21.1二次根式(第1课时)

合集下载

《二次根式》第一课时

《二次根式》第一课时

三. 课堂训练 四. 小结归纳 五. 作业设计 留白: (供心得体会与反思)
教学中要不断地引导学生进行探究,让学生深刻理解二次根式的意义,以及二次根式的双重非负性与 它的应用。
授课时间:_____年_____月____日
x 1
练习:1、课本思考 2:当 x 是怎样的实数时, x2 , x3 有意义? 1、若 x 2 m ,则 x 和 m 的取值范围是 x_____;m______. 2、已知 x 3 y 5 0 ,求 x, y 的值各是多少? (二)两个运算性质 活动 5、完成课本探究 1 活动 6、对 a 中的运算顺序、运算结果进行分析,归纳出:一个非负数先开方再平 方,结果不变.
课题:二次根式 教学内容:21.1 二次根式 教学 目标 重点 难点 教学 准备 1.理解二次根式的概念,并利用 a (a≥0)的意义解答具体题目 2.提出问题,根据问题给出概念,应用概念解决实际问题. 重点:形如 a (a≥0)的式子叫做二次根式的概念; 难点:利用“ a (a≥0) ”解决具体问题. 教师准备 学生准备 是否需要 课件 留白:
2 2
有什么关系? 三、课堂训练 完成课本中两个练习. 有时间可补充:1、 m 1 m 成立的条件是_______. 2、 m 1 m 成立的条件是_______. 四、小结归纳 1、二次根式的概念及“被开方数非负”的条件和“运算结果非负”的性质. 2、二次根式的两个运算性质,平方为“父对象” ,开方为“子对象”. 3、简单介绍代数式的概念. 4、重复演示课件呈现练习题,供学生记录. 五、作业设计 习题 P5:1、2 P6:7、8 附:板书设计 一.复习引入 二.探究新知 (一)定义及非负性 (二)两个运算性质 教后反思:
(供教师个性 化设计)

21.1_二次根式_全章

21.1_二次根式_全章

C BA21.1 二次根式第1课时学习目标1a≥0)的意义解答具体题目.2a≥02=a (a≥0),并利用它们进行计算和化简. 学习过程 一、预习形成:请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC 中, AC=3,BC=1, ∠C=90°,那么AB 边的长是__________. 二、课堂讲练: 探究一 议一议:1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0归纳:一般地,我们把形如___________的式子叫做二次根式, ________称为二次根号.例1下列式子,哪些是二次根式,哪些不是二次根式:1x x>0)1x y+x≥0,y •≥0).归纳:二次根式应满足两个条件: (1)_________________ (2)_________________例2.当x在实数范围内有意义?练习:1.二次根式a-1 中,字母a的取值范围是()A. a<lB.a≤1C.a≥1D.a>12、函数y=中,自变量x的取值范围是_________思考:如何确定二次根式中字母的取值范围?三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x11x+在实数范围内有意义?例4.(1)已知,求xy的值.(2)=0,求a2010+b2010的值.探究二根据算术平方根的意义填空:2=_______;2=_______;2=______;2=_______;2=______;2=_______;2=_______.例5.计算1.22.(23.24. 2基础练习计算下列各式的值:2 = 2 = 2 = 2=-=( 2 = 22应用拓展计算:(1)2(x≥0)(2)2(3)2(4)2五、归纳小结本节课要掌握:______________________________________________________________ __________________________________________________________________________ _______________________________________________________________________ 六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.第一课时作业设计(一)选择题1.下列式子中,是二次根式的是()A B C D.x2、已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对3、数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0(二)填空题1.2=________.2x _______.3的个数是__________.(三)综合提高题(选做)1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.6,求x y的值.21.1 二次根式第2课时【学习目标】1、(a≥0)并利用它进行计算和化简.2(a≥0),并利用这个结论解决具体问题.【学习过程】一、复习引入1.形如_____________的式子叫做二次根式;2a≥0)是一个_____________;3.2=_____(a≥0).猜想:当a≥0,举例说明.二、探究新知填空:=_______;=________.结论例1计算1.22.(23.24. 2例2化简:(1(2(3(4==;张后同学的解答过程是在化简时,李明同学的解答过程是4=-. 谁的解答正确?为什么?4三、巩固练习1、计算下列各式的值:2222( 2 22-2、教材P7练习2.四、应用拓展例3 计算1.2(x≥0)2.23. 2例4在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3例5 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2-a,则a可以是什么数?(3,则a可以是什么数?例6 当x>2· · · · 0 1 2p 例7 实数p 在数轴上的位置如图所示:2三、课堂小结:四、课堂评价:(一)选择题1 ). A .0 B .23 C .423D .以上都不对2.a≥0比较它们的结果,下面四个选项中正确的是( ).A BC D (二)填空题1.2m 的最小值是________. (三)综合提高题(选做)1.若│1995-,求a -19952的值.(提示:先由a -2000≥0,判断1995-a •的值是正数还是负数,去掉绝对值)2. 若-3≤x≤2时,试化简│x -《二次根式》自我检测1、计算: (1) =2)32(-(2)=+-442x x (2≥x ) (3)2)73( = (4)2)52(-= 2、下列等式中的字母应符合什么条件? (1)22)(a a = (2)a a -=23、判断正误,如果是错的,请写出正确结果.(1)2)2(2-=- (2)7434322=+=+4、已知a 、b 、c 是△ABC 的三边长,化简:22)()(c a b c b a +----5、已知△ABC 的三边长分别为a 、b 、c, 且a 、b 、c 满足a 2 -|5|0c -=,则△ABC 的形状是 三角形.作业:回归教材,认真阅读.完成课本上21.1没有完成的练习及习题,做好小组展示准备.21.2 二次根式的乘除第1课时【学习目标】1、a≥0,b≥0)a≥0,b≥0),并利用它们进行计算和化简2、•a≥0,b≥0)并运用它进行解题和化简.【学习过程】一、预习形成1.填空(1;(2=_______.(3.参考上面的结果,用“>、<或=”填空.2.利用计算器计算填空(1(2(3(4二、课堂讲练一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3(4例2 化简(1(2(3(4(5三、巩固练习(1)计算:①②(2) 化简:(3)教材P11练习全部.四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2五、课堂小结:六、布置作业1.课本P151,4,5,6.(1)(2).2.选用课时作业设计.(一)选择题1,•那么此直角三角形斜边长是().A.B.C.9cm D.27cm2.化简).A B C D311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 4.下列各等式成立的是()A.B.C.D.(二)填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)综合提高题(选做)1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==……通过上述探究你能猜测出: (a>0),并验证你的结论. 3*.化简(x -1x)2+4 -(x+1x)2-44.已知2310x x -+=.5.已知,a b (10b -=,求20112012a b -的值.21.2 二次根式的乘除第2课时【学习目标】a≥0,b>0a≥0,b>0)及利用它们进行运算.12、利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.【学习过程】一、预习形成1.写出二次根式的乘法规定及逆向等式.2.填空(1;;(2;(3(4.3.利用计算器计算填空:(填>,<,=)二、课堂讲练知识归纳:一般地,对二次根式的除法规定:(2(3(4例1.计算:(1例2.化简:(1(2(3(4三、巩固练习教材P14 练习1.四、应用拓展例3.=,且x为偶数,求(1+x的值.五、归纳小结六、布置作业1.教材P 15 习题21.2 2、7、8、9. 2.选用课时作业设计. 第二课时作业设计 (一)选择题1的结果是( ).A .27 B .27 C D .72.阅读下列运算过程:3==5== 数学上将这种把分母的根号去掉的过程称作“分母有理化”( ).A .2B .6C .13D *( 二)填空题1.分母有理化:(1)=______.2.已知x=3,y=4,z=5_______.(三)综合提高题(选做)11,•现用直径为3的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算(1·m>0,n>0)(2)-(a>0)21.2 二次根式的乘除第3课时【学习目标】1、理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.2、通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.【学习过程】一、预习形成计算(1(2(3二、课堂讲练议一仪:观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.____________________________________________;2.___________________________________________.我们把满足上述两个条件的二次根式,叫做最简二次根式.例1、现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那.试着化简一下。

数学 九年级 上册 华师 配套册答案

数学 九年级 上册 华师 配套册答案

姨26-m 是同类二次根式.
6. 解析 假设它们是同类二次根
式.

1 2

2

(2x-y)=
1 2
(y+6)=2

x+y=3x+y-2,
x=1,
解得 y=-2.
x=1,
∵ 当 y=-2 时,
x+y=-1,3x+y-2=-1.
=-10
姨 姨 (2)姨3a3 ÷
a = 3a3×3
3
a
=姨9a2 =3a 题组二 1. B 2. C
∴ 该汽车的经济时速为
90km/h.
当 x=90 时,百千米耗油量为
2 100×
1 + 450 18 8 100
≈11.1(L).
第 22 章 一元二次方程
22.1 一元二次方程
+2)=4-3-1-2姨 2 -2=-2-2姨 2 .
题组一 1. B 2. -6 3. 1 4. 2
2 题组二 1. C 2. 4+2 姨 3 3. -7+6 姨 2
不是负数的有 姨 2 , 姨a2+b2 ,
姨x2+2
014

3

5
,故属于二
意义.
02x+3≥0,
7. 解析 根据题意,得

x+1≠0,

x≥-
3 2
且 x≠-1.
所以当 x≥
-
3 2
且 x≠-1 时, 姨2x+3
+
1 x+1
次根式的有: 姨 2 , 姨a2+b2 , 姨x2+2 014 ,共 3 个.

21.1二次根式(1)学案

21.1二次根式(1)学案

第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2a≥0)是一个非负数,2=a(a≥0)(a≥0).(3a≥0,b≥0)a≥0,b>0)a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.a≥0)a≥0)是一个非负数;2=a(a≥0)(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1a≥02=a(a≥0(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式3课时21.2 二次根式的乘法3课时21.3 二次根式的加减3课时教学活动、习题课、小结2课时章节测试讲评2课时21.1 《二次根式(1)》学案课型: 上课时间:课时:学习内容:二次根式的概念及其运用学习目标:1a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习(一)、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.. 问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.) (二)学生学习课本知识4、5页(三)、探索新知1、知识: 平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式, .例如:形如 、 、 是二次根式。

华师版九年级数学上册第二十一章教学课件 二次根式

华师版九年级数学上册第二十一章教学课件  二次根式

知1-讲
●含有二次根号“ ”;
●被开方数是正数或0.
特别地:形如b a(a ≥ 0)的式子也是二次根式, 它表示b与 a 的乘积,当b是带分数时,要写 成假分数的形式.
感悟新知
例 1 给出下列式子:
知1-练
① (-2)2;②3 7;③ 9;④ x+y;⑤ a2+1; ⑥ -2a2-1, 其中一定是二次根式的是 __________.(只填序号)
感悟新知
知1-练
解:(1)由二次根式 a 中的被开方数的非负性“a≥0”, x-3 0,
得3-x 0,∴x=3. ∵y= x-3+ 3-x +2,∴y=2. ∴xy=32=9.
答案:9
感悟新知
(2)[中考·泰州]实数a,b满足 a+1 +4a2+4ab+b2=0, 知1-练
则ba的值为( )A. 2
关键.
3. 计算 a2一般有两步:
(1)去掉根号及被开方数的指数,写成绝对值的形式;
(2)去掉绝对值符号,根据绝对值的意义进行化简.
感悟新知
例 5 在实数范围内分解因式:
(1)x2-5;
(2)x4-4x2+4.
解题秘方:逆用( a ) 2=a 分解因式.
警示误区: 逆用二次根式的性质时,必须先确定
第21章 二次根式
21.1 二次根式
学习目标
1 课时讲解 二次根式的定义
二次根式的性质
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 二次根式的定义
知1-讲
1. 二次根式的定义 一般地,我们把形如 a (a ≥ 0)的式子 叫做二次根式;“ ”叫做二次根号.

21.1 二次根式(1)

21.1 二次根式(1)

温故知新
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a, 则这个数就叫做a的平方根. a的平方根是 a
⑵什么是一个数的算术平方根?如何表示 正数的正的平方根叫做它的 算术平方根. 用 a 表示.
形如
a (a≥0)的式子叫做二次根式.
二次根式 注意: 1)
被开方数a≥0 根指数为2.
x3
8x 5x 3
5 x
(2)
x 7 x3
(4)ቤተ መጻሕፍቲ ባይዱ
1 1 x
求代数式中字母的取值范围的基本依据:
①被开方数≥0;
②分母≠0
1.二次根式:
形如
a (a≥0)的式子叫二次根式.
2.二次根式的性质: 1)
a
≥0
1 x
2
3
x0 x0
x为全体实数
(5 )
x0
5 x
(6)
7
x3
3 x 5
3.若 a 5 2b 3 =0,则a=
,b=
.
4. 已知a、b为实数,且满足
a 2b 1 1 2b 1
你能求出a、 b 的值吗?
求下列代数式中字母的取值范围:
1
3
思考
1)要做一个两条直角边分别为7cm和 4cm的三角尺,斜边的长应为 cm; 2)面积为S的正方形的边长为
2

3)要修建一个面积为6.28m 的圆形 喷水池,它的半径为 m( 取3.14) 4)一个物体从高处自由落下,落到地面 所用的时间t(s)与开始落下时的高度 h(m)满足关系 h=5t2. 用含h的式子 表示t,则t= .
1 1 2a
被开方数≥0
分母≠0

21.1二次根式 课件1(人教版九年级上册)

21.1二次根式 课件1(人教版九年级上册)

代数式 我们称这样的式子为 .
化简下列各式:
(1)(3 2 ) (2 3 )
2
2
(2) (5) ( 5 )
2 2
2
(3) m 16m 64(m 8) (4) a b (a 0, b 0)
2 2
若a.b为实数,且
2 2
2 a b2 0
求 a b 2b 1 的值
( 5) x 2 2 x 1
(
4 )2 4
( 0 )2
0
( 0.01) 2 0.01
a a
2
1 1 2 ( ) 3 3
(a≥0)
例题讲解
计算:
(1)( 1.5 )
解:(1)(
2
2
(2)(2 5 )
2 2 2
2
1.5 ) 1.5
( 2)(2 5 ) 2 ( 5 )
21.1二次根式(2)
复习回忆
二次根式的定义:
形如 a (a 0) 的式子叫做二次根式 .
二次根式的性质:
a 0, a 0 (双重非负性 .
1.要使下列式子有意义,x需要满足什么 条件?
(1) 3 x
1 (3) 2x 5
( 2) x 3 8 x ( 4) x 2 2 x
2
练习: 1.计算 : 1 2. 7
2 2
1.
0 .3
2
3.
4.
10
2
练习2:
1
1 2
2
2

2 1
2 x 1
(x>0 )

x 1
2
2

21.1二次根式(共4课时)

21.1二次根式(共4课时)

21.1 二次根式(共四课时)第一课时:二次根式的概念及其运用教学目标理解二次根式的概念,并利用a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.a≥0)的式子叫做二次根式的概念;a≥0)”解决具体问题.教学过程一、复习引入(学生活动)1、用带根号的式子填空,看看写出的结果有什么特点:(题目见教科书4页“思考”栏目)(1)所填的结果有什么特点?二、探索新知,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,(a≥0)•的式子叫做二次根式,议一议:(学生活动)1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0x>0)、例1.下列式子,哪些是二次根式,、1x(x≥0,y•≥0).、1+x y例2.当x三、巩固练习当x在实数范围内有意义?四、应用拓展在实数范围内有意义?例3、当x1x+1的值.例4(1)已知,求xy(2),求a2004+b2004的值.五、归纳小结(学生活动,老师点评)1a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、课后练习一、选择题1.下列式子中,是二次根式的是()A. C..x2.下列式子中,不是二次根式的是()A.1x3.已知一个正方形的面积是5,那么它的边长是()D.以上皆不对A.5 B.15二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?+x2在实数范围内有意义?2.当xx_____.3134.x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且=b+4,求a、b的值.第二课时:二次根式的意义和性质(1)教学内容1a≥0)是一个非负数;2.2=a(a≥0).教学目标1、(a≥0)2=a(a≥0),并利用它们进行计算和化简.2、通过复习二次根式的概念,用逻辑推理的方法推出a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(2=a(a≥0);最后运用结论严谨解题.a≥0)是一个非负数;2=a(a≥0)及其运用.难点:用分类思想的方法导出a≥0)是一个非负数;•用探究的方法导2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0a<0二、探究新知议一议:(学生分组讨论,提问解答)a≥0)是一个什么数呢?2、根据算术平方根的意义填空:2=;2=;2=;2=.一般地,你能得到什么结论?例1 计算(1)2;(2)2.)2( 3).2( 4).(2三、巩固练习计算下列各式的值:2)2)24)2( 2 22-四、应用拓展例2 计算1.2(x≥0) 2.23.()2 4.2五、能力提高在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3五、归纳小结1a≥0)是一个非负数;2.)2=a(a≥0);反之:a=2(a≥0).六、课后练习一、选择题1次根式的个数是().A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(2=________.2_______数.三、综合提高题1.计算(1)2(2)-2(3)(1)2(4)( 22(5)2.把下列非负数写成一个数的平方的形式:(4)x(x≥0)(1)5 (2)3.4 (3)163=0,求x y的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-5第三课时:二次根式的意义和性质(2)教学内容a(a≥0)教学目标1(a≥0)并利用它进行计算和化简.2、通过具体数据的解答,探究(a≥0),并利用这个结论解决具体问题.a(a≥0).难点:探究结论.讲清a≥0a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:=_______=______;例1 化简(1(2(3(4三、巩固练习教材P5练习2.四、应用拓展1、当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?2、当x>2.五、归纳小结1(a≥0)及其运用,同时理解当a<0a的应用拓展.2、让学生认识到当0a≥时,2=六、课后练习一、选择题1).A.0 B.23 C.423D.以上都不对2.a≥0正确的是().AC.二、填空题1..2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│第4课时:复习二次根式的意义和性质一、教学目标1、二次根式的意义2、二次根式的性质二、教学重点:根据二次根式的性质计算难点根据二次根式的性质计算三、复习回顾:二次根式二次根式的意义11。

21.1二次根式(1)(新授课概念课)

21.1二次根式(1)(新授课概念课)
方法构想
二次根式满足的两个条件是: (1)有二次根号; (2)被开方数是非负数.
1.下列各式中,是二次根式的有几个?

(1)
32
(2)
(4) (6)
- 12 xy (x、y异号)
3
(5) a
(3) m (m≥0)
2
1
5
当x取怎样的实数时, 下列各式在实数范围内 有意义? (2) 2 x 3 1 (1)
x-2
x 1
解(1):由x-2≥o,得
x≥2
当x≥2时,
x-2
在实数范围内有 意义
解: 由题意得 (2)
2 x 3 0 , x 1 0 3 解得 x - ,且x -1. 2
方法构想
一个式子中含有几个二次根式时,字母取值 必须使所有的二次根式有意义;若含有分式, 则要求分母的值不等于0;若含有零指数或负 指数次幂,则要求其底数不为0.
要使二次根式在实数范围内有意义, 必须满足被开方数是非负数.
基础练习 1.下列各式是否为二次根式?
x2 3 ;
a2

- a
2

x - 7.
2.当是怎样的实数时,下列各式在实数范 围内有意义? (1) (2) (3)
3a
- a -1
6 2a 2
选做练习: 一、选择题 1.下列式子中,是二次根式的是(
中考链接
1
(2009· 株洲)若使二次根式 x - 5 在实数 范围内有意义,则x的取值范围是( A ) A.x≥5 B.x>5
C.x<5
D.x≤5
当堂测试
(测试8分钟,分ABCD四个等级评价)
1、形如
a (a 0) 的式子叫二次根式.

《二次根式》PPT课件(第一课时)

《二次根式》PPT课件(第一课时)
取值范围是__3___x___0
2x+6≥0 ∵
-2x>0
x≥-3 ∴
x<0
已知 a1有意义,那么A(a, a) 在第 二 象限.
∵由题意知a<0 ∴点A在第二象限
12 n为一个整数 , 求自然数 n的值.
n为3,8,11,12
思考题
已知 2x 1 1 2x y 3,
再 见
1.表示a的算术平方根 2. a可以是数,也可以是式 3. 形式上含有二次根号
4. a≥0, a≥0 (双重非负性)
5.既可表示开方运算,也可表示运算的结果
例1.下列各式是二次根式吗?
(1) 32 , (2) 6, (3) 9,
(4) 12 , (5) m m 0 ,
(6) xy x, y异号 , (7) a2 ,(8) 3 5.
求代数式 xy的值.
解:依题意得,
2x 1 0 1- 2x 0
解得,x 1 2
y 3
xy 1 3 3 22
课堂练习
一艘轮船先向东北方向航行2小时,再向西 北方向航行t小时.船的航速是每小时25千米. 1)用关于t的代数式表示船离开出发地的距离; 2)求当t=3时,船离开出发地多少千米?(精确
第二十一章二次根式
21.1 二次根式(1)
知识回顾
什么叫做平方根? 一般地,如果一个数的平方等于a,那么这个
数叫做a的平方根.
什么叫算术平方根? 正数的正平方根和零的平方根,统称算术平
方根.
用 a (a 0)表示.
塔座
50米 ?米 a米
塔座所形成的这个直角三角形的斜边长为 ____a_2___2_5_0_0___米.
②分母中有字母时,要保证分母不为零.

华东师大版九年级上册 数学 教案 21.1 二次根式

华东师大版九年级上册 数学 教案 21.1 二次根式

华东师范大学出版社九年级上册第21章第一节
21.1.1二次根式(第1课时)教学设计
一、教材分析
1、地位作用:本章主要内容是初中代数运算的基础内容,在整个中学代数中起承上启下的重要作用,内容有两部分,它们是二次根式的有关概念、性质和二次根式的四则运算。

本章的第一部分是二次根式的有关概念、性质。

它是把前面学习的实数写成式子进行运算,体现了由特殊到一般的数学思想,同时二次根式的概念和性质又是今后学习根式运算、函数的知识储备.
2.对象分析
(1)学生是乡镇普通初中九年级的学生,班级学生学习方面存在一定的差异;但学生对数学抱有浓厚的兴趣。

(2)学生在前面已学习了平方根,基本上掌握了平方根。

3.环境分析
(1)教师自制多媒体课件。

(2)上课环境为多媒体教室。

二、教学目标:
知识技能:积极参与构建二次根式的概念、探究二次根式的特征与性质的活动,在活动中体验成功的喜悦.
过程与方法:(1)了解二次根式的概念,能判断一个式子是不是二次根式。

(2) 掌握二次根式有意义的条件。

(3) 掌握二次根式的基本性质:)0
a
≥a
(0≥
情感、态度、价值观:通过计算、观察、类比、归纳、猜想,探索二次根式的概念、
性质的发生过程;发展学生合情推理能力和演绎推理能力.
三、教学重点、难点
教学重点:掌握二次根式的有关概念、性质;能熟练地运用二次根式的有关概念、
性质进行计算,并能利用它解决简单的实际问题.
教学难点:能熟练地运用二次根式的有关概念、性质进行计算,并能利用它解决简单的实际问题.
教学重点、难点突破方法:通过类比平方根和算术平方根的有关概念、性质突破难点
四、教学过程。

二次根式说课稿(马维俊)

二次根式说课稿(马维俊)

培养归纳推理能力提高学习数学兴趣人教版九年级数学《21.1二次根式(第1课时)》广河一中马维俊2013年10月9日培养归纳推理能力提高学习数学兴趣——《21.1二次根式(第1课时)》说课稿《数学课程标准》在“教学建议”指出,数学教学是数学活动的教学,是师生积极参与、交往互动、共同发展的过程。

教师是进行数学活动的组织者、引导者、合作者,是教学活动的主导;学生是数学活动的参与者、实践者,是学习活动的主体。

一、教材分析1.课程标准要求“二次根式”是《数学课程标准》“数与代数”的重要内容。

《数学课程标准》第三部分“课程内容”第三学段中对“二次根式”做了如下要求:了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算。

2.本节课内容在教材中的地位和作用二次根式从知识结构的角度看,它是初中阶段继整式、分式之后的又一类代数式;从运算的角度讲,它是开平方运算的结果,同时,它也将是运算的对象。

本节课是二次根式的性质及乘除加减运算的基础。

所以本节课有两个要点,一是判断一个代数式是否为二次根式,二是当一个代数式是二次根式,则需要满足什么条件。

二、学情分析1.学生分析第三学段学生智力得到快速发展,随着观察能力、记忆能力和想象能力的迅速发展,学生的逻辑思维也发生质的变化。

由于初中学生好动、好奇、好表现,但是注意力易分散,所以在教学中应以此为据,提高学生学习的主动性,培养学生学习数学的兴趣。

2.知识障碍知识掌握上,学生原有的关于平方根及算术平方根的内容,许多学生出现知识遗忘,所以应该进行回顾复习。

本节课的内容,对被开方数的非负性的理解有难度,需要由易入难、循序渐进的方式进行设计。

三、教学目标重难点1.教学目标⑴知识与技能:使学生理解二次根式的定义,掌握二次根式中被开方数的取值范围。

⑵过程与方法:经历“从实际问题出发,建立二次根式的数学模型,探究问题,归纳结论”的过程,培养学生的归纳推理能力,引导学生掌握程序化的解题方法。

人教版九年级数学上册《二十一章 二次根式 21.1 二次根式》优质课教案_6

人教版九年级数学上册《二十一章 二次根式  21.1 二次根式》优质课教案_6

《二次根式》第1课时教案设计一、内容和内容解析1.内容二次根式的概念. 2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础. 教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解. 本节课的教学重点是:了解二次根式的概念;二、目标和目标解析 1.教学目标(1)体会研究二次根式是实际的需要.(2)了解二次根式的概念. 2. 教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断. 本节课的教学难点为:理解二次根式的双重非负性. 四、教学过程设计1.创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h =5t?,如果用含有h 的式子表示t ,则t= _____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价. 【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题2 上面得到的式子,,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3 你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1 当时怎样的实数时,在实数范围内有意义?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例 2 当是怎样的实数时,在实数范围内有意义?呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力. 4.综合运用,巩固提高练习1 完成教科书第3页的练习. 练习2当x 是什么实数时,下列各式有意义. (1);(2);(3);(4). 【设计意图】辨析二次根式的概念,确定二次根式有意义的条件. 【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维. 5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题. (1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结. 【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法. 6.布置作业:教科书习题16.1第1,3,5,7,10题.五、目标检测设计 1. 下列各式中,一定是二次根式的是() A. B. C. D. 【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数. 2. 当时,二次根式无意义.【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题. 3.当时,二次根式有最小值,其最小值是.【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用. 4.对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.。

21.1 二次根式(1)二次根式的意义(备课件) 九年级数学上册同步备课系列(华东师大版)

21.1  二次根式(1)二次根式的意义(备课件) 九年级数学上册同步备课系列(华东师大版)
(a≥0)
课后练习
知识点 1:二次根式的概念
1.在下列各式中,一定是二次根式的是(
3
A. 2
C. a2+1
B. -10
D. a
C
)
2.下列式子:
1
3
2

-1000

27

8

(-201)
,其中
2
二次根式的个数有( C
A.1 个
B.2 个
C.3 个
D.4 个
3.若
m-3
)
15
3m 是二次根式,则这个二次根式是__________.
新课导入
•问题
•1.要做一个两直角边长分别为7cm和4cm的三角尺,
斜边的边长应该是_____cm;
•2. 面积为S的正方体边长为_____。
❖ 思考

通过对上述问题的探究,可以得到形如
的式子,这些式子有什么特点?
65, S 之类
课前小测
1. 16的平方根是 ±4;
2. 9的算术平方根是 3 ;
一般地,我们把形如 a(a≥0)的式子叫做二次根式. 其中

”称为二次根号.
二次根号
根号a
被开方数
可以是非负的数或单项
式、多项式、分式等

实为“
”,
通常将根指
数2省略不写
(1)被开方数 a 既可以是一个数,也可以是一个含有
字母的式子,但前提是 a 必须大于或等于 0.
(2) a (a≥0)实际上就是非负数 a 的算术平方根,
a的平方根是 a .
问题2 什么是一个数的算术平方根?如何表示?
正数的正的平方根叫做它的算术平方根.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以,本次活动中教师应重点注重:
(1)学生是否联想到刚刚学习过的二次根式有意义的条件,本题中即要满足 ;
(2)学生是否能分 和 这两种情况实行讨论.
在教师的引导下,学生很容易得到如下结论:
是一个非负数.
通过这个活动的设计,提升学生对所学知识的迁移水平和应用意识;培养学生的分类讨论的思想和归纳概括的水平.
(1)对二次根式有意义的条件理解得是否深入;
(2)是否有对平方运算与开平方运算的互为逆运算的体会,并熟练地使用到解题过程中去;
(3)学生对所学知识的实际应用水平.
学生共同总结,调动他们的主动参与意识,互相取长补短,再一次突出本节课的学习重点,掌握解题技巧.
学生通过独立思考,完成课后作业,教师能够即时发现问题并反馈学生的学习情况,以便于查漏补缺,优化课堂教学.
教学过程设计
问题与情境
师生行为
设计意图
活动1
问题
用带根号的式子填空,看看写出的结果有什么特点:(题目见教科书4页“思考”栏目)
(1)所填的结果有什么特式子叫做二次根式,那么你能用数学符号表示二次根式吗?
例1当 是怎样的实数时, 在实数范围内有意义?
例2当 是怎样的实数时, 在实数范围内有意义? 呢?
教师演示课件,给出题目.
学生根据所学知识回答问题.
教师提出问题(1),注意学生是否能深入地观察,并发现和总结这组式子的特点;
教师提出问题(2),检查学生对所学知识的掌握情况,并引导学生将所学知识与新知识相联系;
教师提出问题(3),不同层次的学生会有不同的回答,学生可能遇到的困难:是否能够想到用字母表示数;是否能总结出 这个条件.教师协助学生解决这些困难.
活动5
问题
本节课你学到了什么知识?你有什么理解?
课后作业:
教科书第8页第1、2、3、4题.
教师引导,学生小结.
本次活动中教师应重点注重:
(1)理清本节课的知识脉络,突出学习重点;
(2)引导学生谈一谈对 与 的理解;
(3)让学生理解到当 时, ;
学生课后独立完成.
教师批改,作好教学情况记录.
本次活动中教师应重点注重:
学生由这组题目能得到下面的结论:
通过问题(3),教师引导学生得出一般性的结论.
有了活动3的学习经验,学生具备了一定的观察、归纳和总结的水平,能够轻松地得出二次根式的又一个性质,体会到了学以致用,持续探求新知的乐趣.
同时,通过对活动3和活动4两组题目的学习,培养了学生观察、对比的水平和意识,体会到了平方运算与开平方运算的内在联系.
活动3
问题
根据算术平方根的意义填空:




一般地,你能得到什么结论?
例2计算:
(1) ;
(2) .
学生首先总结这组题目的特点.
本次活动中,教师应重点注重:
(1)学生是否观察出被开方数的特点;
(2)学生是否注意到先开平方,再平方这个运算顺序;
(3)学生是否发现计算结果与被开方数的关系.
学生在教师的引导下,得出一般性的结论:
21.1二次根式(第1课时)
教学任务分析
教学目标
知识技能
1.了解二次根式的概念.
2.了解二次根式的基本性质.
数学思考
经历观察、比较、总结二次根式的基本性质的过程,发展学生的归纳概括水平.
解决问题
通过对二次根式的概念和性质的探究,提升数学探究水平和归纳表达水平.
情感态度
学生经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的快乐,并提升应用的意识.
学生自己总结过程中容易忽略括号中的内容,教师要加以补充并强调它的必要性.
对于例2的第(2)题,形式上与 不一样,教师要注重学生是否联想到以前学习过的积的乘方运算,即 ,有了对这个知识的复习,学生就会知道本题需要先实行积的乘方运算,再使用新学的二次根式的性质,分这样两步来计算问题就迎刃而解了.
本次活动中,由具体的正数和零入手来研究二次根式的一个性质,再引导学生由具体到抽象,得出一般性的结论,并发现开平方运算与平方运算的关系.培养学生由特殊到一般的理解过程,提升归纳、总结的水平.
通过这组题目的练习,加深对 这个性质的理解和应用.对于复杂的题目,要学会分解,化难为易.
活动4
问题
(1)填空:
; ;
; .
(2)思考:当 时, ?
(3) 与 相等吗?
例3化简:
(1) ;(2) .
教师首先引导学生比较活动3与活动4中两组题目的不同之处,注意学生是否观察出:活动3中的题目是对非负数先实行开平方运算,再实行平方运算;而活动4中的题目正好相反,是先实行平方运算,再实行开平方运算.
学生总结出二次根式的概念.
在本次活动中,教师应重点注重:
(1)学生是否掌握了二次根式有意义的条件;
(2)学生是否能将二次根式有意义的条件应用到问题的解决过程中,并注意到被开方数整体大于等于零决不能等同于被开方数的某一项或某一部分大于等于零.
由实际问题入手,设置情境问题,激发学生的兴趣,让学生从不同的式子中探寻规律,为二次根式的引入作好铺垫.
注重新旧知识的连贯性,使学生有一个由浅入深的学习过程,并体会到学习的内容是融会贯通的.
为学生提供练习的时间和空间,调动学生的主观能动性,激发好奇心和求知欲.
通过题目的练习,使学生加深对所学知识的理解,避免一些常见错误.
活动2
问题
请比较 与0的大小.
学生可能马上反映到 ,部分学生能得出 这个准确结论.
重点
二次根式的概念和基本性质.
难点
二次根式的基本性质的灵活使用.
教学流程安排
活动流程图
活动内容和目的
活动1二次根式的概念
活动2探究 是一个非负数
活动3探究
活动4探究
活动5小结,课后作业
由一组式子观察、归纳二次根式的概念.
通过计算、抽象、概括得出二次根式的基本性质.
回顾梳理,进一步理解理解二次根式的概念和基本性质.学生巩固、提升、发展.
相关文档
最新文档