航空陀螺仪
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空陀螺仪
一、陀螺仪的基本知识
陀螺玩具旋转时,能够直立在地上;而且转得愈快,立得也愈稳;即使给它一个冲击,也只是晃动而不会倒下。陀螺的这种特性可以
被利用来做成仪表用来测量飞机的姿态角、航向角和角速度。
航空陀螺仪表中的陀螺仪,是把绕自转轴(又叫转子轴)高速旋转的转子用框架支撑起来,使转子绕垂直于自转轴方向可以自由转动的这样一种装置。图8.1表示的是,转子安装在内环和外环这两个框架中,转子可绕自转轴高速旋转,转子同内环可绕内环轴转动,转子同内环和外环还可绕外环轴转动这样支承起来的转子可以绕着垂直于自转轴的两根轴转动,这种装置称为三自由度陀螺仪。若转子仅安装于内环中这样支承起来的转子只能绕着垂直于自转轴的一根轴转动这种装置称为二自由度陀螺仪。
三自由度陀螺仪的基本特性之一是稳定性(又叫定轴性)。当转子高速旋转时,因具有很大的惯性,自转轴能够保持原来的方向稳定;无论基座怎样转动,自转轴所稳定的方向都将保持不变;同使受到冲击作用,自转轴也仅在原来的方位附近作一种高频微幅的振荡运动。陀螺仪具有抵抗干扰作用而力图保持自转轴方向稳定的特性叫做螺仪的稳定性。
陀螺仪的又一基本特性是进动性。当转子高速旋转时,若外力矩绕外环轴作用,陀螺仪将绕内环轴转动;若外力矩绕内环轴作用,陀螺仪将绕外环轴转动。陀螺仪转动角速度方向与外力矩作用方向互相垂直的特性,叫做陀螺仪的进动性。进动角速度的方向取决于转子动量矩H的方向(与转子自转角速度矢量的方向一致)和外力矩M的方向,可用右手定则确定。进动角速度的大小取决于转子动量矩H的大小和外力矩M的大小,其计算式为 =M/H。如果这种进动由陀螺仪中的干扰力矩引起,则叫做漂移,漂移角速度即漂移率是衡量各种陀螺仪表精度的最重要的指标。
至于二自由度陀螺仪的特性,就与三自由度陀螺仪不同。二自由度陀螺仪少了垂直于内环轴和自转轴方向的转动自由度。这样,当基座绕着这个缺少自由度的轴线转动时,通过内环轴上一对轴承的推动,就强迫陀螺仪跟随基座转动;与此同时,基座作用于内环两端轴承上的推力形成了推力矩将强迫陀螺绕内环轴进动,使自转轴趋于基座转动角速度的方向重合。因此,二自由度陀螺仪具有感受绕其缺少自由度方向转动的特性。
正是因为陀螺仪具有上述特性,可以做成测量飞行器(飞机、导弹、卫星等)角位置和角速度的仪表,还可做成测量飞行器线加速度和角加速度的仪表。
在航空上,陀螺仪表的基本用途是测量飞机的姿态角、航向角和角速度,因而成为飞机飞行的重要仪表。
表六
这里对飞机航行驾驶和飞行自动控制系统中使用的陀螺仪表列表说明,以便对航空陀螺仪表的名称及其用途有一个概貌的了解。
从使用角度来看可把表中所列的航空陀螺仪表分成指示式的和传感式的两类。指示式陀螺仪表是给飞行员提供判读指示的陀螺仪表。传感式陀螺仪表是给飞行自动控制系统和机载特种设备提供电气信号的陀螺仪表。
下面介绍常见的航空陀螺仪表的工作原理包括陀螺地平仪、陀螺半罗盘、陀螺磁罗盘和陀螺转弯仪等指示式仪表。至于垂直陀螺仪、航向陀螺仪和速率陀螺仪等传感式仪表,其工作原理与指示式的并无本质上的区别。
二、陀螺地平仪
陀螺地平仪是利用三自由度陀螺仪的特性和摆的特性做成的陀螺仪表,用来测量飞
机的姿态角。飞行员凭借陀螺地平仪的指示,才能保持飞机的正确姿态,完成飞行和作战任务。特别是在云中飞行或进行夜航时,飞行员看不见大地的地平线和地标,如不借助仪表,驾驶飞机就十分困难;而且,飞行员容易产生错觉,甚至可能造成机毁人亡的事故。由于飞行姿态对飞行的运动状态具有决定性的影响,对保证飞行安全也具有极大的重要性,因此,作为首要飞行仪表的陀螺地平仪通常都安装在飞机仪表板中间的最显眼位置上。在有些飞机上还加装了应急地平仪,以备主地平仪出现故障时使用。
飞机的姿态角是指俯仰角和倾斜角。假如飞机上有一个地平面基准,当飞机抬头或低头时,飞机纵轴与这个地平面之间的夹角就是飞机的俯仰角。当飞机绕纵轴向左或向右转动时,飞机纵向对称平面绕纵轴转过的角度就是飞机的倾斜角。
要测得飞机的姿态角,关键是在飞机上建立一个地平面或地垂线基准。我们知道,摆能够自动寻找地垂线具有方向敏感性;但它受加速度干扰时会产生很大的误差,缺少方向稳定性。我们也知道三自由度陀螺仪的自转轴并不因加速度干扰而改变方向,具有方向稳定性;但它却不能自动寻找地垂线,没有方向敏感性。即使把自转轴调整到与地垂线重合,由于地球自转和飞机运动导致地垂线在惯性空间不断改变方向,而且陀螺漂移导致自转轴在惯性空间也不断改变方向,这就使得起初与地垂线重合的自转轴逐渐偏离地垂线。由此想到把摆和陀螺仪二者的优点结合在一起,即用摆敏感地垂线并对陀螺仪进行修正,使具有方向稳定性的自转轴获得方向敏感性,这样便可在飞机上建立一个精确而稳定的地垂线基准。
以三自由度陀螺仪为基础,加上修正装置,再装上指示机构,就可构成陀螺地平仪。若不装指示机构,而是装上信号传感器,则可构成垂直陀螺仪。
三、陀螺半罗盘与陀螺磁罗盘
陀
螺半罗盘是利用三自由度陀螺仪的方向稳定性做成的陀螺仪表用来测量飞机的航向角。陀螺磁罗盘是把陀螺半罗盘与磁罗盘组合在一起以便更好地解决飞机航向的测量问题。飞行员借助陀螺半罗盘或陀螺磁罗盘判明飞机的航向并按一定的航向飞行,才能驾驶飞机沿着正确的航线飞到预定的目标。在我机迎击来犯的敌机时飞行员必须根据敌机飞行情况不断修正飞行航向才能准确地飞到空战区域歼击来犯的敌机。可见陀螺半罗盘或陀螺磁罗盘也是十分重要的飞行仪表。
飞机的航向角是指飞机纵轴在水平面上的投影与子午线之间的夹角.由于子午线有地理子午线(又叫真子午线)主磁子午线之分,所以航向角也有真航向角和磁航向角之分。由于地磁南、北极与地理南、北极不相重合,所以磁子午线与地理子午线之间相差一个角度这个角度叫做磁差角。在地球上各地的磁差角不同己通过实际测定绘面磁差地图供查阅使用。
要测得飞机的航向角,关键是在飞机上建立一个磁子午线或地理子午线基准。众所周知,自由悬挂的磁针可以确定出磁子午线方向。利用磁针定向原理做成的测量航向的仪表称为磁罗盘。
这里,我们又很自然地想到陀螺仪。在地球上放置的三自由度陀螺仪可以感受到地球的自转,加上适当的修正装置之后,自转能够自动寻找到地理子午线方向。这种由陀螺仪做成可测出真航向角的陀螺仪称为陀螺罗盘(常称陀螺罗经)。航海上从本世纪初开始用陀螺罗盘代替磁罗盘,目前在大海里航行的轮船和舰艇都是用它来精确地测量航向。但因陀螺罗盘的工作精度受航行体速度和加速度等影响比较大,而飞机的速度又比舰船大得多,以致在飞行中使用时会造成过大的误差,甚至不能正常工作,所以至今飞机上并未使用陀螺罗盘作为航向