模拟电子电路PPT课件
合集下载
《模拟电路》课件
详细描述
模拟电路是处理模拟信号的电子电路,这些信号在时间和幅 度上都是连续变化的。在模拟电路中,电路元件的参数通常 是连续变化的,这使得模拟电路的分析方法与数字电路有所 不同。
模拟电路的应用
总结词
模拟电路广泛应用于通信、音频处理、图像处理、控制系统等领域。
详细描述
模拟电路在许多领域都有广泛的应用,包括通信、音频处理、图像处理、控制系统等。在通信领域,模拟电路用 于信号的传输和处理;在音频处理领域,模拟电路用于音频信号的放大和处理;在图像处理领域,模拟电路用于 图像信号的处理和传输;在控制系统中,模拟电路用于控制信号的生成和传输。
准备必要的调试工具和测试设备,搭 建调试环境。
功能调试
对电路的功能进行测试和验证,确保 各功能正常工作。
性能优化
根据测试结果,对电路的性能进行优 化,提高各项技术指标。
问题分析与解决
针对调试过程中发现的问题,进行深 入分析并采取有效措施解决。
05
模拟电路实验与实践
实验设备与器材
信号发生器
产生各种频率和幅 度的正弦波、方波 和三角波等信号。
电路的性能也不断提高。
02
模拟电路基础知识
电阻
总结词
电阻是模拟电路中最重要的元件之一 ,用于限制电流的流动。
详细描述
电阻由导电材料制成,其阻值取决于 材料、长度和横截面积。在电路中, 电阻用于控制电流的大小,从而实现 电压的调节和信号的处理。
电容
总结词
电容是存储电荷的元件,具有隔直流通交流的特性。
详细描述
交流分析是模拟电路分析的重要环节,主要 研究电路在交流信号下的响应。通过交流分 析,可以了解电路的动态性能,如增益、带 宽、失真等。交流分析通常采用小信号模型 进行分析,以简化计算过程。
模拟电路是处理模拟信号的电子电路,这些信号在时间和幅 度上都是连续变化的。在模拟电路中,电路元件的参数通常 是连续变化的,这使得模拟电路的分析方法与数字电路有所 不同。
模拟电路的应用
总结词
模拟电路广泛应用于通信、音频处理、图像处理、控制系统等领域。
详细描述
模拟电路在许多领域都有广泛的应用,包括通信、音频处理、图像处理、控制系统等。在通信领域,模拟电路用 于信号的传输和处理;在音频处理领域,模拟电路用于音频信号的放大和处理;在图像处理领域,模拟电路用于 图像信号的处理和传输;在控制系统中,模拟电路用于控制信号的生成和传输。
准备必要的调试工具和测试设备,搭 建调试环境。
功能调试
对电路的功能进行测试和验证,确保 各功能正常工作。
性能优化
根据测试结果,对电路的性能进行优 化,提高各项技术指标。
问题分析与解决
针对调试过程中发现的问题,进行深 入分析并采取有效措施解决。
05
模拟电路实验与实践
实验设备与器材
信号发生器
产生各种频率和幅 度的正弦波、方波 和三角波等信号。
电路的性能也不断提高。
02
模拟电路基础知识
电阻
总结词
电阻是模拟电路中最重要的元件之一 ,用于限制电流的流动。
详细描述
电阻由导电材料制成,其阻值取决于 材料、长度和横截面积。在电路中, 电阻用于控制电流的大小,从而实现 电压的调节和信号的处理。
电容
总结词
电容是存储电荷的元件,具有隔直流通交流的特性。
详细描述
交流分析是模拟电路分析的重要环节,主要 研究电路在交流信号下的响应。通过交流分 析,可以了解电路的动态性能,如增益、带 宽、失真等。交流分析通常采用小信号模型 进行分析,以简化计算过程。
模拟电子技术ppt课件
9.1.1 功率放大电路的特点
一、主要技术指标 1. 最大输出功率Pom 输出功率 PO :输入为正弦波且不失真 。
注:交流功率,PO=UOIO POm=UOmIOm
第九章 功率放大电路
2. 转换效率η
直流功率:直流电源 电压和其输出电流平 均值的乘积
二、功率放大电路中的晶体管
晶体管工作在极限应用状态(ICM ; U(BR)CEO ; PCM)。 大功率管,散热,保护
静态:
动态:
电容电压 :
T1导通,T2截止 T2导通,T1截止
甲乙类工作状态
第九章 功率放动态电阻很小,R2 的阻值也较小。
第九章 功率放大电路
若静态 工作点 失调, 如虚焊
第九章 功率放大电路
三、OCL电路的输出功率和效率
-Vcc
第九章 功率放大电路
二、集电极最大电流
第九章 功率放大电路
三、集电极最大功耗
四、参数选择:
第九章 功率放大电路
9.4 功率放大电路的安全运行
9.4.1 功放管的二次击穿 9.4.2 功放管的散热问题
第九章 功率放大电路
9.4 功率放大电路的安全运行 9.4.1 功放管的二次击穿
第九章 功率放大电路
9.4.2 功放管的散热问题
有效值: 最大输出功率:
第九章 功率放大电路
若忽略UCES: 在忽略基极回路电流的情况下,电源提供的电流
第九章 功率放大电路
电源在负载获得最大交流信号时所消耗的平均功率:
若忽略UCES:
第九章 功率放大电路
两种互补功率放大电路性能指标的比较:
OCL电路
OTL电路
第九章 功率放大电路
四、 OTL电路中晶体管的选择 一、最大管压降
一、主要技术指标 1. 最大输出功率Pom 输出功率 PO :输入为正弦波且不失真 。
注:交流功率,PO=UOIO POm=UOmIOm
第九章 功率放大电路
2. 转换效率η
直流功率:直流电源 电压和其输出电流平 均值的乘积
二、功率放大电路中的晶体管
晶体管工作在极限应用状态(ICM ; U(BR)CEO ; PCM)。 大功率管,散热,保护
静态:
动态:
电容电压 :
T1导通,T2截止 T2导通,T1截止
甲乙类工作状态
第九章 功率放动态电阻很小,R2 的阻值也较小。
第九章 功率放大电路
若静态 工作点 失调, 如虚焊
第九章 功率放大电路
三、OCL电路的输出功率和效率
-Vcc
第九章 功率放大电路
二、集电极最大电流
第九章 功率放大电路
三、集电极最大功耗
四、参数选择:
第九章 功率放大电路
9.4 功率放大电路的安全运行
9.4.1 功放管的二次击穿 9.4.2 功放管的散热问题
第九章 功率放大电路
9.4 功率放大电路的安全运行 9.4.1 功放管的二次击穿
第九章 功率放大电路
9.4.2 功放管的散热问题
有效值: 最大输出功率:
第九章 功率放大电路
若忽略UCES: 在忽略基极回路电流的情况下,电源提供的电流
第九章 功率放大电路
电源在负载获得最大交流信号时所消耗的平均功率:
若忽略UCES:
第九章 功率放大电路
两种互补功率放大电路性能指标的比较:
OCL电路
OTL电路
第九章 功率放大电路
四、 OTL电路中晶体管的选择 一、最大管压降
《模拟电子技术》课件
《模拟电子技术》PPT课件
CATALOGUE
目录
模拟电子技术概述模拟电子技术基础知识模拟电路分析模拟电子技术实践应用模拟电子技术面临的挑战与解决方案模拟电子技术未来展望
01
模拟电子技术概述
总结词
模拟电子技术是研究模拟电子电路及其应用的科学技术,具有模拟信号处理的特点。
详细描述
模拟电子技术主要涉及对模拟信号的处理,即对连续变化的电压或电流信号进行处理,实现信号的放大、滤波、转换等功能。与数字电子技术相比,模拟电子技术具有处理连续信号、实时性强、精度高等特点。
例如,石墨烯、氮化镓等新型材料具有优良的导电性能和热稳定性,可以应用于高性能的电子器件中。
此外,还有一些新型复合材料也逐渐被应用于模拟电子技术中,以提高器件的性能和稳定性。
03
此外,还需要加强人才培养和技术交流,提高电路设计师的技术水平和创新能力。
01
高性能电路设计是模拟电子技术的重要组成部分,也是实现高性能电子器件的关键。
二极管的结构
二极管由一个PN结和两个电极组成,其结构简单、可靠,应用广泛。
正向导通特性
当二极管正向偏置时,电流可以通过PN结,表现出低阻抗的导通特性。
反向截止特性
当二极管反向偏置时,电流很难通过PN结,表现出高阻抗的截止特性。
03
02
01
1
2
3
三极管由三个半导体组成,包括两个N型和一个P型半导体,具有三个电极。
总结词
滤波电路是一种根据特定频率范围对信号进行筛选和处理的电路,主要用于提取有用信号、抑制噪声和干扰。
详细描述
滤波电路通过利用电感器和电容器的频率特性,将信号中特定频率范围内的成分保留或滤除,从而实现信号的处理和控制。常见的滤波电路有低通滤波器、高通滤波器和带通滤波器等。
CATALOGUE
目录
模拟电子技术概述模拟电子技术基础知识模拟电路分析模拟电子技术实践应用模拟电子技术面临的挑战与解决方案模拟电子技术未来展望
01
模拟电子技术概述
总结词
模拟电子技术是研究模拟电子电路及其应用的科学技术,具有模拟信号处理的特点。
详细描述
模拟电子技术主要涉及对模拟信号的处理,即对连续变化的电压或电流信号进行处理,实现信号的放大、滤波、转换等功能。与数字电子技术相比,模拟电子技术具有处理连续信号、实时性强、精度高等特点。
例如,石墨烯、氮化镓等新型材料具有优良的导电性能和热稳定性,可以应用于高性能的电子器件中。
此外,还有一些新型复合材料也逐渐被应用于模拟电子技术中,以提高器件的性能和稳定性。
03
此外,还需要加强人才培养和技术交流,提高电路设计师的技术水平和创新能力。
01
高性能电路设计是模拟电子技术的重要组成部分,也是实现高性能电子器件的关键。
二极管的结构
二极管由一个PN结和两个电极组成,其结构简单、可靠,应用广泛。
正向导通特性
当二极管正向偏置时,电流可以通过PN结,表现出低阻抗的导通特性。
反向截止特性
当二极管反向偏置时,电流很难通过PN结,表现出高阻抗的截止特性。
03
02
01
1
2
3
三极管由三个半导体组成,包括两个N型和一个P型半导体,具有三个电极。
总结词
滤波电路是一种根据特定频率范围对信号进行筛选和处理的电路,主要用于提取有用信号、抑制噪声和干扰。
详细描述
滤波电路通过利用电感器和电容器的频率特性,将信号中特定频率范围内的成分保留或滤除,从而实现信号的处理和控制。常见的滤波电路有低通滤波器、高通滤波器和带通滤波器等。
模拟电路基础教程PPT完整全套教学课件全
返回目录 CONTENTS PAGE
透彻掌握器 件特性
1
重视对电路 构成原理的
学习
2
理论与实践 的关系
3
返回目录 CONTENTS PAGE
目前国内使用较多的电路设计仿真软件有PSPICE、Proteus和Multisim 等。就模拟电路仿真来说,Multisim 以其界面友好、功能强大、易于学习 的优点而受到高校电类专业师生和工程技术人员的青睐。Multisim13.0版 本已上市,但目前使用比较稳定、用户数较多的还是10.0版本。对于使用 者来说,只要有一台计算机和Multisim 软件,就相当于拥有了一间设备齐全 的电路实验室,可以调用元器件,搭建电路,利用虚拟仪器进行测量,对电路 进行仿真测试,可以实时修改各类电路参数,实时仿真,从而帮助使用者了解 各种电路变化对电路性能的影响,对电路的测量直观、智能,是进行电路分 析和设计的有效辅助工具。使用者在学习和解题的过程中,可以通过 Multisim 对电路中某个节点的电压波形、某条支路的电流波形、电路结构 变化产生的影响等方方面面问题快速仿真而得到答案。
模拟电路基础教程PPT课件
1.1.4 一般电子系统的构成 1.电子系统的分类
返回目录 CONTENTS PAGE
模拟电子 系统
数字电子 系统
模拟电路基础教程PPT课件
2.电子系统的构成
返回目录 CONTENTS PAGE
模拟电路基础教程PPT课件
返回目录 CONTENTS PAGE
1.1.5 模拟电子技术的发展
在式(1-1-1)中,K 为常数,使u(t)和T(t)之间形成如图1-1-1所示的相 似形关系。如果K 不能保持为常数,则称模拟信号发生了失真。失真问 题是模拟电路中始终需要引起注意和克服的重要问题。
模拟电子技术基础课件(全)
04
模拟电子电路分析
模拟电路的组成
负载
电路的输出部分,可以是电阻、 电容、电感等元件。
开关
控制电路的通断。
电源
为电路提供所需电压和电流。
传输线
连接电源和负载的导线或传输 介质。
保护元件
如保险丝、空气开关等,保护 电路免受过载或短路等故障的 影响。
模拟电路的分析方法
01
02
03
04
欧姆定律
用于计算电路中的电流和电压 。
稳定性影响因素
电路中的元件参数、电源电压、负载变化等 都会影响电路的稳定性。
稳定性分析方法
通过计算电路的极点和零点,分析系统的稳 定性。
提高稳定性的措施
如采用负反馈、调整元件参数等手段,提高 电路的稳定性。
05
模拟电子技术的应用
音频信号处理
音频信号放大
模拟电子技术可以用于放大音频 信号,提高声音质量,使声音更 加清晰和饱满。
技术进步与创新
绿色与可持续发展
随着科技的不断发展,模拟电子技术 也在不断创新和进步。新型材料、工 艺和设计方法的应用将进一步提高模 拟电路的性能和集成度。
在环保意识日益增强的背景下,模拟 电子技术将更加注重绿色、节能和可 持续发展,推动产业向低碳、环保的 方向发展。
与其他技术的融合
模拟电子技术正与其他领域的技术相 互融合,如人工智能、物联网和生物 医疗等,为各种应用场景提供更高效、 更智能的解决方案。
欧姆定律和基尔霍夫定律是电 路分析的基本定律,对于理解 和分析电路具有重要的作用。
电路分析方法
支路电流法
通过设定未知的电流为变量,建立并解决包含这些变量的线性方程组 来求解电路的方法。
模拟电子技术基础(第4版华成英)ppt课件
1
乙类功率放大器是一种非线性放大器,其工作原 理是将输入信号的负半周切除,仅让正半周通过 晶体管放大。
2
在乙类功率放大器中,晶体管只在正半周导通, 因此效率较高。但因为晶体管工作在截止区和饱 和区,所以失真较大。
3
乙类功率放大器通常采用推挽电路形式,以减小 失真。
THANKS
感谢观看
利用晶体管、可控硅等开关元件的开关特性,通过适当组合实现非 正弦波信号的输出。
非正弦波发生电路的组成
包括开关元件、储能元件和输出电路。
非正弦波发生电路的特点
输出信号波形多样,幅度大,但频率稳定性较差,且波形质量受开 关元件特性的影响较大。
波形变换电路
波形变换电路的原理
利用运算放大器和适当组合的RC电路,将一种波形变换为另一种波 形。
基本放大电路 放大电路的基本概念和性能指标
总结词
共基极放大电路的特点是输入阻抗低、 输出阻抗高。
VS
详细描述
共基极放大电路是一种特殊的放大电路, 其工作原理基于晶体管的电压放大作用。 由于其输入阻抗低、输出阻抗高的特点, 因此常用于实现信号的电压放大。在电路 结构上,共基极放大电路与共发射极放大 电路类似,只是晶体管的基极接输入信号 而不是发射极。
01
特征频率
晶体管在特定工作点上的最高使 用频率,超过该频率时放大电路 将失去放大能力。
截止频率
02
03
放大倍数
晶体管在正常放大区与截止区的 交界点上所对应的频率,是晶体 管的重要参数之一。
晶体管在不同频率下的电压放大 倍数,反映了晶体管在不同频率 下的放大性能。
单级放大电路的频率响应
低通部分
放大电路对低频信号的放大能力较强,随着频 率升高,增益逐渐下降。
模拟电子技术PPT课件
处理模拟信号的电子电路称为模拟电路。
1.4 放大电路模型
信号的放大是最基本的模拟信号处理 功能。
这里研究的是线性放大,即放大电路 输出信号中包含的信息与输入信号完全相 同。输出波形的任何变形,都被认为是产 生了失真。
1、放大电路的符号及模拟信号放大
• 电压放大模型
• 电流放大模型
• 互阻放大模型
电压增益
+ Vs
–
Ri ——输入电阻
+
+
+
Vi
Ri
AVOVi
Vo RL
–
–
–
Ro ——输出电阻
由输出回路得 则电压增益为
Vo AV
AVVVoOi ViRAoVROLRRLo RLRL
由此可见 RL
AV 即负载的大小会影响增益的大小
要想减小负载的影响,则希望 Ro RL 理想情况 Ro 0
(考虑改变放大电路的参数)
由输入回路得
Ii
Is
Rs Rs Ri
要想减小对信号源的衰减,则希望…?
Ri Rs
理想 Ri 0
3. 互阻放大模型(自学) 4. 互导放大模型(自学) 5. 隔离放大电路模型
Ro
+
+
+
Vi
Ri
AV Vi
Vo
–
–O
–
输入输出回路没有公共端
1.5 放大电路的主要性能指标
放大电路的性能指标是衡量它的品质优劣 的标准,并决定其适用范围。
Vs 0
另一方法
+ Vs=0
–
放大电路
IT
+ VT
–
Vo AVOVi
1.4 放大电路模型
信号的放大是最基本的模拟信号处理 功能。
这里研究的是线性放大,即放大电路 输出信号中包含的信息与输入信号完全相 同。输出波形的任何变形,都被认为是产 生了失真。
1、放大电路的符号及模拟信号放大
• 电压放大模型
• 电流放大模型
• 互阻放大模型
电压增益
+ Vs
–
Ri ——输入电阻
+
+
+
Vi
Ri
AVOVi
Vo RL
–
–
–
Ro ——输出电阻
由输出回路得 则电压增益为
Vo AV
AVVVoOi ViRAoVROLRRLo RLRL
由此可见 RL
AV 即负载的大小会影响增益的大小
要想减小负载的影响,则希望 Ro RL 理想情况 Ro 0
(考虑改变放大电路的参数)
由输入回路得
Ii
Is
Rs Rs Ri
要想减小对信号源的衰减,则希望…?
Ri Rs
理想 Ri 0
3. 互阻放大模型(自学) 4. 互导放大模型(自学) 5. 隔离放大电路模型
Ro
+
+
+
Vi
Ri
AV Vi
Vo
–
–O
–
输入输出回路没有公共端
1.5 放大电路的主要性能指标
放大电路的性能指标是衡量它的品质优劣 的标准,并决定其适用范围。
Vs 0
另一方法
+ Vs=0
–
放大电路
IT
+ VT
–
Vo AVOVi
模拟电子电路电子课件第一章二极管及其应用
18
第一章 二极管及其应用
(2)扩散电容 当PN结外加正向电压时,在空间电荷区两侧的扩散区内,少数载流子 的分布会随外加电压的变化而发生改变,形成电容效应,称为扩散电容。 PN结的势垒电容和扩散电容都是非线性电容。PN结的结电容为势垒电 容和扩散电容之和。由于结电容的存在,当工作频率很高时,结电容的影 响就不可忽略,如果工作频率过高,高频电流将主要从结电容通过,这将 会破坏PN结的单向导电性。
38
第一章 二极管及其应用
将交流电转换为直流电称为整流。具有单向导电性的二极管是最常用的 整流元件。
电动自行车充电器
39
第一章 二极管及其应用
一、单相半波整流电路
观察半波整流电路波形,实验电路如图所示。
单相半波整流电路 a)原理电路 b)实测半波整流波形
40
第一章 二极管及其应用
二、单相桥式整流电路
PN结外加正向电压
16
第一章 二极管及其应用
(2)PN结外加反向电压 PN结P区接低电位、N区接高电位时,称PN结外加反向电压,又称PN结 反向偏置,简称反偏,如图所示。这时,外电场与PN结内电场方向相同, 内电场被增强,PN结空间电荷区变宽。这使得多数载流子的扩散运动受阻, 但对少数载流子的漂移运动有利,从而形成极小的反向电流,反向电流的 方向由N区指向P区。
26
第一章 二极管及其应用
二极管内部结构示意图 a)点接触型 b)面接触型 c)平面型
27
第一章 二极管及其应用
二、二极管的型号命名
国产二极管的型号命名方法见表。
国产二极管的型号命名方法
28
第一章 二极管及其应用
三、二极管的主要参数
不同型号的二极管都有一些技术数据(即参数)作为它合理、安全使用 的依据。二极管的主要参数如下:
第一章 二极管及其应用
(2)扩散电容 当PN结外加正向电压时,在空间电荷区两侧的扩散区内,少数载流子 的分布会随外加电压的变化而发生改变,形成电容效应,称为扩散电容。 PN结的势垒电容和扩散电容都是非线性电容。PN结的结电容为势垒电 容和扩散电容之和。由于结电容的存在,当工作频率很高时,结电容的影 响就不可忽略,如果工作频率过高,高频电流将主要从结电容通过,这将 会破坏PN结的单向导电性。
38
第一章 二极管及其应用
将交流电转换为直流电称为整流。具有单向导电性的二极管是最常用的 整流元件。
电动自行车充电器
39
第一章 二极管及其应用
一、单相半波整流电路
观察半波整流电路波形,实验电路如图所示。
单相半波整流电路 a)原理电路 b)实测半波整流波形
40
第一章 二极管及其应用
二、单相桥式整流电路
PN结外加正向电压
16
第一章 二极管及其应用
(2)PN结外加反向电压 PN结P区接低电位、N区接高电位时,称PN结外加反向电压,又称PN结 反向偏置,简称反偏,如图所示。这时,外电场与PN结内电场方向相同, 内电场被增强,PN结空间电荷区变宽。这使得多数载流子的扩散运动受阻, 但对少数载流子的漂移运动有利,从而形成极小的反向电流,反向电流的 方向由N区指向P区。
26
第一章 二极管及其应用
二极管内部结构示意图 a)点接触型 b)面接触型 c)平面型
27
第一章 二极管及其应用
二、二极管的型号命名
国产二极管的型号命名方法见表。
国产二极管的型号命名方法
28
第一章 二极管及其应用
三、二极管的主要参数
不同型号的二极管都有一些技术数据(即参数)作为它合理、安全使用 的依据。二极管的主要参数如下:
模拟电子技术基础 3.3差分放大电路PPT课件
uod = 2ic1RL
ic2 = ic1
而(对镜像源):
二、双端变单端的转换电路
对共模信号:
ic4 = ic3 ≈ ic1
iL = ic4 – ic2 = 0
uoc = 0
ic2 = ic1
而
具有双端输出的效果!
3.3.4 差分放大电路的差模传输特性
O
ui
iC
iC1
iC2
I0
UT
-UT
4UT
采用 V3 管代替 R
4 FET管电流源
I0 = IREF
2、有源负载
以电流源取代电阻作放大电路的负载。
优点:既提高了电压放大倍数,又设置了合适的工作点。
一、电流源与有源负载
二、具有电流源的差分放大电路
二、具有电流源的差分放大电路
CMOS差分放大电路
V1、V2构成差放, V3、V4构成电流源作有源负载, V5、V6 、V7构成电流源提供偏置。
第3章 放大电路基础
3.1 放大电路的基础知识 3.2 基本组态放大电路 3.3 差分放大电路 3.4 互补对称功率放大电路 3.5 多级放大器
3.3 差分放大电路
3.3.1 基本差分放大电路
3.3.2 电流源与具有电流源的差分放大电路
3.3.3 差分放大电路的输入、输出方式
差分放大电路又称差动放大电路,简称差放,具有输出电压近似与两个输入电压之差成正比的特性,是集成运放中重要的基本单元电路。
3.3.3 差分放大电路的差模传输特性及应用
一、电路组成及静态分析
一般
3.3.1 基本差分放大电路
结构特点: 1 两个输入端,两个输出端; 2 电路结构和元件参数对称; 3 双电源供电; 4 RE是公共发射极电阻。
ic2 = ic1
而(对镜像源):
二、双端变单端的转换电路
对共模信号:
ic4 = ic3 ≈ ic1
iL = ic4 – ic2 = 0
uoc = 0
ic2 = ic1
而
具有双端输出的效果!
3.3.4 差分放大电路的差模传输特性
O
ui
iC
iC1
iC2
I0
UT
-UT
4UT
采用 V3 管代替 R
4 FET管电流源
I0 = IREF
2、有源负载
以电流源取代电阻作放大电路的负载。
优点:既提高了电压放大倍数,又设置了合适的工作点。
一、电流源与有源负载
二、具有电流源的差分放大电路
二、具有电流源的差分放大电路
CMOS差分放大电路
V1、V2构成差放, V3、V4构成电流源作有源负载, V5、V6 、V7构成电流源提供偏置。
第3章 放大电路基础
3.1 放大电路的基础知识 3.2 基本组态放大电路 3.3 差分放大电路 3.4 互补对称功率放大电路 3.5 多级放大器
3.3 差分放大电路
3.3.1 基本差分放大电路
3.3.2 电流源与具有电流源的差分放大电路
3.3.3 差分放大电路的输入、输出方式
差分放大电路又称差动放大电路,简称差放,具有输出电压近似与两个输入电压之差成正比的特性,是集成运放中重要的基本单元电路。
3.3.3 差分放大电路的差模传输特性及应用
一、电路组成及静态分析
一般
3.3.1 基本差分放大电路
结构特点: 1 两个输入端,两个输出端; 2 电路结构和元件参数对称; 3 双电源供电; 4 RE是公共发射极电阻。
模拟电路整套课件完整版电子教案最全ppt整本书课件全套教学教程
常使用的二极管,是不允许出现这种现象的。
上一页 下一页 返回
第一节 晶体二极管
三、晶体二极管器件的参数及分类
1.二极管的主要参数 (1)最大整流电流IFM 最大整流电流是指二极管长时间使用时,允许流过二极管的
最大正向平均电流。当电流超过这个允许值时,二极管会因 过热而烧坏,使用时务必注意。 (2)最高反向工作电压VRM 指二极管在使用时允许加上的最高反向电压。如果超过此值 二极管可能被击穿。一般是反向击穿电压的1/2或2/3。
上一页 下一页 返回
第一节 晶体二极管
二、PN结合晶体二极管的结构和特性
1.PN结 如果在硅或锗本征半导体中采用掺杂工艺,使半导体的一边
形成P型半导体,另一边形成N型半导体,则在这两种导电性 能相反的半导体交界面上,将形成一个特殊的接触面,称为 PN结。如图1-2 ( a)所示。 将P型半导体与N型半导体制作在同一块硅片上,在无外电场 和其他激发作用下,参与扩散运动的多子数目等于参与漂移 运动的少子数目,从而达到动态平衡
和集电极电流之和。无论是NPN型管还是PNP型管,均符合这
一规律。由于基极电流很小,因而 IE≈IC 在PNP型管中,IE流入三极管,IB IC流出三极管,如图1-19
所示
上一页 下一页 返回
第二节 晶体三极管
(2)三极管的电流放大作用。
在图1-18所示电路中,信号从基极与发射极之间输入,从集电 极和发射极输出,因此发射极是输入、输出回路的公共端,这
上一页 下一页 返回
第二节 晶体三极管
2.极限参数 极限参数是指管子工作时,不允许超过的参数,否则管子性
能下降或损坏。常见的极限参数主要有: (1)集电极最大允许电流ICM :当集电极电流超过此值时,三
上一页 下一页 返回
第一节 晶体二极管
三、晶体二极管器件的参数及分类
1.二极管的主要参数 (1)最大整流电流IFM 最大整流电流是指二极管长时间使用时,允许流过二极管的
最大正向平均电流。当电流超过这个允许值时,二极管会因 过热而烧坏,使用时务必注意。 (2)最高反向工作电压VRM 指二极管在使用时允许加上的最高反向电压。如果超过此值 二极管可能被击穿。一般是反向击穿电压的1/2或2/3。
上一页 下一页 返回
第一节 晶体二极管
二、PN结合晶体二极管的结构和特性
1.PN结 如果在硅或锗本征半导体中采用掺杂工艺,使半导体的一边
形成P型半导体,另一边形成N型半导体,则在这两种导电性 能相反的半导体交界面上,将形成一个特殊的接触面,称为 PN结。如图1-2 ( a)所示。 将P型半导体与N型半导体制作在同一块硅片上,在无外电场 和其他激发作用下,参与扩散运动的多子数目等于参与漂移 运动的少子数目,从而达到动态平衡
和集电极电流之和。无论是NPN型管还是PNP型管,均符合这
一规律。由于基极电流很小,因而 IE≈IC 在PNP型管中,IE流入三极管,IB IC流出三极管,如图1-19
所示
上一页 下一页 返回
第二节 晶体三极管
(2)三极管的电流放大作用。
在图1-18所示电路中,信号从基极与发射极之间输入,从集电 极和发射极输出,因此发射极是输入、输出回路的公共端,这
上一页 下一页 返回
第二节 晶体三极管
2.极限参数 极限参数是指管子工作时,不允许超过的参数,否则管子性
能下降或损坏。常见的极限参数主要有: (1)集电极最大允许电流ICM :当集电极电流超过此值时,三
模拟电子技术第一章PPT课件
06 反馈放大电路
反馈的基本概念
反馈:将放大电路输出信号的一部分或全部,通过一定 的方式(反馈网络)送回到输入端的过程。
反馈的判断:瞬时极性法。
反馈的分类:正反馈和负反馈。 反馈的连接方式:串联反馈和并联反馈。
正反馈和负反馈
正反馈
反馈信号使输入信号增强的反 馈。
负反馈
反馈信号使输入信号减弱的反 馈。
集成化与小型化
随着便携式设备的普及,模拟电子技术需要实现 更高的集成度和更小体积,以满足设备小型化的 需求。
未来发展趋势
智能化
01
随着人工智能技术的发展,模拟电子技术将逐渐实现智能化,
能够自适应地处理各种复杂信号和数据。
高效化
02
未来模拟电子技术将更加注重能效,通过优化电路设计和材料
选择,提高能量利用效率和系统稳定性。
电压放大倍数的大小与电路中 各元件的参数有关,可以通过 调整元件参数来改变电压放大 倍数。在实际应用中,需要根 据具体需求选择合适的电压放 大倍数。
输入电阻和输出电阻
总结词
详细描述
总结词
详细描述
输入电阻和输出电阻分别表 示放大电路对信号源和负载 的阻抗,影响信号源和负载 的工作状态。
输入电阻越大,信号源的负 载越轻,信号源的输出电压 越稳定;输出电阻越小,放 大电路对负载的驱动能力越 强,负载得到的信号电压越 大。
共基放大电路和共集放大电路
共基放大电路的结构和工作原理
共基放大电路是一种特殊的放大电路,其输入级和输出级采用相同的晶体管,输入信号 通过输入级进入,经过晶体管的放大作用,输出信号被送到输出级,最终输出放大的信
号。
共集放大电路的结构和工作原理
共集放大电路是一种常用的放大电路,其结构包括输入级、输出级和偏置电路。输入信 号通过输入级进入,经过晶体管的放大作用,输出信号被送到输出级,最终输出放大的 信号。共集放大电路的特点是电压增益高、电流增益低、输出电压与输入电压同相位。
模拟电子技术基础简明教程第三版PPT课件第五章
差分放大电路四种接法的性能比较
接法 差分输入 性能 双端输出
差分输入 单端输出
单端输入 双端输出
单端输入 单端输出
Ad
( RC
//
RL 2
)
1 (Rc // RL )
(Rc
//
RL 2
)
R rbe
2 R rbe
R rbe
KCMR
很高
较高
很高
1 (Rc // RL )
2 R rbe 较高
2、长尾式差分放大电路
可减小每个管子输出端的温漂。
(1)电路组成
Re 称为“长尾电阻”。
且引入共模负反馈。
Rc
Rc +VCC
Re 愈大,共
模负反馈愈强。
Ac 愈小。每个管
+ uId
子的零漂愈小。
对差模信号
R
~+1 2 uId
~+1 2 uId
R
+ uo
VT1
VT2
Re
VEE
无负反馈。
图 5.2.8 长尾式差分放大电路
Δ uo Δ uId
Au1
(3) 共模抑制比
差分放大电路 输入电压
差模输入电压 uId
共模输入电压 uIc (uIc大小相等,极性相同) +VCC
共模电压放大倍数:
Ac
Δ uo Δ uIc
+
uIc ~
Ac 愈小愈好,而 Ad 愈大愈好
Rb
Rc
+ uo
Rc Rb
R
VT1
VT2
R
图 5.2.7 共模输入电压
Ad
( RC
//
模拟电子课件ppt
实验三:滤波电路设计与实现
总结词
掌握滤波电路的设计与实现方法
VS
详细描述
通过设计并实现滤波电路,了解滤波电路 的基本原理和分类,掌握巴特沃斯、切比 雪夫等滤波器的设计方法,理解滤波电路 在信号处理和通信系统中的应用。
06
CATALOGUE
模拟电子常见问题与解决方案
问题一:放大电路失真问题
• 总结词:放大电路失真问题通常是由于信号源内 阻、信号源负载、电源内阻和电源电压等因素引 起的。
振荡电路
总结词
振荡电路用于产生正弦波或方波等周期性信号。
详细描述
振荡电路通过正反馈和选频网络,使电路产生自激振荡, 从而输出具有一定频率和幅度的周期性信号。
总结词
振荡电路有多种类型,包括RC振荡器、LC振荡器和晶体 振荡器等。
详细描述
RC振荡器利用电阻和电容的组合产生振荡,LC振荡器利 用电感和电容的组合产生振荡,晶体振荡器则利用石英晶 体的特性产生稳定的振荡信号。
系统设计流程
需求分析
明确系统的功能需求和 技术指标,为后续设计
提供依据。
方案设计
根据需求分析,制定系 统设计方案,包括硬件 和软件架构、模块划分
等。
详细设计
对每个模块进行详细设 计,包括电路原理图、 PCB布线图、程序流程
图等。
调试与测试
对系统进行集成和测试 ,确保系统功能和性能
的正确性。
系统设计优化
问题一:放大电路失真问题
详细描述
信号源内阻过大,导致信号源无法提供足够的电流,从而使放大电路无法正常工作 。
信号源负载过大,导致信号源无法提供足够的电压,从而使放大电路无法正常工作 。
问题一:放大电路失真问题
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Av vo / vi Ai io / ii Ar vo / ii Ag io / vi
电压放大器 电流放大器 互阻放大器 互导放大器
26
输入电阻
定义:
Ri
vi ii
27
源电压增益
定义:
Avs
vo vsig
又∵
vi
Ri
Ri Rsig
vsig
∴
Avs
vi vsig
vo vi
sin
0t
1 3
sin
30t
1 5
sin
50t
...
频谱仪
15
电信号两种不同形式
16
电信号两种不同形式
基波
基波 +3次谐波 +5次谐波
基波
+3次谐波
基波
+3次谐波 +5次谐波 +7次谐波
17
模拟信号和数字信号
模拟信号
该信号与它所表示的实际信号 是类似的。它的幅度是一个连 续变化量
电子技术的发展
• 1965年,戈登·摩尔提出摩尔定律,预测在芯片上所能集成的 晶体管数目将会每隔18个月翻一番,这一法则适用至今。
现代科学以电子技术为基础 学习电子技术基础是适应时代发展之必须!
8
电子技术的发展
值得纪念的几位科学家!
第一只晶体管的发明者 (by John Bardeen , William Schockley
1958年9月12日,在德州仪器公司
的实验室里,实现了把电子器件集成
在一块半导体材料上的构想。42年以
后, 2000年获诺贝尔物理学奖。
9
“为现代信息技术奠定了基础”。
第1章 主要内容
信号与电子系统 放大器基本概念及模型 放大器的频率响应
10
1.1 信号与电子系统
信号 信号的表现形式 信号的分类 电子系统的一般结构框图
(2000年Nobel物理学奖); 6个月后诺伊斯制成第一块硅集成电路 • 1969年 大规模集成电路 • 1975年 超大规模集成电路
第一片集成电路只有4个晶体管,而1997年一片集成电路 中有40亿个晶体管。有科学家预测,集成度还将按10倍/6年 的速度增长,到2015或2020年达到饱和。
学习电子技术方面的课程需时刻关注电子技术的发展7 !
19
2019/9/18
20
1.2 放大器基本概念及模型
放大器(放大电路)
目标:实现信号不失真放大的功能 是模拟信号处理中最重要、最基本的单元 是其他模拟电路的基础和基本组成部分
比如振荡器、滤波器、稳压器、调制解调器等等
21
放大器定义及功能
xo
xi
t
t
A
输入端
输出端
定义:满足 A xo 的系统叫做放大器
《线性电子电路》
1
第1章 模拟电子电路导论
2
前言
为什么要学?
是入门性质的技术基础课程
学什么?
围绕放大器,研究放大电路的原理、特性、设计 和应用,以及设计放大器本身的基本电路和基本 器件
怎么学?
基本概念、基本电路、基本方法 定性分析的重要性
3
电子技术的发展
电子技术的发展,推动计算机技术的发展,使之“无孔不 入”,应用广泛!
11可以转换为电信号
12
电信号两种不同形式
电信号两种不同形式
时域信号:用随时间变化的波 形来描述
频域信号:用频谱来表示,通 过傅里叶变换来完成
时域信号
傅里叶变换 F f t ejtdt
频域信号
傅里叶逆变换
Ri
Ri Rsig
Av
当 Ri Rsig 时,vi vsig ,Av Avs
xi
Q:放大器的本质是什么? A:是换能器
22
放大器的传输特性
理想放大器
斜率即为放大倍数
实际放大器
Q:为何会受到 限制?
xo xi
xo xi
xo xi
xo xi
23
放大器实际连接电路(举例)
24
放大器的增益
电压增益 电流增益 功率增益
Av
vo vi
Ai
io ii
Ap
PL PI
voio viii
Av Ai
Av(dB) 20log Av
Ai (dB) 20log Ai Ap (dB) 10 log Ap
25
放大器的主要参数
增益 A xo / xi
根据输入输出量不同,放大器分为四类基本放大 器,增益也有四种定义。
–电压增益 –电流增益 –互阻增益 –互导增益
and Walter Brattainin Bell Lab)
他们在1947年11月底发明了晶 体管,并在12月16日正式宣布“晶 体管”诞生。1956年获诺贝尔物理 学奖。巴因所做的超导研究于1972 年第二次获得诺贝尔物理学奖。
第一个集成电路及其发明者 ( Jack Kilby from TI )
• 广播通信:发射机、接收机、扩音、录音、程控交换机、电 话、手机
• 网络:路由器、ATM交换机、收发器、调制解调器 • 工业:钢铁、石油化工、机加工、数控机床 • 交通:飞机、火车、轮船、汽车 • 军事:雷达、电子导航 • 航空航天:卫星定位、监测
• 医学:γ刀、CT、B超、微创手术
• 消费类电子:家电(空调、冰箱、电视、音响、摄像机、照 相机、电子表)、电子玩具、各类报警器、保安系统
采样 量化编码
数字信号
代表性的数字信号是一个序列 号码,每个号码只能有两种可 能的值:低和高
A/D转换器
18
电子系统
信号输入
外部信号
传感器或 输入电路
预处理
模数转换
信号处理
信号输出
信号放大、 衰减、滤波
A/D
分析、加工、 显示、打
负载
变换、传输、
印、驱
等
判决等
动、输出
图1.6 电子系统一般结构框图
f
t
1
F ejtd
2π
13
电信号两种不同形式
举例:va t Va sin 0t
0
2π T
Va
ω0
14
电信号两种不同形式
v(t
)
V V
, ,
nT t (n (n 0.5)T t
0.5)T (n 1)T
v(t)
4V
4
电子技术的发展
电子技术的发展很大程度上反映在元器件的发展 上。从电子管→半导体管→集成电路
1904年 电子管问世
1947年 晶体管诞生
1958年集成 电路研制成功
电子管、晶体管、集成电路比较
5
电子技术的发展
1958年 美国基尔比制成第一块集成电路
集成电路
6
电子技术的发展
半导体元器件的发展
• 1947年 贝尔实验室制成第一只晶体管 • 1958年 美国基尔比制成第一块集成电路