数学人教版七年级下册初中数学规律探究题的解题方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学规律探究题的解法指导
靖安中学钱庆利
新课标中明确要求:用代数式表示数量关系及所反映的规律,发展学生的抽象思维能力。根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。规律探索试题是中考中的一棵常青树,一直
受到命题者的青睐,主要原因是这类试题没有固定的形式和方法,要求学生通过观察、分析、比较、概括、推理、判断等探索活动来解决问题
一、数式规律探究
通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:
1.一般地,常用字母n表示正整数,从1开始。
2.在数据中,分清奇偶,记住常用表达式。
正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…
3.熟记常见的规律
① 1、4、9、16......n2② 1、3、6、10……
(1)
2
n n+
③ 1、3、7、15……2n -1 ④ 1+2+3+4+…+n=
(1)
2
n n+
⑤ 1+3+5+…+(2n-1)= n2 ⑥ 2+4+6+…+2n=n(n+1)
⑦ 12+22+32….+n2=1
6
n(n+1)(2n+1) ⑧ 13+23+33….+n3=
1
4
n2(n+1)
数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法
例1.观察下列等式:①1×1
2
=1-
1
2
②2×
2
3
=2-
2
3
③3×
3
4
=3-
3
4
④4×4
5
=4-
4
5
……猜想第几个等式为(用含n的式子表示)
分析:将等式竖排:
①1×1
2
=1-
1
2
观察相应位置上变化的数字与序列号
②2×2
3
=2-
2
3
的对应关系(注意分清正整数的奇偶)
③3×3
4
=3-
3
4
易观察出结果为:
④4×4
5
=4-
4
5
n×
1
n
n+
=n-
1
n
n+
2.函数法
(1)一级等差:第一次求差结果相等,用一次函数y=kx+b
例3.有一组数:4、7、10、13、16、19……请观察这组数的构成规律,用你发现的规律确定第n个数为。
(用含n的代数式表示)
分析:对结果数据做求差处理(相邻两数求差,大数减小数)
原数为:4、7、10、13 第一次求差结果相等,用一次函数y=kx+b
第一次求差: 3 3 3 代入(1,4)(2,7)解之得:y=3x+1
∴a n=3n+1
(2)二级等差:第二次求差结果相等,用二次函数y=ax2+bx+c
例4.有一组数:1、2、5、10、17、26……请观察这组数的构成规律,用你发现的规律确定第8个数为。
分析:对这组数据做求差处理:原数 1 2 5 10 17 26
第一次求差:1 3 5 7 9
第二次求差:2 2 2 2
第二次求差结果相等,同二次函数y=ax2+bx+c 代入(1,1)(2,2)(3,5)
解之得a=1 b=-2 c=2 y= x2-2x+2=(x-1)2+1
∴当=8时,y=50 (第n个数为 :n2-2n+2或(n-1)2+1 )
二、图形规律探究
由结构类似,多少和位置不同的几何图案的图形个数之间也有一定的规律可寻,并且还可以由一个通用的代数式来表示。这种探索图形结构成元素的规律的试题,解决思路有两种:一种是数图形,将图形转化为数字规律,再用函数法、观察法解决问题;另一种是通过图形的直观性,从图形中直接寻找规律,常用“拆图法”解决问题。
拆图法
例5.如图,由若干火柴棒摆成的正方形,第①图用了4根火柴,第②图用了7根火柴棒,第③图用了10根火柴棒,依次类推,第⑩图用根火柴棒,摆第n个图时,要用根火柴棒。
(1)(2)(3)
分析:本例①可拆为即1+3=4(根)第②拆为即
1+3⨯2=7(根);第③图可拆为即1+3⨯3=10(根)由此可知,
第⑩图为1+3⨯10=31(根),第n个图为:(3n+1)根。
例6.按如下规律摆放三角形:则第④堆三角形的个数为;第(n)堆三角形的个数为。
△△△
△△△
△△△△△
△△△△△△
△△△△△△△
①②③
分析:本例中需要进行比较的因素较多,于是把图拆为横向和纵向两部分,就横向而言,把三角形个数抽出来,就是3,5,7…这是奇数从小到大的排列,其表达式为:2n+1;就纵向而言,发现三角形个数依次增加一个:第①堆有2个,第②堆有3个,第③堆有4个,所以第(n)堆的个数就为(n+1)个。所以第n堆三角形的总个数为:(n+1)+(2n+1)即(3n+2)个。
三、周期循环规律探究
探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么32009的个位数字是。分析:这类问题,主要是通过观察末位数字,找出其循环节共几位,然后用指数除以循环节的位数,结果余几,就和第几个数的末位数字相同,2009÷4=502……1,易得出本题结果为:3
课堂检测
1.一组数2,4,8,16,32……,第n个数是。