘停止转动时,指针所指格子中的数字恰为游戏者所押数字,则游戏者将获得奖励36元,该游戏对游戏者有利吗?转动多次后,游戏者平均每次将获得或损失多少元?18. (11分) (2018八上·青山期中) 如图1,点A(2,1),点A与点B关于y轴对称,AC∥y轴,且AC=3,连接BC交y轴于点D.(1)点B的坐标为________,点C的坐标为________;(2)如图2,连接OC,OC平分∠ACB,求证:OB⊥OC;(3)如图3,在(2)的条件下,点P为OC上一点,且∠PAC=45°,求点P的坐标.19. (10分) (2016八上·吴江期中) 解方程(1) x2﹣6x﹣18=0(配方法)(2) 3(x﹣2)2=x(x﹣2)(3) x2+2x﹣5=0(4)(2x﹣3)2﹣2(2x﹣3)﹣3=0.20. (5分)已知三角函数值,可以先利用计算器求出锐角α与β,从而比较它们的大小.你能否不用计算器来比较以下的锐角α与β的大小?如果能,说说你的想法.(1)cosα=,tanβ=;(2)sinα=0.456 7,cosβ=0.567 8.21. (5分)关于x的方程x2+mx+m=0的两个根的平方和为3,求m的值.22. (10分)(2016·遵义) 如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD 分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2 ,∠AEF=45°,求矩形ABCD的面积.23. (2分)(2016·梅州) 如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b=________,c=________,点B的坐标为________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.24. (2分) (2018八上·顺义期末) 已知:如图,在中,.(1)求作:的角平分线(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若,,求的长.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共60分)15-1、15-2、16-1、17-1、18-1、18-2、18-3、19-1、19-2、19-3、19-4、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、答案:略。
驻马店地区2020年(春秋版)九年级上学期数学期末考试试卷(I)卷
驻马店地区2020年(春秋版)九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2016·嘉兴) 在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A .B .C .D .2. (2分) (2019八上·莎车期末) 若A(-3,2)关于原点对称的点是B,B关于y轴对称的点是C,则点C 的坐标是()A . (3,2)B . (-3,-2)C . (3,-2)D . (-2,3)3. (2分)(2019·芜湖模拟) 一元二次方程kx2+4x+1=0有两个实数根,则k的取值范围是()A . k>4B . k≥4C . k≤4D . k≤4且k≠04. (2分)已知相交两圆的半径分别为4和7,则它们的圆心距可能是()A . 2B . 3C . 6D . 115. (2分)(2020·莲湖模拟) 如图,在△ABC 中,BC=6,∠A=60°.若⊙O 是△ABC 的外接圆,则⊙O 的半径长为()A .B .C .D .6. (2分)(2020·乾县模拟) 如图,内接于,连接并延长交于点,若,则的度数是()A .B .C .D .7. (2分)(2020·衡阳) 反比例函数经过点,则下列说法错误的是()A .B . 函数图象分布在第一、三象限C . 当时,随的增大而增大D . 当时,随的增大而减小8. (2分) (2019八下·慈溪期中) 在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是,设金色纸边的宽为xcm,那么x满足的方程是A .B .C .D .9. (2分)(2017·东莞模拟) 如图是小刘做的一个风筝支架示意图,已知BC∥PQ,AB:AP=2:5,AQ=20cm,则CQ的长是()A . 8cmB . 12cmC . 30cmD . 50cm10. (2分)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1 ,作正方形A1B1C1C,延长C1B1交x轴于点A2 ,作正方形A2B2C2C1 ,…按这样的规律进行下去,第2012个正方形的面积为()A . 5×2010B . 5×2010C . 5×2012D . 5×4022二、填空题 (共5题;共5分)11. (1分)把方程整理后配方成的形式是________.12. (1分) (2019九上·丹东期末) 反比例函数y=的图象,当x>0时,y随x的增大而增大,则k 的取值范围是________.13. (1分)如图,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1= π,S2=2π,则S3=________.14. (1分)(2019·无锡) 已知圆锥的母线长为5cm,侧面积为15π ,则这个圆锥的底面圆半径为________cm.15. (1分)如图,在中,,点是的中点,作,垂足在线段上,连接,则下列结论中一定成立的是________.(把所有正确结论的序号都填在直线上)① ;② ;③ ;④ .三、解答题 (共8题;共48分)16. (2分) (2018七上·阜宁期末) 在如图所示的方格中,每个小正方形的边长为1,点、、在方格纸中小正方形的顶点上。
九年级上册驻马店数学期末试卷测试卷(解析版)
九年级上册驻马店数学期末试卷测试卷(解析版)一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)2.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm4.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 725.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.6.抛物线223y x x =++与y 轴的交点为( ) A .(0,2)B .(2,0)C .(0,3)D .(3,0)7.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:1 8.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020 B .﹣2020 C .2021 D .﹣2021 9.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( )A .5πB .10πC .20πD .40π10.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月11.如图所示的网格是正方形网格,则sin A 的值为( )A .12B .2 C .35D .4512.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④二、填空题13.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.14.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 15.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.16.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________17.二次函数y=x 2−4x+5的图象的顶点坐标为 .18.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.19.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .20.2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 21.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .22.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)23.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.24.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题25.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.26.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?27.某校举行秋季运动会,甲、乙两人报名参加100 m 比赛,预赛分A 、B 、C 三组进行,运动员通过抽签决定分组. (1)甲分到A 组的概率为 ; (2)求甲、乙恰好分到同一组的概率.28.如图,抛物线y=-x 2+bx+3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0).过点A 作直线y=x+c 与抛物线交于点D ,动点P 在直线y=x+c 上,从点A 出发,以每秒2个单位长度的速度向点D 运动,过点P 作直线PQ ∥y 轴,与抛物线交于点Q ,设运动时间为t (s ).(1)直接写出b ,c 的值及点D 的坐标;(2)点 E 是抛物线上一动点,且位于第四象限,当△CBE 的面积为6时,求出点E 的坐标;(3)在线段PQ 最长的条件下,点M 在直线PQ 上运动,点N 在x 轴上运动,当以点D 、M 、N 为顶点的三角形为等腰直角三角形时,请求出此时点N 的坐标.29.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队? 30.解下列方程: (1)()2239x += (2)2430x x --=31.如图,已知⊙O 的直径AC 与弦BD 相交于点F ,点E 是DB 延长线上的一点,∠EAB=∠ADB .(1)求证:AE 是⊙O 的切线;(2)已知点B 是EF 的中点,求证:△EAF ∽△CBA ; (3)已知AF=4,CF=2,在(2)的条件下,求AE 的长.32.如图,点C 是线段AB 上的任意一点(C 点不与A B 、点重合),分别以AC BC 、为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证: DB AE =; (2)求证: //MN AB ;(3)若AB 的长为12cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .2.D解析:D 【解析】【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.B解析:B 【解析】 【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案. 【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M , ∴DM=12CD=4cm ,OM=R-2, 在RT △OMD 中,OD²=DM²+OM²即R²=4²+(R-2)², 解得:R=5,∴直径AB 的长为:2×5=10cm . 故选B . 【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.4.B解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点,∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDS S =四边形, ∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B. 【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.5.A解析:A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0, 解得:m≠1, 故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.6.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.7.B解析:B【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选B.8.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键9.B解析:B 【解析】 【分析】利用圆锥面积=Rr 计算. 【详解】Rr =2510,故选:B. 【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.10.D解析:D 【解析】 【分析】 【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产. 故选D11.C解析:C 【解析】 【分析】设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,解直角三角形即可得到结论. 【详解】解:设正方形网格中的小正方形的边长为1, 连接格点BC ,AD ,过C 作CE ⊥AB 于E ,∵AC BC ===BC =AD =,∵S △ABC =12AB •CE =12BC •AD ,∴CE =22BC AD AB ==,∴35CE A sin CAB C ∠===,故选:C .【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.12.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误. ②正确.连接OD .GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD=,∴CD AE=,CAD ACE∴∠=∠,∴=,PC PAAB是直径,∴∠=︒,ACQ90∠+∠=︒,∴∠+∠=︒,90CAP CQPACP QCP90∴∠=∠,PCQ PQC∴==,PC PQ PAACQ∠=︒,90∆的外心.故③正确.∴点P是ACQ④正确.连接BD.∠=∠=︒,PAF BAD90AFP ADB∠=∠,∴∆∆∽,APF ABD∴AP AF=,AB AD∴⋅=⋅,AP AD AF AB∠=∠=︒,AFC ACBCAF BAC∠=∠,90∴∆∆∽,ACF ABC可得2=,AC AF AB∠=∠,ACQ ACB∠=∠,CAQ ABC∽,可得2∴∆∆CAQ CBA=⋅,AC CQ CB∴⋅=⋅.故④正确,AP AD CQ CB故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.二、填空题13.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.14.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.15.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 16.【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵C解析:3 2【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵CF是⊙O的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.17.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 18.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接D 解析:45【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED ∽△BDF ,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC 是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED ∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.19.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 20.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机解析:3 5【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35.,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键. 21.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.22.>【解析】【分析】根据题意直接利用二次函数的图象与a的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上, 所以有a >0.故填>.【点睛】 本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 23.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可. 由题意得,解得 考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x 轴只有一个公共点;时,抛物线与x 轴没有公共点. 24.或【解析】【分析】过A 作AD 垂直于x 轴,设A 点坐标为(m ,n ),则根据A 在y=x 上得m=n ,由AC 长的最大值为,可知AC 过圆心B 交⊙B 于C ,进而可知AB=5,在Rt △ADB 中,AD=m ,BD=解析:9y x =或16y x= 【解析】【分析】过A 作AD 垂直于x 轴,设A 点坐标为(m ,n ),则根据A 在y=x 上得m=n ,由AC 长的最大值为7,可知AC 过圆心B 交⊙B 于C ,进而可知AB=5,在Rt △ADB 中,AD=m ,BD=7-m ,根据勾股定理列方程即可求出m 的值,进而可得A 点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.三、解答题25.(1)y=(x-1)2-4;(2)点G坐标为(3.6,2.76),S△FHG=6.348;(3)m=0.6,四边形CDPQ为平行四边形,理由见解析.【解析】【分析】(1)利用顶点式求解即可,(2)将G点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH,交x轴于点R,由平行线的性质得证明△AQR∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m中,即可证明四边形CDPQ为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y轴交于点E(0,3-),顶点为C(1,4-),∴y=a(x-1)2-4,代入E(0,3-),解得a=1,2(1)4y x=--(223y x x=--)(2)设G[a,0.6(a+1)],代入函数关系式,得,2(1)40.6(1)a a --=+,解得a 1=3.6,a 2=-1(舍去),所以点G 坐标为(3.6,2.76).S △FHG =6.348(3)y=mx+m=m (x+1),当x=-1时,y=0,所以直线y=mx+m延长QH ,交x 轴于点R ,由平行线的性质得,QR ⊥x 轴.因为FH ∥x 轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR ∽△PQH, 所以QR QH AR PH= =0.6, 设Q[n,0.6(n+1)],代入y=mx+m 中,mn+m=0.6(n+1),m (n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y 2=(x-1-m )2+0.6m-4,所以点D 由点C 向右平移m 个单位,再向上平移0.6m 个单位所得,过D 作y 轴的平行线,交x 轴与K,再作CT ⊥KD,交KD 延长线与T, 所以KD QR SK AR==0.6, 所以tan ∠KSD=tan ∠QAR ,所以∠KSD=∠QAR ,所以AQ ∥CS ,即CD ∥PQ.因为AQ ∥CS ,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD ,所以四边形CDPQ 为平行四边形.【点睛】本题考查了待定系数法求解二次函数解析式,二次函数的图象和性质,一次函数与二次函数的交点问题,相似三角形的判定和性质,综合性强,难度较大,掌握待定系数法是求解(1)的关键,求出G点坐标是求解(2)的关键,证明三角形的相似并理解题目中准黄金直角三角形的概念是求解(3)的关键.26.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x,根据题意得,5000(1+x)2=7200解得,x1=0.2=20%,x2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b(a、b、x、n分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.27.(1)13;(2)13【解析】【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)13(2)甲乙两人抽签分组所有可能出现的结果有:(A ,A )、(A ,B )、(A ,C )、(B ,A )、(B ,B )、(B ,C )、(C ,A )、(C ,B )、(C ,C )共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A )的结果有3种,所以P (A )=13. 【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.28.(1)b=2,c=1,D (2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【解析】【分析】(1)将点A 分别代入y=-x 2+bx+3,y=x+c 中求出b 、c 的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D 的坐标;(2))过点E 作EF ⊥y 轴,设E (x ,-x 2+2x+3),先求出点B 、C 的坐标,再利用面积加减关系表示出△CBE 的面积,即可求出点E 的坐标.(3)分别以点D 、M 、N 为直角顶点讨论△MND 是等腰直角三角形时点N 的坐标.【详解】(1)将A (-1,0)代入y=-x 2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x 2+2x+3,将点A 代入y=x+c 中,得-1+c=0,解得c=1,∴y=x+1,解2123y x y x x =+⎧⎨=-++⎩,解得1123x y =⎧⎨=⎩,2210x y =-⎧⎨=⎩(舍去), ∴D (2,3).∴b= 2 ,c= 1 ,D (2,3).(2)过点E 作EF⊥y 轴,设E (x ,-x 2+2x+3),当y=-x 2+2x+3中y=0时,得-x 2+2x+3=0,解得x 1=3,x 2=-1(舍去),∴B(3,0).∵C(0,3),∴CBE CBO CFE S S S梯形OFEB -S , ∴22111633(3)(23)(2)222x x x x x x , 解得x 1=4,x 2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直线AD 的解析式为y=x+1,设P (m ,m+1),则Q (m ,-m 2+2m+3),∴线段PQ 的长度h=-m 2+2m+3-(m+1)=219()24m, ∴当12m ==0.5,线段PQ 有最大值. 当∠D 是直角时,不存在△MND 是等腰直角三角形的情形;当∠M 是直角时,如图1,点M 在线段DN 的垂直平分线上,此时N 1(2,0);当∠M 是直角时,如图2,作DE ⊥x 轴,M 2E ⊥HE ,N 2H ⊥HE,∴∠H=∠E=90︒,∵△M 2N 2D 是等腰直角三角形,∴N 2M 2=M 2D,∠N 2M 2D=90︒,∵∠N 2M 2H=∠M 2DE,∴△N 2M 2H ≌△M 2DE,∴N 2H=M 2E=2-0.5=1.5,M 2H=DE ,∴E(2,-1.5),∴M 2H=DE=3+1.5=4.5,∴ON 2=4.5-0.5=4,∴N 2(-4,0);当∠N 是直角时,如图3,作DE ⊥x 轴,∴∠N 3HM 3=∠DEN 3=90︒,∵△M 3N 3D 是等腰直角三角形,∴N 3M 3=N 3D,∠DN 3M 3=90︒,∵∠DN 3E=∠N 3M 3H ,∴△DN 3E ≌△N 3M 3H ,∴N 3H=DE=3,∴N 3O=3-0.5=2.5,∴N 3(-2.5,0);当∠N 是直角时,如图4,作DE ⊥x 轴,∴∠N 4HM 4=∠DEN 4=90︒,∵△M 4N 4D 是等腰直角三角形,∴N 4M 4=N 4D,∠DN 4M 4=90︒,∵∠DN 4E=∠N 4M 4H ,∴△DN 4E ≌△N 4M 4H ,∴N 4H=DE=3,∴N 4O=3+0.5=3.5,∴N 4(3.5,0);综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N 的坐标.29.(1)9,1;(2)乙【解析】【分析】(1)根据平均数与方差的定义即可求解;(2)根据方差的性质即可判断乙队整齐.【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9 方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差∴成绩较为整齐的是乙队.【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质.30.(1)13x =-,20x =;(2)12x =,22x =【解析】【分析】(1)直接用开平方求解即可.(2)用配方法解方程即可.【详解】(1)解:由()2239x +=得233x +=±即233x +=-或233+=x ∴26x =-,或20x =解得13x =-,20x =(2)解:243x x -=∴24434x x -+=+∴2(2)7x -=∴2x -=∴12x =,22x =.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.31.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)连接CD ,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC ,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线;(2)连接BC ,根据直径的性质得出∠ABC=90°,根据B 是EF 的中点得出AB=EF ,即∠BAC=∠AFE ,则得出三角形相似;(3)根据三角形相似得出AB AC AF EF =,根据AF 和CF 的长度得出AC 的长度,然后根据EF=2AB 代入AB AC AF EF=求出AB 和EF 的长度,最后根据Rt △AEF 的勾股定理求出AE 的长度.【详解】解:(1)如答图1,连接CD ,∵AC 是⊙O 的直径,∴∠ADC=90°∴∠ADB+∠EDC=90°∵∠BAC=∠EDC ,∠EAB=∠ADB ,∴∠BAC=∠EAB+∠BAC=90°∴EA 是⊙O 的切线;(2)如答图2,连接BC ,∵AC 是⊙O 的直径,∴∠ABC=90°. ∴∠CBA=∠ABC=90°∵B 是EF 的中点,∴在Rt △EAF 中,AB=BF∴∠BAC=∠AFE∴△EAF∽△CBA.(3)∵△EAF∽△CBA,∴AB ACAF EF=∵AF=4,CF=2,∴AC=6,EF=2AB.∴642ABAB=,解得AB=23∴EF=43∴AE=2222-=(43)4=42EF AF-.【点睛】本题考查切线的判定与性质;三角形相似的判定与性质.32.(1)见解析;(2) 见解析;(3) 存在,请确定C点的位置见解析,MN=3.【解析】【分析】(1)根据题意证明△DCB≌△ACE即可得出结论;(2)由题中条件可得△ACE≌△DCB,进而得出△ACM≌△DCN,即CM=CN,△MCN 是等边三角形,即可得出结论;(3)可先假设其存在,设AC=x,MN=y,进而由平行线分线段成比例即可得出结论.【详解】解:(1)∵△ACD与△BCE是等边三角形,∴AC=CD,CE=BC,∴∠ACE=∠BCD,在△ACE与△DCB中,AC CDACE BCDCE BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△DCB(SAS),∴DB=AE;(2)∵△ACE≌△DCB,∴∠CAE=∠BDC,在△ACM与△DCN中,CAE BDC AC CDACM DCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ACM ≌△DCN ,∴CM=CN ,又∵∠MCN=180°-60°-60°=60°,∴△MCN 是等边三角形,∴∠MNC=∠NCB=60°即MN ∥AB ;(3)解:假设符合条件的点C 存在,设AC=x ,MN=y ,∵MN ∥AB , ∴MN EN AC EC =, 即1212y x y x x--=-, ()2211631212y x x x =-+=--+, 当x=6时,y max =3cm ,即点C 在点A 右侧6cm 处,且MN=3.【点睛】本题主要考查了全等三角形的判定及性质以及平行线分线段成比例的性质和二次函数问题,能够将所学知识联系起来,从而熟练求解.。
河南省驻马店地区2020版九年级上学期期末数学试卷A卷
河南省驻马店地区2020版九年级上学期期末数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016九上·无锡期末) 要使式子有意义,则x的取值范围是()A . x>0B . x≥-2C . x≥2D . x≤22. (2分) (2018九上·渠县期中) 下列各组线段中是成比例线段的是()A . 1cm,2cm,3cm,4cmB . 1cm,2cm,2cm,4cmC . 3cm,5cm,9cm,13cmD . 1cm,2cm,2cm,3cm3. (2分)(2020·河池模拟) 若关于x的一元二次方程有实数根,则整数a的最大值是()A . 4B . 5C . 6D . 74. (2分) (2020九上·镇平期末) 如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB′C′D′的位置,B′C′与CD相交于点M,则M的坐标为()A . (1,)B . (﹣1,)C . (1,)D . (﹣1,)5. (2分)下列命题中不成立的是()A . 矩形的对角线相等B . 三边对应相等的两个三角形全等C . 两个相似三角形面积的比等于其相似比的平方D . 一组对边平行,另一组对边相等的四边形一定是平行四边形6. (2分) (2017九上·温江期末) 二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A . 抛物线开口向下B . 抛物线经过点(2,3)C . 抛物线的对称轴是直线x=1D . 抛物线与x轴有两个交点7. (2分)(2018·白银) 如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A . ①②④B . ①②⑤C . ②③④D . ③④⑤8. (2分)(2017·双柏模拟) 下列所述图形中,既是中心对称图形,又是轴对称图形的是()A . 平行四边形B . 菱形C . 正三角形D . 正五边形9. (2分)(2016·鄂州) 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A . 5B . 7C . 8D .10. (2分) (2015八上·南山期末) 如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D 重合,OD与BC交于点E,则点D的坐标是()A . (4,8)B . (5,8)C . (,)D . (,)11. (2分) (2016九上·栖霞期末) 如图,在△ABC中,∠C=90°,AC=2,BC=1,则cosA的值是()A .B .C .D .12. (2分)(2016·资阳) 在Rt△ABC中,∠ACB=90°,AC=2 ,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A . 2 ﹣πB . 4 ﹣πC . 2 ﹣πD . π二、填空题 (共4题;共8分)13. (5分) (2018九上·利辛期中) 已知线段a、b、c满足,且,求的值.14. (1分)直角三角形两直角边分别为a、b,斜边为c,已知:a=6,b=8,则c=________.15. (1分) (2020九下·重庆月考) 计算: -()-1-3tan 30°+|-2|=________。
驻马店地区2020年九年级上学期数学期末考试试卷(I)卷
驻马店地区2020年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·涪城月考) 若,则()A .B .C . -2或2D .2. (2分) (2019九上·台州期中) 一元二次方程3x2-6x+4=0根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根3. (2分) (2019九上·湖州月考) 将二次函数y=2x2的图象向右平移4个单位,再向上平移5个单位后,所得图象的函数表达式是()A . y=2 -5B . y=2 +5C . y=2 +5D . y=2 -54. (2分)一只蚂蚁在如图所示的树枝上寻找食物,蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是()A .B .C .D .5. (2分) (2017九下·杭州开学考) 如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A . 2.5B . 2.8C . 3D . 3.26. (2分) (2016九上·温州期末) 如图,已知直线l∥m∥n,直线a分别与l,m,n交于点A,B,C,过点B作直线b交直线l,n于点D,E,若AB=2,BC=1,BD=3,则BE的长为()A . 4B . 2C .D .7. (2分) (2020八下·重庆期末) 在平行四边形ABCD中,若∠B=135°,则∠D=()A . 45°B . 55°C . 135°D . 145°8. (2分)如图所示,河堤横断面迎水坡AB的坡角是30°,堤高BC=5m,则坡面AB的长度是()A . 10mB . 10mC . 15mD . 5m9. (2分)函数y1=x(x≥0),y2=(x>0)的图象如图所示,则结论①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随x的增大而增大,y2随x的增大而减小.其中正确的结论是()A . ①②B . ①③C . ①③④D . ①②③④10. (2分)(2016·深圳模拟) 如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG= CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A . 只有①②B . 只有①③C . 只有②③D . ①②③二、填空题 (共6题;共6分)11. (1分) (2019九上·襄阳期末) 方程(x+3)(x+2)=x+3的解是________.12. (1分) (2018九上·新乡月考) 已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是________。
2020-2021学年河南省驻马店市上蔡县九年级上学期期末考试数学试卷及答案解析
第 1 页 共 23 页2020-2021学年河南省驻马店市上蔡县九年级上学期期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知a +b =﹣5,ab =1,则√a b +√b a 的值是( )A .﹣1B .0C .1D .5 2.(3分)若a 是方程x 2﹣x ﹣1=0的一个根,则﹣a 3+2a +2020的值为( )A .2020B .﹣2020C .2019D .﹣20193.(3分)若△ABC 与△A 1B 1C 1相似且对应中线之比为2:5,则周长之比和面积比分别是( )A .2:5,4:5B .2:5,4:25C .4:25,4:25D .4:25,2:54.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是l ,△ABC 的顶点都在这些小正方形的顶点上,则cos ∠BAC 的值为( )A .43B .34C .35D .45 5.(3分)已知点A (﹣2,a ),B (2,b ),C (4,c )是抛物线y =x 2﹣4x 上的三点,则a ,b ,c 的大小关系为( )A .b >c >aB .b >a >cC .c >a >bD .a >c >b6.(3分)已知二次函数y =x 2﹣4x +5的顶点坐标为( )A .(2,1)B .(﹣2,﹣1)C .(2,﹣1)D .(﹣2,1)7.(3分)某超市为了吸引顾客,设计了一种返现促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本超市一次性消费满200元,就可以在箱子里一次性摸出两个小球,两球数字之和记为返现金额.某顾客刚好消费200元,则该顾客所获得返现金额低于30元的概率是( )A .34B .23C .12D .13 8.(3分)如图,AB 是⊙O 直径,若∠AOC =100°,则∠D 的度数是( )。
河南省驻马店地区2020年(春秋版)九年级上学期数学期末考试试卷D卷
河南省驻马店地区2020年(春秋版)九年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)小明同学拿着一个如图所示的三角形木架在太阳光下玩,他不断变换三角形木架的位置,他说他发现了三角形木架在地上出现过的影子有四种:①点;②线段;③三角形;④四边形.你认为小明说法中正确的个数有()A . 4个B . 3个C . 2个D . 1个2. (2分) (2019九上·栾城期中) 如图,△ ∽△ ,若,,,则的长是()A . 2B . 3C . 4D . 53. (2分)(2017·荔湾模拟) 下列说法不正确的是()A . 平行四边形对角相等B . 对角线互相垂直的矩形是正方形C . 一组对边相等另一组对边平行的四边形是平行四边形D . 菱形的对角线互相垂直平分4. (2分) (2019八下·瑞安期中) 用配方法解一元二次方程,将化成的形式,则、的值分别是()A . −3,11B . 3,11C . −3,7D . 3,75. (2分)下列命题中,正确的是()A . 四边相等的四边形是正方形B . 四角相等的四边形是正方形C . 对角线垂直且相等的四边形是正方形D . 对角线相等的菱形是正方形6. (2分)历史上,雅各布.伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在0.5左右摆动,那么投掷一枚硬币10次,下列说法正确的是()A . “正面向上”必会出现5次B . “反面向上”必会出现5次C . “正面向上”可能不出现D . “正面向上”与“反面向上”出现的次数必定一样,但不一定是5次7. (2分) (2020九上·遂宁期末) 矩形ABCD中,边长AB=4,边BC=2,M、N分别是边BC、CD上的两个动点,且始终保持AM⊥MN.则CN的最大为()A . 1B .C .D . 28. (2分) (2016九下·苏州期中) 反比例函数y= 的图象如图,给出以下结论:①常数k<1;②在每一个象限内,y随x的增大而减小;③若点A(﹣1,a)和A′(1,b)都在该函数的图象上,则a+b=0;④若点B(﹣2,h)、C(,m)、D(3,n)在该函数的图象上,则h<m<n.其中正确的结论是()A . ①②B . ②③C . ③④D . ②④9. (2分)某商场将进价为元∕件的玩具以元∕件的价格出售时,每天可售出件,经调查当单价每涨元时,每天少售出件.若商场想每天获得元利润,则每件玩具应涨多少元?若设每件玩具涨元,则下列说法错误的是()A . 涨价后每件玩具的售价是元B . 涨价后每天少售出玩具的数量是件C . 涨价后每天销售玩具的数量是件D . 可列方程为10. (2分)(2013·贵港) 如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()A . y=xB . y=x+1C . y=x+2D . y=x+3二、填空题 (共5题;共6分)11. (1分) (2016九上·武胜期中) 等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为________.12. (1分)底面直径和高都是1的圆柱侧面积为________.13. (1分) (2016九上·桐乡期中) 从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是________.14. (1分)(2017·南关模拟) 如图,反比例函数y= (x>0)的图象经过矩形OABC的边AB的中点D,若矩形OABC的面积为8,则k=________.15. (2分)(2017·齐齐哈尔) 矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件________,使其成为正方形(只填一个即可)三、解答题 (共8题;共76分)16. (10分) (2018九上·台州期末) 计算和解方程:(1) sin 30°+sin 60°-3tan30°.(2)17. (10分)(2019·北京模拟) 关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)当k=4时,求方程的根.18. (10分)(2018·黄梅模拟) 某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有________人,在扇形统计图中,“乒乓球”的百分比为________%,如果学校有800名学生,估计全校学生中有________人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.19. (5分)如图,已知梯形上下底边的长分别为36和60,高为32,这个梯形两腰的延长线的交点到两底的距离分别是多少?20. (10分) (2018九上·深圳期末) 如图,△ABC中,∠BCA=90°,CD 是边 AB上的中线,分别过点 C ,D 作 BA , BC的平行线交于点E ,且 DE 交 AC 于点 O ,连接 AE .(1)求证:四边形 ADCE 是菱形;(2)若AC=2DE,求sin∠CDB的值.21. (10分) (2019九下·江都月考) 某水果店经销一种高档水果,售价为每千克50元(1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?22. (10分)(2017·天津模拟) 如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y= x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(________、________),BK的长是________,CK的长是________;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M 的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.23. (11分) (2019九上·江汉月考) 如图,△ABC中,AB=8,AC=5,BC=7,点D在AB上一动点,线段CD 绕点C逆时针旋转60°得到线段CE,AE的最小值为________参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共76分)16-1、16-2、17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、第11 页共11 页。
九年级上册驻马店数学期末试卷测试卷(解析版)
九年级上册驻马店数学期末试卷测试卷(解析版)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( ) A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=03.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .34.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76° 5.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A .9︰16B .3︰4C .9︰4D .3︰16 6.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-27.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( )A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=8.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80° B .40°C .50°D .20°9.如图,∠1=∠2,要使△ABC ∽△ADE ,只需要添加一个条件即可,这个条件不可能是( )A .∠B =∠DB .∠C =∠EC .AD ABAE AC= D .AC BCAE DE= 10.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40 B .60 C .80 D .10011.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm 12.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( )A .a <2B .a >2C .a <﹣2D .a >﹣2二、填空题13.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____. 14.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm . 15.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.16.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 17.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 .18.抛物线21(5)33y x =--+的顶点坐标是_______.19.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.20.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____. 21.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…22.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.23.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.24.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题25.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t (件)与每件的销售价x (元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y (元)与每件售价x (元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少? 26.已知二次函数218y x bx c =++(b 、c 为常数)的图像经过点()0,1-和点()4,1A . (1)求b 、c 的值;(2)如图1,点()10,C m 在抛物线上,点M 是y 轴上的一个动点,过点M 平行于x 轴的直线l 平分AMC ∠,求点M 的坐标;(3)如图2,在(2)的条件下,点P 是抛物线上的一动点,以P 为圆心、PM 为半径的圆与x 轴相交于E 、F 两点,若PEF ∆的面积为26,请直接写出点P 的坐标. 27.如图,在△ABC 中,AB=AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点,取EF 中点G ,连接DG 并延长交AB 于点M ,延长EF 交AC 于点N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年度第一学期期末素质调研试卷
九年级数学
一、选择题(每小题3分,共计30分)
1.下列运算正确的是( )
A. =
B. =
C. =
D.
2=- 2.若关于x 的一元二次方程 2 3 0x x a -+=的一个根是1,则a 的值为( )
A. -2
B. 1
C. 2
D. 0
3.如图,已知~ABC ADB ∆∆,点D 是AC 中点,4AC =,则AB 的长为( )
A. 2
B. 4
C.
D. 4.如图,在54⨯正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为( )
A. 43
B. 34
C. 35
D. 45 5.已知点()()121,,2,A y B y 在抛物线2
(1)2y x =-++上,则下列结论正确的是( ) A. 122y y >>
B. 212y y >>
C. 122y y >>
D. 212y y >> 6.二次函数 2 24y x x =++的图象的顶点坐标是( )
A. () 1,3
B. () 1,3-
C. () 1,3-
D. () 1
,3--
的
7.上蔡县是古蔡国所在地,有着悠久的历史,拥有很多重点古迹.某中学九年级历史爱好者小组成员小华和小玲两人计划在寒假期间从“蔡国故城、白圭庙、伏羲画卦亭”三个古迹景点随机选择其中一个去 参观,两人恰好选择同一古迹 景点的概率是( ) A. 13 B. 23 C. 19 D. 29
8.如图,在O e 中,»AB 所对
圆周角050ACB ∠=,若P 为»AB 上一点,055AOP ∠=,则POB ∠的度数为
( )
A. 30°
B. 45°
C. 55°
D. 60° 9.如图,AB 是O e 的直径,C ,D 是O e 上的两点,且BC 平分ABD ∠,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是( )
A OC BD P
B. AD OC ⊥
C. CEF BED ∆≅∆
D. AF FD =
10.如图,在Rt OAB V 中,OA AB =,90OAB ∠=︒,点P 从点O 沿边OA ,AB 匀速运动到点B ,过点P 作PC OB ⊥交OB 于点G
,线段AB =OC x =,POC S y =△,则能够反映y 与x 之间函数关系的图象大致是( ) 的.
A. B. C. D.
二、填空题(每小题3分,共计15分)
60 ︒=________.
12.已知221a b a b
-=+,若a b ,是一元二次方程250x x k ++=的两个实数根,则k 的值是___________. 13.在▱ABCD 中,
E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于
F ,则AEF CBF S S ∆∆:是_______.
14.如图,AOB ∆三个顶点的坐标分别为()()8,0, 0,0(8, )6A O B -,, 点M 为OB 的中点.以点O 为位似中心,把或AOB ∆缩小为原来的12
,得到''A OB ∆,点'M 为'OB 的中点,则'MM 的长为________.
15.在平面直角坐标系中, 抛物线2y x =如图所示.已知A 点的坐标为()1,1,过点A 作1//AA x 轴交抛物
线于点1A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于3A 点,过点3A 作34//A A OA 交抛物线于点4A …若依次进行下去,则点2019A 的坐标为________.
三、解答题(共计75分)
16.先化简再求值:22224()2442
x x x x x x x x +---÷--+-其中4tan452cos30x =︒+︒. 17.只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+ 13. (1)若从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是_______;
(2)若从7, 11, 19, 23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,
18.如图,点A B C ,,在O e 上,//BE AC ,
交O e 于点E ,点D 为射线BC 上一动点, AC 平分BAD ∠,连接AC .
(1)求证://AD CE ;
(2)连接EA ,若3BC =,则当CD =_______时,四边形EBCA 是矩形.
19.已知关于x 的一元二次方程()22
2110k x k x +-+=. (1)若方程有实数根,求k 的取值范围;
(2)若方程的两个实数根的倒数的平方和等于14,求k 的值.
20.知识改变世界,科技改变生活.导航装备的不断更新极大地方便了人们的出行.中国北斗导航已经全球组网,它已经走进了人们的日常生活.如图,某校周末组织学生利用导航到某地(用A 表示)开展社会实践活动,车辆到达B 地后,发现A 地恰好在B 地的正北方向,且距离B 地8千米.导航显示车辆应沿北偏东60°方向行驶至C 地,再沿北偏西45°方向行驶一段距离才能到达A 地.求A C 、两地间的距离(结果精确到0.1
千米).( 1.414 1.732≈≈)
21.春节前,某超市从厂家购进某商品,已知该商品每个的成本价为30元,经市场调查发现,该商品每天的销售量y (个)与销售单价x (元) 之间满足一次函数关系,当该商晶每个售价为40元时,每天可卖出300个;当该商晶每个售价为60元时,每天可卖出100个.
(1)y 与x 之间的函数关系式为__________________(不要求写出x 的取值范围) ;
(2)若超市老板想达到每天不低于220个的销售量,则该商品每个售价定为多少元时,每天的销售利润最大?最大利润是多少元?
22.(1)问题发现
如图1,在Rt ABC ∆中,90AB AC BAC ==∠=︒,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为______________;
(2)拓展探究
在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE CE AF ,,,线段BE 与AF 的数量关系有无变化?请仅就图2的情形进行说明;
(3)问题解决.
当正方形CDEF 旋转到B E F 、、三点共线时,直接写出线段AF 的长.
23.如图,抛物线243
y x bx c =-
++过点(30)A ,和(0)B ,2,点()0M m ,为线段OA 上一个动点(点M 与点A 不重合),过点M 作垂直于x 轴直线与直线AB 和抛物线分别交于点P N 、. (1)求此抛物线的解析式;
(2)若点P 是MN 的中点,则求点P 的坐标;
(3)若以点B N P 、、为顶点的三角形与AMP ∆相似,请直接写出点P 的坐标.。