柳卡图解决多次相遇与追及问题
柳卡图解决多次相遇与追及问题
柳卡图解决多次相遇与追及问题解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少?(下面的例题基本都是先求得时间,然后画出准确的柳卡图,若用比例的方法更快更方便,本讲暂不用比例来解答,有兴趣的同学可以自己画画看)如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?解答:(这题不是我解答的)这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例2】甲、乙两人在一条长米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?解答:甲行一个全程用30÷1=30秒,乙行一个全程用30÷0.6=50秒,然后画出下面柳卡图:从图上看出,甲乙分别从两端出发,150秒后又回到来位置,所以可以看成150秒一个周期,甲乙在1个周期里共相遇了5次,10×60÷150=4个周期,共相遇了4×5=20次。
奥数 行程 多次相遇和追及问题
一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程;即甲第1次如果走了N 米,以后每次都走2N 米;2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;知识框架多次相遇与追及问题3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成;折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少;如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易;例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间;已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地;问:甲车的速度是乙车的多少倍【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇;如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米;问:甲、乙二人的速度各是多少【例 3】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C 点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米【例 4】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例 5】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地18千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地13千米处第二次相遇,求AB两地之间的距离.【巩固】甲、乙两车同时从A,B两地相向而行,在距B地54千米处相遇;他们各自到达对方车站后立即返回原地,途中又在距A地42千米处相遇;求两次相遇地点的距离;【例 6】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地3千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地2千米处第二次相遇,求第2000次相遇地点与第2001次相遇地点之间的距离.【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求第三次相遇时共走了多少千米.【例 7】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑;甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动;甲、乙两人在第几次相遇时A地最近最近距离是多少米【巩固】A、B两地相距950米;甲、乙两人同时由A地出发往返锻炼半小时;甲步行,每分钟走40米;乙跑步,每分钟行150米;则甲、乙二人第___ __次迎面相遇时距B地最近;【例 8】甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶;已知甲车的速度是 15千米/时,乙车的速度是25千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米;求A,B两地的距离;【巩固】欢欢和乐乐在操场上的A、B两点之间练习往返跑,欢欢的速度是每秒8米,乐乐的速度是每秒5米;两人同时从A点出发,到达B点后返回,已知他们第二次迎面相遇的地点距离AB的中点5米,AB之间的距离是________; 【例 9】甲、乙二人进行游泳追逐赛,规定两人分别从游泳池50米泳道的两端同时开始游,直到一方追上另一方为止,追上者为胜;已知甲、乙的速度分别为米/秒和米/秒;问:1比赛开始后多长时间甲追上乙2甲追上乙时两人共迎面相遇了几次【巩固】小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次【例 10】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前途中能遇上几艘从纽约开来的轮船【巩固】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟课堂检测【随练1】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇;已知C离A有80米,D离B有60米,求这个圆的周长;【随练2】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地5千米处第二次相遇,求两次相遇地点之间的距离.【随练3】A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次【随练4】甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次家庭作业【作业1】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米【作业2】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分【作业3】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地6千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地点距B 多远. 【作业4】湖中有A,B两岛,甲、乙二人都要在两岛间游一个来回;两人分别从A,B两岛同时出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米;问:两岛相距多远【作业5】在一圆形跑道上,甲从A点、乙从B点同时出发反向而行,6分后两人相遇,再过4分甲到达B点,又过8分两人再次相遇;甲、乙环行一周各需要多少分【作业6】A、B两地位于同一条河上,B地在A地下游100千米处.甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是米/秒.教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。
多次相遇和追及问题详解
多次相遇和追及问题教学目标1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题知识精讲板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.例1】(难度等级※)甲、乙两名同学在周长为300 米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4 米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?解析】从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10 倍,为300 10 3000米,因为甲的速度为每秒钟跑 3.5 米,乙的速度为每秒钟跑 4 米,所以这段时间内甲共行了3.53000 3.5 1400米,也就是甲最后一次离开出发点继续行了200 米,可知甲还需行 3.5 4300 200 100米才能回到出发点.巩固】(难度等级※)甲乙两人在相距90 米的直路上来回跑步,甲的速度是每秒 3 米,乙的速度是每秒2 米.如果他们同时分别从直路两端出发,10 分钟内共相遇几次?解析】17巩固】(难度等级※)甲、乙两人从400米的环形跑道上一点 A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1 米,那么两人第五次相遇的地点与点 A 沿跑道上的最短路程是多少米?解析】176、运用倍比关系解多次相遇问题例2】(难度等级※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家 4 千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8 千米,这时是几点几分?解析】画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8 =12(千米)这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12 ÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8 ×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16 (千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16 千米需要16分钟. 8+8+16=32.所以这时是8 点32 分。
行程问题之多次相遇与追及问题 非常完整版题型训练+答案解析
行程体系之多次相遇与追及问题知识点总结:1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差例题训练:【例1】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?解答:画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【例2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.解答:注意观察图形,当甲、乙第一次相遇时,甲乙共走完0.5圈的路程,当甲、乙第二次相遇时,甲乙共走完1+0.5=1.5圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300=1.5圈,解出此圆形场地的周长为480米.【例3】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?解答:第五次相遇时,共合走5各全程:400×5=2000(米)甲乙的速度和:2000÷8=250(米/分)甲乙的速度差:0.1×60=6(米/分)甲的速度(250+6)÷2=128(米/分)乙的速度:(250-6)÷2=122(米/分)8分钟时甲的路程跑的圈数:128×8÷400=2(周)余224米400-224=176(米)【例4】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?解答:从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300×10=3000米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3000÷(3.5+4)×3.5=1400米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300-200=100米才能回到出发点【例5】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?解答:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分)爸爸骑行16千米需要16分钟,8+8+16=32.所以这时是8点32分。
(完整版)多次相遇和追及问题
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 (难度等级 ※)甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点? 【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【巩固】 (难度等级 ※)甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次? 【解析】 17一共六百秒,第一次相遇是两人总共跑一个90米,以后是180米相遇次。
相对速度每秒五米。
第一次相遇是18秒。
180米相遇需要36秒。
此后是582秒总共有16次。
所以相遇17次。
知识精讲教学目标3-1-3多次相遇和追及问题【解析】【巩固】(难度等级※)甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?【解析】176甲乙每分钟速度和:400×5÷8=250米每分钟,甲比乙多:0.1×60=6米甲每分钟:(250+6)÷2=128米128×8÷400=2 (224)相遇点与A最短路程为400-224=176米【解析】二、运用倍比关系解多次相遇问题【例 2】(难度等级※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【解析】画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8=12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16千米需要16分钟.8+8+16=32.所以这时是8点32分。
小学奥数:多次相遇和追及问题.专项练习及答案解析
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】1星 【题型】解答【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题 【难度】1星 【题型】解答【解析】 17【答案】17【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【考点】行程问题 【难度】2星 【题型】解答【解析】 176【答案】176【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?【考点】行程问题 【难度】3星 【题型】解答【解析】 甲、乙两人的速度和第一次为60÷6=10(千米/时),第二次为12(千米/时),故第二次出发后5时相遇。
六年级奥数多次相遇和追及问题学生版
1. 六年级奥数多次相遇和追及问题学生版2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?知识精讲 教学目标3-1-4多次相遇和追及问题板块二、运用倍比关系解多次相遇问题【例 3】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例 4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【例 5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
多次相遇问题(解析版)
多次相遇问题(解析版)一、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差【例 1】 小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?【解析】 第一次相遇时,两人共跑完了一个全程,所用时间为:1006410÷+=()(秒).此后,两人每相遇一次,就要合跑2倍的跑道长,也就是每20秒相遇一次,除去第一次的10秒,两人共跑了126010710⨯-=(秒).求出710秒内两人相遇的次数再加上第一次相遇,就是相遇的总次数.列式计算为:1006410÷+=()(秒),1260101023510⨯-÷⨯=()(),共相遇35136+=(次)。
注:解决问题的关键是弄清他们首次相遇以及以后每次相遇两人合跑的路程长.【例 2】 A 、B 两地间有条公路,甲从A 地出发,步行到B 地,乙骑摩托车从B 地出发,不停地往返于A 、B 两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B 地时,乙追上甲几次?【解析】第一次追上第一次相遇乙甲F E B由上图容易看出:在第一次相遇与第一次追上之间,乙在1008020-=(分钟)内所走的路程恰等于线段FA 的长度再加上线段AE 的长度,即等于甲在(80100+)分钟内所走的路程,因此,乙的速度是甲的9倍(18020=÷),则BF 的长为AF 的9倍,所以,甲从A 到B ,共需走80(19)800⨯+=(分钟)乙第一次追上甲时,所用的时间为100分钟,且与甲的路程差为一个AB 全程.从第一次追上甲时开始,乙每次追上甲的路程差就是两个AB 全程,因此,追及时间也变为200分钟(1002=⨯),知识精讲所以,在甲从A到B的800分钟内,乙共有4次追上甲,即在第100分钟,300分钟,500分钟和700分钟.【例 3】(难度等级3)甲、乙两人分别从A、B两地同时出发相向而行,乙的速度是甲的23,二人相遇后继续行进,甲到B地、乙到A地后立即返回.已知两人第二次相遇的地点距第三次相遇的地点是100千米,那么,A、B两地相距千米.【解析】由于甲、乙的速度比是2:3,所以在相同的时间内,两人所走的路程之比也是2:3.第一次相遇时,两人共走了一个AB的长,所以可以把AB的长看作5份,甲、乙分别走了2份和3份;第二次相遇时,甲、乙共走了三个AB,乙走了236⨯=份;第三次相遇时,甲、乙共走了五个AB,乙走了2510⨯=份.乙第二次和第三次相距10-6=4(份)所以一份距离为:100÷4=25(千米),那么A、B两地距离为:5×25=125(千米)【巩固】(难度等级※※※)小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发,相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(追上也算作相遇),则甲、乙两地的距离为千米.【解析】由于两人同时出发相向而行,所以第一次相遇一定是迎面相遇;由于本题中追上也算相遇,所以两人第二次相遇可能为迎面相遇,也可能为同向追及.①如果第二次相遇为迎面相遇,如下图所示,两人第一次在A处相遇,第二次在B处相遇.由于第一次相遇时两人合走1个全程,小王走了3千米;从第一次相遇到第二次相遇,两人合走2个全程,所以这期间小王走了326⨯=千米,由于A、B之间的距离也是3千米,所以B与乙地的距离为(63)2 1.5-÷=千米,甲、乙两地的距离为6 1.57.5+=千米;李王乙甲甲王李乙②如果第二次相遇为同向追及,如上图,两人第一次在A处相遇,相遇后小王继续向前走,小李走到甲地后返回,在B处追上小王.在这个过程中,小王走了633-=千米,小李走了639+=千米,两人的速度比为3:91:3=.所以第一次相遇时小李也走了9千米,甲、乙两地的距离为9312+=千米.所以甲、乙两地的距离为7.5千米或12千米.【巩固】(难度级别3)A,B两地相距540千米。
小学奥数:多次相遇和追及问题.专项练习
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?知识精讲 教学目标3-1-4多次相遇和追及问题板块二、运用倍比关系解多次相遇问题【例 3】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例 4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【例 5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
第十四讲 行程问题——多次相遇问题
(一)由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.(二)多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差 知识要点:第十四讲 行程问题——多次相遇问题(三)解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题:【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【例 3】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【例 4】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【例 5】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地3千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地2千米处第二次相遇,求第2000次相遇地点与第2001次相遇地点之间的距离.【例 6】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑。
学而思奥数模块三解多次相遇问题的工具——柳卡
学而思奥数模块之行程问题模块三解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【解析】这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例 2】 甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?【解析】 采用运行图来解决本题相当精彩!首先,甲跑一个全程需30130÷=(秒),乙跑一个全程需300.650÷=(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇了5420⨯=(次)【例 3】 (2009年迎春杯复赛高年级组)A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是 米/秒.【解析】 本题采用折线图来分析较为简便.NM如图,箭头表示水流方向,A C E →→表示甲船的路线,B D F →→表示乙船一个周期内共有5次相遇,其中第1,2,4,5次是迎面相遇,的路线,两个交点M 、N 就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC 和DE 的长度相同,AD 和CF 的长度相同.那么根据对称性可以知道,M 点距BC 的距离与N 点距DE 的距离相等,也就是说两次相遇地点与A 、B 两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了()10020240-÷=千米和1004060-=千米,可得两船的顺水速度和逆水速度之比为60:403:2=.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为()432312÷-⨯=米/秒,那么两船在静水中的速度为12210-=米/秒.。
奥数模块三 解多次相遇问题的工具——柳卡
学而思奥数模块之行程问题模块三解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【解析】这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例 2】 甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?【解析】 采用运行图来解决本题相当精彩!首先,甲跑一个全程需30130÷=(秒),乙跑一个全程需300.650÷=(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇了5420⨯=(次)【例 3】 (2009年迎春杯复赛高年级组)A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是 米/秒.【解析】 本题采用折线图来分析较为简便.如图,箭头表示水流方向,A C E →→表示甲船的路线,B D F →→表示乙船一个周期内共有5次相遇,其中第1,2,4,5次是迎面相遇,的路线,两个交点M 、N 就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC 和DE 的长度相同,AD 和CF 的长度相同.那么根据对称性可以知道,M 点距BC 的距离与N 点距DE 的距离相等,也就是说两次相遇地点与A 、B 两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了()10020240-÷=千米和1004060-=千米,可得两船的顺水速度和逆水速度之比为60:403:2=.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为()432312÷-⨯=米/秒,那么两船在静水中的速度为12210-=米/秒.。
2018五年级奥数.行程 .多次相遇和追及问题 (B级).学生版
多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较所有行程问题都是围绕“=⨯复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2.同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例1】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?欢迎关注:奥数轻松学余老师薇芯:69039270【巩固】甲、乙二人从相距60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?【例2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D 点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【例3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?欢迎关注:奥数轻松学余老师薇芯:69039270【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例4】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑。
小学奥数 多次相遇和追及问题 精选例题练习习题(含知识点拨)
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?板块二、运用倍比关系解多次相遇问题知识精讲教学目标3-1-4多次相遇和追及问题地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【例5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
奥数模块三--解多次相遇问题的工具——柳卡
学而思奥数模块之行程问题模块三解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【解析】这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例 2】 甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?【解析】 采用运行图来解决本题相当精彩!首先,甲跑一个全程需30130÷=(秒),乙跑一个全程需300.650÷=(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇了5420⨯=(次)【例 3】 (2009年迎春杯复赛高年级组)A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是 米/秒.【解析】 本题采用折线图来分析较为简便.如图,箭头表示水流方向,A C E →→表示甲船的路线,B D F →→表示乙船一个周期内共有5次相遇,其中第1,2,4,5次是迎面相遇,的路线,两个交点M 、N 就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC 和DE 的长度相同,AD 和CF 的长度相同.那么根据对称性可以知道,M 点距BC 的距离与N 点距DE 的距离相等,也就是说两次相遇地点与A 、B 两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了()10020240-÷=千米和1004060-=千米,可得两船的顺水速度和逆水速度之比为60:403:2=.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为()432312÷-⨯=米/秒,那么两船在静水中的速度为12210-=米/秒.。
关于多次相遇使用柳卡图解题的3道题目
关于多次相遇使用柳卡图解题的3道题目本帖最后由 liqingzhou 于 2012-5-4 22:09 编辑1、甲乙两车分别从A、B两地同时出发,不断往返,相向而行,甲车每小时行20千米,乙车每小时行50千米,已知两车第10次和第18次迎面相遇的地点相距60千米。
问A、B两地路程是多少千米?分析与求解:方法一、柳卡图画出1个循环的柳卡图,如下:甲乙的速度比是2:5(1:2.5),甲走1个全程乙走2.5个全程,甲走4个全程乙走10个全程,此时出现循环。
在一个循环中,迎面相遇6次,背后追上2次。
第10次迎面相遇在a点,第18次迎面相遇在b点。
假设从C到a的时间为t1,则:(50t1-s)+20t1=s,化简:s=35t1。
假设从b到D的时间为t2,则:50t2+20t2=s,化简:s=70t2。
可以得到:t1=2t2。
由题目知道,a与b之间的距离是60千米,所以:20t1-20t2=60。
将t1=2t2代入,得到:40t2-20t2=60,20t2=60,t2=3。
全程:s=70t2=70×3=210(千米)。
题目有争议,C点肯定是追及,但是算不算迎面相遇呢?如果C点算做迎面相遇,第10次在E点,第18次在C点,E、C 间的距离为60。
20t=60,t=3。
(50t-s)+20t=s,化简:s=35t,s=105(千米)。
方法二、使用相遇、追及理论计算下次迎面相遇多2个全程,迎面相遇时间多2倍;下次追及相遇多2个全程,追及相遇时间多2倍。
因为速度比是2:5,所以把全程等分成2+5=7份。
迎面相遇:第1次,时间:7/(2+5)=1,甲走1×2=2份,乙走1×5=5份;下次时间:7×2/(2+5)=2,甲走2×2=4份,乙走2×5=10份。
本题不考虑追及相遇。
甲走2份,第一次迎面相遇。
甲走2+4份,第二次迎面相遇。
甲走2+2*4份,第三次迎面相遇。
奥数模块三解多次相遇问题的工具——柳卡
学而思奥数模块之行程问题模块三解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【解析】这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例2】甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?【解析】采用运行图来解决本题相当精彩!首先,甲跑一个全程需30130(秒),乙跑一个全程需300.650(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇了5420(次)【例3】(2009年迎春杯复赛高年级组)A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是米/秒.【解析】本题采用折线图来分析较为简便.NMFED C B A 如图,箭头表示水流方向,A CE 表示甲船的路线,B DF 表示乙船一个周期内共有5次相遇,其中第1,2,4,5次是迎面相遇,的路线,两个交点M、N就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC和DE的长度相同,AD和CF的长度相同.那么根据对称性可以知道,M点距BC的距离与N点距DE的距离相等,也就是说两次相遇地点与A、B两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了10020240千米和1004060千米,可得两船的顺水速度和逆水速度之比为60:403:2.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为432312米/秒,那么两船在静水中的速度为12210米/秒.。
小学数学行程问题之多人多次相遇和追及问题含答案
多次相遇和追及问题知识框架一、多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:路程和速度和相遇时间;=⨯路程差速度差追及时间;=⨯多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇追及问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】A 、B 两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分。
如果甲、乙从A ,丙从B 地同时出发相向而行,那么,在__________分钟或________分钟后,丙与乙的距离是丙与甲的距离的2倍。
柳卡图解决多次遇追及问题
数海拾贝我不知道世人怎样看我,但我自己以为我不过像一个在海边玩耍的孩子,不时为发现比寻常更为美丽的一块卵石或一片贝壳而沾沾自喜,至于展现在我面前的浩翰的真理海洋,却全然没有发现。
---牛顿(英国)柳卡图解决多次相遇与追及问题解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少?(下面的例题基本都是先求得时间,然后画出准确的柳卡图,若用比例的方法更快更方便,本讲暂不用比例来解答,有兴趣的同学可以自己画画看)如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?解答:(这题不是我解答的)这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例2】甲、乙两人在一条长<?xml:namespace prefix = st1 /><?xml:namespace prefix = st1 /><?xml:namespace prefix = st1 /><?xml:namespace prefix = st1 /><?xml:namespace prefix = st1 />的直路上来回跑步,甲的速度是每秒,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?解答:甲行一个全程用30÷1=30秒,乙行一个全程用30÷0.6=50秒,然后画出下面柳卡图:从图上看出,甲乙分别从两端出发,150秒后又回到来位置,所以可以看成150秒一个周期,甲乙在1个周期里共相遇了5次,10×60÷150=4个周期,共相遇了4×5=20次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数海拾贝
我不知道世人怎样看我,但我自己以为我不过像一个在海边玩耍的孩子,不时为发现比寻常更为美丽的一块卵石或一片贝壳而沾沾自喜,至于展现在我面前的浩翰的真理海洋,却全然没有发现。
---牛顿(英国)
柳卡图解决多次相遇与追及问题
解多次相遇问题的工具——柳卡
柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少?(下面的例题基本都是先求得时间,然后画出准确的柳卡图,若用比例的方法更快更方便,本讲暂不用比例来解答,有兴趣的同学可以自己画画看)如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?
解答:(这题不是我解答的)
这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.
他先画了如下一幅图:
这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中
的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为
与对方开来轮船相遇的情况.
从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这
相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另
外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出
的轮船而忽略了已在海上的轮船.
【例2】甲、乙两人在一条长<?xml:namespace prefix = st1 /><?xml:namespace prefix = st1 /><?xml:namespace prefix = st1 /><?xml:namespace prefix = st1 /><?xml:namespace prefix = st1 />的直路上来回跑步,甲的速度是每秒,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?
解答:
甲行一个全程用30÷1=30秒,乙行一个全程用30÷0.6=50秒,然后画出下面柳卡图:
从图上看出,甲乙分别从两端出发,150秒后又回到来位置,所以可以看成150秒一个周期,甲乙在1个周期里共相遇了5次,10×60÷150=4个周期,共相遇了4×5=20次。
【例3】A、B 两地相距,甲从A地、乙从 B 地同时出发,在A、B 两地间往返锻炼.乙跑步每分钟行,甲步行每分钟行.在30分钟内,甲、乙两人第几次相遇时距 B 地最近(从后面追上也算作相遇)?最近距离是多少?
解答:知道了两地的距离,需要求出每个人走一个全程所用的时间,方便画出柳卡图。
乙行一个全程用1000÷150=6又2/3分,甲行一个全程用1000÷60=16又2/3分。
30分钟内,两人一共合行(150+60)×30÷1000=6.3个全程。
画出图后,可以很清楚的可以看到第3次相遇离B地最近。
下面只要求的第三次相遇点距离B地多少千米即可。
第三次相遇两人共行了3个全程,1000×3÷(150+60)=14又2/7分钟,这时甲行了60×14
又2/7=6000/7米,距离乙地还有1000-6000/7=142又6/7米。
【巩固】A、 B 两地相距.甲、乙两人同时由A地出发往返锻炼半小时.甲步行,每分钟走;乙跑步,每分钟行.则甲、乙二人第几次迎面相遇时距 B 地最近?
解答:甲走一个全程需要950÷40=23.75分钟,乙行一个全程需要950÷150=6又1/3分钟。
30分钟两人共行(40+150)×30÷950=6个全程,从图上可以看出30分钟共相遇4次,追及相遇1次,迎面相遇3次,第2次迎面相遇距离B地最近。