第四章SPICE模型及仿真

合集下载

spice模型PPT课件

spice模型PPT课件
实际电路分析中用到的一般都是元件的 等效电路模型。由于集成电路元件主要是 由半导体器件组成的,因此,这些等效电 路模型又都是以物理模型为基础的。
1)物理模型
半导体器件的物理模型是从半导体的基本方程 出发,并对器件的参数做一定的近似假设而得 到的有解析表达式的数学模型。一般说来,随 着集成电路集成度的提高,器件的结构、尺寸 都在发生变化,器件的物理模型就越加复杂。 在物理模型中经常包含有一些经验因子,目的 是为了使模型与实验结果符合得更好。一般说, 模型中考虑的因素越多,与实际结果就符合得 越好,但模型也就越复杂,在电路模拟中耗费 的计算工作量就越大。
当MOS器件的栅长和栅宽大于10µm、衬底 掺杂低,而我们又需要一个简单的模型时,那 么由Shichman和Hodges提出的MOS1模型是 适合的。
2)LEVEL=2 LEVEL=2的MOS2模型在MOS1模型基础上考 虑了一些二阶效应,提出了短沟道或窄沟道MOS 管的模型,又被称为二维解析模型。
MOS2模型考虑的二阶效应主要包括: (1)沟道长度对阈值电压的影响 (2)漏栅静电反馈效应对阈值电压的影响 (3)沟道宽度对阈值电压的影响 (4)迁移率随表面电场的变化 (5)沟道夹断引起的沟道长度调制效应 (6)载流子漂移速度限制而引起的电流饱和效应

3)LEVEL=3 即MOS3模型。MOS3模型是一个半经验模型, 适用于短沟道器件。MOS3模型中的阈值电压、 饱和电流、沟道调制效应和漏源电流表达式等都 是半经验公式,其模型参数大多与MOS2模型相 同,但引入了三个新的模型参数:模拟静电反馈 效应的经验模型参数η(EAT)、迁移率调制系 数θ(THETA)和饱和电场系数κ(KAPPA)。
公式中符号
IS αF αR VAF VAR mE mC ms VE0 V C0 V S0

SiC MOSFET SPICE模型的建立与仿真分析

SiC MOSFET SPICE模型的建立与仿真分析

SiC MOSFET SPICE模型的建立与仿真分析叶雪荣;张开新;翟国富;丁新【摘要】SiC MOSFET与Si MOSFET相比,具有耐高压、耐高温、频率快等诸多优点,得到了越来越广泛的应用。

SPICE模型作为含SiC MOSFET电路仿真分析的基础,对其进行研究十分必要。

以SPICE 1模型为例,介绍了基于LTspice的SiC MOSFET建模流程,通过MOS、体二极管、PCB寄生参数等建模过程,完成了SiC MOSFET SPICE 1模型的建立,并通过仿真分析验证了所建立模型的正确性。

【期刊名称】《电器与能效管理技术》【年(卷),期】2019(000)003【总页数】6页(P25-29)【关键词】SiC MOSFET;SPICE 1模型;仿真;LTspice【作者】叶雪荣;张开新;翟国富;丁新【作者单位】[1]哈尔滨工业大学电器与电子可靠性研究所,黑龙江哈尔滨150001;[1]哈尔滨工业大学电器与电子可靠性研究所,黑龙江哈尔滨150001;[1]哈尔滨工业大学电器与电子可靠性研究所,黑龙江哈尔滨150001;[2]航天安通电子科技有限公司,天津300384;【正文语种】中文【中图分类】TM460 引言作为电力电子变换装置系统的核心组件、电力电子变换技术的基础,半导体技术的发展一直是推动电力电子技术发展的关键[1]。

随着SiC材料的发展,其在高压[2-3]、高温[4-5]、大功率[6]、高频[7-8]等应用场合下具有明显的优势,越来越受到研究者的青睐。

国内外学者对于SiC MOSFET建模的方法做了大量研究。

国外学者对于模型的研究主要分为物理建模和等效电路建模,如文献[9]基于SiC器件的物理特性、物理结构提出一种模型,但其不适用于工程中的应用和分析。

部分文献通过改进传统的Si MOSFET模型进行建模,文献[10]提出了一种变温度参数建模方法,非常适用于高压SiC MOSFET。

此方法对SiC MOSFET的建模具有一定的指导意义,已得到业界普遍的认可。

SPICE仿真实验报告

SPICE仿真实验报告
能够根据电路分析的具体要求灵活使用spice
SPICE仿真实验报告
SPICE仿真实验
1.实验目的
(1)练习使用标准SPICE的元件描述语句,分析语句,输出语句,模型语句等,熟练掌握电路元件的编写;
(2)能够根据电路分析的具体要求灵活使用SPICE;
(3)练习使用aim-SPICE软件,特别是其中的标准SPICE分析功能。
2.实验设备:aim-SPICE Student V验7-1:解直流电路习题1
实验7-2 解直流电路习题2
实验7-4 文氏电桥电路的频率特性
实验7-5 RC电路的一阶过渡过程
实验7-6 RLC串联电路的二阶过渡过程
实验7-7 画二极管伏安特性曲线
实验7-8 画三极管的输出特性曲线

Spice仿真

Spice仿真

仿真功能简介
返回
四、 Pspice的基本电路特性分析
1 . 静态工作点分析

静态工作点分析就是将电路中的电容开路,电 感短路,对各个信号源取其直流电平值,计算电路 的直流偏置量。
例:求基本放大电路 的静态工作点。步骤 如下: (1)用Capture软 件画好电路图
返回
(2) 建立模拟类型分组。

仿真步骤
(1)新建仿真设计项目;
(2)输入电路结构;
(3)编辑修改电路元器件标号和参数值,包括直流电源 和信号源参数; (4)创建仿真简要表(Simulation Profile),设置分 析功能; (5)执行仿真; (6)仿真结果分析及输出。
返回
新建设计项目(File/New/Project)
5.0mV 0V SEL>> -5.0mV 1.0V V(Vs:+) 0V
-1.0V
返回
0s V(Out)
0.4ms
0.8ms Time
1.2ms
1.6ms
2.0ms
频域分析
幅频特性dB(V(Vo)/V(i)) 输入阻抗V(i)/ I(i) 输出阻抗
返回
求解输出阻抗
修改电路: 令Vs=0,信号源短路,取掉负载RL,外加 一个信号源VSIN(400mv) 其他步骤与“输入电阻的频率响应”分析相同 Ro =V(Vo)/I(Vs)
返回
连线与设置节点名
(1)连线。①启动Place/Wire命令。 ②按对应的绘图 快捷键 (2)设置节点名。例如,想把输出端的节点起名为Out。 步骤如下:
①启动Place/Net Alias命令,或按对应的绘图快捷键 ,屏幕 上出现设置框。在设置框中键入节点名(例Out)。 ② 按OK键,则光标处 附着一个小方框,将光标移至设置节点 名的位置,按鼠标左键,新节点名即出现在该位置。

HSPICE仿真课件

HSPICE仿真课件

2013-11-04
13
输入输出文件
2013-11-04
14
数量级的工程符号
2013-11-04
15
输入文件的例子
2013-11-04
16
输入文件的例子
2013-11-04
17
HSPICE的输入 输入行格式
• 文件名、语句、等式的长度不能超过256字符; • 上标和下标将被忽略; • 对英文字符大小写不敏感 • 用加号(+)表示续行,此时加号应该是新续之行的 第一个非空格字符; • 星号(*)和美圆符号($)可以引出注释行,但*必 须是每行第一个字母,而$一般跟在一个语句后,并 与语句有至少一个空格。
2013-11-04
23
HSPICE的语句 使用子电路
2013-11-04
24
HSPICE的语句 .model引导模型说明语句
• .MODEL 模型名 元器件类型 • 例如:nmos模型 • .model mod1 nmos VTO=1.0 KP=4.5E-5 +LAMBDA=0 GAMMA=0.4 TOX=1.0E-7 +NSUB=4.0E+15 LD=0.06U CJ=2.0E-4 MJ=0.5 +CJSW=2.0E-10 MJSW=0.4 CGSO=1E-10 +CGDO=1E-10 CGBO=2E-9 元器件参数
En
数字集成电路理论与设计
刘 涛
E-mail: ttlyz@
2013-11-04 1
声明
本课件所引用任何素材,包括但不限于文 字图片等,其版权均归原作者所有,这里 不一一列出,一并致谢!
2013-11-04
2
第四章 SPICE与MOS管模型

第四章SPICE模型及仿真

第四章SPICE模型及仿真

Copyrights Zhu, Weihong
10 Principles of the Communications
School of Information Science and Engineering, Shandong University
无线媒体

红外线和毫米波

用于短距离通信,如电视、录象机等的遥控 也可用于无线LAN 缺点:不能穿透固体 应用:在屋顶用激光连接两个建筑物的LAN 缺点:不能穿透雨和浓雾,易受天气影响
eo ( t ) f e i ( t ) nt
n( t )

f [· ]:信道线性算子
恒参信道: f [· ] ~ 非时变线性算子 随参信道: f [· ] ~ 随时间随机变化

f ei t k t ei t
eo t k t ei t n t
Copyrights Zhu, Weihong
2 Principles of the Communications
School of Information Science and Engineering, Shandong University
引言


狭义信道是信号的传输媒质 有线信道:明线,对称电缆,同轴电缆, 光缆。 无线信道:地波传播,短波电离层反射, 超短波或微波视距中继,人造卫星中继, 各种散射信道。 包括有关的变换装置的信道为广义信道。
k t 乘性干扰,包括各种线性和非线性畸变
n(t) 加性噪声(干扰),与ei (t) 独立
Copyrights Zhu, Weihong 17 Principles of the Communications

SPICE仿真和模型简介

SPICE仿真和模型简介

SPICE仿真和模型简介SPICE 仿真和模型简介1、SPICE仿真程序电路系统的设计人员有时需要对系统中的部分电路作电压与电流关系的详细分析,此时需要做晶体管级仿真(电路级),这种仿真算法中所使用的电路模型都是最基本的元件和单管。

仿真时按时间关系对每一个节点的I/V关系进行计算。

这种仿真方法在所有仿真手段中是最精确的,但也是最耗费时间的。

SPICE(Simulation program with integrated circuit emphasis)是最为普遍的电路级模拟程序,各软件厂家提供提供了Vspice、Hspice、Pspice等不同版本spice软件,其仿真核心大同小异,都是采用了由美国加州Berkeley大学开发的spice模拟算法。

SPICE可对电路进行非线性直流分析、非线性瞬态分析和线性交流分析。

被分析的电路中的元件可包括电阻、电容、电感、互感、独立电压源、独立电流源、各种线性受控源、传输线以及有源半导体器件。

SPICE内建半导体器件模型,用户只需选定模型级别并给出合适的参数。

2、元器件模型为了进行电路模拟,必须先建立元器件的模型,也就是对于电路模拟程序所支持的各种元器件,在模拟程序中必须有相应的数学模型来描述他们,即能用计算机进行运算的计算公式来表达他们。

一个理想的元器件模型,应该既能正确反映元器件的电学特性又适于在计算机上进行数值求解。

一般来讲,器件模型的精度越高,模型本身也就越复杂,所要求的模型参数个数也越多。

这样计算时所占内存量增大,计算时间增加。

而集成电路往往包含数量巨大的元器件,器件模型复杂度的少许增加就会使计算时间成倍延长。

反之,如果模型过于粗糙,会导致分析结果不可靠。

因此所用元器件模型的复杂程度要根据实际需要而定。

如果需要进行元器件的物理模型研究或进行单管设计,一般采用精度和复杂程度较高的模型,甚至采用以求解半导体器件基本方程为手段的器件模拟方法。

二微准静态数值模拟是这种方法的代表,通过求解泊松方程,电流连续性方程等基本方程结合精确的边界条件和几何、工艺参数,相当准确的给出器件电学特性。

SPICE模型的导入及仿真

SPICE模型的导入及仿真

ADS SPICE模型的导入及仿真一、SPICE模型的导入1、打开一个新的原理图编辑视窗,暂时不用保存也不要为原理图命名。

2、导入SPICE模型:1233、新建一个原理图,命名为“BFP640_all ”,利用刚导入的SPICE 文件并对照下载的SPICE 文件附带的原理图进行连接:导入完成! 已经导入了: bfp640.dsn chip_bfp640.dsn sot343_bfp640.dsn 等文件。

选择要导入的SPICE 模型文件 4连接好后的BFP640_all原理图如下:4、为SPICE模型创建一个新的电路符号ADS原理图系统默认的电路符号如下:这里我们为BFP640创建一个新的NPN电路符号。

1、在原理图设计窗口中的菜单栏中选择【View】→【Create/Edit Schematic Symbol】命令中,出现“Symbol Generator”对话框后,单击【OK】按钮,出现如上图所示的默认符号;2、在菜单栏中选项【Select】→【Select All】命令,并单击【Delete】按钮删除默认符号;3、在菜单栏中选择【View】→【Create/Edit Schematic Symbol】命令回到原理图设计窗口;4、在原理图设计窗口中选择【File】→【Design Parameters】,打开“Design Parameters”对话框;5、按照下图所示,设置对话框中的参数单击【OK】按钮,保存新的设置并自动关闭对话框;6、最后,单击【Save】按钮保存原理图,电路符号就创建完成。

二、直流仿真1、在ADS主视窗下单击【File】→【New design】,在弹出的对话框中输入新原理图名称“BFP640_DC1”,并选择“BJT_curve_tracer”设计模版,如下图所示:文件描述元件名称Q在下拉菜单中选择ADS内建模型SYM_BJT_NPN选择元件封装单击【OK】按钮后,将弹出已经带有DC仿真控件的原理图。

SPICE电路仿真

SPICE电路仿真
1. 电路SPICE描述,保存为文件E:\spice\ex4.cir
Common emitter amplifier .model 2n3904 NPN(Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259 + Ise=6.734f Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2 Isc=0 Ikr=0 Rc=1 + Cjc=3.638p Mjc=.3085 Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 + Vje=.75 Tr=239.5n Tf=301.2p Itf=.4 Vtf=4 Xtf=2 Rb=10) V1 Vcc 0 DC 12V Q1 vc vb ve 2n3904 Rc Vcc vc 2k Re ve 0 500 R1 vb 0 7k R2 Vcc vb 33k C1 Vin vb 0.1u C2 vc Vout 0.1u RL Vout 0 100k Vsig Vin 0 ac 10mV sin(0 10mV 1kHz) .end
SPICE 语法 SPICE 仿真 SPB, Multisim 实例
14
SPICE分析的类型
.op – Operating point,计算电路的直流偏置状态 .dc – DC sweep,当电路中某一参数在一定范围 内变化时计算相对应的电路直流偏置特性 .ac – 计算电路的交流小信号频率响应特性 .tran – Transient,瞬态分析,在给定激励信号的 作用下,计算电路输出端的瞬态响应 .noise – 噪声分析 .pz – Pole-zero analyse,零极点分析 .disto – 失真分析 .tf – Transfer function,直流小信号传递函数分析

SPICE电路仿真实验

SPICE电路仿真实验

SPICE电路仿真实验一.实验目的(一)练习使用标准spice的元件描述语句、分析语句、输出语句、模型语句等,熟练掌握电路文件的编写。

(二)能够根据电路分析的具体要求灵活使用spice。

(三)练习使用aim-spice 软件,特别是其中的标准spice分析功能。

二.实验设备AIM-SPICE STUDENT VERSION3.8a 软件。

三.实验内容(一)电路图如图1.1所示,编写电路文件,计算电路中的电流I。

120V图1.1(二)电路图如图1.2所示,画出当电压源从2V~6V时,电流I的变化曲线。

Vi2Ω2Ω(三)交流电路如图 1.3所示,已知Vtu)451000sin(2220-=, R1=100Ω, R2=200Ω, R2=50Ω, L1=0.1H, L2=0.5H C=5uF。

画出电流i的波形。

(要求与u画在一起)uC图1.2图1.3(四)已知文氏电桥电路如图1.4所示,画出其幅频特性曲线和相频特性曲线。

u(五)电路如图 1.5(a)所示,输入电压u如图 1.5(b)所示,设u c(0_)=0。

用spice 画出u ab过渡过程的波形。

u cu(六)电路如图1.6所示,t<0时电路已经处于稳态,t=0时开关K 闭合,请用spice画出开关闭合后电路中电流i的波形。

图1.4图1.5(a) 图1.5(b)10V图1.6(七)已知二极管1N41418的参数:IS=0.1PA, RS=16 CJO=2PF TT=12N BV=100 IBV=0.1PA,用spice 画出1N4148的伏安特性曲线,要求横轴是电压,纵轴是电流,电压:0~1.2V。

* (八)用spice 画出某一种三极管的输出特性曲线。

注:有关spice和aim-spice的使用方法请参阅《电工学补充教材》。

SPICE的器件模型..

SPICE的器件模型..

SPICE的器件模型在介绍SPICE基础知识时介绍了最复杂和重要的电路描述语句,其中就包括元器件描述语句。

许多元器件(如二极管、晶体管等)的描述语句中都有模型关键字,而电阻、电容、电源等的描述语句中也有模型名可选项,这些都要求后面配以.MODEL起始的模型描述语句,对这些特殊器件的参数做详细描述。

电阻、电容、电源等的模型描述语句语句比较简单,也比较容易理解,在SPICE基础中已介绍,就不再重复了;二极管、双极型晶体管的模型虽也做了些介绍,但不够详细,是本文介绍的重点,以便可以自己制作器件模型;场效应管、数字器件的模型过于复杂,太专业,一般用户自己难以制作模型,只做简单介绍。

元器件的模型非常重要,是影响分析精度的重要因素之一。

但模型中涉及太多图表,特别是很多数学公式,都是在WORD下编辑后再转为JEPG图像文件的,很繁琐和耗时,所以只能介绍重点。

一、二极管模型:1.1 理想二极管的I-V特性:1.2 实际硅二极管的I-V特性曲线:折线1.3 DC大信号模型:1.4 电荷存储特性:1.5 大信号模型的电荷存储参数Qd:1.6 温度模型:1.7 二极管模型参数表:二、双极型晶体管BJT模型:2.1 Ebers-Moll静态模型:电流注入模式和传输模式两种2.1.1 电流注入模式:2.1.2 传输模式:2.1.3 在不同的工作区域,极电流Ic Ie的工作范围不同,电流方程也各不相同:2.1.4 Early效应:基区宽度调制效应2.1.5 带Rc、Re、Rb的传输静态模型:正向参数和反向参数是相对的,基极接法不变,而发射极和集电极互换所对应的两种状态,分别称为正向状态和反向状态,与此对应的参数就分别定义为正向参数和反向参数。

2.2 Ebers-Moll大信号模型:2.3 Gummel-Pool静态模型:2.4 Gummel-Pool大信号模型:拓扑结构与Ebers-Moll大信号模型相同,非线性存储元件电压控制电容的方程也相同2.5 BJT晶体管模型总参数表:三、金属氧化物半导体晶体管MOSFET模型:3.1 一级静态模型:Shichman-Hodges模型3.2 二级静态模型(大信号模型):Meyer模型3.2.1 电荷存储效应:3.2.2 PN结电容:3.3 三级静态模型:3.2 MOSFET模型参数表:一级模型理论上复杂,有效参数少,用于精度不高场合,迅速粗略估计电路二级模型可使用复杂程度不同的模型,计算较多,常常不能收敛三级模型精度与二级模型相同,计算时间和重复次数少,某些参数计算比较复杂四级模型BSIM,适用于短沟道(<3um)的分析,Berkley在1987年提出四、结型场效应晶体管JFET模型:基于Shichman-Hodges模型4.1 N沟道JFET静态模型:4.2 JFET大信号模型:4.3 JFET模型参数表:五、GaAs MESFET模型:分两级模型(肖特基结作栅极)GaAs MESFET模型参数表:六、数字器件模型:6.1 标准门的模型语句:.MODEL <(model)name> UGATE [模型参数] 标准门的延迟参数:6.2 三态门的模型语句:.MODEL <(model)name> UTGATE [模型参数]三态门的延迟参数:6.3 边沿触发器的模型语句:.MODEL <(model)name> UEFF [模型参数]边沿触发器参数:JKFF nff preb,clrb,clkb,j*,k*,g*,gb* JK触发器,后沿触发DFF nff preb,clrb,clk,d*,g*,gb* D触发器,前沿触发边沿触发器时间参数:6.4 钟控触发器的模型语句:.MODEL <(model)name> UGFF [模型参数]钟控触发器参数:SRFF nff preb,clrb,gate,s*,r*,q*,qb* SR触发器,时钟高电平触发DLTCH nff preb,clrb,gate,d*,g*,gb* D触发器,时钟高电平触发钟控触发器时间参数:6.5 可编程逻辑阵列器件的语句:U <name> <pld type> (<#inputs>,<#outputs>) <input_node>* <output_node># +<(timing model)name> <(io_model)name> [FILE=<(file name) text value>]+[DATA=<radix flag>$ <program data>$][MNTYMXDLY=<(delay select)value>] +[IOLEVEL=<(interface model level)value>]其中:<pld type>列表<(file name) text value> JEDEC格式文件的名称,含有阵列特定的编程数据JEDEC文件指定时,DATA语句数据可忽略<radix flag> 是下列字母之一:B 二进制 O 八进制 X 十六进制<program data> 程序数据是一个数据序列,初始都为0PLD时间模型参数:七、数字I/O接口子电路:数字电路与模拟电路连接的界面节点,SPICE自动插入此子电路子电路名(AtoDn和DtoAn)在I/O模型中定义,实现逻辑状态与电压、阻抗之间的转换。

集成电路设计 spice 模型及仿真

集成电路设计 spice 模型及仿真

7.5 缓冲驱动器设计实例
准备模型文件 选用1.2um CMOS工艺level II模型
(Models.sp)
.MODEL NMOS NMOS LEVEL=2 LD=0.15U TOX=200.0E10 VTO=0.74 KP=8.0E-05
+NSUB=5.37E+15 GAMMA=0.54 PHI=0.6 U0=656 UEXP=0.157 UCRIT=31444
6 线性电流控制电流/电压源 格式: FXXXX N+ N- VNAM VALUE 电流增益 H XXXX N+ N- VNAM VALUE 电阻 Ω 例句: F1 10 5 VSENSOR 5 HX 8 15 VZ 0.5K VZ 支路电压源名称
7.2 电路元件的SPICE输入语句
7.2 电路元件的SPICE输入语句
5 线性电压控制电流/电压源 格式: GXXXX N+ N- NC+ NC- VALUE 跨导 EXXXX N+ N- NC+ NC- VALUE 电压增益 例句: G1 2 0 4 0 0.1MS E1 2 3 1 0 2.0
7.2 电路元件的SPICE输入语句
7.1 SPICE数模混合仿真程序
设计指标要求 确定电路初始方案 确定电路元件参数 编写电路描述文件
修改电路结构 修改元件参数
SPICE电路仿真 满足要求?
最终电路设计方案
SPICE仿真输入文件
首先要画出电路图 对元件命名 对节点编号 编写输入文件 例7.2 差动放大单元电路图
7.2 电路元件的SPICE输入语句
7 独立电源 VXXXX N+ N- ((DC) DC/TRAN VALUE) (AC (ACMAG(ACPHASE))) 电压源 IXXXX N+ N- ((DC) DC/TRAN VALUE) (AC (ACMAG(ACPHASE))) 电流源 DC/TRAN→ 电源的直流和瞬态值 ACMAG<ACPHASE → AC信号的幅值和相位 例句: VCC 100 0 DC 5V

电子设计中的SPICE仿真技术

电子设计中的SPICE仿真技术

电子设计中的SPICE仿真技术在电子设计中,SPICE仿真技术是一种非常重要的工具,它可以帮助工程师在设计电路之前进行准确的分析和验证。

SPICE(Simulation Program with Integrated Circuit Emphasis)是一种用于模拟电路行为的通用工具,通过模拟电路中的元件和信号传输来预测电路的性能和稳定性,从而节省了设计成本和时间。

在进行电子设计中,SPICE仿真技术可以帮助工程师进行以下方面的工作:1. 电路分析:SPICE仿真技术可以帮助工程师分析电路中各个元件的工作状态、电压、电流等参数,从而帮助工程师了解电路的整体工作情况,有助于发现潜在问题并进行优化。

2. 参数优化:在设计电路时,工程师可以通过SPICE仿真技术来寻找最佳的元件数值,使得电路性能达到最佳状态,比如最小功耗、最大增益等。

3. 稳定性分析:SPICE仿真技术可以帮助工程师分析电路的稳定性,如相位裕度、阻尼比等,避免在实际使用中出现振荡等问题。

4. 故障分析:通过SPICE仿真技术,工程师可以分析电路中的故障原因,比如元件烧坏、短路等,从而快速定位并解决问题。

5. 产品验证:SPICE仿真技术可以帮助工程师在设计阶段对产品进行验证,模拟出实际工作环境中可能出现的情况,从而提前发现问题并改进设计。

在使用SPICE仿真技术时,工程师需要注意以下几点:1. 选择合适的SPICE软件:目前市面上有多种SPICE仿真软件可供选择,如LTspice、OrCAD、PSpice等,工程师需要根据自己的需求和熟悉程度选择适合的软件。

2. 模型准确性:在进行SPICE仿真时,工程师需要确保所选用的元件模型和参数准确无误,以保证仿真结果的准确性。

3. 参数设置:工程师在进行SPICE仿真时,需要合理设置仿真参数,如仿真时间、步长等,以确保仿真过程的准确性和效率。

4. 结果分析:工程师在进行SPICE仿真后,需要对仿真结果进行详细的分析,从而得出关键问题和优化方案。

SiCMOSFETSPICE模型的建立与仿真分析

SiCMOSFETSPICE模型的建立与仿真分析

·研究与分析·电器与能效管理技术(2019No.3)叶雪荣(1981—),男,副教授,研究方向为电器与电子可靠性设计及测试技术。

张开新(1994—),男,硕士研究生,研究方向为固态功率控制器。

翟国富(1964—),男,教授,研究方向为电器可靠性与测试技术。

*基金项目:国家重点研发计划(2017YFB1300800);国家自然科学基金(61671172)SiC MOSFET SPICE 模型的建立与仿真分析*叶雪荣1,张开新1,翟国富1,丁新2(1.哈尔滨工业大学电器与电子可靠性研究所,黑龙江哈尔滨150001;2.航天安通电子科技有限公司,天津300384)摘要:SiC MOSFET 与Si MOSFET 相比,具有耐高压、耐高温、频率快等诸多优点,得到了越来越广泛的应用。

SPICE 模型作为含SiC MOSFET 电路仿真分析的基础,对其进行研究十分必要。

以SPICE 1模型为例,介绍了基于LTspice 的SiC MOSFET 建模流程,通过MOS 、体二极管、PCB 寄生参数等建模过程,完成了SiC MOSFET SPICE 1模型的建立,并通过仿真分析验证了所建立模型的正确性。

关键词:SiC MOSFET ;SPICE 1模型;仿真;LTspice 中图分类号:TM 46文献标志码:A文章编号:2095-8188(2019)03-0025-05DOI :10.16628/j.cnki.2095-8188.2019.03.005Establishment and Simulation Analysis of SiC MOSFET SPICE ModelYE Xuerong 1,ZHANG Kaixin 1,ZHAI Guofu 1,DING Xin 2(1.Reliability Institute for Electric Apparatus and Electronics ,Harbin Institute of Technology ,Harbin 150001,China ;2.Aerospace Antong Electronic Technology Co.,Ltd.,Tianjin 300384,China )Abstract :Compared with Si MOSFET ,SiC MOSFET has many advantages such as high voltage resistance ,high temperature resistance ,fast frequency ,etc.,which has been widely used.The SPICE model is the basis for the simulation analysis of SiC-containing MOSFET circuits ,and its research is very necessary.Taking the SPICE 1model as an example ,this paper introduced the modeling process of SiC MOSFET based on LTspice.Through the modeling of MOS ,body diode and PCB parasitic parameters ,the SiC MOSFET SPICE 1model was established and the correctness of the established model was verified by the simulation comparison in this paper.Key words :SiC MOSFET ;SPICE 1model ;simulation ;LTspice0引言作为电力电子变换装置系统的核心组件、电力电子变换技术的基础,半导体技术的发展一直是推动电力电子技术发展的关键[1]。

SPICE模型的导入及仿真

SPICE模型的导入及仿真

ADS SPICE模型的导入及仿真SPICE模型的导入1、打开一个新的原理图编辑视窗,暂时不用保存也不要为原理图命名。

2、导入SPICE模型::BFP&4C_TESl_20110L03.p r j ; untitled;(Schematicpl 1rile Edit Select Viww InEert Options CD Hrv* Dcitin’.Qrl+N Open Design-n Clri+QCJose DesignReyert to Saved Design...wv Save Design QH+S &Save Design 公…静Save Design As Template .CuipxDuGgm..Qelete Desiqr.,.Print.Ctrl+P Print Area...Print Setup-™庠 1 E|P 口!■■!!:■・Export.™1iKfiportsDesig.n ^ar^rT eters...T QC J E Layout Simulate lAindow ^►ynainiiiicLiiib Des ignGtj idle Help p O 月加备\盏<8>郞臼庫[mport bFil^K«tli st FileImport File Nam^ (Sourat)New Design Kame QJe^tin^tioit^2▼ Mcpxe OytiOK C axicel HelpJlZW. 2.£>K -0J5H Z.B75A/肝SrnSchem [mport Netlist Options:5FSFICEV] Fir?+ line is a. cfifMfiint两卩res? □爼10 fnuppingTranslated Output FormatQ ALT Schematic [with nwsd coimaatioaCJ ADM 丿Ojti sitsl Direetwy LfiCiti srDirectory To Store kDS ffstliit Cdafaull i toproject dirtctary)ance Hel?3、新建一个原理图,命名为“ BFP640_aII”,利用刚导入的SPICE文件并对照下载的SPICE文件附带的原理图进行连接:附带的原理图连接好后的BFP640 all 原理图如下:門 肝轴wj 科T/cni-icHjii."逋抽単 …wv di" :ie- [jit Ldre 乂* Qpco 昭 Rgic U 帕a 筍仙虹 Bcrriw 吐汕叶口吐临肝门-]& is a*OM 口 厂二母鳳録弋/陰睜屢合妨暗罩區IF ;、■ HichFM t-dtJ Lihur *"匚1■士專山 Si \ ±■即’© LJ 粵4、为SPICE 模型创建一个新的电路符号ADS 原理图系统默认的电路符号如下:这里我们为BFP640创建一个新的NPN 电路符号。

集成电路器件及SPICE模型通用课件

集成电路器件及SPICE模型通用课件
晶体管SPICE模型包括基极、集电极 和发射极的电流电压关系,以及不同 工作区的特性,用于模拟晶体管在电 路中的行为。
场效应管的SPICE模型
场效应管SPICE模型是模拟场效应管特性的数学模型。
场效应管SPICE模型包括沟道电流、阈值电压等参数,用于模拟场效应管在电路 中的行为。
集成电路器件SPICE模型的参数提取与优化
异构集成与三维集成中的SPICE模型挑战
随着集成电路技术的发展,异构集成和三维集成已经成为趋势。在异构集成和三维集成中, 不同材料和器件之间的相互作用和耦合效应更加复杂,因此需要更加精细的SPICE模型来模 拟。
现有的SPICE模型主要是针对单一器件或单一材料的仿真而设计的,因此在异构集成和三维 集成中需要进行改进和扩展。这需要研究新的建模方法和参数提取技术,以适应不同材料和 器件之间的耦合效应。
电阻器
电阻器是限流元件,用于调节 电路中的电流和电压,分为线 绕、薄膜和厚膜电阻器等类型。
电容器
电容器是储能元件,用于隔直、 滤波和旁路等作用,分为陶瓷、
薄膜和电解电容器等类型。
集成电路器件的工作原理
双极型晶体管工作原理
双极型晶体管利用载流子的扩散与漂移运动 控制电流,具有电流放大作用。
二极管工作原理
优化设计
基于SPICE模型的仿真结果,可以对 电路设计进行优化,改进电路的性能 指标,降低功耗和提高稳定性。
元件匹配与版图布局
元件匹配
SPICE模型可以模拟元件之间的匹配 情况,帮助设计者找到元件的最佳配 置,以确保电路性能的稳定。
版图布局
利用SPICE模型进行版图布局的模拟, 可以预测元件之间的耦合效应和信号 干扰,从而优化版图设计。
VS
效率

SPICE 仿真和模型简介

SPICE 仿真和模型简介

SPICE 仿真和模型简介1、SPICE 仿真程序电路系统的设计人员有时需要对系统中的部分电路作电压与电流关系的详细分析,此时需要做晶体管级仿真(电路级),这种仿真算法中所使用的电路模型都是最基本的元件和单管。

仿真时按时间关系对每一个节点的I/V 关系进行计算。

这种仿真方法在所有仿真手段中是最精确的,但也是最耗费时间的。

SPICE(Simulation program with integrated circuit emphasis)是最为普遍的电路级模拟程序,各软件厂家提供提供了Vspice、Hspice、Pspice 等不同版本spice 软件,其仿真核心大同小异,都是采用了由美国加州Berkeley 大学开发的spice 模拟算法。

SPICE 可对电路进行非线性直流分析、非线性瞬态分析和线性交流分析。

被分析的电路中的元件可包括电阻、电容、电感、互感、独立电压源、独立电流源、各种线性受控源、传输线以及有源半导体器件。

SPICE 内建半导体器件模型,用户只需选定模型级别并给出合适的参数。

2、元器件模型为了进行电路模拟,必须先建立元器件的模型,也就是对于电路模拟程序所支持的各种元器件,在模拟程序中必须有相应的数学模型来描述他们,即能用计算机进行运算的计算公式来表达他们。

一个理想的元器件模型,应该既能正确反映元器件的电学特性又适于在计算机上进行数值求解。

一般来讲,器件模型的精度越高,模型本身也就越复杂,所要求的模型参数个数也越多。

这样计算时所占内存量增大,计算时间增加。

而集成电路往往包含数量巨大的元器件,器件模型复杂度的少许增加就会使计算时间成倍延长。

反之,如果模型过于粗糙,会导致分析结果不可靠。

因此所用元器件模型的复杂程度要根据实际需要而定。

如果需要进行元器件的物理模型研究或进行单管设计,一般采用精度和复杂程度较高的模型,甚至采用以求解半导体器件基本方程为手段的器件模拟方法。

二微准静态数值模拟是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Copyrights Zhu, Weihong
3 Principles of the Communications
School of Information Science and Engineering, Shandong University
狭义 发 转 换 器 收 转 换 器
调 制 器
媒 质
常用传输媒体的比较
传输媒体 双绞线 50 同轴电缆
远距离速率
传输距离
性能 可以 较好 较好 很好 较差
价格 很低 较低 较高 较高 很低
应用
应用示例 用户环线 LAN LAN CATV
模拟:300-3400Hz数 5-6公里 字:4Mbps 2-3公里 10Mbps 300--450MHz 2Gbps 几十--几百bps 2--40GHz 500MHz 1-10公里 100公里 10-100公里 全球 几百公里
信道连接发送端到接收端的通信设备,其 功能是将信号从发送端传送到接收端; 影响系统可靠性能: 噪声和信道传输特性的不理想 根据传输媒介的不同,信道可分为两类: 无线信道:利用电磁波在空间中的传播 来传输信号; 有线信道:利用人造的传导电或光信号 的媒体来传输信号。
5 Principles of the Communications
Copyrights Zhu, Weihong
10 Principles of the Communications
School of Information Science and Engineering, Shandong University
无线媒体

红外线和毫米波

用于短距离通信,如电视、录象机等的遥控 也可用于无线LAN 缺点:不能穿透固体 应用:在屋顶用激光连接两个建筑物的LAN 缺点:不能穿透雨和浓雾,易受天气影响
地球
地面站之间的直视线路
Copyrights Zhu, Weihong
微波传送塔
8 Principles of the Communications
School of Information Science and Engineering, Shandong University
卫星中继通信

模拟传输 数字传输 数字
75 同轴电缆
光纤 短波 地面 微波接力 卫星
模拟、数字
远距离传输 主干网、长话 远程、低速通信 广播
长话、电视 数据、电视
很好 与距离有关 远程通信 卫星及火箭 远程通信 造价较高
一万八千公里 很好
Copyrights Zhu, Weihong
13 Principles of the Communications
School of Information Science and Engineering, Shandong University
电信领域使用的电磁波的频谱
102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 Hz
双绞线 电话业务 同轴电缆


Copyrights Zhu, Weihong
18 Principles of the Communications
School of Information Science and Engineering, Shandong University
4.3.2 编码信道模型(2)


无记忆二进制编码信道模型 对称编码信道:二进制编码信道的转移概率 P (0/1) = P (1/0) 非对称编码信道:二进制编码信道的转移概率 P (0/1) ≠ P (1/0) 无记忆四进制编码信道模型
Copyrights Zhu, Weihong
School of Information Science and Engineering, Shandong University

基本概念(2)


信道中的干扰: 有源干扰 - 噪声 无源干扰 - 传输特性不良 本章重点:
介绍信道传输特性和噪声的特性,及其对于 信号传输的影响。
4.3.2 编码信道模型(1)

编码信道模型 一种数字序列的变换,也称为离散或数字信道 含调制信道 → 依赖于调制信道的性能 噪声的干扰体现在误码上,关心误码(不是失真) →使用转移概率来描述 无记忆编码信道:信道码元的转移概率与其前后码元的 取值无关 有记忆编码信道:信道码元的转移概率与其前后码元的 取值有关
P 0 0 P 1 0
P 0 1 P 1 1
Pe P (0) P (1/ 0) P (1) P (0 / 1)
Copyrights Zhu, Weihong 19 Principles of the Communications
School of Information Science and Engineering, Shandong University
School of Information Science and Engineering, Shandong University
4.3.1 调制信道模型(1)

调制信道模型:传输已调信号,关心的是信号的失真 情况及噪声对信号的影响。信号的瞬时值是连续变化 的,故也称为连续信道 具有一对(或多对)输入和输出端 绝大多数信道是线性的 有时延、损耗 无信号时,信道输出端有输出
4.2 有线信道

有线信道分类
明线 对称电缆(双绞线) 同轴电缆 光纤

Copyrights Zhu, Weihong
12 Principles of the Communications
School of Information Science and Engineering, Shandong University

光波传输

选择传输媒体要考虑的因素:价格、带宽/数据率、 传输距离
Copyrights Zhu, Weihong 11 Principles of the Communications
School of Information Science and Engineering, Shandong University
4.3 信道的数学模型


调制信道:发送端调制器输出端至接收端解调 器输入端的之间的部分; 编码信道:编码器输出端至解码器输入端之间 的部分。
发 转 换 器 收 转 换 器
编码器输出
调 制 器
媒 质
调制信道
编码信道
解 调 器
解调器输出
Copyrights Zhu, Weihong
15 Principles of the Communications
Copyrights Zhu, Weihong
7 Principles of the Communications
School of Information Science and Engineering, Shandong University
无线视距中继信道——超短波、微波



两个地面站之间传送(点到点) 距离:50-100 km;频率:2G-40GHz 依赖于天气和频率 应用:长距离传输话音和电视信号;大厦之间LAN互连
k t 乘性干扰,包括各种线性和非线性畸变
n(t) 加性噪声(干扰),与ei (t) 独立
Copyrights Zhu, Weihong 17 Principles of the Communications
School of Information Science and Engineering, Shandong University
eo ( t ) f e i ( t ) nt
n( t )

f [· ]:信道线性算子
恒参信道: f [· ] ~ 非时变线性算子 随参信道: f [· ] ~ 随时间随机变化

f ei t k t ei t
eo t k t ei t n t
1 Principles of the Communications
Copyrights Zhu, Weihong
School of Information Science and Engineering, Shandong University
Contents(2)


4.6 信道容量 4.6.1 离散信道容量 4.6.2 连续信道容量 4.7 小结
使用微波 使用转发器接收和转发 可支持点到多点传送
C波段 4/6 GHz
上行5.925 - 6.425 GHz 下行3.7 - 4.2 GHz KU波段 12/14 GHz 上行14 - 14.5 GHz

地球
地面站
下行11.7 - 12.2 GHz 应用:传输电视信号、远距离 话音传输、组建专用网
Copyrights Zhu, Weihong
16 Principles of the Communications
School of Information Science and Engineering, Shandong University
4.3.1 调制信道模型(2)
ei ( t )
F()
Copyrights Zhu, Weihong
2 Principles of the Communications
School of Information Science and Engineering, Shandong University
相关文档
最新文档